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Abstract 

Ageing is characterised by a simultaneous loss of muscle mass, strength and 

physical performance (sarcopenia) and bone mass (osteoporosis). These changes in 

muscle and bone can lead to reduced physical function, increased falls and fractures and 

a poorer quality of life. Due to the ageing population and increases in sedentary 

behaviours, sarcopenia and osteoporosis prevalence and associated burdens are predicted 

to rise. The simultaneous loss of muscle and bone raised the hypothesis that bone and 

muscle are not only linked anatomically, but also metabolically and chemically. However, 

it is still not clear how bone-derived factors are involved in this crosstalk.  

Bone is an endocrine organ, releasing hormones affecting distant tissues and 

organs. Osteocalcin (OC) is the most abundant non-collagenous protein in bone. Its total 

serum levels (tOC) are used clinically as a bone turnover marker (BTM). The 

undercarboxylated form of OC (ucOC) is considered bio-active, involved in energy 

metabolism and possibly muscle mass maintenance and strength, at least in rodents. 

Evidence from human studies is limited and contradictory, in part because most research 

has focused on tOC, rather than the ucOC. 

Exercise improves muscle and bone mass, as well as muscle strength, while 

inactivity has deleterious effects on both organs. Consequently, exercise is a cornerstone 

approach to maintain and preserve musculoskeletal health in adults, and can be used as a 

tool to investigate bone-muscle crosstalk. The primary aim of this PhD thesis was to 

identify the normal range of ucOC across the adult human lifespan, and to explore whether 

ucOC and other BTMs are related to muscle mass, strength and physical performance. I 

also explored whether acute exercise can affect the relationships between ucOC and 

muscle function (strength and physical performance) in older adults. The specific aims 

were: 

Study 1: to develop age-based reference ranges for OC and its forms and ratios in 

healthy adult men. Overall, 236 adult men participated in the study (18 to 92 years old). 

Serum samples were analysed for tOC and ucOC (using the hydroxyapatite binding 

method) and carboxylated OC (cOC), ucOC/tOC and cOC/tOC ratios were calculated. 

Ageing was associated with a “U” shaped pattern for tOC, cOC and ucOC levels. The 

ucOC/tOC ratio was higher, while cOC/tOC ratio was lower, in men of advanced age, 

demonstrating that OC ratios may be better measures than the absolute values to identify 

age-related changes in OC. 
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Study 2: to test the hypothesis that the serum ucOC absolute value and ucOC/tOC 

ratio are associated with muscle function and long-term risk for falls-related 

hospitalisations using a large longitudinal dataset (15 years) in older women (n=1261, 

mean age 75.2±2.7 years). In older women, a higher ucOC/tOC ratio was related to poorer 

physical function, including the long-term decline in physical function and increased risk 

of falls-related hospitalisations. Early The identification of women at higher risk for 

functional decline using the ucOC/tOC ratio may enable prevention and intervention 

strategies to occur early, reducing future risk for injurious falls. 

Study 3: to perform a systematic review to examine the effects of acute exercise 

on BTMs in adults over the age of 50 years and identify whether BTM responses are 

determined by exercise mode, intensity, age and sex. Thirteen studies were included: eight 

in middle-aged adults (n= 275, 212 women/63 men, mean age= 57.9±1.5 years) and five 

in older adults (n= 93, 50 women/43 men, mean age= 68.2±2.2 years). Eleven studies 

included aerobic exercise (AE) (7 middle-aged/4 older adults) and two included resistance 

exercise (RE) (both in middle-aged adults). AE increased C-terminal telopeptide of type 

I collagen (CTX), alkaline phosphatase (ALP) and bone-ALP in middle-aged and older 

adults. AE also increased tOC in middle-aged men, and procollagen I carboxyterminal 

propeptide (PICP) and cross‐linked carboxyterminal telopeptide of type I collagen (ICTP) 

in older women. In middle-aged adults, RE combined with impact exercise (jumping) had 

no effect on tOC or BALP, but led to a decrease in CTX. Jumping alone increased P1NP 

and tOC in middle-aged women. Acute exercise is an effective tool to modify BTMs, but 

the response appears to be specific to exercise modality, intensity, age and sex. 

Study 4: to test the hypotheses that a) at baseline, serum ucOC and other BTMs 

are associated with muscle function, b) acute exercise can alter ucOC and BTMs and c) 

muscle function at baseline is related to the acute exercise responses of these biomarkers. 

A total of 35 older adults (25 females/10 males, 72±6 years) participated. The baseline 

assessments included: body composition, handgrip strength and a physical performance 

test (PPT) (gait speed, TUG, time to climb and descend 10 stairs). Leg muscle quality 

(LMQ) and stair climb power (SCP) were calculated. Participants performed in a 

randomised order a single session of 30 mins AE (cycling at 70% of peak heart rate) and 

RE (leg press at 70% of one repetition maximum and jumping regimen). At baseline, 

higher muscle strength was associated with higher P1NP and better physical performance 

(lower PPT score). Similarly, higher SCP was associated with higher P1NP and the beta-

fragment of CTX (ß-CTX) (p<0.05). Exercise, regardless of mode, decreased ß-CTX and 
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tOC (all p<0.05), while P1NP and ucOC were not altered. Post-exercise, lower ß-CTX 

was associated with higher baseline muscle strength and power. Poorer baseline mobility 

was associated with higher ß-CTX. Independent of exercise mode, acute exercise 

decreased ß-CTX and tOC. Our data suggests that in older adults the relationship between 

muscle quality and function and BTMs is not specific to ucOC, but to BTMs in general. 

Furthermore, increased BTM levels were linked to better muscle function.   

General conclusions: Overall, the data from this thesis strengthen the evidence 

for bone-muscle interaction, but mechanisms behind this crosstalk remain unclear. Larger 

randomised controlled trials, as well as longitudinal epidemiological studies, are required 

to elucidate the link between both ucOC and BTMs with muscle function, as well as with 

exercise-induced responses. Whether the assessment of ucOC or the ucOC/tOC ratio 

should be added to the standard screening in clinical care for the early identification of 

people who are at risk of falls and fractures needs to be evaluated further.  
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Chapter 1: Introduction 

Adults reach their peak muscle and bone mass at approximately the third decade 

of life, after which an age-related loss of skeletal muscle and bone mass occurs (1, 2). 

However, under some certain conditions, which remain unclear, this loss of bone mass 

(leading to osteoporosis) and muscle (leading to sarcopenia) becomes accelerated. 

Emerging evidence suggests that this parallel loss of bone and muscle mass and strength 

is driven, at least in part, by bone-muscle crosstalk (3, 4). The skeleton (bone) and skeletal 

muscle are closely linked anatomically, chemically and metabolically, and function in an 

endocrine and paracrine nature (3, 5, 6). The exact mechanisms involved in bone-muscle 

crosstalk remain partially explored but may include bone derived hormones (6, 7).  

Osteocalcin (OC), an osteoblast-specific secreted protein, is the most abundant 

non-collagenous protein found within the bone matrix and is used in a clinical setting as 

a bone turnover marker (BTM) (8-10). Within the circulation serum total osteocalcin 

(tOC) exists in two forms: γ-carboxylated (cOC) and undercarboxylated OC (ucOC) 

where ucOC lacks γ-carboxylation at one or more sites (9, 11). Both forms are understood 

to be involved in different underlying processes. The cOC form is predominantly located 

in bone involved in bone mineralisation, whereas ucOC, which is considered the bio-

active form of OC, may participate in glucose metabolism and be involved in regulating 

muscle mass and strength (6, 12-16). Previous studies report that circulating tOC is 

highest in early adulthood and lower in mid-life but in older adults the data is conflicting, 

as some report higher whereas others report lower values (17-25). Despite differences in 

the biological functions of the OC forms, few studies reported the levels of both forms, 

with the majority of studies focused on tOC. Consequently, the ageing effect and normal 

ranges of OC forms and ratios (ucOC, cOC, ucOC/tOC, cOC/tOC) are not known. 

The protein ucOC is involved in energy metabolism and may be important to 

maintain muscle mass and strength (15, 16, 26, 27). OC-deficient mice are shown to have 

lower muscle mass and strength (16). Additionally, lower ucOC following hind limb 

immobilisation in mice is associated with reduced muscle mass and muscle force (27). 

Treatment with ucOC is shown to increase the cross-sectional area of extensor digitorum 

longus (EDL) and improve grip strength in mice, and stimulate myotube formation in 

C2C12 myoblast cultures in vitro (12). In humans, even an acute single-session of exercise 

can increase ucOC levels (28-31), which has been shown to be related to better glucose 

control (29, 32). The link between ucOC with muscle mass and strength in humans is less 
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clear and often contradictory (26, 33-37). For instance, some report a higher ucOC/tOC 

ratio is correlated with higher muscle strength in older women (26). In contrast, others 

report no relationship between ucOC levels and muscle mass in older adults (37). 

However, the evidence to date in humans is based on data that were observational, with 

the majority cross-sectional in design. As a result, it’s unclear whether ucOC is associated 

with muscle mass and muscle function (strength and physical performance) in humans. 

It’s also unknown whether ucOC is related to long-term risk for hazardous outcomes such 

as injurious falls.  

Bone and muscle are intimately linked and both organs are regulated by 

mechanical loads such as exercise. Evidence suggests that bone mass may be tightly 

linked to skeletal muscle-derived mechanical loading (38-41). As such, underlying muscle 

physiology (relating to the value of muscle mass and function) may be linked to the 

circulating levels of BTMs (40, 42). Most of the mechanistic evidence to date has focused 

on ucOC (16, 27, 43) but the link between BTMs and muscle includes many factors other 

than just ucOC (44, 45). Other BTMs used clinically to predict fracture risk, such as c-

terminal telopeptide of type I collagen (CTX) and procollagen of type I propeptide (P1NP) 

(46), may also be involved in this specific aspect of the bone-muscle relationship. 

However, it is not clear if the relationship between BTMs and muscle function is just 

specific to ucOC or BTMs in general, as data is inconclusive (26, 47, 48). Bone turnover 

is a complex process, but given BTMs are already used clinically, their potential use for 

identifying those at risk for low muscle mass and function remains underexplored. 

In support of the bone-muscle link, it is known that long-term and acute exercise 

can modulate BTMs (49-52). However, most acute exercise studies are performed in 

younger populations, with the data in older adults providing indeterminate results. Due to 

the known ageing effects on the musculoskeletal system, responses of BTMs to acute 

exercise in older adults are likely to be different compared to younger individuals and 

may represent a different underlying pathophysiology. Notably, there is a very limited 

number of studies performed in older adults and even fewer that examine the effects of 

resistance exercise (49, 53-56). Currently, there is no systematic review of the literature 

that analyses the overall responses of BTMs to acute exercise in older adults.  

The primary aims of this thesis were a) to determine the ageing effect on OC forms 

and ratios and whether the relationship of ucOC with muscle mass, strength and physical 

performance is related to long term risk for injurious falls and b) to uncover whether the 
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relationship with muscle function is limited to ucOC or whether other commonly used 

BTMs such as CTX and P1NP are involved. This thesis includes four studies. Chapter 3 

(Study 1) determines the ageing effect on the OC forms and ratios. Chapter 4 (Study 2) 

explores the longitudinal relationship of ucOC and ucOC/tOC with physical function and 

long-term risk for injurious falls-related hospitalisations. Chapter 5 (Study 3) includes a 

systematic review of acute exercise studies to determine BTMs responses in adults over 

50 years of age and whether these BTMs responses are specific to age, sex, exercise mode 

and intensity. Chapter 6 (Study 4) includes a randomised controlled trial of adults over 

60 years of age, to determine BTM responses to acute aerobic and resistance exercises. 

This study also investigates the cross-sectional relationship between BTMs and muscle 

function and whether baseline function is related to BTM responses following exercise. 
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Chapter 2: Literature review 

This literature review comprises two main sections. Section 2.1 discusses the age-related 

effects on the musculoskeletal system. Section 2.2 describes the interaction between 

bone-muscle and discusses the evidence of BTMs as possible mediators of this cross talk.  

 

This literature review comprises a published manuscript and a manuscript that is ready 

for submission 

Section Manuscript details 

Section 2.1 

Title: Sarcopenia definition: does it really matter? Implications for 
resistance training?  
 
Full citation: Smith et al. (2022). Sarcopenia definition: Does it 
really matter? Implications for resistance training. Ageing research 
reviews, 78, 101616 https://doi.org/10.1016/j.arr.2022.101617). 

Section 2.2.2.1 
Title: Osteocalcin- small peptide, big controversy 
This manuscript is ready for submission. 

 

For the purposes of this thesis, both of these manuscripts have been embedded within the 

literature review. 
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 Ageing 

Advances in technology and improvement in prevention and management of 

chronic diseases have resulted in humans living longer than ever before (57). In Australia, 

the proportion of adults over the age of 65 years rose from 5% in 1927 to 9% in 1977 and 

then rapidly to over 15% in 2017 (58, 59). It is projected to rise to 22% (8.8 million) by 

2057 and to 25% (12.8 million) by 2097 (59, 60). Unfortunately, for many this increase 

in life expectancy is not always accompanied by increases in healthy life years. 

Commonly, it is accompanied by an increase in disability, increased risk of chronic 

diseases, decline in the capacity to perform activities of daily living (ADL) and poorer 

quality of life (QOL) (61). The age-related alterations that occur within the 

musculoskeletal system play a major role in the deteriorating health and wellbeing of 

older adults. Alterations in hormone levels, menopause, immobilisation and disease are a 

natural consequence of ageing but under certain conditions can become accelerated—a 

process which remains poorly understood. The age-related loss of muscle mass and 

strength when exacerbated beyond acceptable age-related norms is termed sarcopenia, 

and similarly the loss of bone mass and quality is termed osteoporosis (62, 63). Both are 

independently related to a reduced capacity to perform ADLs, poorer mobility and the 

ability to maintain independence in late life (64). 

 

2.1.1 Ageing effects on the musculoskeletal system  

One of the most consistent changes notable to the musculoskeletal system with 

advanced ageing is the decline in muscle mass and strength and bone mass and strength 

(Figure 2.1) and concomitant increase in fat mass (1, 2, 65), which, have important 

functional and metabolic consequences.  
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Figure 2.1: Age-related changes in bone (radius) and muscle (forearm) in adults (data 
normalised, demonstrating relative changes) Figure sourced from Novotny et al. (3) who 
had adapted the figure from Meema et al. (66). 

During growth, muscle mass and bone mass increases, peaking at about the third 

decade of life (1, 2). Muscle mass is maintained for about two decades. Thereafter, it 

begins to decline from around the fifth decade of life (2). The estimated rate of loss per 

year of muscle mass varies between 0.4% to 2.6% (67). Some studies suggest this mostly 

occurs in the lower body (68). Over the lifespan, adults can expect to experience about a 

30% reduction in muscle mass and 20% decline in the cross-sectional area of muscle, 

which is thought to be attributed to a decline in muscle fibre size and number (described 

in 2.1.2) (69, 70). Changes in age are responsible for approximately 26.4% and 15.5% of 

the variance of appendicular lean mass (ALM) in males and females, respectively (71). 

Studies suggest that muscle strength declines by 1.5% per year between 50 and 60 years 

of age and by 3% per year thereafter (72). Some longitudinal data demonstrate that this 

decline in muscle mass, strength and power begins as early as 35 years of age (69). Muscle 

strength and power decline to a greater extent than muscle mass, accounting for much of 

the disability and functional limitations associated with these alterations rather than 

muscle mass per se (Figure 2.2) (69, 73-75). Some reported a loss of muscle strength of 

about 10-15% per decade up to age 70 years, then 25-40% per decade thereafter (75, 76). 

This loss in both muscle mass and muscle function when lower than the normative range 

expected based on an individual’s age and sex or lower than an expected threshold or cut-

point level, increases the risk of sarcopenia and falls and fractures (77-79). 
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Figure 2.2 Muscle strength across the lifespan. To prevent or delay sarcopenia, the focus 
should be to maximise muscle in young adults, maintain muscle in middle age, and 
minimise loss in older adults. Figure sourced from Cruz-Jentoft et al. (77). 

Bone loss occurs as a result of the normal ageing process in both sexes, once peak 

bone mass has been achieved (1). Once peak bone mass is obtained (Figure 2.1), a 

progressive decline in bone mass and integrity begins usually from approximately the 

third or fourth decade but is more severe during menopause in females (80-83). Both 

males and females experience a steep decline in bone mass but this occurs earlier in 

females at around 65 and 69 years of age as against around 74 and 79 years in males (84). 

The loss of trabeculae bone mass occurs earlier than the loss of cortical bone in both sexes 

and progressively declines with advancing age (85). This loss of both BMD and bone 

microarchitecture increases the risk of osteoporosis, falls and fractures in older adults, 

and is related to poorer QOL and early mortality (85-91). Osteoporosis affects 

approximately 23% of women and 6% of men greater than 50 years of age, increasing to 

about 43% and 13%, over 70 years of age (92, 93). While its prevalence is probably 

underestimated due to its asymptomatic nature, the worldwide estimates are that one in 

three females and one in five males greater than 50 years of age will experience an 

osteoporosis-related fracture (86, 94). 

 

2.1.2 Ageing and muscle mass and function 

Skeletal muscle, accounting for approximately 40 to 50% of total body mass, 

plays a fundamental role in human physiology enabling movement and locomotion (95). 

It is a major site of metabolic activity and glucose disposal and is the largest protein 
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reservoir in the body (a source for amino acids and glucose) (95, 96). Muscle can also 

secrete myokines with autocrine, endocrine and paracrine effects supporting metabolic 

functions of other tissues and organs (described further in section 2.2.1) (97, 98). Skeletal 

muscles exists in various sizes and shapes with different functions, but consists of about 

85% muscle fibres (the remaining 15% is connective tissue) which can be broadly broken 

down into predominantly two main types: slow twitch (type 1) and fast twitch (type 2A 

and 2X) fibres (99). Slow twitch fibres are more suited to submaximal and continuous 

type activities as they are more efficient at using oxygen to generate energy and more 

resistant to fatigue. Fast twitch fibres use anaerobic metabolism to generate energy and 

fatigue quickly but can generate short bursts of speed and strength rapidly, suited to power 

activities of short duration. Age-related muscle atrophy is characterised by a reduction in 

muscle fibre size (diameter) due to a loss in both protein content and muscle fibres, 

resulting in decreased force production and fatigue resistance (100).  

Muscle fibres: Older adults have lower total muscle size related to a reduction in 

muscle fibres by about 40% when compared to young adults, contributing to muscle 

atrophy and sarcopenia (70, 101). Loss in muscle fibre size during ageing is specific to 

fibre type, affecting mostly type II fibres (about 10 to 40% loss in the size) while type I 

fibres are largely unaffected (102-104). This shift in fibre type composition can begin in 

early adulthood (101, 102, 105) and is partly explained by a change in physical activity 

requirements with age (for example older adults are less likely to participate in high 

intensity activities that recruit type II fibres) (106). Type II muscle fibre satellite cell 

content and function also reduce with increased age affecting fibre growth, repair and 

regeneration (103, 107). At the level of both a single fibre and whole muscle, older adults 

also have reduced force generation capacity (108, 109). The reduction in the force 

producing capacity of muscle with ageing cannot be explained by a reduction in muscle 

mass alone (110), but is possibly related to altered neural components such as altered 

neural signalling, denervation to fibres and loss of motor units (111-113).  

Protein turnover: During adulthood the regulation of muscle mass and fibre size 

reflects the fine balance between protein synthesis (hypertrophy, muscle building) and 

degradation (atrophy, muscle loss) (114-116). This fine balance between protein synthesis 

and degradation is termed protein turnover. With ageing, there is a dysregulation in this 

balance, with a slow shift in favour of degradation, resulting in muscle atrophy over time 

(117). The molecular mechanisms that underlie skeletal muscle mass maintenance with 

ageing and sarcopenia involve a tight interplay of a variety of signalling pathways (Figure 
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2.4) (117, 118). Under normal physiological conditions this involves the balance of a 

network of signals and pathways that control and coordinate protein synthesis and 

degradation. Muscle atrophy occurs when protein degradation exceeds that of protein 

synthesis via either an increase in degradation or decrease in protein synthesis (119). The 

major signalling pathways involved in protein degradation are the ubiquitin-proteasome, 

the autophagy-lysosome and caspase-3 mediated proteolytic pathways (119, 120). 

Pathways responsible for protein synthesis include the phosphatidylinositol-3-kinase 

(P13K)/AKT/mammalian target of rapamycin (mTOR) pathways (96, 116). Maintenance 

or preservation of muscle mass through mediators of these pathways is what ultimately 

regulates skeletal muscle mass (116).  

 

Figure 2.4 An overview of molecular pathways involved in sarcopenia. Figure sourced 
from Ziaaldini et al. (118). 

The two major environmental influences on protein synthesis and degradation 

contributing to muscle atrophy and sarcopenia include the reduction in physical activity 

and exercise with age (decline in mechanical stress and load) and inadequate nutrition 

(106, 121-123) (Figure 2.5). In addition, ageing is also characterised by an anabolic 

resistance where protein synthesis responses to these anabolic stimuli (exercise and 

nutrition for example protein ingestion) are blunted or by an inability to suppress 

degradation (124-126). This may explain for example the reduced capacity to fully 

recover muscle loss in older individuals following periods of immobilisation such as that 

experienced due to injury or illness (127, 128). 
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Figure 2.5 Data on physical activity participation levels in UK adults demonstrates that 
physical activity and exercise participation declines with increasing age. Figure sourced 
from McPhee et al. (106). 

Moreover, evidence also supports the notion that muscle atrophy is 

transcriptionally regulated, where atrophied muscles are characterised by an up- or down-

regulation of gene expression (120). These recognized gene expressions are termed 

atrogenes. The two most commonly identified atrogenes are muscle-specific ubiquitin 

ligases, atrogin-1/muscle atrophy F-Box (MAFbx) and muscle ring finger protein-1 

(MuRF1), which are shown to be up-regulated in models of atrophy and indicate 

increased protein degradation via the ubiquitin proteasome system (120, 129). 

Altogether, the pathogenesis of sarcopenia is complex and multifactorial, 

involving not only muscle atrophy but a loss of muscle function (Figure 2.6). In addition 

to normal ageing alterations, many other factors may be involved such as genetics and 

hereditary factors, reduced mitochondrial content and dysfunction, oxidative stress, 

chronic inflammation, alterations of neuronal components (loss of motor neurones), 

hormonal changes (e.g. insulin, testosterone, oestrogen, growth hormone, insulin-like 

growth factor 1 (IGF-1) and vascular dysfunction (decreased microvasculature and 

endothelial dysfunction) (113, 130-134). Muscle composition also changes, characterised 

by increases in inter- and intra-adipose tissue which is associated with reduced physical 

performance, mobility and balance (135-138) as well as increased muscle fibrosis, 

possibly related to a series of events such as injury, inflammation or tissue degeneration 

(139).  
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Figure 2.6 Sarcopenia pathogenesis is complex, with a number of different factors 
contributing to the progressive decline in muscle mass and strength with age. Created 
with BioRender.com 

2.1.3 Sarcopenia: epidemiology 

Sarcopenia and its associated health burdens have direct and indirect costs for 

individuals and the community (140). In the US, direct health care costs attributable to 

sarcopenia in 2000 were approximately $18.5 billion (141). Estimated annual costs of 

muscle weakness in the UK were about $2.5 billion (142). Annual health-related costs of 

older adults in the Netherlands in 2016, was approximately three times higher in those 

with sarcopenia than in those without (143). Large cohort studies in older adults have 
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consistently shown that the presence of sarcopenia (or its components) is related to 

increased risk for hospitalisation and higher health care costs compared to those without 

sarcopenia (140, 142, 144, 145). It has also been shown that older women with sarcopenia 

have a higher risk for all-cause mortality, independent of obesity (65). Given an ageing 

population, these figures will rise. 

Above, I described possible mechanisms of muscle atrophy and other factors 

contributing to sarcopenia. Recently I published a review paper in Ageing Research 

Reviews which outlines and describes the numerous definitions available to define 

sarcopenia, including their shortcomings, and highlights the role that resistance exercise 

training plays in the prevention and management of sarcopenia (Appendix 1 is the 

publication, Smith et al. (2022). Sarcopenia definition: Does it really matter? Implications 

for resistance training. Ageing research reviews, 78, 101616 

https://doi.org/10.1016/j.arr.2022.101617). The paper is reproduced below in section 

2.1.4. 

 

2.1.4 Sarcopenia definition: does it really matter? Implications for resistance 

training? 

 Abstract   

The loss of muscle mass, strength and function, known as sarcopenia, is common 

in older adults, and is associated with falls, fractures, cardiometabolic diseases, and lower 

quality of life. Sarcopenia can also occur secondarily to chronic diseases. Recently, 

sarcopenia was recognized as a disease with an International Classification of Disease 

(ICD) code, yet, at least five definitions for its clinical identification exist. Most 

definitions include three themes: low muscle mass, strength and physical performance. 

However, the definitions vary by the number of themes needed to diagnose sarcopenia 

and, within each theme various parameters and cut-off levels exist. The lack of consensus 

on what constitutes a diagnosis can create confusion and hesitation in sarcopenia 

diagnosis. Currently, no pharmacological treatment exists for sarcopenia. Resistance 

training (RT) is safe and effective to improve muscle mass, strength and physical 

performance in older adults and clinical populations. Based on current guidelines, 

whether an individual is defined as “sarcopenic”, or not, does not change the way RT is 

prescribed. Here, we present evidence and the inconsistencies in sarcopenia definitions 

and recommend that focus should be on optimizing ways to prescribe RT and increase 

https://doi.org/10.1016/j.arr.2022.101617
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long-term adherence, rather than on slight modifications to sarcopenia definitions.  

 

 Sarcopenia and its definitions: Scope of the problem  

Older adults can now expect to live to over 80 years of age (57). However, 

increases in life years does not always translate to healthy life years. Rather, it is 

commonly accompanied by disability, increased risk for chronic disease and a poor 

quality of life (61). The loss of muscle mass and strength and/or physical function is 

known as sarcopenia, depending on the clinical definition used to identify it (77, 146-

149). Sarcopenia is common in older adults (> 65 years) with estimated prevalence 

varying between 10 to 50%, large variability in prevalence is contingent on the definition 

used (150, 151). Sarcopenia is commonly associated with a higher risk of falls and 

fractures, reduced capacity to perform activities of daily living (ADLs) and a loss of 

independence (78, 79). It is a multifactorial disease, and some of its risk factors include 

age, sex, low level of physical activity, poor diet and, chronic inflammation. As such, 

sarcopenia often develops in conjunction with presence of cardiometabolic disease (152, 

153). Sarcopenia was recognized as a disease with its own International Classification of 

Disease, ICD-10 code (M62.84)(154). Although one can hypothesize that this new ICD 

code will promote screening for sarcopenia and therefore treatment and management, 

there is no consensus on its diagnostic criteria. This lack of agreement in the cut-off 

criteria to diagnose sarcopenia between organizations, clinicians and researchers limits 

the use of an ICD code, potentially complicating the effective management of the disease. 

Currently, there is no universally accepted definition for sarcopenia. The validity 

and predictive values for adverse outcomes based on the available definitions is varied 

(155-157). There are at least five definitions used to diagnose sarcopenia including the 

European Working Group on Sarcopenia in Older People (EWGSOP2) (77); the 

Foundation for the National Institutes of Health (FNIH) (146); Asian Working Group for 

Sarcopenia (AWGS) (147); Sarcopenia Definitions and Outcomes Consortium (SDOC) 

(148); and the International Working Group on Sarcopenia (IWGS) (149). Of these, three 

represent updates to original definitions (62, 146, 158).  

The criteria used to identify sarcopenia according to the five most commonly used 

definitions can be generally categorized into three main themes: a) muscle strength, 

usually hand grip strength, an assessment of upper limb strength (four of the five 

definitions) which has shown to have the capacity to identify older adults at risk for falls 
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and fractures (159-161); b) muscle mass, usually appendicular skeletal muscle mass 

adjusted to height or body mass index (BMI) (four of the five definitions) and c) physical 

performance i.e. gait speed, an assessment of mobility that has been associated with 

survival and predicts incident disability in older adults (four of the five definitions) (162, 

163). As seen in Figure 1, even within these three themes, there are a diverse range of 

acceptable parameters included in each definition which may measure a different muscle 

characteristic. For example, muscle strength defined by EWGSOP2 includes hand grip 

strength, or the 5-time chair stand, an easy, portable assessment of lower limb muscle 

power, which has been shown to be associated with falls, frailty, slowness and functional 

limitation in activities of daily living in older adults (164-167). Of note, even among those 

definitions that include the same muscle parameter, different cut-off values are used 

(Figure 2.7). To our knowledge, there are also working groups currently formulating new 

definitions for sarcopenia, some of which suggest adding additional diagnostic measures 

including calf circumference (168), muscle density assessed by computed tomography 

(CT) (169), hand grip strength asymmetry (170) and perhaps even lip, tongue and 

suprahyoid muscle strength (171, 172). The reality of numerous definitions for sarcopenia 

existing (including possibly more to come) together with a lack of agreeance on cut-off 

levels for individual muscle parameters, leads to confusion in its diagnosis in both clinical 

and research settings. Inconsistent reports in the literature related to prevalence of 

sarcopenia are shown largely to be explained by the definitions chosen. In other words, 

when different definitions and cut off points are used, different results are obtained (156, 

157, 173, 174). Not only does this lead to variable and inconsistent reports, it may also 

contribute to hesitation in a clinical setting to diagnose a patient as “sarcopenic”. The 

complexity in reaching an agreeable definition maybe, at least in part, be due to the fact 

that older adults with sarcopenia, similar to frailty, are characterized as a very 

heterogeneous group, which may have some practical challenges clinically (175). 

However, it is not just the definition that is important to identify sarcopenia, but also 

which health professional/s is/are responsible for its diagnosis (176). For example, 

dieticians, exercise physiologists and physiotherapists should all play a role. An important 

question that remains is whether the use of a different clinical definition for sarcopenia 

changes the negative outcomes associated with its progression. This should be explored 

in future studies.  
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Figure 2.7 Most commonly used definitions for sarcopenia: EWGSOP2 (European 
Working Group on Sarcopenia in Older People); FNIH (Foundation for the National 
Institutes of Health); AWGS (Asian Working Group for Sarcopenia); SDOC (Sarcopenia 
Definitions and Outcomes Consortium), IWGS (International Working Group on 
Sarcopenia).  

Discrepancies between agreeable cut off levels and parameters used to define 

sarcopenia raise an important clinical question: is having a precise cut-off level for the 

diagnosis of a patient as “sarcopenic” critical for disease management? A specific 

diagnostic cut-off level is undeniably pivotal for the accurate prescription of 

pharmacological treatment and is also valuable from a patient perspective as increased 

knowledge can increase self-empowerment (177). As stated by Cesari and Kuchel (175) 

“we must not let the perfect become the enemy of the good.” In other words, additional 
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parameters and definitions or criteria for sarcopenia may complicate and possibly hinder 

the prescription of the only known effective treatment for sarcopenia, specifically, a 

lifestyle approach incorporating progressive resistance training (RT) in conjunction with 

a healthy diet comprising adequate protein and energy intake (178-180).  

 

 Sarcopenia: what is our best defense? 

One of the most consistent changes with advanced age is the decline in skeletal 

muscle mass and strength. Skeletal muscle comprises ~40% of the human body weight, 

and its functions are widespread, including postural, mobility, energy storage and 

metabolism. Longitudinal data clearly demonstrates a decline in muscle mass, muscle 

strength and power beginning ~35 years of age (69). Notably, muscle strength and power 

decline to a greater extent than muscle mass, accounting for much of the disability and 

functional limitations associated with these age-related changes and not muscle mass, per 

se (69, 181). 

Sarcopenia often presents as a comorbidity of other cardiometabolic diseases and 

has common risk factors (increasing age, physical inactivity, chronic inflammation and 

malnutrition) (152, 153, 182, 183). Many of these chronic cardiometabolic diseases (such 

as cardiovascular disease, type 2 diabetes, and others) also share the skeletal muscle 

biological characteristics of sarcopenia with alterations to muscle size (fiber number and 

atrophy of type II fibers, motor units), increased fat infiltration, decreased capillarization, 

chronic inflammation, increased oxidative stress and insulin resistance, of which, exercise 

has been shown to effectively mitigate (184-187). Notably, some of the loss of muscular 

power and function experienced by older adults and clinical populations can be attributed 

to age-related neuromuscular loss (113). 

There are currently no approved pharmacotherapies for the treatment of 

sarcopenia. Phase 2 clinical trials testing the effect of an antimyostatin antibody showed 

minimal effect on muscle function (188). The only intervention that consistently shows to 

improve muscle mass, strength, and physical function in older adults is exercise training 

and particularly progressive resistance training (RT) (189-194). Progressive RT is a safe 

and effective approach to attenuate, and in some cases reverse the age-related loss of 

muscle mass and strength (195-197).  
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 Resistance exercise: the front line defense 

Progressive RT is considered a first-line strategy to prevent and manage 

sarcopenia (196-198). It provides numerous benefits including increasing muscle mass, 

strength, endurance, power and physical function, and lowering the risk of falls and 

associated injury such as fracture (189-192, 199-201). These are essential muscle 

characteristics which are required to perform ADLs in older adults and clinical 

populations (202-204). RT is also consistently demonstrated to be safe, effective and 

recommended for almost all populations including healthy older adults and those with 

chronic diseases such as cardiovascular disease, cancer, type 2 diabetes, osteoporosis and 

chronic obstructive pulmonary disease (COPD) (196, 198, 205-211). Notably, many 

patients with these diseases are also characterized by traits consistent with sarcopenia, 

with significant impairments in the capacity to perform ADLs and poorer quality of life 

(212, 213). According to the American College of Sports Medicine (ACSM), RT should 

be a component of every exercise program for healthy adults, and those with clinical 

conditions (211). Extensive evidence on the benefits of RT in healthy older adults and 

those with chronic disease is well defined, but the question remains: “Does RT 

prescription change if a patient is diagnosed with sarcopenia, defined by any or different 

definitions?” The answer is probably not.  

 

 Resistance training guidelines: show me the differences!?  

The general principle of RT prescription is that the exercise programs should be 

progressed and individualized to each person (214). Many organizations have and 

continue to release independent RT guidelines for older-adults and clinical populations 

(198, 211). Regarding sarcopenia, while it is independently recognized as a disease, it 

commonly unveils as a consequence of many other chronic diseases, even despite 

substantial differences in pathophysiology, progression and symptoms (152, 153, 182). 

The pharmacological treatment of each disease vary in many ways, but the RT 

recommendations are similar. While it is not possible to provide an overview of all 

available guidelines from various organizations, herein we provide a proof of concept to 

demonstrate the similarities in RT guidelines across the healthy and disease continuum, 

using best practice clinical exercise guidelines from ACSM and recommendations for 

healthy individuals from both ACSM and the International Conference on Frailty and 
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Sarcopenia Research (ICFSR) consensus  (Table 2.1) (198, 211). We have focused, in 

particular, on diseases commonly observed in conjunction with sarcopenia.  

 

Table 2.1 Internationally recognized exercise prescription guidelines for older adults and 
common clinical populations that share characteristics of sarcopenia 
 

Association 
(year) Population 

Frequency 
Days p.wk 

Exercise prescription for 
resistance exercise 

Sets Reps Intensity 

ICFSR 
Consensus 

(2021) 
Older adults 2 to 3 1 to 2 8 to 12 50 to 80% 1RM 

ACSM 
(2017) Older adults 2 to 3 1 10 to 15 40 to 50% 1RM 

ACSM 
(2017) Healthy 2 to 3 2 to 4 8 to 12 60 to 70% 1RM 

ACSM 
(2017) Obese 2 to 3 2 to 4 8 to 12 60 to 70% 1RM 

ACSM 
(2017) 

Type two 
diabetes 2 1 to 3 10 to 15 

Moderate (50 to 69% 
1RM) to vigorous 
(70 to 85% 1RM). 

ACSM 
(2017) 

Cardiovascular 
disease 2 to 3 1 to 3 10 to 15 40 to 60% 1RM, 

BORG RPE 11 to 13 

ACSM 
(2017) 

Chronic heart 
failure 1 to 2 2 10 to 15 40 to 70% 1RM 

ACSM 
(2017) 

Chronic kidney 
disease 2 to 3 1 8 to 12 

65 to 75% 1RM 
(1RM estimated 

from 3RM) 

ACSM 
(2017) 

Peripheral 
arterial disease 2 1 8 to 12 60 to 80% 1RM 

ACSM 
(2017) Dyslipidaemia 2 to 3 2 to 3 8 to 12 

Moderate (50% 
1RM) to vigorous 
(75 to 80% 1RM), 

<50% 1RM to 
improve endurance 

ACSM 
(2017) Hypertension 2 to 3 2 to 4 8 to 12 

60 to 80% 1RM 
*older adults 40 to 

50% 1RM 

ACSM 
(2017) Arthritis 2 to 3 2 to 4 8 to 12 

60 to 80%1RM 
*lower intensity for 

untrained (50 to 
60%) 
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When observing Table 2.1, there are noticeable similarities existing regarding resistance 

exercise prescription guidelines, irrespective of disease status. Regarding exercise 

intensity, some evidence suggests that similar increases in muscle strength have been 

observed when using an intensity of either moderate or heavy loads (between 40 to 90% 

of 1-repetition maximum, 1RM) once total volume is accounted for and if lower loads are 

carried out to fatigue (215, 216). In addition, comparable improvements in strength can 

be seen in older adults who performed two versus three days per week of RT (217, 218).  

Given that a surprisingly low number of older adults currently meet exercise 

guidelines (219), researchers and clinicians should focus on how to engage individuals in 

RT that is enjoyable in order to increase adherence for long lasting benefits. The RT 

guidelines presented could be summarized by suggesting to complete structured exercise 

at least two to three days per week. Additionally, to combine whole body movements 

including upper and lower body exercises, of two to four sets each, and using a rep range 

that can be completed using a moderate to heavy intensity load until fatigue. Importantly, 

individualization of each component should occur regardless of disease state. This 

broader summary indicates that the general recommendations for RT in conditions with 

traits of sarcopenia do not differ substantially. The lack of variation in these guidelines 

also suggests that, in terms of RT guidelines, a specific disease diagnosis does not result 

in a major different RT recommendation.  

However, it should be acknowledged that there are different approaches to RT. 

One of which is power training, a specific type of RT where muscle contractions are 

performed at high velocity. This type of exercise improves muscle power and has been 

associated with improved capacity to perform ADLs in older adults (220-222), in those 

with mobility limitations (223), and even in those that are frail (224, 225). However, 

power training is yet to be incorporated into RT guidelines and as such, expertise from 

the exercise professional and caution should be considered if it is to be used as part of a 

RT program. Specifically, when prescribing RT to older adults (with, or without 

sarcopenia traits), guidelines should be adopted as a guide to clinical practice in-

conjunction with an in-depth knowledge of patient’ conditions and treatments. This 

approach will assist with the delivery of an optimal exercise program that can be 

performed safely by the individual. 

Indeed, the definition of sarcopenia itself may also yield a different understanding 

of what is being treated i.e. increasing muscle mass or/and increasing muscle strength 

(i.e. handgrip strength) or/and improving physical performance (reducing time to 
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complete the timed up and go). Furthermore, the prescription of any treatment, even 

exercise, requires an assessment of both risk and benefit for the individual. The risk 

associated with RT is typically minimal if it is prescribed within the guidelines of ACSM 

(211) and it is usually only associated with a delayed onset of muscle soreness 

(DOMs)(226). DOMs is a common experience following RT and can be experienced by 

individuals of all fitness levels following unaccustomed physical activity. It is typically 

characterized by muscle soreness and discomfort that increases with intensity within the 

first 24 hours following exercise, and usually subsiding within a few days (226, 227).  

The benefits of RT in older adults and clinical populations with characteristics of 

sarcopenia go beyond the skeletal muscle level (i.e. improved strength) and includes 

improved capacity to perform ADLs, increased cognitive function (228, 229) and 

improved quality of life (230, 231). RT also reduces cardiometabolic risk factors (232, 

233). For older adults who are frail, living in nursing homes or institutionalized, and often 

characterized by multimorbidity, the evidence for beneficial effects of RT on such 

outcomes is conflicting, likely due to large heterogeneity of the population as well as the 

definition for frailty used (234). The degree of frailty may also be critical in the 

effectiveness of an exercise program (234). However, benefits including improved 

functional outcomes (200, 229, 235, 236) and quality of life (235) have been reported in 

this population (237, 238). Indeed, there will be some instances whereby RT may not be 

suitable in particular populations due to very low function level or safety considerations. 

In that scenario, exercise prescription should be modified, and adapted to the physical 

function level of the individual taking into account comorbidities, and risk/benefit to 

participation. 

 

 Other considerations 

This review focuses on RT as a treatment for sarcopenia. However, it is important 

to acknowledge that other lifestyle interventions may assist in muscle mass and strength 

preservation during ageing. This includes a balanced approach to the diet including a 

variety of nutritious foods from the five food groups: vegetables, fruits, grains, proteins 

(i.e. lean meat, fish, nuts and legumes) and dairy (milk, yoghurt etc.) (239). Prospective 

studies have demonstrated that when dietary protein intake is low it is linked to functional 

decline in older adults (240-243). Some evidence also demonstrates that adequate protein 

intake (>1 g/kg/day) can reduce the rate of decline in hand grip strength and mobility (244, 
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245). However, supplementation with protein above recommended levels in older men 

>65 years who were functionally limited, had no effect on muscle mass, strength or power 

(246). Recommendations advise that older adults (> 65 years) have higher daily protein 

requirements than younger adults to maintain/regain lean mass and function, and, these 

requirements increase for those that exercise, and are even higher again for those with 

acute or chronic illness (247).  

Some evidence suggests a possible additive effect on muscle strength in older 

adults when combining protein intake with RT (178, 179, 248) or a physically active 

lifestyle (240). However, others do not support this link (194, 249, 250), particularly if 

dietary protein is already adequate prior to beginning RT (251, 252). For detailed evidence 

on nutritional interventions for maintaining muscle mass and strength into old age please 

see a recent review by Cruz-Jentoft (253). 

 

 Where from here: Use it or lose it 

The reduction in muscle mass, strength and function is part of the ageing process, 

and it creates a challenge to individuals and health care systems globally. Whether an 

individual is diagnosed as “sarcopenic” or not has no effect on the way RT is prescribed 

based on current recommended guidelines. As such, the current focus on refining 

sarcopenia definitions, where five (or more) already exist, may in fact do more harm than 

good as it may add confusion in the identification of sarcopenia. Moreover, it is plausible 

that researchers and clinicians will handpick the definition most relevant to their needs. A 

large body of research demonstrates that RT and a healthy diet including adequate dietary 

protein and energy intake, remains the best approach in our efforts to prevent and manage 

loss of muscle mass, strength and physical function. It also provides broader health 

benefits such as risk reduction for cardiovascular and metabolic disease. From a clinical 

perspective, regular exercise is recognized as a cornerstone for public health, and yet, 

despite known health benefits, a large percentage of adults do not meet recommended 

guidelines (254, 255). Moreover, an abundance of studies demonstrate the importance of 

targeted resistance exercise, yet self-initiated participation levels are low (254, 256). 

Future focus for research should be aimed at understanding how to increase engagement 

and long-term adherence to exercise, importantly RT, to prevent functional decline and 

morbidity. 

This previous section outlines the general exercise recommendations for older 
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adults and clinical populations who commonly have or are at a higher risk for sarcopenia 

or its components. This review informed the exercise protocol selected in the acute 

exercise study performed in Study 4. I used RE to examine bone-muscle interactions and 

how muscle function may influence this.  

 

2.1.5 Ageing and the skeleton 

Until recently, the skeleton was considered to have two major roles: protection 

and locomotion. To fulfil those two roles, the skeleton must be both strong, to protect 

internal organs and prevent fractures, but light, enabling locomotion (63, 257). Bone is 

also a mechano-sensing organ—it can sense change in individual load (body mass 

change), and external and environmental loads (physical inactivity), while a lack of loads 

(space flight, bed rest etc’) increases bone loss (258). Bone also has the ability to adapt 

based on the loads and forces placed upon it such as that experienced during exercise (see 

section 2.4.4) (258). Hence, it is well accepted now that bone is a self-repairing 

metabolically active organ, with capacity to change its mass, shape and properties in 

response to changes in mechanical perturbations on the system. This is achieved via a 

process termed bone remodelling, which refers to the cellular machinery responsible for 

the maintenance and integrity of bone material, composition, structure and strength. 

Given bone remodelling requires energy, it is suggested that to some degree bone plays a 

role in whole body energy metabolism (6, 259). 

Bone material and composition, as well as its size and shape, is optimised 

according to its main function in order to act as a lever (load bearing bones) or as a spring 

(vertebrae shock absorbers) (63). The mineralised skeleton is defined by its outer 

periosteal and inner endosteal (including the endocortical, trabecular and intracortical 

components) surfaces. Cellular activities on these surfaces are responsible for the net 

balance of bone formation and resorption, and therefore the overall shape, vigour of bone 

during growth and ageing (63).  

In young adults up to the age at which peak bone mass is achieved, bone accrual 

is determined by bone modelling (as opposed to bone remodelling): a well-coordinated, 

tightly coupled relationship between bone forming (osteoblasts) and bone resorption cells 

(osteoclasts) but in favour of bone formation. Once peak bone mass is obtained a 

progressive decline in bone mass and integrity begins as a result of changes in cell 

distribution with a transition into adult bone remodelling. The function of remodelling is 
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to repair micro-damage to bone, yet with ageing less bone is deposited than removed in 

each bone multicellular unit (BMU) (Figure 2.8) (63). In adults, this involves 

concentrated bone maintenance and repair, but with the balance favouring bone resorption 

resulting over time in bone loss, trabecular and cortical thinning, and porosity (257, 260). 

For reasons incompletely understood, the accelerated loss of bone mass in 

postmenopausal women by up to 30% (261) may be related to a decline in oestrogens 

(262, 263).  

 
Figure 2.8 Schematic of bone remodelling leading to bone loss overtime. In young adults, 
material properties and structure of bone is maintained with bone remodelling 
(replacement of old bone with new bone). Yet with age, less new bone is formed for each 
site that is resorbed, producing overtime structural damage and bone loss. This process is 
accelerated in post-menopausal women, likely related to oestrogen deficiency. Figure 
sourced from Seeman (63). 

 Bone metabolism  

 Bone is comprised of inorganic (calcium phosphate crystals) and organic 

compounds (264). Its matrix comprises 90% collagen and 10% non-collagenous proteins, 

representing the dynamic environment where bone and external factors interact in a well-

coordinated manner. Bone remodelling is a continuous process involving the coordinated 

actions of both osteoclasts and osteoblasts who work in team, known as basic 

multicellular units (BMUs), to remove and replace pockets of bone (Figure 2.9) (265). 

This process is coordinated by both osteocyte- and osteoblast-secreted factors regulating 

osteoclastic activity and resorption (266). Osteoclasts travel to bone surfaces via the 

circulation where, bone resorption begins as a result of the secretion of hydrogen ions and 
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hydrolytic enzymes. Osteoblastic cells communicate with osteoclasts and are recruited to 

resorption pits where they then secrete bone matrix proteins for the scaffolding of new 

bone. This interplay where osteoblasts trail behind osteoclasts within the BMU, is called 

coupled (267). The osteoblast secretes collagenous (predominately type 1 collagen) and 

non-collagenous proteins (i.e. OC) (268). The non-collagenous counterparts bind calcium 

and play a regulatory role in the concentration of calcium and phosphate which, are 

implicated in the crystallisation of hydroxyapatite on the collagen matrix. With matrix 

maturation, cell growth is ceased, inducing the expression of bone proteins and formation 

of the osteoid for mineral deposition. During this process of bone remodelling, bone 

releases peptides, hormones and other factors (bone biomarkers or BTMs) which are 

thought to reflect the underlying bone metabolism i.e. bone formation and resorption 

phases (269). Regulators of bone turnover includes receptor activator of nuclear factor k-

B ligand (RANKL), predominately secreted by osteocytes, and osteoprotegrin, 

predominately produced by osteoblasts and decreases osteoclastic activity (270). Other 

regulatory factors also secreted by osteocytes includes sclerostin and Dickkopf-1 (Dkk1), 

which work to inhibit osteoblasts (Figure 2.9). Any alteration to these factors either 

increases resorption or lowers formation, contributing to osteoporosis. 
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Figure 2.9 Schematic representation of bone remodelling which involves a coordinated 
interplay between osteoclasts and osteoblasts. The osteoclasts resorptive machinery 
consists of two features, a ruffled border and a resorption compartment, where the 
resorption compartment is formed by the attachment of the osteoclast to the bone matrix. 
Its ruffled border transports protons and proteolytic enzymes into the resorption 
compartment to acidify and dissolve minerals, degrading the bone matrix (removing 
bone). This process creates resorption pits that are then filled by osteoblasts. Figure 
sourced from Ferriera et al. (271).  

The World Health Organisation (WHO) defines osteoporosis as a BMD (hip or 

lumbar spine) that is equal to or less than a T-score of -2.5 and, osteopenia as a T-score 

between -1.0 and -2.4 (91, 272). BMD is assessed via bone dual energy x-ray 

absorptiometry (DXA) and used to predict future fracture risk and monitor osteoporosis 

progression (91). BTMs are used clinically to assess fracture risk, and used in 

combination with DXA to improve assessment of people at high risk for osteoporosis 

(273). BTMs are also useful to detect rapid responses to anti-osteoporotic treatments due 

to their high sensitivity (46, 273). The risks associated with osteoporosis are similar to 

sarcopenia risk and illustrated in Figure 2.10 (91, 274-276). 
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Figure 2.10 Risk factors of age-related bone loss that increase the risk for osteoporosis. 
Created with BioRender.com  

 Bone turnover markers 

BTMs, which are measured in the circulation or urine, reflect the metabolic 

activity of the bone at a cellular level and can predict fracture risk independently of BMD 

(277). Following fracture, a heightened response of bone remodelling and increased 

cellular activity occurs (278, 279). BTMs are used in this instance to estimate the 

predicted cellular activity in favour of bone healing. Biochemical markers are broadly 

divided into two categories: bone resorption reflecting osteoclastic activity (degradation 

of products of type I collagen), and bone formation, reflecting osteoblastic activity and 
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by-products of collagen synthesis, matrix proteins or enzymes (273). Because the 

relationship between bone resorption and formation is tightly coupled, any alteration in 

these markers is thought to reflect a change in bone turnover. Due to their high sensitivity, 

BTMs are used to measure treatment responses such as osteoporotic drug treatments 

(280), and are commonly used in a research setting to monitor responses following for 

example exercise (section 2.4.4, and Chapter 5 Study 3). Whether BTMs are also related 

to muscle mass and muscle function in older adults is the focus of this thesis. 

The literature contains many bone biomarkers and many of these are used 

clinically for the assessment of osteoporosis (46, 281). However, this thesis covers only 

those BTMs used throughout the exercise literature, presented in Table 2.2. 

Table 2.2 BTMs used throughout the exercise literature 

Markers of bone resorption 

C‐terminal crosslinked telopeptide of type I collagen CTX, 
Crosslaps 

N-terminal telopeptide of type I collagen NTX 
Cross‐linked carboxyterminal telopeptide of type I collagen ICTP 
Tartrate-resistant acid phosphotase TRAP 
Receptor activator of nuclear factor κB ligand 
Sclerostin 

RANKL 
SCL 

Markers of bone formation 

Alkaline phosphatase (total) ALP 
Alkaline phosphatase (bone specific) B-ALP 
Procollagen I carboxyterminal propeptide PICP 
Procollagen type 1 n propeptide P1NP 
Osteocalcin OC 
Osteoprotegerin OPG 

 

 Strategies to manage and treat osteoporosis 

In contrast to sarcopenia there are several effective drug treatments to maintain or 

improve bone mass (91). The most common are bisphosphonates (i.e. risedronate or 

alendronate). However, these treatments have poor patient compliance (approximately 

50%) (282) related to patient perception, side effects and dosing intervals (283). Many of 
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these drugs also have significant side effects for example musculoskeletal pain, atrial 

fibrillation, osteonecrosis of the jaw, atypical fractures, gastrointestinal symptoms such 

as irritation to the oesophagus (284). Therefore, non-pharmacological interventions, 

including exercise, are an ideal strategy to maintain, preserve and improve bone health. 

Exercise is a cornerstone approach to prevent and manage osteoporosis, recommended by 

the American College of Sports Medicine (ACSM) and Exercise and Sports Science 

Australia (ESSA) (285, 286). A decline in caloric intake and inadequate nutrition (i.e. 

calcium, vitamin D and protein) are common in older adults. Consequently, adequate 

calcium and vitamin D are required to optimise osteoporotic treatments. In general for 

optimal bone health, individuals should have a well-balanced diet with adequate dietary 

protein, calcium, vitamin D, fruit and vegetables (287). As is the case with sarcopenia, 

adequate protein intake when combined with exercise training (which must include 

weight bearing) is the most effective approach for bone health (i.e. mass) in older adults 

(288, 289).  

 

 Bone-muscle interactions 

No organ works independently of others. It is now clear that bone and muscle are 

connected not only anatomically but also metabolically and bio-chemically, both 

functioning in an endocrine and paracrine manner (4, 5, 7). Bone and muscle respond 

simultaneously to mechanical loading as well as to other stimuli (Figure 2.11). As 

previously discussed, mechanical unloading in humans such as bed rest or space flight 

leads to muscle atrophy, but it also has detrimental effects on bone, leading to accelerated 

bone loss (290-294). This simultaneous effect on both organs suggests a crosstalk exists.  



 31 

 
Figure. 2.11 Factors involved in bone-muscle crosstalk. Figure sourced from Kawao and 
Kaji (295). 

In order to understand this crosstalk, researchers often target one organ and study 

how the other organ responds (296). In animal models this involved for example 

removing mechanical load (through paralysis, spinal cord injury, immobilisation, tail 

suspension, botox) and assessing subsequent bone changes (297-299). The working 

hypothesis in these models is that mechanical loading from muscle is required to load 

bone but changes in muscle and bone in some of these models occurred concurrently (300, 

301). This suggested that the changes observed in both organs are probably activated from 

underlying cellular activities (a complex interaction of cellular signalling) that occur 

much more quickly than an observable morphological change (299). While it is easy to 

accept a mechanical link to explain concomitant changes in bone and muscle, the 

evidence suggests that changes in bone can occur independently of muscle changes (302, 

303). This supports a biochemical link between the organs, where both bone and muscle 

are independently changed by underlying biochemical changes. Furthermore, given 

muscle and bone share mesodermal origin, they also share genetic determinants. Genome 

wide association based studies identified several genes that simultaneously affect bone 

and muscle with multiple overlap between traits (304). This component of the bone-

muscle relationship is beyond the focus of this thesis.  
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To summarise, the interaction between bone and muscle is complex and probably 

involves many different processes. Moreover, developing evidence in the last two 

decades has demonstrated that bone affects muscle independently of mechanical loading 

via factors and hormones released by bone during bone remodelling including BTMs (5, 

7, 269).  

 

2.2.1 Bone-muscle interaction: the potential role of BTMS 

Many factors are involved in bone-muscle communication (Figure 2.12).  

 
Figure 2.12 Identified muscle and bone signalling factors involved in bone-muscle 
crosstalk. Figure sourced from Brotto and Bonewalk (5). 

Muscle – bone crosstalk: Muscle has been shown to be an endocrine organ that 

releases myokines affecting metabolism locally and systemically (distant organs) 

including at the bone and this can occur independently of mechanical loading (305). 

Factors such as interleukin-6, insulin-like growth factor-1, myostatin and irisin have been 

identified to be involved in muscle-bone crosstalk (Figure 2.12) (4, 5, 306). Growth 

factors and factors such as OGN and osteoactivin are also involved (307). In this thesis, I 

focus on the novel role of bone in the crosstalk with muscle. 

Bone – muscle crosstalk: There is a growing list of bone-derived proteins that 

have been demonstrated to be involved in bone-muscle crosstalk (Figure 2.12) (5, 7, 308) 
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and includes the osteoblast secreted factor OC (6, 309). The concept of bone as an 

endocrine organ participating in glucose regulation was first reported in 2007 by Karsenty 

and colleagues (6), which led to a paradigm shift away from recognising the skeleton only 

for its supportive and protection roles. There are a few possible avenues by which a bone-

muscle crosstalk could be facilitated, including the release of proteins and bone-derived 

factors into the bloodstream and the secretion of osteokines from osteoblasts and 

osteocytes (307). Interaction may also occur by cell-cell communication (via micro-

vesicles, exosomes or extracellular vesicles) (310) or diffusion through the periosteum 

(small proteins <40 kilodalton, kDa) (311). As described earlier, BTMs are released by 

bone into the circulation during the bone remodelling process and their levels are 

influenced by exercise (51, 269). This thesis focuses on OC and other commonly used 

BTMs i.e. P1NP and β-CTX and the relationship of these BTMs with muscle mass and 

function in older adults, and how these markers are influenced by acute exercise.  

 

2.2.2 Osteocalcin 

The following section 2.2.2.1 Osteocalcin – a small peptide, big controversy is a 

manuscript that is ready for submission. The paper is reproduced below. The purpose of 

this review paper is to discuss the breadth of observational and direct evidence linking 

OC with glucose metabolism. This earlier work was fundamental leading to the initiation 

of the novel investigation of the role of OC as an endocrine hormone. These investigations 

produced novel observations and suggested a potential role of ucOC in regulating muscle 

mass and function. The evidence for this novel link will be discussed in section 2.2.2.4  

 

 Osteocalcin – a small peptide, big controversy 

2.2.2.1.1 Abstract  

Osteocalcin (OC), is the most abundant non-collagenous protein within the bone 

matrix. Since 2007, using mostly genetically modified animal models, it was suggested 

that undercarboxylated form of OC (ucOC) acts as a hormone involved in energy 

metabolism, male fertility, muscle mass regulation, and cognition. However, alternative 

OC knockout (KO) rodent models have not consistently replicated earlier findings. The 

aim of this review is to examine whether ucOC is linked to glucose regulation and insulin 
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sensitivity by examining the observational evidence in humans, as well as the evidence 

obtained from in vivo, ex vivo and in vitro ucOC treatment, independent of data collected 

in OC KO mice. In Overall, in humans. There is a substantial amount of evidence linking 

higher circulating ucOC levels with lower adiposity and decreased risk of type 2 diabetes. 

Furthermore, there is an increasing body of evidence that show that exogenous treatment 

with ucOC improves glucose regulation, both whole body and muscle glucose 

metabolism. Conflicting results reported may be related to methodological differences 

between studies, such as animals, type/source of cell-lines used, source of ucOC, 

treatment dose and duration. Whether the effects of ucOC on glucose regulation is 

clinically significant is yet to be determined.   

 

2.2.2.1.2 Osteocalcin: overview 

Osteocalcin (OC) is also known as bone gamma-carboxyglutamic acid (gla) 

protein. It is a small polypeptide protein of 5.7 (KDa) and the most abundant, non-

collagenous, osteoblast-specific protein found within the bone matrix (9). Its synthesis 

occurs at the bone and it is released by osteoblasts during late stage differentiation where 

it is involved in bone formation and mineralization. Total serum levels of OC (tOC) are 

used clinically as a BTM (312). The exact role of OC in bone formation is unclear but 

recent data indicates it is essential for bone quality and strength (313). Following protein 

translation at the osteoblast endoplasmic reticulum, OC undergoes carboxylation via γ-

glutamyl carboxylase at its three Glu residues (positions 17, 21 and 24) in a vitamin K-

dependent manner (Figure 2.14) (314, 315). This post-translation modification of OC 

changes the conformation of this protein, thereby increasing its affinity for calcium (Ca2+) 

ions exposed at the surface of hydroxyapatite crystal in the bone matrix (9, 316). 

Carboxylated (c)OC is thought to be involved in bone mineralisation (14, 313, 317). 

However, not all OC is fully carboxylated: a small percentage of OC remains 

undercarboxylated (ucOC). Following bone remodelling when bone is resorbed by 

osteoclasts, acidic pH causes the carboxyl groups (0 to 2) of OC to be removed (314, 

315). The resulting product is referred to as ucOC, and it is considered that ucOC within 

the circulation is dependent on the rate of bone remodelling (314, 315). Commonly, ucOC 

does not readily bind to the hydroxyapatite due to its unstructured random coil, thereby 

inducing its leakage into the blood (318). ucOC represents up to  40% to 60% of 

circulating OC in humans (319). This percentage can be influenced by vitamin K intake 
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(10). Despite the different biological functions of cOC and ucOC to date, no study has 

characterised the ageing effect on OC forms and its ratios. 

 
Figure 2.14 Osteocalcin synthesis in osteoblasts, a process dependent on Vitamin K. 
Figure sourced from Patti et al. (320).  

In 2007, Karsenty and colleagues (6) were the first to report that ucOC functions 

as a hormone, produced in one location with action at distant locations, and therefore has 

the capacity to regulate energy metabolism at specific tissues and at whole-body level. 

They reported that OC knockout (KO) mice are characterised by reduced insulin 

sensitivity and glucose tolerance, while in a gain-of-function model they exhibited 

improved energy metabolism and resistance to diet-induced body weight gain and 

metabolic disorders (6). Since then, using their genetically modified mice, the Karsenty 

group reported that ucOC is also involved in male fertility and testosterone regulation 

(321), muscle mass regulation (322), brain development (323) and cognition (323) 

(Figure 1). These papers have generated great interest as they have opened the door for 

novel pharmacological approaches to treat multiple diseases such as obesity, type two 

diabetes (T2D) and muscle atrophy. However, their findings have not been consistently 

replicated in several recent studies using OC-deficient rats (324) and other models of OC 

KO mice (313, 317). This has led some to conclude that osteocalcin is not a hormone and 
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has no endocrine functions including glucose metabolism, muscle mass or testosterone 

production (325).  

Regarding the receptor for OC, there is also some evidence that the G protein-

coupled receptor class C group 6 member A (GPRC6A) is the receptor for OC (326-328) 

but this is controversial and not supported by others (329-332).  

 

2.2.2.1.3 Observational evidence for OC and glucose regulation. 

There is a mountain of observational cross-sectional based evidence that higher 

circulating levels of tOC (supplemental Table 1, S1) and ucOC (Table 2.3) are related to 

better glycemic control, lower BMI and fat mass in different populations (333-359). Data 

from a meta-analysis reported that higher tOC and ucOC are related to lower fasting blood 

glucose (BGL) and glycated hemoglobin (HbA1c) (360). Those with lower tOC and 

ucOC levels are at a higher risk for T2D compared to controls (361, 362). In fact 

compared to controls, tOC and ucOC levels are reported to be up to 50% lower in those 

who are obese, have insulin resistance or have T2D (Table 1) (29, 333, 334, 341, 363-

375). Similarly, tOC or ucOC levels or both are lower across different clinical populations 

with T2D (363, 376, 377) or in conditions with abnormal glucose regulation i.e. metabolic 

syndrome (MetS) compared to controls (35, 336, 341, 346, 359, 364, 378-385). While the 

vast majority of cross-sectional evidence supports the link between lower tOC or ucOC 

or both with increased risk of obesity, insulin resistance and T2D, not all studies support 

this (347, 349-352, 386-388). For instance, in postmenopausal women no association was 

found at baseline between ucOC and body composition and fat mass (387). ucOC was 

also not associated with insulin resistance (euglycemic clamp technique) in T2D (350). 

Furthermore, in a different study at baseline, lower tOC and cOC, but not ucOC, were 

associated with higher insulin resistance (HOMA-IR)(347). 

The findings are supported, however, by longitudinal prospective cohort studies 

and show that a relationship exists between lower tOC and ucOC with long-term risk of 

poorer glucose metabolism (i.e. insulin resistance, higher fasting plasma glucose) across 

different populations (older adults (338), older men (389), adult men (390), with a follow 

up range of 2 to 4 years). Moreover numerous studies show that reduced serum tOC or 

ucOC is related to increased risk of T2D (follow-up range of 3 to 12 years) in middle-

aged adults (364, 376), older adults with high risk for CVD (348) and postmenopausal 

women (391, 392). However, not all studies support this association (347, 353, 388, 393-
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395). For instance, recently Babey et al. (353) in a prospective eight year follow-up study 

in older adults (70 to 79 years) reported no correlation between baseline ucOC and 

incident T2D after adjustment for confounders. 

Altogether the evidence is suggestive rather than conclusive and data related to 

ucOC are lacking with many studies only measuring tOC, probably due to methodological 

difficulties. Some of these observational cohort studies are also retrospective in nature or 

may not have been designed with tOC or ucOC as the primary outcome. This may limit 

the relationships. 
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 Table 2.3 Correlative link between ucOC and glucose metabolism 
 

First author 
(Ref.) 

Study design 

Study population 
Sample size (n) 
Mean age (yrs) 

OC analysis method 
T: time of sample 

C: control procedures 

OC levels (compared to controls) 

tOC ucOC 

Alfadda, 
(359) 
Cross 

sectional 

T2D patients with and 
without MetS 

MetS n=134; Non-MetS 
n=69 

MetS 52 yrs; Non-MetS 53 
yrs 

tOC N-MID Osteocalcin 
ELISA kit (Elecsys, Roche 

diagnostic Ltd., 
Switzerland 

ucOC (EIA kit, Takara) 
T & C: N/R 

↓ tOC MetS vs non-MetS 
8.4 (3.7) vs 9.8 (5.8) µg/L 

Mean (SD) 

↓ ucOC MetS vs non-MetS 
1.0 (1.0) vs 1.4 (1.7) µg/L 

Mean (SD) 

Bullo, (396) 
Cross 

sectional and 
prospective 

Community dwelling older 
men at high cardiovascular 

risk 
Taking anti-diabetics n=56 

Non-antidiabetics n=23 
69 yrs 

tOC and ucOC (ECLIA, 
Roche) 

C; fasting 

ns between groups  
5.9 (3.8, 6.0) vs 6.4 (5.2, 8.0) 

ng/mL 
Geometric mean(95% CI) 

ns between groups  
1.7 (1.5, 1.9) vs 1.4 (0.9, 1.9) 

ng/mL 
Geometric mean(95% CI) 

Chen, (397) 
Cross 

sectional 

Middle-aged adults with 
different degrees of glucose 

tolerance 
NGT n=46; IGT n=52, 62 

T2D n=62 
NGT 48 yrs; IGR 50 yrs; 

T2D 48 yrs 

tOC and ucOC (ELISA) 
(Invitrogen, Frederick, MD, 
USA, and Takara Bio Inc., 
Shiga, Japan, respectively), 

T: a.m.; C: fasting 
 

ns between groups 
N/R 

ns between groups 
N/R 
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First author 
(Ref.) 

Study design 

Study population 
Sample size (n) 
Mean age (yrs) 

OC analysis method 
T: time of sample 

C: control procedures 

OC levels (compared to controls) 

tOC ucOC 

Diaz lopez 
(348) 

Prospective 
nested case 

control  

Non-diabetic community 
dwelling adults 

Incident T2D=153; non-T2D 
n=306 
66 yrs 

Total OC was measured by 
an Enzyme Amplified 

Sensitivity Immunoassay 
Kit (DRG Instruments 

GmbH) 
ucOC (EIA kit, Takara) 

T: N/R; C: fasting 

↓ tOC T2D vs non-T2D 
7.5 (5.8, 9.5) vs 8.5 (6.5, 11.5) 

ng/mL 
Median (IQR) 

↓ ucOC T2D vs non-T2D 
3.6 (2.3, 5.4) vs 4.5 (2.6, 6.5) 

ng/mL 
Median (IQR) 

Foresta, 
(368) 
Cross 

sectional 

Obese and normal weight 
males 

Obese n=57; normal n=26 
Obese 44 yrs; normal 39 yrs 

ucOC and cOC (ELISA, 
Takara, Basel, 
Switzerland). 

tOC = ucOC + cOC 
T & C: N/R 

ns between groups tOC  
11.6±1.3 vs 11.9±0.9 ng/mL 

Mean±SEM 

↓ ucOC obese vs normal body 
weight 

ucOC: 1.9±0.2 vs 3.7±0.5 ng/mL 
Mean±SEM 

Funakoshi, 
(342) 
Cross 

sectional 

Adults with varying degrees 
of glucose regulation 

Males n=34; Females n=41 
Normal glucose= 25 

Impaired glucose= 25 
T2D = 25 

65 yrs 

ucOC (ECLIA, Picolumi 
ucOC, Eidia Co., Ltd.) 

T: N/R; C: fasting 
Not measured 

ns between groups 
normal: 4.3 (3.1, 5.2) ng/mL 

impaired: 4.0 (3.3, 6.6) ng/mL 
T2D: 4.0 (2.6, 5.8) ng/mL 

Median (25th, 27th percentiles) 
 

Hwang, 
(398) 
Cross 

sectional 

Middle aged men 
n=199 
47 yrs 

tOC and ucOC (EIA, 
Takara) 

T: a.m.; C: fasting 

Those in highest tertile of tOC 
had lower fasting BGL and 
post challenge BGL levels 

15.8(13.5, 48.0) vs 6.1(1.1, 8.1) 
µg/L 

Median(range) 

Those in highest tertile of ucOC 
had lower fasting BGL and post 

challenge BGL levels 
1.1 (0.7, 11.2) vs <0.25 µg/L 

Median(range) 
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First author 
(Ref.) 

Study design 

Study population 
Sample size (n) 
Mean age (yrs) 

OC analysis method 
T: time of sample 

C: control procedures 

OC levels (compared to controls) 

tOC ucOC 

Iki, (399) 
Cross-

sectional and 
prospective 

Community-dwelling older 
men 

n=1597 
73 yrs 

tOC (two site IRMA, 
Mitsubishi, Mitsubishi 

Kagaku Iatron Inc.) 
ucOC (ECLIA, Picolumi 

ucOC, Sanko Junyaku Co. 
Ltd.) 

T: N/R; C: fasting 

↓ tOC in T2D vs non-T2D 
4.4 (4.2, 4.7) vs 5.0 (4.9, 5.2) 

ng/mL 
Mean (95% CI) 

↓  ucOC in T2D vs non-T2D 
ucOC: 2.2 (2.0, 2.4) vs 3.0 (2.9, 

3.1) ng/mL 
Mean (95% CI) 

Iki, (373) 
Cross 

sectional and 
prospective 

Community dwelling men 
T2D n=309 

non-T2D n=1391 
T2D= 72 yrs; non-T2D 72 

yrs 

tOC (IRMA, Mitsubishi, 
Mitsubishi Kagaku Iatron 

Inc.,) 
ucOC (ECLIA, Picolumi 

ucOC, Sanko Junyaku Co. 
Ltd.) 

T: N/R; C: fasting 

Baseline: ↓ tOC T2D vs non-
T2D 

4.3±1.5 vs 4.9±1.5 ng/mL 
Geometric mean ± SD 

Baseline: ↓ ucOC T2D vs non-
T2D 

2.1±1.9 vs 2.9±1.8 ng/mL 
Geometric mean ± SD 

Kanazawa, 
(400) 

Men and postmenopausal 
woen with T2D 

Males n=179, females n=149 
Males 65 yrs, females 67 yrs 

tOC (RIA) 
T: N/R; C: fasting 

↓ tOC in males vs females 
5.2±2.3 vs 7.2±3.0 ng/mL 

Not measured 

Kanazawa, 
(335) 
Cross-

sectional 

Men and postmenopausal 
women with T2D 

F n= 109; M n=180 
F= 67 yrs; M= 59 yrs 

tOC (RIA) 
ucOC (ECLIA) 

T: N/R; C: fasting 

↓ tOC in males vs females 
4.4±1.9 vs 7.0±3.0 ng/mL 

↓ ucOC in males vs females 
2.5±1.6 vs 4.2±3.0 ng/mL 

*higher ucOC related to lower 
HbA1c 

Kanazawa, 
(401) 
Cross-

sectional 

Postmenopausal women and 
men with T2D not taking 

antidiabetics 

tOC (IRMA) 
T: N/R; C: fasting 

No difference in baseline 
glucose metabolism measures 

based on tertiles of baseline tOC 
Not measured 
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First author 
(Ref.) 

Study design 

Study population 
Sample size (n) 
Mean age (yrs) 

OC analysis method 
T: time of sample 

C: control procedures 

OC levels (compared to controls) 

tOC ucOC 

Lacombe, 
(377) 

Individuals with severe 
obesity 

Males n=11; Females n=5 
42 years 

tOC (ECLIA, Roche 
diagnostics) 

ucOC (ELISA, BioLegend 
Inc.) 

T: N/R; C: fasting 

ns between groups 
N/R 

↓ ucOC T2D vs non-T2D 
2.8±0.4 vs 4.5±0.1 ng/mL 

Lee, (35) 
Cross 

sectional 

Post-menopausal women 
with and without MetS 

MetS m=52; non-MetS n=83 
MetS: 56 yrs; non-MetS: 55 

yrs 

tOC N-MID Osteocalcin 
(ELISA, Roche 

Diagnostics)  
ucOC (ELISA, Cusabio 

Biotech Co., LTD) 
T: N/R; C: fasting 

↓ tOC MetS vs non-MetS 
15.0±6.0 vs 17.4±6.5 ng/mL 

↓ ucOC MetS vs non-MetS 
5.1±2.8 vs 6.5±3.0 ng/mL 

Levinger, 
(29) 

Cross 
sectional 

Middle aged obese men with 
and without T2D 

n=28 
52 yrs 

tOC IMMULITE 2000 
(Siemens Healthcare 

Diagnostics) 
ucOC ECLIA (Sanko 

Junyaku Co., Ltd.) 
T: a.m. C: fasting 

N/R 
↓ ucOC T2D vs non-T2D 
3.3±0.4 vs 5.7±0.7 ng/mL 

Mean±SEM 

Liu, (379) 
Cross 

sectional 

Older men with and without 
MetS 

non-MetS n=1797; MetS 
n=778 

non-MetS 76 yrs; MetS 76 
yrs 

tOC (ECLIA, Roche 
Diagnostics) 

ucOC (HAP method) 
T: a.m.; C: fasting 

ns between groups 
22.1±6.4 vs 20.8±15.7 ng/mL 

↓ ucOC MetS v non-MetS 
non-MetS 11.4±5.1 vs 10.9±5.9 

ng/mL 



 42 

First author 
(Ref.) 

Study design 

Study population 
Sample size (n) 
Mean age (yrs) 

OC analysis method 
T: time of sample 

C: control procedures 

OC levels (compared to controls) 

tOC ucOC 

Ngarmukos, 
(376) 

nested, case-
control 

Adult men 
T2D n=63; non-T2D n=63 

47 yrs 

tOC (ECLIA, Roche 
Diagnostics) 

ucOC (EIA kit, Takara) 
T & C: N/R 

↓ tOC T2D vs non-T2D 
13.0±0.5 vs 15.2±0.5 µg/L 

Mean±SE 

ns between groups 
1.5±0.1 vs 1.1 ± 0.1 µg/L 

Mean±SE 

Okuno, 
(402) 

Hemodialysis patients with 
and without T2D 

T2D n=96; non-T2D n=93 
T2D: 68 yrs; Non-T2D 69 

yrs 
 

ucOC (ECLIA, Picolumi 
ucOC, Sanko Junyaku) 
T: N/R; C: non-fasting 

Not measured 

↓ tOC in T2D v non-T2D 
14.4 (2.7, 185.3) vs. 31.5 (2.2, 

257.4) ng/mL 
Median (range) 

Pepene, 
(403) 

Prospective 
case-control 

Premenopausal women 
PCOS n=52; controls n=26 

PCOS 24 yrs; controls 26 yrs 

tOC (ELISA, ALPCO 
Diagnostics) 

ucOC (ELISA, Takara) 
T: a.m.; C: fasting, 

follicular phase 

Ns between groups 
13.76±6.58 vs 13.07±6.55 

ng/mL 

↑ ucOC lean PCOS vs controls 
Levels N/R 

Pollock, 
(404) 
Cross 

sectional 
 

Prepubertal overweight 
children 

normal glucose n=99 
(51M/48F) 

pre-diabetes n=41 (29M/12F) 
normal glucose 9 yrs 

pre-diabetes 9 yrs 

tOC and ucOC (RIA, HAP-
method) 

T: N/R; C: fasting 

↓ tOC pre-diabetes v normal 
gluose 

22.8±1.5 vs 26.9±0.9 ng/mL 

↓ ucOC pre-diabetes v normal 
glucose 

5.6±0.7 vs 7.8±0.4 ng/mL 
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First author 
(Ref.) 

Study design 

Study population 
Sample size (n) 
Mean age (yrs) 

OC analysis method 
T: time of sample 

C: control procedures 

OC levels (compared to controls) 

tOC ucOC 

Shea, (347) 
Cross 

sectional & 
Prospective 

cohort 

Older adults 
Female n=206; Male n=142 

68 yrs 

tOC (RIA) 
ucOC (RIA, HAP method) 

T: a.m.; C: fasting 

Lowest tertile of tOC at 
baseline had higher baseline 

HOMA-IR 
T1: 5.5±1.0 ng/mL 
T2: 8.1±0.7 ng/mL 

T3: 11.8±2.5 ng/mL 
Mean±SD 

 

No difference in HOMA-IR at 
baseline across ucOC tertiles 

T1 1.6±0.7 ng/mL 
T2 3.3±0.5 ng/mL 
T3 6.1±2.3 ng/mL 

Mean±SD 
 

Riquelme-
Gallego, 

(341) 
Cross 

sectional 

Patients with MetS 
Males n=111; Females 

n=124 
Mean age: 64 64rs 

ucOC (ELISA, Takara Bio, 
Japan) 

 
T: N/R; C: fasting 

Not measured 
↓ ucOC MetS+T2DM vs MetS 

non-T2DM 
N/R 

Saucedo, 
(351) 

Prospective 

Women with and without 
GDM during pregnancy and 

postpartum 
GDM n=60; non-GDM n=60 
GDM 30 yrs; non-GDM 28 

yrs 

tOC (IRMA, Cusbio 
Bioassays, Codolet). 

ucOC (ELISA, Cusabio 
Biotech Co., LTD). 
T: N/R; C: fasting 

Pregnancy- ns between groups 
14.7 (9.8, 24.7) vs 17.6 (10.2, 

23.5) ng/mL 
 

Postpartum; ↓ tOC GDM vs 
non-GDM 

24.4 (20.2, 32.6) vs 31.1 (23.8, 
40.9) ng/mL 

Pregnancy- ns between groups 
2.9 (0.6, 5.2) vs 1.9 (0.5, 4.9) 

ng/mL 
 

Postpartum- ns between groups  
3.0 (1.1, 8.5) vs 3.4 (1.3, 7.1) 

ng/mL 
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First author 
(Ref.) 

Study design 

Study population 
Sample size (n) 
Mean age (yrs) 

OC analysis method 
T: time of sample 

C: control procedures 

OC levels (compared to controls) 

tOC ucOC 

Schwetz, 
(405) 
Cross 

sectional 

Premenopausal women 
n=105 

IR n=18 
Non-IR= 87 

IR 26 yrs; non-IR 28 yrs 
*median 

tOC (ECLIA, Cobas, 
Roche) 

ucOC (HAP-method) 
T: a.m.; C: fasting 

Baseline: ↓ tOC IR vs non-IR 
14.3 (11.6, 15.3) vs 18.0 (14.5, 

24.7) ng/mL 
Median (IQR) 

Baseline: ↓ ucOC IR vs non-IR 
2.4 (1.8, 3.5) vs 3.2 (2.1, 4.5) 

ng/mL 
Median (IQR) 

Srichomkwu
n, (406) 
Cross 

sectional 

Pregnant women with and 
without GDM 
GDM n=74 

non-GDM n=56 
GDM 34 yrs 

non-GDM 32 yrs 
 

tOC (ECLIA, Roche 
Diagnostics) 

ucOC (ELISA, Takara 
Shuzo) 

T: N/R; C: fasting 

ns between groups 
Non-GDM: 10.4 (7.7, 15.4) vs 
GDM 11.3 (8.6, 18.5) ng/mL 

Median (IQR) 

ns between groups 
Non-GDM 3.9 (1.8, 8.7) vs 
GDM 6.1 (3.0, 9.6) ng/mL 

Median (IQR) 

Thrailkill, 
(407) 
Cross 

sectional 

Type 1 diabetics and age 
matched healthy controls 
TID n=115; controls n=55 

T1D 18 yrs, Controls 22 yrs 

ucOC (EIA kit, Takara) 
GLA-OC (EIA kit, Takara) 

T: a.m.; C: fasting 

ns between groups 
T1DM 6.8 (0.3, 50.2) 
CON 5.9 (0.3, 21.1) 

Mean (range) 

ns between groups 
T1DM 7.3 (0.4, 59.7) 
CON 6.4 (1.6, 45.6) 

Mean (range) 

Vilafan-
Bernal, 
(408) 
Cross 

sectional 

Adults with and without T2D 
T2D n=80; non-T2D n=160 
T2D 52 yrs; non-T2D 50 yrs 

ucOC (EIA kit, Takara) 
Inc, Otsu, Japan 

T & C: N/R 
Not measured 

↓ ucOC T2D vs non-T2D 
ucOC: 0.2 nmol/L vs 0.3 nmol/L 

Median 
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First author 
(Ref.) 

Study design 

Study population 
Sample size (n) 
Mean age (yrs) 

OC analysis method 
T: time of sample 

C: control procedures 

OC levels (compared to controls) 

tOC ucOC 

Wang, (409) 
Cross 

sectional 

Patients with T2D with 
varying degree of HbA1c 

High HbA1c n=36 
Moderate HbA1c n=16 

Low HbA1c n=11 
52yrs 

tOC (RIA, Beijing Atom 
HighTech co., Ltd) 

ucOC (ELISA, R&D 
company) 

T: N/R, C: fasting 

↓ tOC in those with high 
HbA1c vs low HbA1c 

3.9±0.8 vs 4.5±0.8 ng/mL 

ucOC ns in those with high HbA1c 
vs low HbA1c  

19.8±9.8 vs20.2±11.7 pg/mL 
 

*those with lower ucOC have 
higher fasting BGL 

Yeap, (374) 
Cross 

sectional 

Community-based older men 
T2D n=2521, non-T2D 

n=445 
Age: 70 to 89 years 

(mean age N/R) 

tOC  (ECLIA, Roche 
Diagnostics) 

ucOC (HAP method) 
T: a.m; C: fasting 

↓ tOC T2D vs non-T2D 
18.6±19.5 vs 21.2±10.9 ng/mL 

↓ ucOC T2D vs non-T2D 
 9.6±6.3 vs 11.2±4.7 ng/mL 

 
Key: ↑, significantly increased; ↓, significantly decreased; ns, not significant; N/R, not reported tOC, total osteocalcin; ucOC, 
undercarboxylated osteocalcin;  F, female; M, male; MetS, metabolic syndrome; T2D, type two diabetes; NGT, normal glucose tolerance; 
IGT, impaired glucose tolerance; GDM, gestational diabetes mellitus; HbA1c, glycated haemoglobin A1c; ECLIA, 
electrochemiluminescence immunoassay analyser; ELISA, enzyme linked immunosorbent assay; CLIA, chemiluminescence immunoassay; 
RIA, radioimmunoassay; EIA, enzyme immunoassay; IRMA, immunoradiometric assay; HAP hydroxyapatite
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2.2.2.1.4 Interventions that manipulate ucOC levels and subsequent metabolic 

changes 

Although there are challenges to studying direct effects of ucOC on human 

metabolism in vivo, other strategies using therapeutic and non-therapeutic approaches can 

be employed. These approaches alter metabolism and, albeit indirectly, ucOC (Figure 

2.15). One such approach is to manipulate glycaemic control (i.e. hypoglycaemic drugs 

or lifestyle interventions e.g. exercise and diet) and observe changes in tOC or ucOC 

levels or conversely manipulate ucOC levels directly or indirectly (e.g. vitamin K 

supplementation, glucocorticoids) and observe effects on glycaemic control.  

 

 
Figure 2.15 Interventions that manipulate ucOC and glucose metabolism. Created with 
BioRender.com 

2.2.2.1.4.1 Short interventions to manipulate ucOC or glucose 

Following an OGTT and glucagon loading test or meal, studies reported that 

higher tOC and ucOC levels are related to higher β-cell function and insulin sensitivity 
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(398, 410, 411). In middle-aged adults following an OGTT, a higher ucOC was associated 

with improved glucose tolerance and enhanced β-cell function (HOMA-β%) (398). The 

increase in glucose tolerance, insulin sensitivity and secretion was independent of 

adiponectin levels (410). In T2D individuals who underwent a glucagon loading test or 

ingestion of a meal, a higher ucOC was related to a higher C-peptide response (411).  

 

2.2.2.1.4.2 Diabetic medications 

Common methods to improve glycaemic control in patients with T2D are 

hypoglycaemic drugs and lifestyle interventions (diet and exercise). In those with poorly 

controlled T2D (HbA1c greater than 10%), hypoglycaemic medications (i.e. sulfonylurea 

agents, metformin, α-glucosidase inhibitor, and insulin) significantly reduced HbA1c 

levels which in turn resulted in increased tOC (412, 413) and decreased ucOC/tOC ratio 

(412). Similarly, treatment with hypoglycaemic medications in adults with T2D resulted 

in higher tOC and reduced glucose variability (414). Therefore, the overall observation 

suggests that changes in tOC are linked to changes in glycaemic control or conversely 

improved glycaemic control is related to higher tOC levels.  

 

2.2.2.1.4.3 Lifestyle interventions:  

2.2.2.1.4.3.1 Dietary-induced weight loss with or without exercise 

Exercise and diet improve body composition (by increasing lean mass and 

decreasing fat mass) and increases ucOC levels which are correlated to improved body 

composition and glucose control (32, 415). Obese non-diabetic males with reduced body 

weight after following a four-month dietary program had an increased level of ucOC and 

a lower level of triglycerides but there were no changes in BMI, fasting blood glucose or 

HOMA-IR (416). Frail obese older adults after a 12 month diet (resulting in a 10% weight 

loss) but not exercise (multicomponent) or combination diet-plus-exercise had increased 

ucOC levels (around 36%) (417). Both diet and diet-plus-exercise groups improved 

insulin secretion but ucOC levels predicted insulin secretion in the diet group only. In a 

different study, sixteen weeks of dietary-induced weight loss (-7.3%) in sedentary obese 

women (40 to 60 years) did not alter tOC (339). However, for those in a combined diet-

plus-exercise (resistance exercise) training group, post intervention tOC levels increased 

in parallel with an increase in leg strength and force and a reduction in fat mass. For both 
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groups the post intervention increase in tOC was related to decreased insulin resistance. 

Although slight weight loss (7.3%) in the diet group did not alter tOC, those with higher 

weight loss (16.8%) had increased post-intervention tOC, but this was not related to 

increased insulin sensitivity (339). Conversely in older women, 20 weeks of caloric 

restriction with and without AE (moderate or vigorous) did not alter tOC, ucOC or the 

ucOC/tOC ratio despite a loss in body weight and body fat (418). The women received 

supplemental vitamin K, vitamin D3 and calcium. Given weight loss occurred despite no 

change in ucOC, the researchers hypothesised that because carboxylation of OC was 

maintained (with vitamin K supplementation), OC is unrelated to weight loss. Other 

studies using Vitamin K similarly do not support the association between the change in 

ucOC with a change in body weight or the change in ucOC with a change in body fat 

(387, 419). Yet it is possible that vitamin K may assist in glucose regulation 

independently of ucOC, which may affect the results (420). Altogether, these studies 

support the notion that weight loss increases ucOC, but the data are inconsistent as to 

whether this is related to the favourable effects on glycaemic control induced by these 

interventions. 

 

2.2.2.1.4.3.2 Exercise interventions: acute and chronic exercise 

Exercise is a cornerstone approach in the prevention and management of T2D and 

osteoporosis (285, 286). Exercise affects bone health, in part by modulating BTMs such 

as tOC and ucOC (29, 30, 322, 421-423), and improves insulin sensitivity and glycaemic 

control. Even a single bout of exercise increases insulin sensitivity for up to 48 hours after 

exercise is complete (424, 425). 

Acute (single-bout) AE increases ucOC in young healthy adults, middle-aged 

obese men and postmenopausal women (28-31). In middle-aged obese men with and 

without T2D, acute moderate intensity AE but not power RE (leg press plus jumping 

sequence) increased tOC and ucOC (29). In those with T2D, the post-exercise increase in 

ucOC (AE and RE groups were combined as a pooled analysis) was related to decreased 

post-exercise glucose levels (29). In middle-aged obese non-diabetic men, acute high 

intensity cycling AE increased ucOC but not tOC (30). In that study, a higher ucOC at 

baseline was related to higher whole body insulin sensitivity at rest and after exercise. 

These findings led the researchers to hypothesise the existence of a feed-forward loop 

whereby acute exercise increases ucOC with accompanied improvements in glucose 
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homeostasis and insulin sensitivity (29, 30). Exploring this hypothesis further and noting 

that nutrient intake and feeding (i.e. oral glucose tolerance test) lowers tOC and ucOC, 

the researchers undertook studies that examined whether acute exercise could attenuate 

the postprandial suppression of tOC and ucOC. The results showed that moderate 

intensity cycling and high intensity interval exercise did not alter postprandial 

suppression of tOC and ucOC (31, 426). However, the acute exercise bout was performed 

prior to insulin and glucose infusion or the OGTT and not after. In another study in 

middle-aged adults (427), the acute high intensity interval exercise and moderate intensity 

exercise was performed in the postprandial period (1h after meal consumption). However, 

only moderate exercise attenuated the postprandial-induced suppression of tOC and 

ucOC. The researchers hypothesised that the known elevation of insulin and glucose 

elicited by high intensity exercise may partially explain the lack of change in serum tOC 

and ucOC (427). Altogether the data suggest that a relationship exists between ucOC and 

glycaemic control and that exercise represents a tool to examine the relationship between 

bone, muscle and glucose metabolism. At this stage it is not known whether ucOC directly 

affects glycaemic control or vice versa or whether there is a direct cause and effect 

relationship. 

Results of studies of the effects of chronic, long-term exercise on tOC or ucOC 

levels are conflicting. Some exercise training studies report no post-intervention change 

in ucOC (417), tOC (428) or both ucOC and tOC levels (28). One study reported a post-

intervention increase in both ucOC and tOC levels (415) with another study reporting 

ucOC increases (429), tOC was not measured. Additionally, one study reported that tOC 

increases (430) with another study reporting tOC decreases (431) following exercise 

training, ucOC was not measured in these studies. However, a recent meta-analysis 

reported an overall increase in ucOC and decrease in glucose, insulin and HOMA-IR 

following training (a pooled analysis of all training modes) (32). For instance, ucOC 

increased in obese men with MetS following 12 weeks of high intensity interval AE, RE, 

or concurrent AE interval and RE (429). The increase in ucOC was associated with lower 

glucose, insulin and HOMA-IR. Compared to RE, ucOC was about four times higher after 

AE interval and concurrent sessions (5% vs approximately 25%), suggesting exercise 

type may have differing effects. Eight weeks of moderate intensity treadmill running in 

young obese males increased tOC and ucOC. This was accompanied by improved body 

composition as well as lower HOMA-IR and fasting plasma insulin (415). However, 

postmenopausal women who performed eight weeks of moderate intensity cycling had 
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reduced tOC and HOMA-IR with no change in insulin or glucose (431). No relationship 

was found between the change in tOC and change in levels of glycaemic control. This 

study sample was relatively small, which may have limited the correlations, and ucOC 

was not measured. 

Altogether, it appears that dietary interventions resulting in weight loss increase 

ucOC levels and the increases are related to improved glycaemic control. There is some 

evidence that weight loss can occur, despite OC carboxylation being maintained with 

Vitamin K. Most data report that acute and chronic exercise increases ucOC, and this 

change is related to improved metabolic factors. 

 

2.2.2.1.4.4 Vitamin K 

As carboxylation of OC occurs via vitamin K it is suggested that the ucOC/tOC 

ratio represents a marker of vitamin K status (432-434). Therefore, one non-invasive 

intervention to manipulate ucOC is via vitamin K (435, 436). In healthy adults a diet rich 

in vitamin K is related to lower ucOC, and a lower ucOC is associated with higher HbA1c 

(437). Studies manipulating vitamin K (supplementation or dietary), even with very short 

intervention periods (2 to 4 weeks), report decreases in ucOC (436, 438-441). Some of 

these studies report in parallel beneficial effects on glucose metabolism using Vitamin 

K1 supplementation in premenopausal pre-diabetic women (440) and vitamin K2 

supplementation in healthy young males (441). But other studies using Vitamin K1 

supplementation (438) or consumption of green leafy vegetables (442) report no change 

in glucose regulation, insulin resistance or T2D development and progression despite 

reduction in ucOC. Conversely three months of vitamin K2 supplementation in those with 

T2D increased cOC and tOC without changing ucOC levels, and decreased blood glucose 

(443). This suggests cOC may be involved in glucose metabolism, similar to findings by 

others (347, 405). In these studies serum vitamin levels or dietary intakes were not always 

measured and therefore individual responses may be different based on baseline levels. 

Additionally, a dietary analysis to account for other confounding factors independent of 

the intervention (i.e. dietary sources of the vitamin) was not performed in many studies. 

Besides OC, other proteins contain glutamic acid residues and are dependent on vitamin 

K for carboxylation. Hence, it is possible Vitamin K supplementation has a wider effect, 

or perhaps a direct effect on glucose regulation via other mechanisms (420). 
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2.2.2.1.4.5 Glucocorticoids 

Glucocorticoids (GC) are a principal treatment of chronic inflammatory disorders 

such as rheumatic diseases. It has been shown that GC treatment is associated with 

increased risk for hyperglycaemia and worsening of pre-existing diabetes or GC-induced 

diabetes. Additionally, those receiving GC-treatment have been shown to have lower 

serum levels of tOC, even at low doses (444, 445). This observed decrease in tOC levels 

in GC treated patients is associated with increased likelihood of presence of T2D (446). 

A recent study showed that GC decreased total OC and PINP in a dose-dependent manner 

and that these changes were related to the GC-induced adverse effects on glucose and 

lipid metabolism (447). It has also been shown that endogenous  glucocorticoids have 

negative effects on muscle mass (448). 

 

2.2.2.1.4.6 Osteoporotic treatments and glucose metabolism 

Another intervention that supresses bone remodelling is antiresorptive therapy 

(i.e. bisphosphonates), which decreases tOC and ucOC (449-451). Due to the link 

between OC and glucose metabolism, one hypothesis is that bisphosphonate treatment 

may also affect glucose metabolism. Some observational studies report that adults treated 

with antiresorptives have a decreased risk of developing T2D (452-456) but not all studies 

support this. Data obtained from three RCTs including osteoporotic postmenopausal 

women reported that treatment with antiresorptives (ALN, zoledronic acid and 

denosumab, DMAb) did not affect differences in fasting glucose or risk for T2D (457) 

but these trials did not present ucOC data. Similarly, osteoporotic patients treated with 

risedronate exhibited decreased levels of tOC and ucOC, but this was not associated with 

changes in glucose metabolism. Similar findings were reported following DMAb 

treatment in postmenopausal osteoporotic women without diabetes (458, 459) or those 

with pre-diabetes or T2D (460). In a different study, DMAb reduced ucOC in osteoporotic 

postmenopausal women (461) and in osteoporotic patients switching from TPTD to 

DMAb (462), but glucose metabolism was not measured.  

In women with hypoparathyroidism, parathyroid hormone (PTH) treatment was 

reported to increase tOC levels (463) or increase both tOC and ucOC (464). In 

osteoporotic postmenopausal two studies reported that PTH increased tOC and ucOC 

levels (465, 466). However, these studies delivering PTH treatment give conflicting 

results regarding the relationship between the change in OC with glucose metabolism. 



 52 

For instance, PTH treatment in postmenopausal osteoporotic non-diabetic women 

increased tOC and ucOC and this was related to decreased BGL (466) but most studies 

report no link (463-465) or did not measure metabolic outcomes (463).  

Conflicting results amongst the studies mentioned above reporting tOC and ucOC 

could also be explained by several underlying factors i.e. age, sex, clinical characteristics, 

medications used or menopausal status amongst other factors. Notably, throughout the 

literature there is also a large variation in the different assays used to assess and measure 

tOC and ucOC (see assay methods in Table 1). Currently, there is no optimal method for 

the measurement of ucOC. Commonly, a hydroxyapatite (HAP) binding method proposed 

by Gundberg and colleagues (467) or a direct determination for Glu-OC by an ELISA 

specific for fully uncarboxylated OC (from Takara) is used, each with limitations. The 

HAP binding method is based on the lower affinity of ucOC to the HAP compared to 

fully carboxylated OC. The method is complex and levels are highly dependent on 

technical details such as antibodies used, specific binding capacity of the HAP, amount 

of apatite used, or ELISA used. This method does allow the expression of ucOC as a 

percentage of tOC (ucOC% or ucOC/tOC), as ucOC is measured on the same sample 

before incubation with HAP after measuring tOC. This may be more clinically 

informative. There is an available combination kit that recognizes Gla-OC (carboxylated 

OC) and uncarboxylated OC but neither of these kits recognises undercarboxylated OC. 

There are some instances where ELISAs can report ucOC levels higher than those of tOC, 

which may suggest non-specific binding and an overestimation of ucOC. Altogether, as 

a result of different methods that attempt to measure ucOC, it can be difficult to interpret 

results and compare study findings. Elucidating the direct effects of ucOC on glucose 

regulation is essential to our understanding of the function of this bone hormone in 

general, as it could have clinical implications in identifying new mechanistic targets and 

treatment avenues for metabolic conditions such as T2D.  

 

2.2.2.1.5 Direct effect of ucOC on muscle glucose metabolism 

Skeletal muscle plays a key role in whole-body glucose disposal and energy 

regulation (97) and therefore is a likely target tissue for ucOC. However, exploring 

skeletal muscle glucose metabolism and the direct effects of OC in humans is difficult. 

As such in recent years, mechanistic studies that examine the direct effect, or lack of 
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effect, of ucOC on muscle have been conducted using a combination of in vivo, ex vivo 

and in vitro studies (Table 2.4). 

One of the first studies providing evidence for the direct effect of ucOC on whole-

body glucose regulation in rodents, outside the Karsenty group, was published by 

Speranza et al. (468). They reported that OC plays a critical role in the commonly reported 

dysregulation of energy homeostasis caused by glucocorticoid use (468). Additionally, 

they demonstrated that corticosterone (CS) treatment suppresses ucOC by more than 90% 

in wild-type (WT) mice and this was accompanied by the development of insulin 

resistance and impaired glucose tolerance. However, when they treated transgenic mice 

with a specific osteoblast-targeted disruption of glucocorticoid signalling (Col2.3-

11bHSD2 Tg mice), these mice had normal circulating levels of ucOC and were protected 

from the development of insulin resistance, glucose tolerance and abnormal weight gain 

(468).  

As in vivo exercise can increase ucOC levels, which in turn is related to increased 

insulin sensitivity (30), we examined whether ucOC treatment can increase the insulin-

sensitizing effects of exercise using an ex vivo model of skeletal muscle contraction 

followed by ucOC treatment (469). We reported that ucOC enhanced the insulin-

sensitizing effects of muscle contraction in glycolytic muscle by 14% (extensor digitorum 

longus, EDL), yet in contrast to our hypothesis, we did not observe changes in basal 

insulin sensitivity following ucOC treatment. We and others reported that in C2C12 

myotubes, ucOC enhances insulin-stimulated glucose uptake compared to insulin 

stimulation alone (469, 470). As such, it is possible that methodological limitations in our 

previous study, which used intact muscle, affected the results as only the outer muscle 

was exposed to ucOC.  In follow-up studies, muscles were cut longitudinally to enhance 

ucOC exposure. We then observed that ucOC (at physiological levels) alone increased 

muscle glucose uptake in mice EDL and soleus (471), as well as with insulin stimulation, 

in a muscle specific manner (472). We also demonstrated that ucOC treatment at similar 

levels can alleviate insulin resistance induced by corticosterone in both glycolytic and 

oxidative muscles (473). Treatment with exogenous ucOC was  shown to induce myoblast 

proliferation of C2C12 cells in vitro via PI3K/Akt and p38 MAPK pathway, and 

myogenic differentiation involving GPRC6A-ERK1/2 signalling (43). In that study, the 

inhibition of Akt (wortmannin) and P38 MAPK phosphorylation (SB203580) inhibited 

(decreased) the effect of ucOC on cell proliferation and the inhibition of ERK 1/2 

phosphorylation (U0126) decreased C2C12 cell differentiation. Furthermore, ucOC 



 54 

treatment increased GPRC6A expression in C2C12 myotubes when silenced (GPRC6A 

siRNA) activation of Akt, P38 MAPK and ERK 1/2 phosphorylation was inhibited and 

cell proliferation and differentiation was decreased. Some studies reported that treatment 

with recombinant ucOC has limited effects on basal or insulin-stimulated glucose uptake 

and insulin signalling activity, as well as on glycolysis in mouse muscle tissue or cultured 

myotubes (474-477). One paper even reported that ucOC treatment blunted insulin-

stimulated glucose uptake in C2C12 myotubes (474). Table 2.4 summarises the studies 

of the direct effects of ucOC on glucose metabolism. 
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Table 2.4 Direct effects of ucOC on glucose metabolism 

 Author, 
year  

Experimental 
Overview  Effect on metabolic function Potential mechanisms 

Genetically 
modified 
animals 

(excluding 
OC KO) 

Jørgensen, 
2019 (478) 

GPRC6A KO mice 
 

CS treatment 

Vehicle-treated KO compared to WT: 
↔ basal BGL, INS, IS 
Similar ↑ in body composition 
 
CS-treated KO compared to WT:  
Similar ↑ in body composition and INS 
Similar ↓ in muscle mass, IS, and basal 
BGL 

Vehicle-treated KO compared to WT: 
↓ OC 
↓ OC mRNA expression 
 
CS-treated KO compared to WT:  
Similar ↓ in OC 
Similar ↓ in OC mRNA expression 

Mao, 
2021(479) 

LRP1 endothelial 
cell (EC)-specific 

inducible knockout 
mice (eKO) 

 
OC treatment 

(injection 150 μg/kg) 

LRP1 depleted ECs:  
↑ IS 
↑ glucose uptake (muscle and white adipose 
tissue) 
 
LRP1 depleted ECs in HFD mice: 
↑ IS 
↑ glucose uptake (muscle and white adipose 
tissue) 
↓ weight gain, blood insulin, glucose, TG, 
FFA, and HOMA-IR 
 
LRP1 depleted ECs in diabetic mice: 
↑ measures of glucose homeostasis 
(attenuated with OCN AAV depletion) 
 

LRP1 depleted ECs:  
↑ serum OC and ucOC 
↑ OC mRNA expression 
↑ FoxO1 nuclear export 
 
OC treatment: 
↑ pIRS1, pAKT and pGSK3β (muscle and 
liver), and GLUT4 translocation (muscle)  
 
HFD model: 
↓ blood OC and ucOC (attenuated with LRP1 
eKO) 
 
 
STZ-induced diabetes model:  
↓ blood OC and ucOC (attenuated with LRP1 
eKO) 
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 Author, 
year  

Experimental 
Overview  Effect on metabolic function Potential mechanisms 

Daily injection of OC (2 w) in mice with 
T1DM:  
↔ blood INS 
↓ BGL 

 
 

Rached, 
2010 (480) 

 

Foxo1Osb
-/- mice FoxO1Osb

-/- compared to WT: 
↓ BGL 
↑ insulin 
↑ islet number and size, and β cell mass and 
proliferation 
↑ glucose tolerance 
↑ IS 
↑ glucose disposal 
↔ body weight 
↓ fat pad 
↑ energy expenditure 
 
FoxO1Osb

-/- mice lacking a single 
osteocalcin allele: 
Metabolic phenotype reversed. 
 
FoxO1Osb

-/- mice are protected from 
HFD-induced obesity and insulin 
resistance. 

FoxO1Osb
-/- compared to WT: 

↑ expression and circulating OC & ucOC 
↑ Ppargc1a, Nrfl and Mcad gene expression in 
muscle. 
↑ Foxa2, ↓ G6Pase and Pck1 gene expression 
and ↓ fat content in liver 
↑ expression & circulating levels of 
adiponectin.  
↑ acyl-COA oxidase, Ppara and Ucp2 in 
muscle. 
↔ resistin or leptin 
 

Smajilovic, 
2013 (481) 

GPRC6A KO mice GPRC6A KO compared to WT: 
↔ basal BGL, INS 
↔ glucose and insulin tolerance 
↔ body fat % 

None 



 57 

 Author, 
year  

Experimental 
Overview  Effect on metabolic function Potential mechanisms 

↔ l-arginine induced insulin secretion 

Yoshizawa, 
2009 (482) 

 

Atf4-/- mice 
ATF4Osb

-/- 

ATF4Osb 

overexpression 

ATF4-/- mice compared to WT: 
↑ β cell area and proliferation 
↑ glucose tolerance 
↑ insulin tolerance 
↓ fat pads and blood glucose 
↑ INS and INS secretion 
↓ gluconeogenesis 
↑ glycolysis 
 
Osteoblast specific ATF4Osb

-/- similar 
metabolic abnormalities as ATF4-/- 

 

Osteoblast ATF4 overexpression opposite 
metabolic response to ATF4Osb

-/- 

ATF4-/- mice (including ATF4Osb
-/-) 

compared to WT: 
↑ circulating ucOC (ATF4Osb

-/-)  
↓ expression Pck1, G6pase and Pdk4 in liver 
↑ Gck and Foxa2 in liver 
↑ pAkt and GSK-3β in liver 
↑ basal Mcad and pAkt in muscle 
↑ Pparg in fat. 
 
Osteoblast ATF4 overexpression compared 
to WT: 
Opposite metabolic abnormalities to ATF4-/- 

↓ circulating ucOC 

 

Zhang, 2020 
(483) 

KKAy mice 
 

ucOC treatment (3, 
30 ng/g per day, ig, 

orally, 4 w) 

↓ fasted and non-fasted blood glucose 
↑ glucose tolerance 
↓ fasting plasma insulin 
↓ HOMA-IR 
↓ hepatocyte lipidosis 
↓ dyslipidemia 

ucOC treated KKAy mice:  
↑ ucOC  
↑ Insulin stimulated pIRβ, pAKt, pFoxo1 and 
pGSK3β in liver. 
↑ protein content of CD36 in liver 
↓ protein content of SREBP1c, ACC and FAS 
in liver  
↓ expression and content of MCAT in liver 

ucOC/drug 
administrati

on in vivo 

Brennan-
Speranza, 
2012 (468) 

Col2.3-11bHSD2 Tg 
mice 

(Overexpress 
11bHSD2 in 

all mice treated with CS 
↓ BW 
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 Author, 
year  

Experimental 
Overview  Effect on metabolic function Potential mechanisms 

osteoblasts resulting 
in no/reduced 
corticosterone 

activity in cells) 
 

CS treatment (1.5 mg 
CS (slow-release 
pellet, p/week), or 

placebo, for 28 days 

WT mice treated with CS vs WT placebo 
↑ BW in treated WT 
↑ body fat mass  
↑ TGLs ; ↑ Chol 
IR; glucose intolerant  
↓↓ tOC and ucOC  
 
Tg mice treated with CS vs TG placebo:  
No diff in BW or fat mass 
No diff in TGL; ↑ Chol 
Glucose tolerant 
↓ tOC (> CS-treated WT mice)  
↔ ucOC 
 

 
 
GC supresses OC expression in osteoblasts: 
Attenuated reduction in OC levels in TG mic 
correlate with protection again CS-induced 
metabolic dysfunction. 
 
Muscle & liver: no diff in Gilz and Fkbp5 by 
GC treatment in WT and Tg mice 
 
 
 

Dou, 2014 
(484) 

ApoE-/- mice 
 

HFD 
 

OC treatment (daily, 
30 ng/g 12 w) 

OC treated chow mice: 
↓ fasting blood glucose 
↓ TC and LDL-C 
↔ glucose tolerance 
↔ insulin tolerance 
↔ mean, systolic and diastolic BP 
↔ ACh-stimulated EDR 
 
OC treated HFD mice: 
↓ fasting blood glucose 
↓ body weight 
↓ TC, TG and LDL-C 

OC treated chow mice: 
↔ TNF-α, IL-1 α, IL-12 p70 and IL-12 p40 
↑ pPI3K, Akt and eNOS  
 
OC treated HFD mice: 
↓ TNF-α, IL-1 α, IL-12 p70 and IL-12 p40 
↑ pPI3K, pAkt and peNOS  
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↑ glucose tolerance 
↑ insulin tolerance 
↔ SBP 
↓ mean and diastolic BP 
↑ ACh-stimulated EDR 

Guedes, 
2018 (485) 

Obese mice 
 

ucOC treatment 
(mini pump, 3 ng/h, 

4w) 
 
 
 
 

ucOC treated obese mice: 
↑ insulin sensitivity 
↓ white adipose tissue 
↔ body weight 
↔ plasma insulin 
↔ plasma glucose 

ucOC treated obese mice: 
↑ plasma ucOC 
 
↔ GLUT4 protein and Slc2a4 gene expression 
in skeletal muscle 
 
↑ GLUT4 protein, Slc2a4 gene expression, and 
pAkt in white adipose tissue 
↔ Adipoq gene expression in white adipose 
tissue 
↓ Tnf, Il-1b, Il-6, Ccl2, Casp1, and Nlrp3 gene 
expression in white adipose tissue 
 
↓ Opg and Ptprv gene expression in bone 
tissue 
↔ GLUT4 protein and Slc2a4 gene expression 
in bone tissue 
↑ pAkt in bone tissue 

Gupte, 2014 
(476) 

Ldlr−/− mice 
 

WHFD 
 

ucOC treated chow mice: 
↔ insulin tolerance 
↔ body weight 
↔ body fat 

ucOC treated chow mice: 
↔ insulin stimulated pAkt in muscle 
↔ plasma AST 
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ucOC treatment 
(mini pump, 4.5 

ng/h, 12 w) 

↓ liver fat content 
↔ liver histology 
↔ triglycerides 
↔ cholesterol 
↔ phospholipids 
 
ucOC treated WHFD mice: 
↑ insulin tolerance 
↔ body weight 
↔ body fat 
↓ liver fat content 
↔ triglycerides 
↔ cholesterol 
↔ phospholipids 
↓ pathological changes of NASH 

ucOC treated WHFD mice: 
↑ insulin stimulated pAkt in muscle 
↔ insulin stimulated pAkt in liver 
↓ plasma AST 
↓ Cd68, F4/80 and Cd74 gene expression 
↔ MCP1, TNF, Nlrp3, Ciita and adiponectin 
gene expression in white adipose tissue  
↓ Cd68, Spp1, and Il1b Col1a2 and Col4a1 in 
liver. 
 

Huang, 2017 
(486) 

STZ-induced 
diabetes 

 
HFD 

 
OC treatment 

(injection, 30 ng/g, 
12 w) 

OC treated control rats: 
↓ fasting blood glucose 
↑ fasting insulin 
↔ glucose tolerance 
↑ IPGTT serum insulin 
↓ serum TC and LDL-C 
↔ serum TG and HDL-C 
↓ body weight and abdominal fat mass 
↔ SBP, DBP, PP, MAP, HR, and PWV 
 
OC treated rats with diabetes: 

None investigated 
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↓ fasting blood glucose  
↑ fasting insulin 
↑ glucose tolerance 
↑ IPGTT serum insulin 
↓ serum TC, TG, and LDL-C 
↔ serum HDL-C 
↑ body weight 
↓ abdominal fat mass 
↔ SBP, DBP, PP, MAP and HR 
↓ PWV 

Pandey. 
2020 (487) 

Pregnant & lactating 
Wistar rats 

 
HFD 

 
ALN treatment (100 
or 200 µg/kg BW, 2 

x p/wk, 6w) 
 

Warfarin treatment 
(injections 

0.25 mg/kg BW 
daily, 3d) 

ALN treated rats 
↓ insulin tolerance 
 
Warfarin treated rats 
↑ insulin tolerance 
 

ALN treated rats 
↓ serum ucOC  
↓ Glut4 content in muscle 
 
Warfarin treated rats 
↑ serum ucOC  
↑ Glut4 content in muscle 
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Parker, 
2018 (488) 

Healthy men 
 

Acute exercise 
 

Insulin stimulation 
 

Acute glucocorticoid 
treatment (GC) (20 
mg prednisolone) 

GC treatment:  
↑ FGL and INS 
↑ HOMA-IR 
↓ post-exercise insulin sensitivity 
 

GC treatment: 
↓ serum ucOC 
↓ GPRC6A content in muscle 
↑ basal pAkt, pAS160, pIRS1 
↓ insulin stimulated pmTOR, pAkt, pAS160, 
pIRS1 
↓ basal and post-ex serum IL-6 

Sabek, 2015 
(489) 

 

Nonobese diabetic-
severe combined 

immunodeficiency 
(NOD-scid) mouse 
model for in vivo 
function testing of 

grafted human islets 
 

D-OC treatment 
(Mini pump, 4.5-

ng/h, 30 days) 

OC treated mice: 
↑ human INS and C-peptide secretion 
 

OC treated mice: 
↑ β-cell proliferation (insulin/glucagon and 
Ki67 staining) 
 
 

Smajilovic, 
2013 (481) 

GPRC6A KO mice 
 

Intravenous injection 
L-arginine 

Insulin response to L-arginine  
↔ Insulin secretion between KO and WT in 
fasting mice of mice fed libitum 
Insulin release max at 1min post, returned 
to basal at 5min in KO and WT 
 
Insulin release after oral L-arginine or 
D-glucose 

None measured 
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↑ insulin concentration (↔ KO vs WT) 

Zhou, 2013 
(477) 

C57BL/6J mice 
 

HFD 
 

ucOC treatment 
(mini pump, 3 ng/h 

implant, 28 d) 
 

ucOC treated ND mice. 
↔ BW 
↓ fat pad 
↑ insulin 
↑ insulin tolerance 
↑ glucose tolerance 
↓ serum TGL and FFA 
↑ energy expenditure 
 
ucOC treated HFD mice. 
↓ BW and fat pad 
↓ insulin 
↑ insulin tolerance 
↑ glucose tolerance 
↓ serum TGL and FFA 
↑ energy expenditure 

ucOC treated ND mice. 
↑ circulating OC 
↑ Foxa2 in liver 
↓ Pepck in liver 
↑ Pgc1α and Ucp1 in adipose tissue 
↑ Nrf1 and Mcad in skeletal muscle 
↔ mitochondria number, area and size in liver, 
adipose and skeletal muscle 
↔ liver weight 
↔ Tnfα expression  
↔ pERK, peIF2α, p-IRE-1α and ATF6β/c-Jun 
in adipose tissue, liver and skeletal muscle. 
 
ucOC treated HFD mice. 
↑ circulating OC 
↑ Foxa2 in liver 
↓ Pepck in liver 
↑ Pgc1α and Ucp1 in adipose tissue 
↑ Nrf1 and Mcad in skeletal muscle 
↑ mitochondria number, area and size in liver, 
adipose and skeletal muscle 
↓ liver weight 
↓ Tnfα expression 
↓ pERK, peIF2α, p-IRE-1α and ATF6β/c-Jun 
in adipose tissue, liver and skeletal muscle. 
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Zhou, 2016 
(475) 

C57BL/6J mice 
 

HFD 
 

ucOC treatment (30 
ng g–1 BW, 8w) 

 

OC treated ND mice. 
↓ body weight 
↓ fat-pad weight 
↓ serum TGL 
↓ FFA 
↓ blood glucose 
↓ blood insulin 
↑ glucose tolerance 
↑ insulin tolerance 
↑ energy expenditure 
 
OC treated HFD mice. 
↓ body weight 
↓ fat-pad weight 
↓ serum TGL 
↓ FFA 
↓ blood glucose 
↑ blood insulin 
↑ glucose tolerance 
↑ insulin tolerance 
↑ energy expenditure 
 

OC treated ND mice. 
↑ serum OC 
↑ Pgc1α and Ucp1 in adipose tissue 
↑ Pgc1α and Mcad in skeletal muscle 
↔ mitochondria number and area in adipose 
tissue and skeletal muscle 
↔ Atg7, p62 and LC3-II in adipose tissue and 
skeletal muscle 
↔ autophagysomes number in adipose tissue 
and skeletal muscle 
 
OC treated HFD mice. 
↑ serum OC 
↑ Pgc1α and Ucp1 in adipose tissue 
↑ Pgc1α and Mcad in skeletal muscle 
↑ mitochondria number and area in adipose 
tissue and skeletal muscle 
↓ Atg7 and LC3-II in adipose tissue and 
skeletal muscle 
↑ p62 in adipose tissue 
↓ autophagysomes number in adipose tissue 
and skeletal muscle 

ucOC 
treatment in 

ex vivo 
muscles 

Levinger, 
2016 (490) 

Eight-week-old male 
C57BL/6J mice 

 

Contraction alone 
↔ muscle GU vs rest 
 
Insulin- in paired resting EDL muscles 

Protein expression in mouse muscle sections 
GPRC6A expression  
 
Insulin- in paired resting EDL muscles 
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ucOC treatment in 
EDL muscle (10 

ng/ml, in the 
presence or absence 

INS, 60 μU/ml) 
 

↑ muscle GU 
 
Insulin post contraction 
↑ muscle GU vs contraction alone 
 
Contraction + ucOC treatment+ insulin 
↑ muscle GU vs contraction+insulin 
 
ucOC treatment alone 
↔ muscle GU from baseline 
↔ resting insulin sensivity 
 
ucOC post-ex vivo contraction (no 
insulin) 
↔muscle GU vs contraction alone 

↑ p-Akt, p-akt/tAkt, p-AS160 vs controls 
↔ tAkt, AS160 
 
Insulin post contraction 
↑ p-Akt, p-akt/tAkt, p-AS160, p-AS160/AS160 
vs contraction alone 
 
Contraction + ucOC treatment + INS  
↑ P-AS160, Akt vs contraction + insulin 
 
ucOC post-ex vivo contraction (no insulin) 
↔ p-Akt, p-AS160 vs contraction alone 
 
 

Lin, 2017 
(471) 

Eight-week-old male 
C57BL/6J mice 

 
ucOC treatment in 
mouse EDL and 

soleus muscle splits 
(0, 0.3, 3, 10, 30 

ng/mL 1.5 h) 
 
 
 
 

ucOC treatment in EDL muscle splits 
↑  basal GU (10 and 30 ng/mL) 
 
ucOC treatment in soleus muscle splits  
↑ basal GU (0.3 and 30 ng/mL) 

ucOC treatment in EDL muscle splits 
ucOC at 30ng/mL: 
↑ pMTOR , p-mTOR/tmTOR ratio, tAS160, p-
ERK2 
 
ucOC 3ng/mL:  
↑ p-AS160, p-AS160/tAS160 ratio 
 
ucOC 3 and 30 ng/mL:  
↔ AMPKα 
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ucOC treatment in soleus muscle splits  
ucOC 3ng/mL: 
↑ p-AS160, p-AS160/tAS160 ratio 
 
ucOC 3 and 30 ng/mL:  
↑ p-ERK2 
↔ AMPKα 
 
ucOC 30ng/mL:  
↑ tAMPKα 

Lin, 2018 
(472) 

eight-week-old male 
C57BL/6J mice 

 
ucOC treatment in 

EDL and soleus 
muscle splits (0, 0.3, 
3, 10, 30 ng/mL 1 h) 

 
 

ucOC treatment in EDL muscle splits 
↔ IS GU 
 
 
 
ucOC treatment in soleus muscle splits 
↑ in basal 
↑ IS GU 

ucOC treatment in EDL muscle splits 
ucOC 30ng/mL: 
↔p-Akt, p-AS160. 
↑ tGlut4 
 
ucOC treatment in soleus muscle splits 
ucOC 30ng/mL 
↑ p-AS160 
↔ Glut4 

Lin, 2019 
(473) 

Eight‐week‐old male 
C57BL/6 J mice 

 
implanted CS slow‐

release pellets 3 days 
 

CS-treated mice vs placebo mice 
↓ OC 
↓ ucOC 
↑ INS 
↑ fasting BGL 
↑ BGL during ITT (60, 90 min) 
 

Placebo EDL muscle 
INS alone: 
↑ p-mTOR/tMTOR ratio, p-Akt, p-Akt/tAkt 
ratio 
 
ucOC treatment: 
↑ p-mTOR, p-AS160 
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ucOC treatment (30 
ng/mL 1 h) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

INS treatment EDL muscle 
↑ GU in placebo mice 
↔ GU CS-treated mice 
 
ucOC treatment  
↑ GU EDL and soleus in placebo mice 
↔ GU EDL and soleus in CS-treated mice 
↑ IS GU EDL CS-treated mice 
↔ IS GU soleus CS-treated mice 
↔ IS GU EDL or soleus placebo mice 
 
 
  

 
ucOC+INS vs INS alone 
↑ GPRC6A, p-PKCζ/λ 
 
CS-treated EDL muscle 
INS alone: 
↑ p-Akt, p-Akt/tAkt ratio 
 
ucOC+INS vs INS alone 
↑ p-mTOR, p-Akt, p-AS160/tAS160 ratio, p-
ERK2, p-ERK2/tERK ratio 
↓ AS160  
↔tmTOR, p-mTOR/tmTOR ratio, pAS160, 
tERK2, p-AMPKa, tAMPKa, p-
AMPKa/tAMPKa ratio, p-PKC 
 
Placebo soleus muscle 
INS alone: 
↑ p-Akt, p-Akt/tAkt ratio 
 
ucOC treatment: 
↑ p-mTOR, p-mTOR/tMTOR ratio, p-AS160, 
p-PKC 
 
ucOC+INS vs INS alone 
↑ p-mTOR, p-AS160  
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CS-treated soleus muscle 
INS alone: 
↑ p-Akt, p-Akt/tAkt ratio, p-AMPKa, p-
AMPKα/tAMPKα. 
 
ucOC+INS vs INS alone 
↑ p-mTOR, p-mTOR/tmTOR ratio, p-AS160, 
p-AS160/tAS160 ratio, p-PKC 
↔tmTOR, tAS160, pAS160/tAS160 ratio, 
tGPRC6A, p-ERK2, tERK2, p-ERK2/tERK2 
ratio, p-PKC 

ucOC 
treatment in 

vitro cell 
culture 

Guedes, 
2018 (485) 

Mouse 3T3-L1 
adipocytes 

 
ucOC treatment 

(20 ng/mL, 24 h; pre-
treatment: 20 ng/mL 

6 h, followed by 
20 ng/mL TNF for 

18 h) 
 
 
 

None measured 24h ucOC treatment  
↑ expression of Slc2a4 and GLUT4 
↑ Adipoq expression 
↑ AKT phosphorylation after INS 
 
ucOC pre-treatment  
↓ the NFKB subunit p65 activation in TNF-a 
induced cells 
↓ Tnf, Ccl2, Nfkb1 
↔ Adipoq 
ucOC restored Slc2a4/GLUT4 content and ↓ 
expression of inflammatory genes after TNF-a 
challenge 

Guo, 2017 
(491) 

HUVECs 
 

HUVECs treated with Tunicamycin 
Tun-treated cells 
↓ GU 

HUVECs treated with Tunicamycin  
Tun-treated cells 
↑ protein expression ATF4 and CHOP 

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/tumor-necrosis-factor
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ucOC treatment (5 
ng/mL for 4 h), 

 
tunicamycin 

treatment (5 µg/mL 
for 4 h) 

 
insulin stimulation 
(10 nM for 10 min) 

 
wortmannin 

treatment 
 

Akti-1/2 treatment 
(10 µM for 4 h) 

 
Palmitate treatment 

(500 uM) 

 
ucOC treatment in tun-treated cells 
↑ GU 
 

↓ p-ERK, p-eLF2α 
↓ IS p-IRS-1 tyrosine and p-Akt 
 
ucOC treatment in tun cells vs tun-treated 
cells.  
ucOC alleviated Tun-induced ER stress & 
improved INS signalling 
↓ protein expression ATF4 and CHOP 
↓ p-ERK, p-eLF2α 
↑ p-AKT, IRS-1 
↑ P13k activity in presence of IR 
 
HUVECs treated with palmitate 
Palm-treated cells- induced IR, ER stress and 
impaired INS signalling, ucOC reversed these 
effects 
ucOC treatment in palm cells vs untreated 
palm cells 
↓ p-ERK, p-eLF2α, ATF4 and CHOP 
↓ pY20 and p-Akt 

Hill, 2014 
(492) 

L6 rat myotubes and 
adipocytes, ten week 
old male C57BL/6 J 
mice and 150–180 g 

male Wistar rats 
 

OC treatment 
(Adipocytes: 1 

Rat adipocytes treated with cOC  
↑ basal GU in cOC treated (dose-
dependent) 
↑ IS GU in cOC treated (dose-dependent) 
↑ insulin sensitivity in cOC treated 
 

Rat adipocytes treated with cOC and ucOC   
↓ TNFα secretion in cOC and ucOC treated 
cOC treatment  ↓ IL-6 secretion, ↔ with 
ucOC. 
↔ MCP-1 with cOC or ucOC 
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ng/mL cOC and 
ucOC, 1 h; L6 

myotubes: 20ng/mL 
cOC) 

 
Insulin stimulation 

Rat adipocytes treated with cOC vs 
controls 
↑ basal glucose oxidation 
↔ IS glucose oxidation 
↔ basal of IS lipogenesis, lipolysis or 
antilipolysis 
 
Mouse adipocytes treated with cOC and 
ucOC 
↑ basal GU both cOC and ucOC 
↑ IS GU both cOC and ucOC 
ucOC greater than cOC at ↑ basal GU and ↑ 
insulin sensitivity 
 
L6 myocytes treated with cOC vs 
controls 
↑ basal GU and IS GU 
 
Rat adipocytes and whole adipose tissue 
treated with cOC and ucOC 
↑ Adiponectin secretion 

Whole adipose tissue treated with cOC and 
ucOC 
↔TNFα, IL-6, and MCP-1 
↑ secretion IL-10 
 
 

Idelevich, 
2011 (493) 

Cultured vascular 
smooth muscle 
(MOVAS) and 
chondrocytes 

(ATDC5) from 
murine aorta, cells 

induced with 
calcification and 

MOVAS and ATDC5 cells 
Express BGP 
 
BGP-overexpressed ATDC5 and 
MOVAS cells vs controls 
↑ BGP mRNA and protein 

BGP-overexpressed ATDC5 and MOVAS 
cells vs controls 
↑ Sox9, Runx2 and collaged type X 
↑ collagen type II in ATDC5 cells 
↓ collagen type II in MOVAS cells 
↑ mRNA levels of Glut1 in ATDCF cells 
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overexpressed with 
OC. 

 
Treated with purified 

bone Gla protein 
(BGP) 24 h post 
transfection (100 
nmol/L diluted in 
normal ATDC5 or 
MOVAS medium, 
for 0, 5, 10, 15, 30, 

and 60 m) 

↑ differentiation and mineralisation (↑ 
mineral deposits, proteoglycans, ALP) 
↑ metabolic cleavage of XTT 
↑ densities 
↑ GU  
 

↑ mRNA levels of Glut4 in MOVAS cells 
↑ glycolysis enzymes- expression PFK1 and 
PDK1 in both cells 
↓ glucogenesis enzymes- mRNA expression 
phosphoenolpyruvate caboxykinase and 
glucose-6-phosphatase 
 
WT ATDC5 and MOVAS cells treated with 
BGP 
Exogenous BGP activated insulin signalling 
pathway 
↑ p-IRS1, and p-Akt 
 
Silencing HIF-1α using siRNA with BGP 
BGP treatment: ↑ HIF-1α, silencing HIF-1α 
counteracted this in ATDC% and MOVAS 
cells 
 
Treatment of siRNA with BGP 
In ATDC5 cells, time-course dependent 
upregulation of mRNA  PFK, PDK1, GLUT1, 
IRS-1, silencing HIF-1α prevented this 
response  
In MOVAS cells, same response as ATDC5 
cells, except silencing HIF-1α supressed 
GLUT4, not GLUT1.  

Jung, 2013 
(494) 

human aortic 
endothelial cells 

 

Pre-treatment ucOC (30ng/mL) in 
HAECS 
↓ LA induced apoptosis in IS-HAECS 

Treatment of ucOC in HAECS vs controls 
↑ p-Akt, 0.5 to 4hrs 
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ucOC treatment 
(0.3–30 ng/mL) 

 
linoleic acid (100 
µmol/L for 16 h) 

 
wortmannin (100 

nmol/L for 15 min) 

↑ p-Akt post ucOC treatment ≥3 - 30ng/mL 
↔ tAKT 
 
HAECs treated with wortmannin prevented 
ucOC induced phosphorylated of Akt.  
 
Pre-treatment of ucOC+INS before LA in 
HAECS 
INS: ↑ p-Akt, whereas LA ↓ this IS ↑ p-Akt 
ucOC+INS restored p-Akt vs controls (pre-
treatment wortmannin- blocked this effect) 
 
treated HAECs with ucOC (0.3 to 30ng/mL) 
↑ p-eNOS, addition of wortmannin prevented 
this ucOC-induced phosphorylation of eNOS 
↑ NO levels vs controls 
 
Pre-treatment of ucOC on IS-HAECs 
LA-induced ↑ in apoptosis in IS-HAECs was 
significantly inhibited by ucOC pre-treatment. 
Pre-treatment with wortmannin abolished this 
anti-apoptotic effect of ucOC. 

Levinger, 
2016 (490) 

C2C12 mouse 
myotubes 

 
ucOC treatment (0.3, 
3, 10 and 30 ng/ml, 

1h) 

C2C12 myotubes treated with ucOC 
↑ IS GU – dose-dependent 10 - 30 ng/mL 
 

Differentiated C2C12 myotubes 
Expression GPRC6A detected 
↓ GPRC6A expression in siRNA(siGPRC6A) 
vs non-transfected, controls 
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insulin stimulation 

Liu, 2017 
(43) 

C2C12 myoblasts 
 

ucOC treatment 
(doses 0-50ng/ mL). 

 
phosphatidylinositol3

-kinase (PI3K) 
inhibitor 

 
wortmannin 

 
transfection 

GPRC6A siRNA 

None measured ucOC treatment in C2C12 proliferation 
↑ cell proliferation/number (dose dependent)  
↑ p-Akt and p-P38 MAPK (10ng/mL, 24 h) 
myoblasts express GPRC6A protein and 
mRNA 
 
C2C12 cells pre-treatment with wortmannin 
Akt phosphorylation attenuated 
↓ cell proliferation 
 
Inhibition of P38 MAPK (SB203580)  
Inhibited effect of ucOC of cell proliferation 
↔ Akt 
Wortmannin pre-treatment ↓ P38 MAPK 
↔ p-ERK with ucOC treatment between 
groups 
 
C2C12 cell differentiation through p-ERK 1/2 
(10ng/mL) 
 
GPRC6A siRNA knockdown 
activation of Akt, P38 MAPK, ERK 1/2 
inhibited 
↓ C2C12 cell proliferation 
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ucOC treatment in C2C12 differentiation vs 
control 
↑ myotubes size (larger)  
↑ nuclei per myotubes  
↑ expression muscle-specific protein MyHC 
(0.1 to 50 ng/mL) 
 
ucOC treatment 10ng/mL in cell myogenesis 
↔ P13K/Akt and P38 MAPK pathways 
↑ p-ERK1/2 
↔ t-ERK 
 
Inhibition of ERK 1/2 (U0126) in C2C12 
cells prior to ucOC treatment 
↓ p-ERK ½ and expression MyHC 
↔ GPRC6A 

Parry, 2020 
(474) 

C2C12 mouse 
myotubes 

 
ucOC treatment (1, 
10, 100 ng/mL, 72 

h). 

ucOC treated C2C12 myotubes  
↔ basal GU all doses 
supressed IS GU- 10ng/mL 
↔ glycolysis all doses 

ucOC treated C2C12 myotubes  
↔ p-IRS-1, p-Akt, and Glut4: 10 ng/mL for 72 
h in normal or IR cells induced by 
hyperinsulinemia 
 

 Sabek, 2015 
(489) 

 

human islets in 
culture 

 
OC (0.3-1.0 ng/mL) 
and D-OC treatment 

(1.0 to 15 ng/mL) 

D-OC treatment in human islets 7 & 14 d 
7d: 1.0, 4.5 and 15 ng/mL ↑ INS content of 
glucose-stimulated islets 
14 d: 4.5 ng/mL only ↑ INS content 
 

D-OC treatment in human islets 7 d 
SUR1 ↑ in islets cultured with 4.5 ng/mL 
1.0 ng/mL: ↑ %β cell content vs controls 
1.0 ng/mL: ↓ %α cell content vs controls 
↔ PP cells 
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OC treatment in human islets 0.3-1.0 
ng/mL 
↔ INS content vs controls 

Smajilovic, 
2013 (481) 

pancreatic islets were 
isolated from 

GPRC6A KO and 
WT mice 

 
incubated with 20 

mM L-arginine in the 
presence of 11 mM 

D-glucose 

↔  insulin release between isolated islets 
from KO or WT 
 
 
 

Expression of GPRC6A in islets if WT, absent 
in KO 

Tsuka, 2015 
(470) 

C2C12 mouse 
myotubes 

 
ucOC treatment 

GluOC at (5 ng/ml) 
with and without INS 

GluOC treatment on IS GU in C2C12 
myotubes 
INS: GU ↑ dose-dependent manner 
GluOC: enhanced IS GU 
 

C2C12 myotubes 
GPRC6A presence 
 
GluOC treatment in C2C12 myotubes 
↑ p-ERK dose dependant manner 0.1 to 30 
ng/mL 
H89 (PKA inhibitor) did not suppress GluOC-
induced ERK phosphorylation 
U0126 (MEK inhibitor) suppressed ERK 
phosphorylation below basal 
U73122 (phospholipase C inhibitor) ↔ ERK 
phosphorylation 
LY294002 (P13K inhibitor) ↔ ERK 
phosphorylation, but inhibited basal Akt 
phosphorylation 
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GluOC pre-treatment in C2C12 myotubes 
for 5ng/mL last 20 m or 72 hrs + IS  
20 m: ↑  p-Akt  and p-ERK (no IS) 
72 h:  + IS ↑  p-Akt , ↔ p-Tyr 
24 h: ↔ IS Akt, ↔ IRβ 
 
GluOC pre-treatment + U0126 72 h in 
C2C12 myotubes 
Inhibition of MEK abolished GluOC-mediated 
promotion of INS-induced Akt 
phosphorylation without affecting basal Akt 
phosphorylation 

Zhang, 2020 
(483) 

Mouse primary 
hepatocytes 

 
GluOC treatment (0, 
3, 30 ng/mL, 24 h) 

 
insulin stimulation 

GluOC treatment in hepatocytes 
concentration dependent inhibition of 
hepatic glucose production with and 
without insulin stimulation 
 

GluOC treatment on glycogen synthesis in 
hepatocytes 
↑ IS GSK3β phosphorylation 

Zhou, 2013 
(477) 

3T3-L1 adipocytes, 
Fao liver cells, and 

L6 muscle cells 
 

OC treatment (5 
ng/mL, 4 h) 

 
Insulin stimulation 

 

None measured Adipocytes treated with tunicamycin 
↑ p-ERK, elF2α and IRE-1α and expression 
ATF6β 
↓ IS IRS-1 and Akt 
 
OC treatment in adipocytes, liver and 
muscle cells treated with tunicamycin 
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Tunicamycin 
 

Inhibitors: 
wortmannin, Akti-

1/2, U0126, 
pyrrolidone 

dithiocarbamate (NF-
kB) 

 
NF-kB-p65 siRNA 

transfection 
 

XBP-1 siRNA 
transfection 

↓ Phosphorylation of p-ERK, p- elF2α and p-
IRE-1α and expression ATF6β compared to 
tunicamycin alone 
↑ IRS-1 and Akt 
 
Cells treated with insulin, tunicamycin and 
OC with and without inhibitors 
↑ P13K activity and NF-k β-p65-DNA activity 
(liver cells under ER stress) 
Addition of wortmannin or akti-1/2 reversed 
OC effects on NF-k β-p65-DNA activity 
Addition of U0126 ↔ 
 
Blocking NF-kB (pyrrolidone 
dithiocarbamate)  and NF-kB -p65 siRNA 
↔ OC protective effect on ER stress and 
impaired INS signalling induced by 
tunicamycin 
XBP-1 siRNA transfection in cells 
tunicamycin 
ER stress induced, insulin signalling impaired 
Addition of OC treatment suppressed 
phosphorylation of p-ERK and increased IRS-
1 

Zhou, 2016 
(475) 

Mouse adipocyte 
3T3-L1 cells and 

mouse C2C12 
 

None measured Adipocytes and myocytes treated with 
tunicamycin 
↑ ER stress 
↑ p-ERK and elF2α 
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 Author, 
year  

Experimental 
Overview  Effect on metabolic function Potential mechanisms 

Pre-treatment 
tunicamycin (5 μg 

ml, 4 h) then 
5 ng ml OC for 4 h 

 
Palmitate treatment 

 
XBP-1 siRNA 

 
Autophagy inhibitor 
(3-methyladenine or 

Atg7 siRNA) 
 

Inhibitors: Akti 1/2, 
rapamycin, U0126, 

pyrrolidone 
dithiocarbamate (NF-

kB) 
 

↓ IS tyrosine phosphorylation IRS-1 and Akt 
↑ autophagy (↑ Atg7 and LC3-II, ↓ p62) 
 
Adipocytes and myocytes treated with 
tunicamycin and OC 
↓ p-ERK and eIF2α phosphorylation 
reversed autophagy (Atg7, p62 and LC3-II) 
↑ IS tyrosine phosphorylation IRS-1 and Akt  
Restored phosphorylation of Akt and mTOR 
and maintained sensitivity of Akt to insulin 
 
Adipocyte and myocyte treatment with 
palmitate 
OC treatment alleviated autophagy, ER stress, 
and insulin signalling 
 
Transfection with XBP-1 siRNA and OC 
treatment XBP -/- cells adipocytes and 
myocytes 
↓ expression levels of tunicamycin induced 
Atg7 and LC3-II protein and P-ERK 
phosphorylation, and ↑ expression p62 and 
IRS-1 phosphorylation 
 
Transfection 3-methyladenine and Atg7 
with OC treatment adipocytes ad myocytes 
↓ 3-methyladenine- and atg7-induced p-ERK 
phosphorylation and ↑ IRS-1 
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 Author, 
year  

Experimental 
Overview  Effect on metabolic function Potential mechanisms 

 
Insulin ,tunicamycin and OC treated 
adipocytes and myocytes with inhibitors 
Akti 1/2 and rapamycin: nullified protective 
effect of OC 
U0126: did not reverse effects of OC on 
autophagy or ER 
pyrrolidone dithiocarbamate: reversed 
protective effects of OC on autophagy, ER 
stress and insulin signalling 

 

Key: IS insulin stimulation; INS insulin; GLU glucose; OC osteocalcin; ucOC undercarboxylated osteocalcin; BGP bone gla protein; IR 
insulin resistance; MetS metabolic syndrome; WAT white adipose tissue; GLUT glucose transporter; BGL blood glucose; FGL fasting blood 
glucose; GPRC6A, G protein-coupled receptor class C group 6 member A 
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Current studies have also explored the molecular mechanisms by which ucOC 

directly enhances muscle glucose metabolism (Figure 2.16). Some suggest that, in 

cultured myotubes, ucOC treatment is capable of directly activating insulin-signalling 

proteins including the insulin receptor (IR), insulin receptor substrate 1 (IRS-1), Protein 

kinase B (Akt), Akt substrate of 160 kDa (AS160) and glycogen synthase kinase 3 

(GSK3), with or without the presence of insulin (469-471, 495, 496). It appears that ucOC 

can induce activation of AS160 without increasing Akt phosphorylation, indicating that 

ucOC could also increase muscle glucose uptake in a Akt-independent manner (469, 471, 

472). Although the receptors of ucOC in muscle cells are still unclear, GPRC6A has been 

suggested to be one of the most promising candidates (495). The knockdown of GPRC6A 

via RNA silencing in cultured muscle cells was found to abrogate the direct effect of 

ucOC on glucose uptake without insulin stimulation (496). Some downstream targets of 

ucOC/GPRC6A cascade, including ERK, AMPK, CREB and PKC, have also been 

suggested to be the mediators between ucOC stimulation and the activation of the insulin 

signalling pathway (471, 473, 495). However, it is likely that many unknown targets of 

ucOC remain to be discovered. Therefore, to delineate the underlying mechanisms, future 

studies with quantitative proteomics and phosphoproteomics are warranted.  

Other groups have provided evidence that ucOC improves human β-cell function 

(489). Mouse kidneys transplanted with human islets and treated in vivo with a vehicle 

control (PBS) or decarboxylated-OC (D-OC, 4.5 ng/h for 30 days post-transplant) 

augmented production of human insulin and C-peptide (489). In addition, D-OC 

treatment in vitro of human islet in culture at dose ranges of 1 to 15 ng/mL augmented 

insulin content and enhanced human B-cell proliferation (489). Additionally, the effects 

of ucOC treatment on metabolic function has been shown in various organs including in 

vivo models of mouse liver (476, 479), adipose tissue (475, 476, 485) as well as in vitro 

in cells including mouse and rat adipocytes (475, 477, 485, 492), hepatocytes (483), 

human umbilical vein endothelial cells  (491), chondrocytes (ATDC5) and vascular 

smooth muscle cells (MOVAS) (493) and human islets (489) (Table 2.4).  

To summarise, considerable evidence exists to support the notion that exogenous 

ucOC has an effect on muscle glucose metabolism. However, not all studies have 

consistently reported beneficial effects of OC treatment on energy homeostasis. It is 

possible that the discrepancies are due to a number of confounding factors that may 

influence data collection and interpretation, as discussed below. 
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Figure 2.16 Suggested signalling pathways underlying the effects of ucOC on muscle energy metabolism ucOC regulates muscle energy 
metabolism via signalling pathways involving GPRC6A as the receptor. The ucOC-induced enhancement of glucose uptake (both non-
insulin-stimulated and insulin-stimulated), glycolysis, and insulin-stimulated glycogenesis is mediated via a sophisticated signalling 
network including GPRC6A, ERK, Akt, AMPK, AS160, GSK-3, the cAMPK/CREB axis, and Glut4. The activity of other downstream 
targets of Akt such as mTORC1 and NF-κB are also enhanced, attenuating ER stress and autophagy accompanied with insulin resistance. 
The utilization of other intracellular carbohydrate sources, such as glycogen, is elevated via the ucOC/GPRC6A cascade. Furthermore, 
ucOC increases FA uptake via enhancing the expression of FA transporters including CD36 and Fatty acid transport protein 1(FATP1), 
and also enhances lipolysis via enhancing the activity of HSL. In addition, ucOC favors mitochondrial biogenesis and mitochondrial 
functions in terms of TCA cycle and FA oxidation, via the upregulation of PGC1-α and the AMPK/ACC axis. Lastly, the ucOC/GPRC6A 
cascade self-amplifies the signalling strength by increasing the expression of GPRC6A. Overall, ucOC-induced enhancement of transport 
and utilization of nutrients contributes to the production of ATP. During exercise, ucOC levels are considerably increased via the ucOC-
IL-6 reciprocal regulation, leading to increased ATP production to fulfil the energy demands of muscle cells. In animals with ucOC 
administration, ucOC is enhanced, leading to higher levels of energy metabolism and ATP production. On the contrary, in glucocorticoid-
treated, HFD-fed and old animals of which ucOC is reduced, energy metabolism and ATP generation are impaired. 

Green boxes represent downstream proteins of the ucOC/GPRC6A cascade. Boxes with both blue and green colours represent 
proteins that are regulated by both proximal insulin signalling cascade and ucOC/GPRC6A cascade. 

 : well-studied activation or enhancement; 
 : recently suggested activation or enhancement; 
 : recently suggested inhibition; 
 : translocation 

https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-25890-0_7/MediaObjects/460601_1_En_7_Figd_HTML.gif
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-25890-0_7/MediaObjects/460601_1_En_7_Fige_HTML.gif
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-25890-0_7/MediaObjects/460601_1_En_7_Figf_HTML.gif
https://static-content.springer.com/image/chp%3A10.1007%2F978-3-030-25890-0_7/MediaObjects/460601_1_En_7_Figg_HTML.gif
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2.2.2.1.6 Confounding factors 

Differences in genetically modified animals with suppressed or overexpressed 

circulatory ucOC may contribute to the disparate findings in the literature (Table 2.4). It 

is possible that compensatory mechanisms are activated or the methods used to generate 

the specific or modified animal may inadvertently lead to several off-target effects. For 

instance, several studies have suggested that the CRISPR/Cas9 system, which has been 

used in two studies to delete Oc gene in rats and mice (317, 324), can induce a substantial 

amount of off-target mutagenesis, generating undesired mutations at random sites and 

thus impacting precise gene modification (497, 498). Furthermore, the differences may 

also be attributed to the variances of mouse genetic background, as it has been shown that 

considerable strain-dependent differences in glucose metabolism exist in mouse strains 

frequently used for genetic manipulation (499). Whether such differences are the source 

of discrepancies between studies is not clear but it highlights that caution must be taken 

when comparing data from different studies.  

The discordance in current findings may also have resulted from several common 

confounding factors in experimental settings, such as the source of animals, 

administration techniques, the type and source of cell-lines, as well as treatment dose, 

duration and the muscle conditions (intact or split, resting or following contraction). One 

particular factor that needs emphasis is the source of recombinant ucOC used in these 

studies. Currently studies report the usage of several types of house-made or commercial 

ucOC peptides but the variance of biological activity and the magnitude of effect among 

these peptides is largely unknown.  

Another potential source of differences is the use of ucOC under normal 

conditions versus the use under pathological conditions. There is a substantial amount of 

evidence that ucOC is capable of improving insulin action in insulin resistant muscle, 

without altering basal glucose handling and signalling activity, in both in vivo and in vitro 

models (473, 475-477). Although current results are promising, the magnitude of the 

effect as well as the clinical relevance is still not clear.  

 

2.2.2.1.7 Conclusion 

In conclusion, there is corroborative evidence from different independent research 

groups to demonstrate that ucOC acts as a hormone and it has the capacity to increase 

muscle insulin sensitivity and glucose regulation in mice. As such, we oppose the 
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unequivocal conclusion of Manogalas’ perspective that “osteocalcin promotes bone 

mineralization but is not a hormone” (325). However, we agree that there are conflicting 

results and the effect of ucOC is varied and depends on many factors and conditions. To 

enable the field to move forward, greater transparency and sharing of knowledge and 

animal models are needed to identify the reasons for the different reports. 

 

 Interaction between osteocalcin and muscle function 

There is a substantial amount of evidence that ucOC has systemic effects outside 

of the bone in glucose regulation and in the last decade increasing evidence supports the 

potential role of ucOC in bone-muscle crosstalk (Figure 2.17).  

 

Fig 2.17 Suggested effects of ucOC on skeletal muscle in glucose regulation and muscle 
mass maintenance. Figure sourced from Lin et al. (500). 

There is some emerging evidence, mainly in rodents and pre-clinical in vitro 

studies, suggesting that ucOC may also be involved in the maintenance of muscle mass 

and function (Table 2.5) (12, 16, 27, 43) but this link has not been demonstrated in all 

studies (313). 
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Table 2.5 Animal and pre-clinical studies linking ucOC with muscle mass maintenance 
and strength 
 

Studies 
Author 
(year) 

Experimental design ucOC effect on muscle function 

Lin, (2016)  
(27) 

Fischer (F344) rats 
hindlimb immobilisation 

↑ ucOC related to ↑ 
muscle mass and strength (EDL 

and soleus) 

Liu, (2017) 
(43) 

C2C12 myoblasts  
in vitro ucOC treatment 

↑ proliferation and differentiation 

Mera, 
(2016b) (16) 

Oc−/− mice ↓  muscle volume and mass 
ucOC administration in vivo 

via osmotic pumps Improved muscle volume and mass 

Primary mice myotubes   
in vitro ucOC treatment 

↑ protein synthesis 

Moriishi, 
(2020), 
(313) 

Oc−/− mice ↔ muscle mass 

Shen, 
(2015) (12) 

Cx43osb/osc−/− mice ↓  muscle volume, mass, 
and strength 

Cx43osb/osc−/− mice- exogenous 
ucOC treatment via injection 

Normalized muscle volume, mass, 
and strength 

C2C12 myotubes in vitro  
ucOC treatment 

↑ myotube formation 

 

2.2.2.2.1 Direct evidence for relationship between ucOC and muscle function: 

animal and in vitro models 

At least one study reported that ucOC is necessary for physiological adaptions 

following exercise (322). The authors reported that exogenous ucOC treatment increases 

exercise capacity of older mice. The proposed mechanism was that OC signalling in 

myofibers favours exercise-induced secretion of IL-6, an important regulator of muscle 

adaption to exercise (322).  

In a follow-up study, the Karsenty group reported that mice lacking OC (Ocn -/-) 

were characterised by lower muscle mass and volume compared to their wild-type (WT) 

littermates but muscle strength was not different (16). In addition, mice lacking GPRC6A 

in myofibers (Gprc6a -/-), the putative receptor for OC, had lower muscle weight 
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compared to WT littermates, supporting the role of GPRC6A as the receptor in myofibers 

for OC and a role for OC muscle mass regulation. Furthermore, in vitro treatment with 

ucOC in myotubes was partly related to improved muscle mass regulation via the 

stimulation of an mTOR target related to muscle protein synthesis. Moreover, exogenous 

administration with ucOC increased muscle mass of older mice (16). Altogether, these 

data are supportive of a role for ucOC in muscle mass regulation, but provide no evidence 

for a more functional role in muscle strength. 

In addition, mice with Connexin43 deletion in osteoblasts (cKO) have lower 

circulating cOC and ucOC and lower muscle mass and grip strength compared to their 

WT littermates (12). Exogenous treatment of ucOC in these cKO mice increased muscle 

cross-sectional area (extensor digitorum longus) and grip strength (12). Rats with disuse 

atrophy induced by hind-limb immobilisation, had reduced serum ucOC and this was 

related to reduced muscle mass and strength in EDL and soleus muscles (27). In vitro 

studies also suggest that ucOC may be involved in promoting muscle growth. C2C12 

myotubes treated with ucOC in vitro increased myotube formation (12). Cultured C2C12 

myoblasts treated with ucOC increased myoblast proliferation via stimulation of the 

P13/Akt and p38 MAPK pathways and differentiation and in part via the GPRC6A 

signalling (43). These beneficial effects on myotube formation are important for muscle 

growth. Yet, more recently, OC-deficient mice (OC-/-) that were created with a different 

genetic background to the mice from the Karsenty group were shown to have normal 

muscle mass and glucose metabolism, leading this group to conclude that OC has no role 

in muscle regulation or mass (313). Discrepancies between studies utilising KO animals 

could be related to differences in the genetic backgrounds of the models used. Altogether, 

however, the majority of these animal studies and pre-clinical studies report some role of 

ucOC in muscle mass regulation and possibly strength. 

 

2.2.2.2.2 Observational evidence: human studies 

In humans, there is some observational evidence demonstrating that ucOC (33, 35, 

36), tOC (501-504) or the ucOC/tOC ratio (26, 34) are related to muscle health (Table 

2.6) but the data are contradictory. Some support the view that higher ucOC or a higher 

ucOC/tOC ratio is related to better muscle health (higher mass, strength) in 

postmenopausal women (26, 35) and osteoporotic postmenopausal women with previous 

fractures (33). Yet, even in the studies supporting this link the findings are unclear. For 
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instance, in older women, a higher ucOC/tOC ratio, but not the absolute value of ucOC 

or tOC, was related to higher muscle strength of quadriceps and hip flexors (measured 

via a handheld dynamometer) even following adjustment for age, BMI, vitamin D and 

PTH (26). Similarly in postmenopausal women, higher ucOC, but not tOC, was related 

to higher muscle mass (determined by bioelectrical impedance analysis) but only when 

adjusted for age and years since menopause (35). In a different study including 

postmenopausal osteoporotic women, a higher cOC, but not ucOC, was related to higher 

muscle mass (appendicular skeletal muscle mass divided by body mass index, ASM/BMI 

determined by DXA) (33). Furthermore, in that study a subgroup analysis including 

women with previous fractures, a higher cOC and ucOC was related to higher muscle 

mass and lower fall risk (33). Notably, the correlations performed in this study were not 

adjusted for confounding factors and this may limit the associations. Moreover, in adults 

with hypoparathyroidism treated with PTH, an increased ucOC/tOC ratio was associated 

with increased elbow extension force (unadjusted model) but no relationship was evident 

with 11 other muscle function variables (i.e. grip strength, timed up and go) (34). There 

was also no relationship with these variables and the absolute value of ucOC (34). 

Conversely, others reported that a higher ucOC was related to lower muscle mass in obese 

patients with chronic kidney disease (36). To our knowledge only one longitudinal study 

has been performed exploring this link between ucOC and muscle health. In that study, 

the authors reported that baseline ucOC and ucOC/tOC were not related to muscle mass 

at baseline or at 3-year follow up (37). There may be some explanations for such 

conflicting data. The women in one study had not fasted (26) and it is known that feeding 

can affect BTMs (31). Another study measured cOC and ucOC, but not tOC. Therefore, 

the authors were unable to express ucOC as a percentage of tOC, thereby limiting our 

understanding of these findings in general and the direct comparison of findings between 

these studies (33). The majority of studies are cross sectional in design, with findings 

being observational in nature. Therefore, there is no long term (greater than five years) 

longitudinal evidence to support previous study findings. 

Moreover, other studies have reported that higher tOC is related to muscle health 

(501-504), yet similar to ucOC these findings are also conflicting. One reported that a 

higher tOC is related to higher muscle mass in middle-aged and older adults, but not when 

adjusted for age and BMI (502). Furthermore, in that study, in uni- and multivariate 

models, a higher tOC was an independent predictor of muscle mass, but only in a 
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subgroup of men who were hyperglycaemic. Others report that higher tOC is related to 

lower muscle mass and grip strength in middle-aged and older adults (503) but the 

correlations were unadjusted. In addition, two studies report that higher tOC was related 

to osteosarcopenia presence (a term used to describe combination low bone and muscle 

mass and muscle strength) (501, 504), with one of these studies reporting that higher tOC 

was associated with an increased likelihood of osteosarcopenia (504). ucOC was not 

measured in these studies. 

Altogether, based on the observational data from these human studies, the 

relationships between ucOC with muscle mass and ucOC with muscle strength is 

unclear and whether this is related to long term risk for injurious falls is unknown. The 

same lack of knowledge applies to the tOC and cOC forms and the ucOC/tOC ratio. A 

variety of methods for the assessment of tOC and ucOC as well as different methods 

for the determination of muscle indices have been used, which may explain some of the 

conflicting findings. Lastly, these study findings may be dependent on the statistical 

analyses and models of adjustment used. For example, some used adjustments and others 

did not.
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Table 2.6. Data from human trials: associations of ucOC with muscle mass, strength and function 
 

Studies 
First author,  

(Year) 

Study population 
Sample (n) 

Sample size 
(n) 

Mean 
age  
(yrs) 

Mean BMI 
(kg/m2) Assay  Main findings on muscle 

function 

Levinger,  
(26) 

Cross 
sectional 

Postmenopausal 
women 

 
90 75 yrs 27 kg/m2 

tOC and ucOC HAP 
method 

*not fasted 

↑ ucOC/tOC associated with 
↑ muscle strength (adj age 

BMI) 
↔  ucOC, tOC 

Lee,  
(35) 

Cross 
sectional 

Postmenopausal 
women with and 

without metabolic 
syndrome (MetS) 

135 
52 MetS 

83 Non-MetS 

 
56 yrs, 
55 yrs 

 
26 kg/m2 

23 kg/m2 

tOC and ucOC: N-MID 
osteocalcin 

and human ucOC 
ELISA Kits 

*fasted 

↑ ucOC associated with ↑  
muscle mass only when adj. 

for age and menopause 
↔ tOC 

Drey,  
(501) 
Cross 

sectional 

Osteosarcopenia, pre 
frail community 

dwelling older adults 

68 
19 Osteosarcopenia 

14 Sarcopenia 
17 Osteoporosis 

18 Controls 

 
78 yrs 
76 yrs 
81 yrs 
81 yrs 

Not 
reported 

tOC immunoassay 
(Roche Diagnostics, 

Mannheim, Germany) 
*fasting, a.m 

↑ tOC associated with 
osteosarcopenia 

Harslof  
(34) 

Randomised, 
placebo-

controlled 
trial 

Patients with 
hypoparathyroidism 
who received PTH 
(100ug, daily) or 

placebo 

58  
30 Controls 

28 PTH 

 
51 yrs 
54 yrs 

 
 

28 kg/m2 

30 kg/m2 

 
ucOC- (ELISA) 

(Takara) 
*fasted 

↑ % change in 
ucOC/tOC associated with ↑ 

% change in elbow 
extension force (unadjusted) 

Gomes,  
(36) 

Cross 
sectional 

Obese patients with 
chronic kidney 

disease 
39 56 yrs, 31 kg/m2 

GLA and GLU OC 
ELISA (MK128 and 
MK118; Takara Bio 

Inc., Japan, respectively) 

↑ ucOC associated with ↓ 
muscle mass 
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Studies 
First author,  

(Year) 

Study population 
Sample (n) 

Sample size 
(n) 

Mean 
age  
(yrs) 

Mean BMI 
(kg/m2) Assay  Main findings on muscle 

function 

Shea,  
(37) 

Cross 
sectional and 
Randomised, 

placebo 
controlled 

study 

Community 
dwelling older adults 

 

401 
Female Vit K 

Female control 
Male Vit K 

Male control 

 
74 yrs 
70 yrs 
86 yrs 
84 yrs 

 
29 kg/m2 

27 kg/m2 

28 kg/m2 

28 kg/m2 

 
tOC and ucOC- RIA- 

HAP method 
*fasted 

Baseline ucOC, ucOC/tOC ↔ 
muscle mass (ALM, total lean 

mass) 
 

3 year change in muscle mass 
(ALM, total lean mass) ↔  

between groups 

Xu, 
(502) 

 
Cross 

sectional 

Middle-aged and 
older adults 

1742 
775 Male 

967 Female 

61 yrs 
 
 

24 kg/m2 

 

 

tOC via ECLIA (Roche 
Diagnostics GmbH, 

Mannheim, Germany). 
*fasted 

↑  tOC associated with ↑  
muscle mass (SMI) 

(unadjusted) but ↔ when adj 
for age and BMI 

 
↑  tOC associated with ↑  
muscle mass only in men 
with hyperglycaemia not 

women, other groups based on 
obesity, dyslipidaemia 

 
↑  tOC independent predictors 

of ↑ muscle mass in 
hyperglycaemic men 

(univariate & multivariate adj 
model) 

Moriwaki, 
(503) 
Cross 

sectional 

Community 
dwelling middle-
aged and older 

adults 

253  
97 Male 

157 Female 

 
75 yrs 
74 yrs 

 
23 kg/m2 
22 kg/m2 

tOC: ECLIA (kit details 
not stated) 

*did not state if fasting 
or not 

↑  tOC associated with ↓ 
muscle mass (SMI) and grip 

strength (unadj) 
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Studies 
First author,  

(Year) 

Study population 
Sample (n) 

Sample size 
(n) 

Mean 
age  
(yrs) 

Mean BMI 
(kg/m2) Assay  Main findings on muscle 

function 

Fathi, (504) 
Cross 

sectional 

Older adults 
 

397 
76 Osteosarcopenia 

321 Non-
osteosarcopenia 

 

73 yrs  
68 yrs 

24 kg/m2 

29 kg/m2 

tOC ECLIA (Roche 
Diagnostics GmbH) 

*fasting 

↑ tOC in osteosarcopenia vs 
non-osteosarcopenia 

 
↑ tOC associated with 
increased likelihood of 

osteosarcopenia 

Vitale, (33) 
Cross 

sectional 

Non-diabetic, non-
obese, 

postmenopausal 
osteoporotic women 

29 72 yrs 23 kg/m2 

ucOC: EIA kit 
Gla-Type OC EIA kit, 
(Takara Bio Inc., Otsu-

Shi, SHG, Japan) 
*fasting 

↑  cOC associated with ↑  
ASM/BMI ns ucOC 

 
In women who had fractured, a 
↑ cOC and ucOC was related 
to ↑ muscle mass and lower 

falls risk 
 
Key: tOC, total osteocalcin; ucOC, undercarboxylated osteocalcin; HAP, hydroxyapatite; BMI, body mass index; MetS, metabolic syndrome; 
ELISA, enzyme-linked immunosorbent assay; PTH, parathyroid hormone; Vit K, vitamin K; RIA, radioimmunoassay; ECLIA, 
electrochemiluminescence immunoassay; ALM, appendicular lean mass; SMI, skeletal muscle index 
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2.2.3 The link between CTX and P1NP and muscle function: effects of exercise  

 The relationship between CTX and P1NP with muscle function 

To date, OC was the main focus in studies exploring bone and muscle interactions. 

Yet, other bone-derived factors including BTMs (i.e. CTX and P1NP) may be involved, 

but the evidence is conflicting. For instance, in older women CTX and P1NP were not 

linked to muscle strength (26). However, a potential limitation in this study was that the 

women did not fast overnight and it is known that feeding can affect BTMs (31). Other 

studies have shown that in older adults poorer mobility and balance are related to higher 

CTX and P1NP levels after adjustment for age and sex (47). Furthermore, serum P1NP 

but not CTX remained associated with poorer mobility after accounting for multiple 

confounders (i.e. vitamin D, PTH, renal function, nutrition), suggesting that P1NP may 

be more strongly related to immobility than CTX. A recent study in older adults with high 

risk of falls and fractures reported that a higher serum CTX was associated with poorer 

lower limb muscle function even after adjustment for multiple confounders (48). 

Altogether the data suggest that P1NP and CTX may be related to muscle function. As 

BTMs are already used clinically, they represent an easy to implement strategy to identify 

older adults with low muscle function. However, the direction of this relationship remains 

unclear and is probably influenced by numerous factors such as underlying bone 

pathophysiology (i.e. bone health status). In this thesis (Study 4) I explore the link 

between BTMs and muscle function in a representative, healthy community dwelling 

cohort of older adults who had not sustained fractures. In addition, the link between OC 

and muscle function, along with its relationship to the risk for injurious falls, is explored 

in Study 2 in a large longitudinal cohort over a 15 year follow up. 

 

 Essential characteristics for optimal loading of bone: an overview 

As previously discussed, bone and muscle mass are regulated predominantly by 

mechanical stimuli (505-507). Decreases in mechanical loading result in muscle atrophy. 

A similar response is seen in bone, where a shift in the balance in favour of bone 

resorption results in rapid bone loss (290-294, 508). As stated by Beck (509) “age-related 

bone loss is a manifestation of the principle”. That is, most people as they age become 

inactive and progressively unload their bones, which predisposes them to osteoporosis. 

Older adults who maintain their young adult exercise levels tend to maintain their bone 
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mass (510, 511). These data suggest that the adaptive response to bone is proportional to 

mechanical strain (512, 513), with bone having the ability to change its mass, shape and 

properties in response to loads placed on it (514-517). For this reason exercise is a potent 

strategy to manage osteoporosis allowing the skeleton to withstand the loads and forces 

of everyday activities without sustaining fracture (285, 286, 518).  

Bone strength is the outcome of many processes and factors involving the 

complex interplay between bone structure (trabecular, cortical bone), material properties 

(organic and inorganic) and structural properties (geometry), all determined by bone 

remodelling. Bone relies on muscle as one of its key osteogenic stimulants through such 

things as muscle contraction during exercise, which applies different forces to bone 

(Figure 2.18) (39). In addition, bone relies on mechanical strain derived from impact 

loading and gravity (258, 519-523).  

 
Figure 2.18 The different forms of mechanical strain applied to bone. Muscles contribute 
to the mechanical loading of bone via tensile force (from contracting muscles), 
compressive force (muscle contracting across joints) and bending force (experienced by 
long bones, i.e. with muscle generating force when lifting an object distal to the limb). 
Bone experiences deformations in response to loads (force) placed upon it, and bone cells 
sense strain, related to tissue deformation, fluid flow or other processes within the bone 
matrix. Strain describes how much deformation occurs in bone in response to force (i.e. 
compressive, tensile and torsional strain). Figure sourced from Hart et al.(258). 
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This action of muscle on the adaptive response of bone was first modelled by 

Wolff’s law and Frost’s mechanostat theories. According to those theories, mechanical 

loading is essential for bone strength (524-526) and consequently it was proposed that 

bone mass across the lifespan is dependent on skeletal muscle-derived mechanical 

loading (38, 39). Therefore, the key characteristics of a prescribed exercise program to 

optimise bone health were built upon evidence established from many animal studies. 

The evidence demonstrates that bone responds to loads that are: dynamic, not static (527), 

high in magnitude and applied rapidly (528, 529) in diverse and unusual patterns (530, 

531), and that only few repetitions are required if the load is sufficient (531). Some 

evidence also suggests that loads interspersed with rest are more osteogenic than 

continuous loading, as a result of a desensitising effect on bone cells (515). The translation 

of these findings from animal studies has been confirmed by exercise studies in humans. 

For example, higher impact activities i.e. tennis, squash or badminton are more osteogenic 

than running or cycling (532). Altogether, the key loading features to optimise bone 

responses that form the principles of exercise prescription for osteoporosis prevention and 

management are depicted in (Figure 2.19) (258, 285, 509, 518). These characteristics 

were used to inform the choice for the exercise protocol used in Study 4 to investigate 

bone-muscle interaction. 

 
Figure 2.19 Optimal loading characteristics for bone responses forming the principles for 
exercise prescription. 
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 Why BTMs are used in response to exercise rather than BMD? 

BMD increases in response to the physical load, force and mechanical strain 

placed upon it. In an effort to address safety concerns during exercise, many clinical trials 

have used interventions of insufficient magnitude. As a result, the trials report conflicting 

results on bone strength (533-543). Based on the literature, only studies that have 

integrated multi-component programs show chronic, long-term effects on bone strength, 

as a result of the high intensity, progressive RT and impact weight bearing employed 

(534, 535, 544, 545). It can take many months, or even years, to see a change in BMD, 

which may explain some of the conflicting data (63). Some suggest that if BMD is 

maintained, a null response (not significantly negative or positive) could be considered a 

beneficial effect of the exercise response, but it does highlight that there is a need to 

examine more systematically the effect of exercise on bone remodelling. BMD 

measurement, via DXA, provides a static representation of bone strength and is thus a 

poor representation of the underlying metabolic dynamics (546). As such, investigating 

immediate effects of exercise and strain and load on bone and muscle interaction using 

BMD is not viable. In contrast to BMD, BTMs can respond to, and are released following, 

mechanical load and this response occurs very rapidly, even after an acute, single bout of 

exercise (section 2.2.4.3). 

 

 Exercise effects on BTMs 

A large body of research in younger, athletic populations demonstrates that 

exercise can alter BTMs (50, 51) but the benefits are less clear in older adults. A recent 

systematic review of osteoporotic cohorts reported that the beneficial effects of chronic, 

long-term exercise could in part be explained by altered BTMs (increasing bone 

formation and decreasing bone resorption markers) (52). Others have shown that BTMs 

are modified following exercise in older adults, even with null change in BMD in some 

cases. For instance, six months of PRT in older adults increased femoral neck BMD but 

only if performed at high intensity at 80% 1RM. However, bone turnover (tOC and BAP) 

increased following both high (80% of1RM) and low intensity PRT (50% of IRM), 

suggesting PRT alters BTMs which may over time lead to change in BMD (547). 

Additionally, 24 weeks of high intensity aquatic exercise in postmenopausal women 

increased BTMs (P1NP, CTX) but did not change BMD, compared to the control group 
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who exhibited increased CTX but decreased BMD, suggesting that exercise in this case 

attenuated BMD loss in a setting of increased bone remodelling (548). These studies 

support the concept that BTMs may be a better indicator of underlying bone metabolism 

than BMD per se. 

While there is a large breadth of available data and review papers on BTM 

responses to acute exercise in younger populations (50, 51), there are limited studies in 

older adults (49, 53-56) and the findings are conflicting and unclear. In this population 

many studies performed only AE (49, 53, 55, 56) with very few performing RE (54). This 

is surprising given that the key characteristics for bone loading are more likely to be 

heightened with RE. Altogether, the evidence suggests that exercise can be used as a tool 

to examine bone-muscle crosstalk via BTMs. Nevertheless, there is a need to 

systematically review the evidence in older adult cohorts to understand if responses are 

different based on exercise mode, intensity, age and sex. This is presented in Study 3, 

chapter 6 of this thesis. In addition, a randomised crossover trial is presented as a part of 

this body of research to uncover if exercise mode has differing effects on BTMs and to 

investigate the bone-muscle interaction using ucOC and BTMs (Study 4, Chapter 6). 

 

 The link between muscle function and exercise responses of BTMs 

While the evidence demonstrates BTMs can be modified by exercise (long term 

and after a single session) (50, 423), the link between BTMs and muscle strength and 

function remains unclear and conflicting. Given the close interaction described between 

the two organs (38-40) it is possible that underlying muscle physiology (high or low 

muscle mass or function) may be linked to BTM levels and partially explain BTM 

responses to altered mechanical load through exercise (40-42). To our knowledge, this 

had not been explored prior to Study 4 of this thesis. 

 

 Gaps in the literature 

Based on this literature review this thesis will address the following gaps: 

• To date, there are no normative age-reference ranges for the OC forms: cOC and 

ucOC. There is also not reference range for the OC ratios: ucOC/tOC and cOC/tOC. 

It’s also unknown what the age effects are on these OC forms and ratios. This forms 

the aims of Study 1, Chapter 3. 
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• There are no longitudinal data to support current evidence of whether there is a 

relationship between ucOC and muscle health and whether this is related to 

hazardous outcomes such as the risk of injurious falls. This forms the aims of Study 

2, Chapter 4. 

• It is unknown how BTMs are influenced by acute exercise in middle-aged and older 

adults, and whether these responses are specific to exercise mode, intensity, age or 

sex. This forms the aims of Study 3, Chapter 5. 

• There is a limited number of acute exercise studies on BTM responses in older adults, 

with an even smaller number based on RE protocols. Additionally, it is unknown 

whether BTM responses can be influenced by the baseline status of muscle function 

(i.e. lower or higher muscle mass or strength). This forms the aims of Study 4, 

Chapter 6. 

 

 Aims and hypotheses  

The overall aim of this thesis is to define the general ageing effect on ucOC and 

to uncover whether its relationship with muscle function and hazardous outcomes such 

as falls risk is limited to ucOC, or related to BTMs in general in older adults. This is 

investigated in four studies. The specific hypotheses and aims of each study are listed 

below. 

 

Study 1 (chapter 3)  

Aim 1: To determine how tOC, ucOC, cOC and the ratios ucOC/tOC and cOC/tOC 

change with age in adult men and to define normative ranges of the OC forms and OC 

ratios in this population. The hypothesis is that ucOC would follow a negative linear 

relationship with age. 

 

Study 2 (chapter 4) 

Aim 1: To perform a cross-sectional study in a large cohort of older women to determine 

the relationship between ucOC and the ucOC/tOC ratio with muscle parameters.  

Aim 2: To perform longitudinal analysis in a large cohort of older women to determine 

a) whether baseline ucOC and ucOC/tOC ratio is related to the long-term change in 

muscle parameters and b) whether baseline ucOC or ucOC/tOC is related to risk for 

injurious falls over 14.5 years. We tested the hypothesis that in a large cohort of older 
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women a higher ratio of ucOC/tOC would be associated with reduced muscle function 

(strength and physical function) and an increased risk of long-term risk of falls-related 

hospitalisations. 

 

Study 3 (chapter 5) 

Aim 1: to examine through systematic review the effects of acute exercise on BTMs in 

adults over 50 years of age and to determine if middle-aged and older adults respond 

differently.  

Aim 2: to understand whether these effects were specific to exercise modality, exercise 

intensity, sex or BTM. We tested the hypothesis that older and middle-aged adults would 

have different BTM responses to acute exercise and these responses would be specific to 

exercise modality, intensity, sex or BTM. 

 

Study 4 (chapter 6) 

Aim 1: to perform cross-sectional analyses to determine the relationship of baseline 

determinants of muscle mass and function with tOC, ucOC, CTX and P1NP.  

Aim 2: to determine the effect of acute aerobic (AE) and resistance (RE) exercise on bone 

biomarker responses.  

Secondary aim 1: to explore if baseline muscle mass and function are related to the bone 

biomarker responses following acute exercise.  

Secondary aim 2: to explore if bone biomarker responses following acute exercise are 

related to the glucose-lowering effect of exercise. Our hypothesis was that higher muscle 

function would be related to higher BTMs at baseline, and that those with higher muscle 

function would have lower BTM responses to acute exercise. We also hypothesised that 

RE would elicit higher BTM responses compared to AE. We hypothesised that following 

exercise the change in ucOC, but not in other BTMs would be related to lower levels of 

post-exercise glucose. 

. 
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Chapter 3: Osteocalcin and its forms across the 

lifespan in adult men 

Context 

To date, it is unclear what is the ageing effect on tOC some report it increases, others 

decreases with age, and, it is unknown what is the ageing effect on OC forms, with no 

normative, age-referent ranges available. The purpose of this study was to determine the 

ageing effect on tOC, ucOC, ucOC/tOC ratio across the lifespan. 

 

The following paper has been published: 

Smith, C., Voisin, S., Al Saedi, A., Phu, S., Brennan-Speranza, T., Parker, L., Eynon, 

N., Hiam, D., Yan, X., Scott, D., Blekkenhorst, L. C., Lewis, J. R., Seeman, E., Byrnes, 

E., Flicker, L., Duque, G., Yeap, B. B., & Levinger, I. (2020). Osteocalcin and its forms 

across the lifespan in adult men. Bone, 130, 115085. 

https://doi.org/10.1016/j.bone.2019.115085 

Please see Appendix 2 for the published version of this manuscript. 

It was also presented at the following conferences: 

 Australian Institute for Musculoskeletal Sciences (AIMSS) conference (2019), 

oral presentation* 

 Victoria University, Higher Degree by Research conference, oral presentation 

 

I received two awards for this study, receiving best oral presentation at the AIMSS 

conference, and best oral presentation at the VU HDR conference 
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 Abstract 
Purpose: Osteocalcin (OC), an osteoblast-specific secreted protein expressed by mature 

osteoblasts, is used in clinical practice and in research as a marker of bone turnover. The 

carboxylated (cOC) and undercarboxylated (ucOC) forms may have a different biological 

function but age-specific reference ranges for these components are not established. 

Given the different physiological roles, development of reference ranges may help to 

identify people at risk for bone disease.  

Methods: Blood was collected in the morning after an overnight fast from 236 adult men 

(18 to 92 years old) free of diabetes, antiresorptive, warfarin or glucocorticoid use. Serum 

was analyzed for total osteocalcin (tOC) and the ucOC fraction using the hydroxyapatite 

binding method. cOC, ucOC/tOC and cOC/tOC ratios were calculated. Reference 

intervals were established by polynomial quantile regression analysis.  

Results: The normal ranges for young men (≤ 30 years) were: tOC 17.9-56.8 ng/mL, 

ucOC 7.1-22.0 ng/mL, cOC 8.51-40.3 ng/mL (2.5th to 97.5th quantiles). Aging was 

associated with a “U” shaped pattern for tOC, cOC and ucOC levels. ucOC/tOC ratio was 

higher, while cOC/tOC ratio was lower in men of advanced age. Age explained ∼31%, 

while body mass index explained ∼4%, of the variance in the ratios.  

Conclusions: We have defined normal reference ranges for the OC forms in Australian 

men and demonstrated that the OC ratios may be better measures, than the absolute 

values, to identify the age-related changes on OC in men. These ratios may be 

incorporated into future research and clinical trials, and their associations with prediction 

of events, such as fracture or diabetes risk, should be determined.  

 

Key words: Osteocalcin, aging, reference ranges, bone, bone turnover 
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 Introduction 

Osteoporosis affects 1.2 million Australians, with a further 6.3 million affected by 

osteopenia, with both rates projected to rise in the years to come (1, 2). Six percent of 

men aged over 50 years have osteoporosis, increasing to 13% in those over 70 years (1, 

2). Circulating levels of bone turnover markers (BTMs) are used in research and clinical 

practice to predict fracture risk (3-5). Reference intervals and treatment targets of BTMs 

for older women, based on premenopausal data, have been extensively characterized, 

however, only a few studies are available for men (6-8).  

Serum total osteocalcin (tOC), an osteoblast-specific secreted protein expressed 

by mature osteoblasts, is the most abundant, non-collagenous protein found within the 

bone matrix and is used as a BTM (9, 10). tOC exists in the circulation in two major 

forms; γ-carboxylated (cOC) and undercarboxylated (ucOC) which lacks γ-carboxylation 

at one or more sites (11). cOC is thought to be predominately located in bone, whereas 

ucOC may participate in glucose metabolism, influencing muscle mass and strength (12-

22). Previous studies indicate circulating tOC is highest in early adulthood, lower in mid-

life, and with mixed results shown in older adults (23-31). Despite the differences in the 

biological functions of the OC forms, few studies report both forms and tOC levels, or 

their age-specific distributions. Consequently, normal ranges of OC forms and ratios 

(ucOC, cOC, ucOC/tOC, cOC/tOC) in men are not quantified. 

The aims of the current study were to determine how tOC, ucOC, cOC and the 

ratios ucOC/tOC and cOC/tOC change with age in adult men and to define normative 

ranges of the OC forms and OC ratios in this population. 

 

 Material and Methods   

3.3.1 Study Population  

This is a cross-sectional study representative of men across the adult lifespan, 

utilizing collected fasted baseline (resting) sera samples of a total of 236 men aged 18 to 

92 years. The datasets include data from the following studies: (a) the Health In Men 

Study (HIMS), a population-based cohort study, comprising of 4,248 men aged 70 to 89 

years, assessed in 2001-04, who have been followed-up since initial recruitment in 1996 

(Perth, Western Australia); From men in HIMS who had previously had tOC and ucOC 

assessed (549), after excluding men with diabetes, heart disease or osteoporosis, 99 men 
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were randomly selected for the current study; (b) the Nepean Osteoporosis and Frailty 

(NOF) study, a cross-sectional study of older adults with frailty and other comorbidities 

(Western Sydney, Australia). A total of  23/76 samples were eligible after exclusions for 

diseases (i.e. diabetes) and medications known to affect OC and bone metabolism, 23 

were eligible (550); (c) exercise studies at Victoria University investigating bone health, 

comprising 20 healthy men aged 21 to 70 years (30, 551); (d) the Gene Smart Study, is 

an ongoing international, multi-center study that is a part of the recently established 

ATHLOME Consortium (552, 553). To date (April 2019), 94 men have completed the 

study. At the time of establishing the current study only 74 samples from healthy, young 

men (aged 18 to 45 years) were collected and were included in the current study; and (e) 

the Vegetable Intake and Blood Pressure (VIABP) study is a randomised, controlled, 

cross-over study of 30 non-smoking, non-diabetic participants (20 men, 10 women) with 

pre-hypertension or untreated grade 1 hypertension, only samples from men, aged 40 to 

74 years (first baseline visit), were included (554). All volunteers signed a consent form 

for participation in the respective studies. 

In total, of the 236 men included in this study, 17 men from the NOF study and 5 

men from the VIABP used medications including antihypertensives (NOF, n=9); 

antiplatelets (NOF, n=2), nitrates (NOF, n=2); statins (NOF, n=7; VIABP, n=2); ventolin 

(NOF, n=2); proton pump inhibitors (NOF, n=6; VIABP, n=1); diuretics (NOF, n=2); 

non-steroidal anti-inflammatory drugs (NSAIDs) (NOF, n=2; VIABP, n=2); opioids 

(NOF, n=1); anticholinergic/anti-muscarinic (NOF, n=1) and vitamin D/calcium (NOF, 

n=2). 

 

3.3.2 Quantification of serum osteocalcin (tOC) and undercarboxylated osteocalcin 

(ucOC) 

The stored sera samples were selected on the following criteria: a) samples 

collected in the morning following an overnight fast (to minimize circadian variation); b) 

samples were analyzed at the same laboratory, by the same technician and following the 

same methodology; and c) all samples were collected as serum and kept in aliquots in 

long term storage at -80C until assayed and no freeze-thaw cycles previously reported.  

Frozen serum samples from each clinical trial were obtained from long-term 

storage and analyzed using identical technique and equipment, and performed by the same 

technician. Serum tOC was measured using an automated immunoassay (Elecsys 170; 
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Roche Diagnostics). Serum ucOC was measured by the same immunoassay after 

absorption of carboxylated OC on 5mg/mL hydroxyl-apatite slurry, following the method 

described by Gundberg et al. (11) and Chubb et al. (8).  

The Elecsys N-MID Osteocalcin assay uses two monoclonal antibodies 

specifically directed against epitopes on the N-MID fragment and the N-terminal 

fragment. The assay hence detects the stable N-MID fragment as well as the (still) intact 

OC. The test is non-dependent on the unstable C-terminal fragment (amino acids 43 – 49) 

of the OC molecule and thus ensures constant measurement results under routine 

conditions in the laboratory. Test Principle (from Roche N-MID Osteocalcin product 

insert). Sandwich immunoassay – assay duration 18 minutes. 1st incubation: 20uL of 

sample, a biotinylated monoclonal N-MID OC specific antibody and a monoclonal N-

MID OC -specific antibody labelled with a ruthenium complex [Tris (2,2’-

bipyridyl)ruthenium(II)-complex; Ru(bpy)32+] react to form a sandwich complex. 2nd 

incubation: after addition of streptavidin-coated microparticles, the complex becomes 

bound to the solid phase via interaction of biotin and streptavidin. The reaction mixture 

is aspirated into the measuring cell where the microparticles are magnetically captured 

onto the surface of the electrode. Unbound substances are then removed with 

ProCell/ProCell M. Application of a voltage to the electrode then induces a 

chemiluminescent emission which is measured by a photomultiplier. Results are 

determined via a calibration curve which is generated by 2-point calibration and a master 

curve provided via the reagent barcode. The reagents used for the measurement of OC 

were the Roche N-mid Osteocalcin (Roche Diagnostics, Mannheim) on the Roche E170 

Analyzer (Elecys 170; Roche Diagnostics). This is the same reagent and instrument used 

in previous studies by Chubb et al (8) and Levinger et al (15, 18, 38). The hydroxyapatite 

used was Calbiochem Hydroxyapatite, Fast Flow catalog # 391947 as described by 

Gundberg et al (11) and as used in our previous work (15, 18, 38). 

Using commercial control material (Roche Precivaria controls level 1 and 2), the 

following inter-assay variability was seen over 16 analytical runs for OC on the Roche 

E170: N = 16, mean 19.02, SD 0.33, CV 1.71%; N = 16, mean 91.41, SD 3.01, CV 3.29%. 

Using an OC standard material purchased from Sigma chemicals spiked into OC free 

serum, the following interassay variability was seen over 7 analytical runs for the tOC 

and % binding to hydroxyapatite: High concentration  N = 7, mean total 193.43, SD 14.70, 

CV 7.60%;  High concentration N = 7, mean % bound 79.17%, SD 2.21, CV 2.80%; Low 

concentration N = 6, mean total 18.21, SD 1.78, CV 9.78%; Low concentration N = 6, 
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mean % bound 73.94%, SD 4.62, CV 6.25%. This % binding was similar to that seen in 

previous studies (39-41). 

 

3.3.3 Statistical Analysis  

All statistical analyses were performed using R version 1.1.453 (42). We initially 

intended to use quantile regression as previously published (43) to generate 95% 

reference ranges for the bone markers and ratios within the cohort, but we noted that age 

strongly modified the reference ranges. Therefore, instead of using arbitrary age cut-offs 

and splitting our cohort into smaller age groups, we performed polynomial regression of 

degree 2 for tOC, cOC and ucOC, and simple regression for the ratios cOC/tOC and 

ucOC/tOC. We generated 95% reference ranges for each of the bone markers as a 

continuous function of age, with the predict() function. The 95% reference ranges are 

easily readable as red dashed lines on the individual figures. We also added body mass 

index (BMI) as a covariate to each of the models to determine whether adjustment for 

BMI was required. Reference ranges for men <30 years were given as the 2.5th-

97.5th quantiles of each bone marker. We also report the 95% CI for the upper and lower 

limits of the reference ranges. All data are presented as mean ± SD. For all statistical 

analyses, p values <0.05 were considered statistically significant. 

 

 Results 

A total of 236 men were included with a mean age of 58.1 ± 21.7 years and BMI 

of 26.2 ± 3.8 kg/m2 (Table 3.1, sample of men per decade of age are presented in Table 

3.2). tOC, ucOC and cOC (Figure 3.1A-C) all displayed a “U shaped” relationship across 

the aging continuum, with lowest levels observed around 55 years of age. Specifically, 

from 18 to 59 years old, tOC levels diminished in a non-linear fashion from ~42 ng/mL 

to ~18 ng/mL; tOC levels were higher after 59 years of age in a non-linear fashion, 

attaining ~24.2 ng/mL at 80 years old. ucOC and cOC levels show similar associations 

with age. From 18 to 52 years old, ucOC levels diminished from ~14.7 ng/mL to ~8.7 

ng/mL; ucOC levels increased after 52 years of age, attaining ~12.6 ng/mL at 80 years 

old. From 18 to 63 years old, cOC levels diminished from ~27.1 ng/mL to ~8.3 ng/mL; 

cOC levels were higher after 63 years of age, attaining ~11.6 ng/mL at 80 years old.  
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Table 3.1 Descriptive characteristics of our cohort of fasted adult men 

 

 

 

 

 

 

 

 

 

 

 

All data reported as mean ± SD. BMI, Body mass index; tOC, total osteocalcin; ucOC, 
undercarboxylated osteocalcin; and cOC; carboxylated osteocalcin. 

 

 

Table 3.2 Total number of men per decade of age 

 

Age group Total n 

< 20 years 8 
20 to 29 years 32 
30 to 39 years 28 
40 to 49 years 18 
50 to 59 years 13 
60 to 69 years 16 
70 to 79 years 93 
80 to 89 years 27 

> 90 years 1 

 Entire cohort 
(mean ± SD) 

Sample (n) 236 

Age (years) 58.14 ± 21.73 

BMI (kg/m2) 26.18 ± 3.83 

tOC (ng/mL) 24.78 ± 10.58 

cOC (ng/mL) 13.51 ± 7.69 

ucOC (ng/mL) 11.26 ± 4.48 

ucOC/tOC 0.48 ± 0.12 

cOC/tOC 0.52 ± 0.12 
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Figure 3.1 Relationship between age and circulating levels of tOC, ucOC and cOC, and the OC-ratios with confidence and prediction 
intervals in healthy adult men  

 

1D 
1E 

1A 1B 1C 
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Mean and SD for the absolute values of OC forms were calculated to determine 

the dispersion of individual values between young (< 30 years) and older adults (> 70 

years); tOC in young men was lower than older adults (35.31 ±11.56 versus 22.33 ± 

10.17); ucOC was similar in young and older men (12.66 ± 4.29 versus 11.59 ± 4.79) and 

cOC was higher in younger men compared to older (22.65 ± 8.69 versus 10.74 ± 6.22). 

In contrast to the individual forms, there was an incremental rise in ucOC/tOC 

ratio across age (Figure 3.1D) while the cOC/tOC ratio was lower (Figure 3.1E). 

Adjusting for the effect of BMI, on average, men have 0.3 ± 0.03% lower cOC/tOC ratio 

per decade; conversely, increments of 0.3 ± 0.03% of ucOC/tOC per decade of age were 

observed. Age explained ∼31% of the variance while BMI explained ∼4% of the variance 

in the ratios. BMI was not associated with individual measures of tOC, cOC and ucOC 

and as such was not adjusted for in those models (Table 3.3). 

 

Table 3.3 β estimates: Regression coefficients for all OC forms and ratios in adult men 

 
β estimate 

Regression coeff. 
Estimate ± Std. error 

p value Adjusted R2 

tOC (ng/mL) 
Age 

Age2 

 
-1.6 ± 0.20 
0.014 ± 0.0019 

 
4.20 x 10 -14*** 
7.73 x 10 -12*** 

 
0.29 
 

cOC (ng/mL) 
Age 

Age2 

 
-1.11 ± 0.138 
0.00877 ± 0.00130 

 
4.30 x 10-14*** 
1.11 x 10-10*** 

 
0.39 

ucOC (ng/mL) 
Age 

Age2 

 
-0.53 ± 0.097 
0.0051 ± 0.0091 

 
9.98 x 10 -8*** 
7.25 x 10 -8*** 

 
0.11 

ucOC/tOC 
BMI 
Age 

 
0.00692 ± 0.00173 
0.00300 ± 0.000305 

 
8.49 x 10-5*** 

< 2 x 10-16*** 

 
0.35 (adjusted to 
BMI) 
0.31 (unadjusted) 

cOC/tOC 
BMI 
Age 

 
-0.00692 ± 0.00173 
-0.00300 ± 0.000305 

 
8.49 x 10-5*** 

< 2 x 10-16*** 

 
0.35 (adjusted to 
BMI) 
0.31 (unadjusted) 

*** p-value ≤0.01, * p-value ≤0.05. BMI, Body mass index; tOC, total osteocalcin; ucOC, 
undercarboxylated osteocalcin; and cOC; carboxylated osteocalcin 
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The recommended reference ranges (2.5th to 97.5th quantiles) and 95% confidence 

limits for the lower and upper limits, based on the data of the young (<30 years old), 

healthy men are presented in Table 3.4 for all OC forms and ratios.  

 

Table 3.4 Normal reference ranges and 95% confidence limits for a reference cohort of 
young, healthy men 

 
Reference range 

(2.5th-97.5th 
quantiles) 

95% CI for the limits of the 
reference range 

 Lower limit Upper limit 
tOC (ng/mL) 17.85 - 56.78 14.30 – 20.65 54.00 - 70.20 

ucOC (ng/mL) 7.07 - 22.03 6.00 - 7.58 17.60 - 23.68 
cOC (ng/mL) 8.51 - 40.33 4.28 – 10.75 33.33 - 52.60 

ucOC/tOC 0.23 - 0.60 0.22 - 0.26 0.54 - 0.70 
cOC/tOC 0.39 - 0.77 0.29 - 0.44 0.74 - 0.78 

 

tOC, total osteocalcin; ucOC, undercarboxylated osteocalcin; and cOC; carboxylated 
osteocalcin 

 

 Discussion 

We report that in adult men (a) for all OC forms, aging was associated with a u-

shape pattern expressed across the lifespan and, (b) age accounted for ~30% of the inter-

individual variability in the ucOC/tOC and cOC/tOC ratios. 

Circulating tOC is used in clinical practice as one of the measures to assess bone 

disease and as a surrogate measure for bone turnover (9, 10, 44, 45). As reported (23, 25, 

27), we confirm that circulating tOC follows a u-shape pattern across the lifespan with 

high values in young individuals and in older individuals. This pattern with aging was 

also observed in the current study for cOC and ucOC. Clinically, this observed pattern 

limits the capacity of using the absolute concentration of OC forms for risk stratification. 

For instance, mean circulating tOC concentrations of 30 ng/mL can be observed in a 30 

year old and 70 year old man, but in younger men it may indicate modelling and 

remodelling associated with the consolidation of bone, while in older men it may indicate 

increased bone remodelling, bone loss and emerging bone fragility (4, 9-13, 16-22, 46).   

We observed that ucOC was higher in older adults compared to middle aged adults 

(fig 1), but similar in young men. The higher levels of ucOC in older adults is intriguing, 

ucOC has been reported to be involved in both glucose and lipid metabolism, and low 
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ucOC is associated with an increased risk for cardiovascular disease and diabetes (12, 13, 

21, 22, 47, 48), even after adjustment for body mass index (13). As such, one may 

speculate that older adults will have lower ucOC, compared to middle aged individuals, 

as age is associated with increased risk for diabetes, this however was not supported by 

the evidence. Whether the increase in ucOC in older adults is due to a reduction in vitamin 

K intake or a potential compensatory mechanism to maintain normal circulating glucose 

levels in older adults is not clear and should be explored in future studies. 

In contrast to absolute OC values, OC ratios (cOC/tOC and ucOC/tOC) may be 

more sensitive to the physiological changes associated with aging. In the current study 

cOC/tOC ratio was significantly lower in advanced age. Others have demonstrated that 

lower cOC/tOC ratio can predict fracture risk particularly in older men (49). Taken 

together, our data indicates that the ratio may be more useful for risk stratification and 

likely provides a better reflection of disease status including osteoporosis, fracture risk or 

metabolic diseases. Future research that includes clinical outcomes is required to confirm 

this.   

The reference ranges for tOC have previously been established and are commonly 

used in clinical practice (25, 50). In the current study, we used data from young, healthy 

men to estimate the reference range for “optimal” levels as it corresponds to the time 

where bone mass peaks (51). Our reported reference range for young, healthy men for 

tOC was 17.9 to 56.8 ng/mL (2.5th to 97.5th quantiles), which is slightly lower than the 

clinical standard. We have used fasting and morning sampling times to minimize the 

effect of diurnal variation and feeding, both of which are reported to effect BTMs (52-

54). This may suggest the references range used in clinical practice appears to be 

acceptable, however may need to be slightly adjusted.    

As described above, assessing tOC limits the capacity to differentiate men based 

on age and to interpret underlying pathophysiology, therefore better clinical 

differentiation of this protein and its potential biological effects are needed (22-28, 55). 

We are not aware of any published reference interval data across the adult lifespan in men 

for cOC, ucOC or the ratios of cOC/tOC and ucOC/tOC. One study published data 

distributions for cOC and cOC/tOC (49), and another published reference intervals for 

ucOC and ucOC/tOC (8), however both studies were performed in older men >70 years 

old. We propose that the ratios of ucOC/tOC and cOC/tOC should be used in both clinical 

practice, and in future research, as they are potentially more robust measures to a) 
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distinguish the effect of aging on OC forms, and b) better understand the underlying 

aberrant physiology and biological action of OC in general. 

 

3.5.1 Limitations 

There are some potential limitations of our study. The current study focused on 

ranges of OC levels in men across the adult lifespan aged 18 to 92 years by combining 

separate study cohorts with different protocols for inclusion and exclusion criteria’s and 

with different geographical locations which may introduce bias in our results. Whilst this 

study encompasses a large age range of adult men, there is only a small number of men 

in the youngest and oldest groups. However, the samples used in the current study were 

all from men without diseases (i.e. diabetes and osteoporosis) and medications (i.e. 

bisphosphonates and glucocorticoids) known to effect OC and bone metabolism. We have 

used the methods proposed by Gundberg et al. (11) to analyze carboxylated and 

uncarboxylated OC, which is considered as the gold standard. However, different 

research groups use different methodologies to analyze ucOC and the levels depend on 

the technical details including antibody, specific surface of the hydroxyapatite, amount 

of the apatite or ELISA used. As such, the reference ranges calculated in the current study 

may not reflect the levels analyzed with different techniques. The study is also cross-

sectional in nature and does not include clinical measures hence, we cannot ascertain 

whether these reference ranges are associated with incident or prevalence of disease. In 

the current study the ucOC/tOC in young men was relatively high. It is not clear why the 

fraction of ucOC was high and plausible explanations may include a non-specific binding 

to C-terminal fragments which do not contain GLA or diet with low vitamin K, which is 

required for OC carboxylation. Lastly, several factors may affect circulating OC levels 

including vitamin D or K, and although we did include people on vitamin K 

supplementation, we did not measure it.  

 

3.5.2 Strengths 

The strengths of our study include a full adult age range in men, a population at 

higher risk of cardiovascular diseases and poorer outcomes after bone fracture (56-58). 

Additionally, all samples were collected at the same time of day and in a fasted state. 

Therefor this is the first step in the validation of reference ranges for all OC forms and 



 115 

ratios in adult men. In addition, all OC analysis was completed by the same technician, 

in the same laboratory and utilizing the same methodology and assays, minimizing 

variation due to technical error. The methods used in this study are automated and widely 

available however, the reference ranges proposed are only valid for the measurement of 

OC using the same assay, technical aspects and methodology. Measurement of OC may 

also be different according to countries and, therefore may limit the generalizability of 

the data. Future studies should explore the effect of aging on OC forms in women as the 

ranges and pattern of change across the adult lifespan may be different than observed for 

men.  

 

3.5.3 Conclusion 

In summary, we have defined normal reference ranges for the OC forms and 

demonstrated that the OC ratios may be better measures, than the absolute values, to 

identify the aging effect on OC in men. These ratios may be incorporated into future 

research and clinical trials, and their associations with prediction of events, such as 

fracture or diabetes risk, should be determined. 
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Chapter 4: Higher undercarboxylated to total 

osteocalcin ratio is associated with reduced physical 

function and increased 15-year falls-related 

hospitalizations: the Perth longitudinal study of aging 

women 

Context:  

The manuscript in study 1 identified that total circulating levels of OC, including cOC 

and ucOC follow a u shape pattern with aging, while the ratio ucOC/tOC increases with 

age in adult men. Combined with the available evidence that demonstrated a potential 

relationship between ucOC and muscle function, we sought to understand in this chapter 

whether higher ucOC/tOC ratio would be related to poorer physical performance and 

injurious-falls in a large 15 year follow up study in older women.  This study provided 

the first longitudinal evidence of a relationship between ucOC, physical function and falls 

risk. 

The following manuscript has been published. Please see Appendix 3 for the published 

version of this manuscript. 
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Longitudinal Study of Aging Women. Journal of bone and mineral research, 36(3), 523–
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 Abstract 

Evidence from animal models suggests that undercarboxylated osteocalcin 

(ucOC) is involved in muscle mass maintenance and strength. In humans, the ucOC to 

total (t)OC ratio, may be related to muscle strength and, perhaps physical function and 

falls risk, but data are limited. We tested the hypothesis that ucOC and ucOC/tOC ratio 

are associated with muscle function (muscle strength and physical function) in older 

women and 15-year falls-related hospitalizations. Serum tOC and ucOC were assessed in 

1261 older women (mean age 75.2 ± 2.7 years) forming the Perth Longitudinal Study of 

Ageing Women (1998 to 2013). Timed-up-and-go (TUG) and grip strength were assessed 

at baseline and at 5-years. Falls-related hospitalizations (14.5-year follow-up) was 

captured by the Hospital Morbidity Data Collection, via the Western Australian Data 

Linkage System. At baseline, women with higher ucOC/tOC ratio (Quartile 4) had slower 

TUG performance compared to Quartile 1 (~0.68 secs, p<0.01). Grip strength and 5-year 

change of TUG and grip were not different (p>0.05) between quartiles. Fear of falling 

limiting house, outdoor, and combined activities was significantly different across 

quartiles (p<0.05). Higher ucOC/tOC was significantly associated with poorer TUG 

performance at baseline and 5-year change in performance, increased walking aid use, 

and fear for falling (all p<0.05). Higher ucOC was related to lower grip strength at 

baseline (p<0.05), but not 5-year change in strength. Those with the highest ucOC/tOC 

had greater falls-related hospitalizations (unadjusted log rank p=0.004) remaining 

significant after adjusting for key variables (HR 1.31, 95% CI 1.09-1.57, p=0.004). We 

identified a large proportion of older women with high ucOC/tOC ratio that had reduced 

physical function, including its long-term decline and increased risk of falls-related 

hospitalizations. Early identification of women at higher risk can enable prevention and 

intervention strategies to occur, reducing risk for injurious falls. 

 

Key words: aging; skeletal muscle; bone-muscle interactions; sarcopenia 
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 Introduction 

After the 4th decade of life, there is a rapid loss of muscle function before declines 

in muscle mass are evident (1-3). Muscle function is used to describe the combination of 

muscle strength and physical function. Poor muscle function is associated with increased 

falls and fractures risk, functional disability, loss of independence, and early mortality (4-

7). Excess morbidity and mortality arising from the increased burden of compromised 

muscle function in community-dwelling older persons is expected to rise in line with the 

increase in longevity, placing increased burden on the individual, families and public 

health systems globally (4,8-10). This highlights the need to identify potential clinical 

markers which may be able to identify individuals at risk of declining muscle function 

and falls so that appropriate prevention strategies can be instituted. 

Osteocalcin (OC), the most abundant, non-collagenous bone protein, is 

synthesized and secreted by mature osteoblasts during bone formation and used clinically 

as a bone turnover marker (11,12). OC exists in two major forms; γ-carboxylated (cOC) and 

undercarboxylated (ucOC) lacking γ-carboxylation at one or more sites (13). cOC is 

thought to be predominately located in bone due to its high binding capacity to 

hydroxyapatite in-vitro, whereas ucOC was reported by some, but not all (14,15), to function 

in a paracrine and endocrine manner, participating in glucose metabolism and influencing 

muscle mass and strength. However, most of these data are limited to animal and 

preclinical studies  (16-24).  

We have previously shown that the ucOC/tOC ratio is higher in older compared 

to young adults (25), indicating that the ratio is a better measure of the aging effect on OC, 

than the total or individual forms separately. This, in part, could be due to lower intake of 

vitamin K, required for OC carboxylation (26). Indeed, in older women, higher intake of 

leafy green vegetables, a rich source of vitamin K1, was associated with greater muscle 

strength, improved muscle function and lower injurious falls risk, suggesting ucOC/tOC 

ratio may be involved, but this was not measured (27-29). Therefore, whether ucOC or its 

ratio are possible candidates related to muscle function, and injurious falls risk remains 

to be fully elucidated. 

As such, we tested the hypothesis in a large cohort of older women that a higher 

ratio of ucOC/tOC would be associated with reduced muscle function (strength and 

physical function) and an increased risk of long-term risk of falls-related hospitalizations. 
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 Methods 

4.3.1 Participants 

The population included women recruited the Perth Longitudinal Study of Aging 

in Women (LSAW, http://www.lsaw.com.au/), the collective term referring to three 

studies across a 15-year period within the same population (1998-2013). Caucasian 

women were originally recruited to a 5-year, double-blind, randomized controlled trial of 

daily calcium supplementation to prevent fracture, the Calcium Intake Fracture Outcome 

Study (CAIFOS), described previously (30). Women with an expected survival beyond 5 

years and not receiving any medication (including hormone replacement therapy) known 

to affect bone metabolism were included. Women (n = 1500) were recruited from the 

Western Australian general population aged ≥70 years using the electoral roll. At the 

completion of the 5-year trial, women were invited to participate in two follow-up 

observational studies. Total follow-up was 14.5 years with baseline at 1998 (ending in 

2013). Due to the link between vitamin D and falling (31), an additional 39 women were 

excluded as they were part of a sub study investigating calcium plus vitamin D 

supplementation. All participants provided written informed consent. Ethics approval was 

granted by the Human Ethics Committee of the University of Western Australia. Both 

studies were retrospectively registered on the Australian New Zealand Clinical Trials 

Registry (CAIFOS trial registration number #ACTRN12615000750583 and PLSAW trial 

registration number #ACTRN12617000640303) and complied with the Declaration of 

Helsinki. Human ethics approval for the use of linked data was provided by the Human 

Research Ethics Committee of the Department of Health, Western Australia (project 

number #2009/24). 

 

4.3.2 Participant characteristics 

Information regarding methodology of this trial has been previously published in 

detail (32). In brief, information on medical history and current medications was obtained 

from the participant and then coded using the International Classification of Primary 

Care- Plus (ICPC-Plus) method (33). The coding methodology allows aggregation of 

different terms for similar pathologic entities, defined by the ICD-10 coding system. 

Information about pre-existing diabetes was obtained from participants previous medical 

http://www.lsaw.com.au/
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history and current medications. Participants were asked to verify this information with 

their general practitioner, where available. 

 

4.3.3 Body composition 

Body weight was measured using digital scales to the nearest 0.1 kg and height 

assessed using a wall-mounted stadiometer to the nearest 0.1 cm. Participants were 

wearing light clothes and were without socks and shoes. Body mass index (BMI) (kg/m2) 

was then calculated. Whole body composition was measured at baseline or at 12 months 

by whole body dual-energy X-ray absorptiometry (DXA), using Hologic Acclaim 

QDR4500A dual energy X-ray absorptiometry machine (Hologic Corp., Waltham, MA) 

by several operators and analyzed according to a standard protocol. Each scan was 

reviewed by a supervisor for correct positioning. A calibration phantom was scanned at 

the beginning of each study participant session and evaluated using the Hologic provided 

Shewart rule program. CV s are under 2% in our laboratory. Appendicular lean mass was 

calculated as the sum of upper and lower limb mass (bone free). 

 

4.3.4 Muscle parameters and physical activity levels 

Grip strength was recorded from the dominant hand, recorded as the highest of 3 

attempts (34) using a handheld dynamometer (hand Grip Dynamometer, TEC, Clifton, NJ). 

Physical function was measured by the timed up and go (TUG) test, where patients were 

timed to stand from the chair, walk 3 m, turn and then return to the seated position in the 

chair (35). Participants performed one practice trial, before commencing the TUG test. 

Physical activity questionnaires were completed at baseline. Participants were asked 

about their participation in sport, recreation, and/or regular physical activities in the 3 

months prior to their baseline visit. Previously described in detail (36,37) briefly, the level 

of activity, expressed in kilojoules per day, was calculated using a validated method 

applying activity type, time engaged in the activity, and the participant’s body weight (38).  

 

4.3.5 Estimation of dietary vitamin K 

As vitamin K is related to the ratio of cOC to ucOC, we assessed dietary vitamin 

K intake at baseline for the previous 12 months using a validated, semi-quantitative food-

frequency questionnaire (FFQ) (39). The method has been previously described by our 
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group (40,41). Briefly, total dietary vitamin K intake was calculated by multiplying the food 

items consumed (g/d) by the mean vitamin K value (μg/g). Vitamin K1 (phylloquinone) 

values for FFQ food items were obtained from the US Department of Agriculture National 

Nutrient Database for Standard Reference (Release 28) (42). Vitamin K2 (menaquinone; 

MK-4 to MK-9) values for FFQ food items were obtained from Schurgers and Vermeer 
(43) and Vitamin K2 (menaquinone; MK-10) values for FFQ food items were obtained 

from Manoury et al (44). Where foods containing vitamin K were not available, a value of 

0 μg/g was applied.  

 

4.3.6 Biochemical measurements 

The current post-hoc analysis (n= 1261) only included women with serum 

analyzed for tOC and ucOC from fasting blood samples collected in 1999, year-1 of the 

CAIFOS randomized controlled trial. Samples had not previously undergone a prior 

freeze-thaw cycle. An additional three participants with implausible ucOC/tOC ratio (> 

1.0) were excluded. Serum tOC was measured by sandwich electrochemiluminescence 

immunoassay using the Roche Cobas N-Mid Osteocalcin assay (Roche Diagnostics, 

Mannheim). The inter-assay coefficient of variations (CV) were 2.3% and 4.8% at levels 

of 18 and 90ng/mL, respectively. Serum ucOC was measured by the same reagent assay 

with pre-treatment of the serum samples using 5mg/mL of hydroxyapatite (Calbiochem) 

following the method by Gundberg et al (13) and Chubb et al (45). The inter-assay 

imprecision for percentage binding of cOC was 8% and 12% at OC concentrations of 100 

and 15 ng/mL, respectively.  

We assessed renal function as a possible confounder of OC as serum OC levels 

have been shown to be related to decreased renal clearance and chronic kidney disease 

(CKD) (46). We used the Chronic Kidney Disease Epidemiology Collaboration (CKD-

EPI) creatinine-derived equation to estimate glomerular filtration rate (eGFR), we have 

described this method in detail previously (47).  

Venous blood samples were collected between 08:30 a.m. and 10:30 a.m. after 

overnight fasting at baseline. Plasma was separated and stored in a –80°C freezer. Plasma 

25OHD2 and 25OHD3 concentrations were determined using a validated liquid 

chromatography tandem mass spectrometry method at the RDDT Laboratories 

(Bundoora, VIC, Australia) according to published methodology (48) and summed to 

obtain a total plasma 25OHD concentration for each individual. Between‐run coefficients 
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of variation (CVs) were 10.1% at a 25OHD2 mean concentration of 12 nmol/L and 11.3% 

at a 25OHD3 mean concentration of 60 nmol/L. An internal quality control (QC) test 

showed that the QC samples passed the acceptance criteria. 

 

4.3.7 Falls outcomes 

The method for assessing fear of falling was self-reported. Participants were asked 

to respond yes or no to a series of questions including “Are you afraid of falling?” “Do 

you limit any household activities because you are frightened you may fall?” and “Do 

you limit any outside activities because you are frightened you may all?”. This method 

we have described in detail previously (36,49), briefly, a positive response to any of the 

three questions indicated a fear of falling. 

Injurious falls (falls-related hospitalization) outcomes over 14.5 years were 

retrieved from the Western Australia Hospital Morbidity Data System via the Western 

Australian Data Linkage (Department of Health Western Australia, East Perth, Australia). 

Records were obtained for each of the study participants from 1998 until 2013 using the 

International Classification of External Causes of Injury codes and the International 

Classification of Diseases (ICD) coded diagnosis data pertaining to all public and private 

inpatient hospitalizations in Western Australia. This allows ascertainment of 

hospitalizations independent of self-report and avoids the problems of patient self‐

reporting and loss to follow‐up. Falls from standing height or less, not resulting from 

external force were included (ICD‐10 codes): W01, W05‐W08, W10, W18, and W19. A 

fall was considered injurious if it required hospitalization. Prevalent self-reported falls 

were assessed by asking participants if they experienced a fall in the 3 months prior to 

their baseline clinical visit.  

 

4.3.8 Blood pressure 

Blood pressure was assessed in the morning after an overnight fast of at least 12 

h, which included abstinence from tea, coffee and alcohol. A trained observer used a 

standard mercury sphygmomanometer to assess blood pressures. Participants rested in a 

seated position for a minimum of 5 min before blood pressure measurement commenced. 

Three blood pressures were then measured on the right arm at 1-min intervals. The mean 

blood pressure was calculated from these measurements. 
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4.3.9 Statistical methods 

Our primary outcome was time to a falls-related hospitalization. Firstly, we 

explored whether the relationship between ucOC/tOC and falls-related hospitalizations 

was non-linear. As non-linearity was evident, we stratified participants into quartiles 

based on the ucOC/tOC ratio to explore characteristics of muscle function and other 

related variables. A one way ANOVA with Bonferroni correction or Mantel-Haenszel 

chi-squared difference in proportion was performed to determine significance between 

quartile groups. Non-parametric, Spearman rho’ partial correlations were performed to 

determine associations of tOC, ucOC and the ucOC/tOC ratio using three different 

models of adjustment including Model 1: age and CAIFOS treatment (calcium 

supplementation versus placebo); Model 2: model 1 plus BMI, diabetes status, smoking 

history and prevalent atherosclerotic vascular disease (ASVD); and Model 3: model 2 

plus eGFR. Prevalent ASVD was used as a possible confounder as we have shown 

previously in this cohort a link between ASVD prevalence and lower muscle strength (50). 

For 5-years change in TUG and grip strength, these parameters were adjusted by the same 

models described, but in addition to the respective baseline measurement (not presented 

in table). 

Cox-proportional hazards were used to examine the relationship between 

ucOC/tOC ratio and the time to first falls-related hospitalization in both unadjusted and 

multivariable-adjusted analysis. Global tests (estat phtest) indicated proportional hazards 

assumptions were not violated for all analysis (all p>0.05). The multivariable-adjusted 

model included: age, BMI, CAIFOS treatment, diabetes status, smoking history, and 

previous ASVD. The dose‐response relationship between ucOC/tOC and falls-related 

hospitalizations were examined with penalized splines using the R package “survival” 

with df = 4 and using ucOC/tOC at 0.404 as the reference level, adjusted for all covariates 

as described in the multivariable-adjusted model. As poor vitamin D status is considered 

a risk factor for falls (51), we performed additional analyses where we included total 

25OHD and season of blood sampling (as summer/autumn and winter/spring) to our 

multivariable-adjusted model. As blood pressure has the potential to influence falls risk, 

we performed additional analysis where we included mean systolic BP into our 

multivariable-adjusted model. Finally, we performed sensitivity analysis where muscle 

function measures were included in the multivariable-adjusted model when examining 
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the risk of falls-related hospitalization and ucOC/tOC. All statistics are reported in either 

mean ± SD, median and interquartile ranges  or number and (%), and statistical 

significance accepted at p<0.05. Statistical analysis was performed with SPSS Statistics 

version 26 (IBM, USA), R statistics or Stata (version 13 StataCorp LP, College Station, 

TX). 

 

 Results 

A total of 1261 women were included; the characterization of the women is 

presented in Table 4.1. Women were stratified into quartiles (Table 4.2) based on the 

ratio of ucOC/tOC (Q1 as the lowest ucOC/tOC group and Q4 as the highest) for the 

comparison of muscle strength, and functional measures between groups. Women with 

higher ucOC/tOC (Q3 and Q4) had a small, but significantly higher BMI (∼1 kg⋅m-2) 

compared to women in Q1 and Q2 (all p<0.05). Women in Q4 had a slower time in TUG 

test (mean difference ~0.68 secs), compared to women in Q1 to Q3 (p= 0.026, 0.031 and 

0.008, respectively, ANOVA p=.004). Walking aid use was significantly different across 

quartiles (p= 0.012). Fear of falling that limited house, outdoor and combined house and 

outdoor activities was significantly different across quartiles (p= 0.026, 0.044 and 0.017, 

respectively) (Table 2). There were no significant differences between quartiles for grip 

strength appendicular lean mass, METs or physical activity levels (all p >0.05), or 5-year 

change in TUG and grip strength (not presented in table, both p >0.05). 
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Table 4.1 Descriptive characteristics 

Baseline characteristics 
All participants 

(n= 1261) 

Age (years) 75.22 ± 2.77 

BMI (kg⋅m-2) 27.14 ± 4.65 

Previous or current smoker (yes, %) 461 (36.6) 
Diabetes (yes, %) 78 (6.2) 

History of ASVD (yes, %) 149 (11.8) 

Dietary calcium intake (mg/d) 956.81 ± 356.11 
(n=1249) 

METs, Kcal expended per day  111.55 (35.60-202.32) 
Physically active (yes, %) 961 (76.2) 

Grip strength (kg) 20.47 ± 4.56 (n= 1251) 
Timed up and go (sec) 9.45 (8.18–11.11) 

Appendicular lean mass (kg)* 14.85 ± 2.15 
Fear of falling in house activities (yes, %) 

Fear of falling in outdoor activities (yes, %) 
Fear of falling in house and outdoor activities (yes, 

%) 

214 (17.0) 
184 (14.6) 
130 (10.3) 

Walking aid use (yes, %) 83 (6.6) 

Dietary vitamin K intake (ug/d) 119.57 ± 46.56 (n= 
1249) 

tOC ng/mL 25.05 ± 10.28 
ucOC ng/mL 11.99 ± 5.34 

ucOC/tOC .49 ± .12 
eGFR CKD-EPI creatinine (1998) 66.25 ± 13.52 (n= 1135) 

 

Results are mean ± SD, median and interquartile ranges or number and (%).  

BMI, body mass index; ASVD, atherosclerotic vascular disease; METs, metabolic 
equivalents; tOC, total osteocalcin; ucOC, undercarboxylated osteocalcin; eGFR, 
estimated glomerular filtration rate; CKD-EPI chronic kidney disease epidemiological 
collaboration. 

*Measured at either baseline or year 
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Table 4.2 Quartiles based on the ucOC/tOC ratio with measures of muscle function and falls parameters 

 
Quartile 1 

(n= 315) 
Quartile 2 
(n= 316) 

Quartile 3 
(n= 315) 

Quartile 4 
(n= 315) 

Grip strength (kg) 20.59 ± 4.28 20.67 ± 4.29 20.54 ± 4.52 20.08 ± 5.10 

Timed up and go (s) 9.22 (7.87-10.95) 9.33 (8.22-11.01) 9.30 (8.17-10.95) 9.97 (8.55-11.53)a,b,c 

Appendicular lean mass (kg)* (n= 400) 14.52 ± 2.12 (n= 111) 14.84  ± 2.13 (n=94) 15.02  ± 2.16 (n=96) 15.07  ± 2.18 (n=99) 

METs, Kcal expended per day 110.34 (44.78-209.76) 109.48 (38.09-203.42) 122.06 (0.00-216.99) 105.30 (0.00-181.03) 

Physically active (yes, %) 249 (79.0) 243 (76.9) 237 (75.2) 232 (73.7) 

Walking aid use (yes, %) 15 (4.8) 17 (5.4) 21 (6.7) 30 (9.5) 

Fear of falling in house activities (yes, %) 
Fear of falling in outdoor activities (yes, %) 

Fear of falling in house and outdoor activities (yes, %) 

41 (13.0) 
31 (9.8) 
21 (6.7) 

58 (18.4) 
58 (18.4) 
38 (12.1) 

50 (15.9) 
39 (12.4) 
27 (8.6) 

65 (20.6) 
56 (17.8) 
44 (14.1) 

 

Results are mean ± SD, median and interquartile ranges or number and (%). One way ANOVA with Bonferonni correction or Mantel-
Haenszel chi-squared difference in proportion was performed to determine significance between groups. Bolded figures represent significant 
differences (P<0.05) across the quartiles by ANOVA or Mantel-Haenszel chi-square test of trend. a indicates significant difference (P<0.05) 
to quartile 1, b indicates significant difference (P<0.05) to quartile 2, c indicates significant difference (P<0.05) to quartile 3 after Bonferroni 
correction.  

*Measured at either baseline or year 1.
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 Correlations between OC (tOC, ucOC and ucOC/tOC) with muscle function 

parameters were performed. A higher ucOC/tOC ratio was significantly related to poorer 

(slower) time to complete the TUG test (all adjusted models), but the correlation was 

weak (r range 0.06 to 0.1, p= .0001, .007 and .050, respectively). Grip strength was 

significantly but inversely correlated with ucOC (all adjusted models) however the 

relationship was weak (r = -.06, p= .033, .028 and .053, respectively). Five-years change 

score of the TUG (not presented in table) was significantly correlated with increased 

ucOC/tOC ratio in adjusted models 1 and 2, however this correlation was weak (r range 

.06 to .08, p= 0.010 and 0.032, respectively) and significance was lost when further 

adjusted for eGFR. A higher ucOC/tOC ratio was significantly correlated with walking 

aid use and fear of falling limiting household and combined house and outdoor activities 

using model 1; however, the correlation was weak (r range .06 to .09, p=.002, .024 and 

.041 respectively). Only walking aid use remained significantly correlated, although weak 

when adjusting for model 2 (r= 0.06, p=.034). Significance was lost when further adjusted 

for eGFR. There was no significant correlation for appendicular lean mass or 5-year 

change in grip strength under all models. 

Penalized splines in Figure 4.1 indicated a non-linear relationship between 

ucOC/tOC and the relative hazard for a falls-related hospitalization over 14.5 years. When 

looking at the relationship between ucOC/tOC and falls-related hospitalizations (Fig 4.2A 

and 2B) there was a non-linear association with Q1 and Q2 having similar risks and Q3 

and Q4 having similar risks. As such, we combined Q1 and Q2 (referent group) and Q3 

and Q4 (elevated ucOC/tOC ratio) for all further analyses. Kaplan Meier (unadjusted) and 

multivariable-adjusted Cox Survival curves by the median of ucOC/tOC are shown in 

Figure 4.2A and 2B, respectively (see supplementary figure 4.1 for these analyses by 

quartiles of ucOC/tOC). Those with the above-median ucOC/tOC ratio had a higher 

relative hazard of falls-related hospitalizations (unadjusted log rank p=0.004) that 

remained significant in the multivariable-adjusted model HR 1.31, 95%CI 1.09-1.57, p= 

0.004. In further adjustment analyses, we sought to determine the role of physical function 

(TUG) and grip strength in the relationship between ucOC/tOC and injurious fall risk. 

When adding muscle function (TUG and GS) to the multivariable adjusted model, this 

attenuated the relationship of ucOC/tOC with the relative hazard of a falls-related 

hospitalizations (HR 1.12 95%CI 0.99-1.28, p=.078). When comparing individuals with 

higher to lower ucOC/tOC, similar relative hazards were recorded for a falls-related 

hospitalization (HR 1.34 95%CI 1.13-1.62, p=0.002) when 25OHD (and season the 
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sample was obtained) was included in the multivariable-adjusted model. The inclusion of 

mean systolic BP to our multivariable-adjusted model did not augment the estimates for 

fall-related hospitalization when comparing women with higher to lower ucOC/tOC (HR 

1.29 95%CI 1.07-1.54, p=0.007). 

 

Figure 4.1 Multivariable-adjusted hazard ratios for ucOC/tOC ratio in relation to risk of 
a falls-related hospitalizations over 14.5 years based on fitted penalized splines using the 
median of Quartile 1 (0.40) as the reference level. The multivariable-adjusted model 
included age, BMI, treatment code (calcium/placebo), smoking history, ASVD history 
and diabetes (Model 2). Solid line is estimated HR and shaded areas represent 95% CI. 
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Figure 4.2 Kaplan-Meier curve (2a) and Cox regression analyses (2b) by the ucOC/tOC ratio and falls-related hospitalization. Kaplan Meier 
(unadjusted, log-rank p=0.004) and multivariable-adjusted Cox Proportional Hazards regression curves by the median of ucOC/tOC. Cox 
regression analysis adjusted for age, body mass index, treatment, diabetes, smoking history and previous atherosclerotic vascular disease.

Log-Rank P=0.004 

2A 2B 
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 Discussion 

We report that in older women the ucOC/tOC ratio may be useful to identify a 

large proportion (~50%) of women with poorer TUG, including its decline, and increased 

risk for injurious falls requiring hospitalization. When comparing women based on 

quartile stratification of ucOC/tOC levels, we show that (a) those with the highest 

ucOC/tOC levels compared to those with the lowest, had the slowest TUG performance 

and, (b) with the ratio also sufficiently sensitive to detect fear of falling limiting home 

and outdoor activities suggesting falls may have already occurred. In addition, our results 

indicate that a higher ucOC/tOC ratio was significantly correlated to (c) poorer TUG 

performance, and worsening performance over a 5-year period and, (d) an increased risk 

of falls-related hospitalizations, even after adjustments of additional confounders. Finally, 

after adjustment for muscle function measures (TUG and GS), this relationship was 

attenuated suggesting the ucOC/tOC relationship with injurious falls may be via impaired 

muscle function. 

Evidence from animal and preclinical studies demonstrate that ucOC may be 

involved in muscle maintenance, metabolism and strength, however, its function in 

humans is less clear (16,18-24). We report that women with higher ucOC/tOC ratio have 

poorer physical function, mobility, and a greater fear of falling. We also demonstrate that 

physical function (TUG) is a key contributor to the relationship between the ucOC/tOC 

ratio and relative hazard of falls-related hospitalizations, suggesting that worsening 

function is associated with increasing ucOC/tOC ratio concomitantly increasing risk for 

falls. Previously we reported that higher ucOC/tOC ratio was related to increased muscle 

strength in older women (20); however, only strength and not a physical function measure 

was assessed. A possible explanation for the conflicting results is the fasting/feeding state 

at the time of the blood sampling. In both studies blood was collected in the morning, 

however, in the current study women fasted overnight prior to blood collection, whereas 

in the previous study blood was sampled following a light meal. We and others have 

previously demonstrated that a meal and/or glucose load can suppress OC and ucOC, and 

other bone markers (52-55). Therefore, this may affect the correlations and it may also make 

it difficult to compare between these studies. Notably, similar results from both studies 

show that the ucOC/tOC ratio is potentially a more sensitive measure, than ucOC alone, 

as an indicator of physical function and possibly falls-related clinical outcomes, at least 

in humans. 
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Clinically, circulating tOC levels are used as a surrogate measure for bone 

turnover (11,12,56-58), and we have shown that aging is associated with a “U”-shape pattern 

across the adult lifespan for all OC-forms in men (25). Currently, only tOC is measured 

clinically, and in research however, emerging evidence, including this work, suggests that 

more could be understood about the dynamics of OC and its forms and the relationships 

to clinical outcomes. We demonstrate in the current study that older women with higher 

ucOC/tOC ratio, which would suggest poorer vitamin K status, have greater risk of falls-

related hospitalizations. This is of clinical relevance as poorer vitamin K status could be 

detrimental. Notably, higher vitamin K intake has been associated with improved muscle 

function, a reduction in falls and improved bone quality, possibly also decreasing fracture 

risk (27,28,40). Overall, our findings are in agreement with others, who show that lower 

cOC/tOC (or conversely, higher ucOC/tOC) can predict fracture risk in older men (59) but 

adds a further potential mechanism, poor muscle and physical function. In older women, 

it appears that the ratio is more strongly related to physical function and falls risk than 

ucOC alone.  

The findings of the current study may partly be explained by age-related changes 

on the skeleton and skeletal system in an attempt to maintain normal bone homeostasis. 

It is possible that the increase in ucOC with ageing is related to the deterioration in the 

material property of bone as we age. Other potential compensatory mechanisms may be 

explained by the weakening muscle potentially altering osteoblast physiology perhaps via 

a biochemical or biomechanical cross-talk, as an attempt to stimulate the failing 

osteoblasts (60,61). Another possible explanation could be related to the increasing vitamin 

K requirement as we age to maintain both bone and muscle health (27,28,40,62,63). 

Interestingly in our cohort, women with higher ucOC/tOC levels and poorer muscle 

function parameters also had lower dietary vitamin K intake and, their ucOC/tOC levels 

would fall in the upper limit of our previously proposed thresholds limits for older men 

of similar age (25). We now extend on our previous work by demonstrating that a higher 

ucOC/tOC ratio, in older women, is related to poorer TUG performance, and an increased 

risk for falls-related hospitalization, partly explained by impaired muscle function. This 

suggests that the ucOC/tOC ratio may enable, in the clinical setting, the early 

identification of individuals at risk for low physical function and prevent future falls.  
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4.5.1 Strengths 

The strengths of our study include that we have investigated, for the first time, the 

longitudinal relationship between ucOC/tOC ratio with muscle function and falls risk in 

a large cohort of older women. All samples in this study were obtained in a fasted state 

and in the morning, which accounts for the known effects of the circadian rhythm on OC 
(52-54). This is also the first study to investigate the relationship of OC, ucOC and the 

ucOC/tOC ratio with indices of muscle function and, between the ucOC/tOC ratio and 

time to falls related hospitalization data. In addition, all OC analysis was completed by 

the same technician and laboratory utilizing identical methodology, thus minimizing 

variation due to technical error.  

 

4.5.2 Limitations 

There are some potential limitations of our study. While the data set is large, it 

only includes data consisting of predominately Caucasian older women, therefore our 

findings may not be generalizable to other ethnicities, younger individuals, or men. 

Additionally, we cannot infer causality based on our results due to the observational 

nature of the study design. We have used the methods proposed by Gundberg et al. (467) 

to analyze ucOC. However, the levels are highly dependent on the technical details 

including the antibody, specific binding capacity of the hydroxyapatite, amount of the 

apatite or ELISA used. Different research groups also use different methodologies to 

analyze ucOC and therefore the findings of this study may not be transferable to studies 

that have used different techniques. Future studies should explore the relationship of OC, 

ucOC and the ucOC/tOC ratio with muscle parameters and falls outcomes in men as this 

may be different than observed for women. A further limitation is medications known to 

increase falls risk such as sedatives, anti-epileptic drugs and antidepressants being taken 

at the baseline visit were not available for this study. Lastly, it will be important that 

future studies will independently replicate our findings to provide further evidence for the 

use ucOC/OC to identify older women at higher risk of falls-related hospitalization. 

 

4.5.3 Conclusion 

In summary, increased ucOC/tOC ratio is associated with low physical function 

and increased risk of falls related hospitalization in older women. Early identification of 
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women at higher risk may enable prevention and intervention strategies to occur, reducing 

risk for injurious falls.  
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multivariable-adjusted Cox Proportional Hazards regression curves (B) by quartiles of 
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Chapter 5: The effects of acute exercise on bone 

turnover markers in middle-aged and older adults: a 

systematic review 
 

Context:  

Available evidence demonstrates that acute exercise can alter BTMs, yet majority 

of studies are performed in younger adults. It is also unclear if different modes of exercise 

affect BTMs differently. Here, we systematically reviewed the literature for acute 

exercise studies investigating BTMs in middle aged and older adults. This study was a 

crucial first step to understanding if older adults respond differently to younger adults, 

and if other characteristics of the exercise protocol effect BTMs differently. This was also 

an important precursor step prior to developing the clinical trial in study 4. 

 

This study has been published: 

Smith, C., Tacey, A., Mesinovic, J., Scott, D., Lin, X., Brennan-Speranza, T. C., Lewis, 

J. R., Duque, G., & Levinger, I. (2021). The effects of acute exercise on bone turnover 

markers in middle-aged and older adults: A systematic review. Bone, 143, 115766. 

https://doi.org/10.1016/j.bone.2020.115766 

 

Please see Appendix 4 for the published version of this manuscript. 

 

I have also presented this study at two conferences: 

 Australia and New Zealand Bone and Mineral Society conference (2021) as a 

poster and e’poster 

 World Confress of Osteoporosis, Osteoarthritis and Musculoskeletal disease- 

International Osteoporosis Foundation Conference (WCO-IOF-ESCEO) (2021) 

as a poster and e’poster 
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 Abstract  

Background: Bone turnover is the cellular machinery responsible for bone integrity and 

strength and, in the clinical setting, it is assessed using bone turnover markers (BTMs). 

Acute exercise can induce mechanical stress on bone which is needed for bone 

remodelling, but to date, there are conflicting results in regards to the effects of varying 

mechanical stimuli on BTMs.  

Objectives: This systematic review examines the effects of acute aerobic, resistance and 

impact exercises on BTMs in middle and older-aged adults and examine whether the 

responses are determined by the exercise mode, intensity, age and sex 

Methods: We searched PubMed, SCOPUS, Web of Science and EMBASE up to 22nd 

April 2020. Eligibility criteria included randomised controlled trials (RCTs) and single-

arm studies that included middle-aged (50 to 65 years) and older adults (>65 years) and, 

a single-bout, acute-exercise (aerobic, resistance, impact) intervention with measurement 

of BTMs. PROSPERO registration number CRD42020145359 

Results: Thirteen studies were included; 8 in middle-aged (n= 275, 212 women/63 men, 

mean age= 57.9 ± 1.5 years) and 5 in older adults (n= 93, 50 women/43 men, mean age= 

68.2 ± 2.2 years). Eleven studies included aerobic exercise (AE, 7 middle-aged/4 older 

adults), and two included resistance exercise (RE, both middle-aged). AE significantly 

increased C-terminal telopeptide (CTX), alkaline phosphatase (ALP) and bone-ALP in 

middle-aged and older adults. AE also significantly increased total osteocalcin (tOC) in 

middle-aged men and Procollagen I Carboxyterminal Propeptide and Cross‐Linked 

Carboxyterminal Telopeptide of Type I Collagen in older women. RE alone decreased 

ALP in older adults. In middle-aged adults, RE with impact had no effect on tOC or 

BALP, but significantly decreased CTX. Impact (jumping) exercise alone increased 

Procollagen Type 1 N Propeptide and tOC in middle-aged women. 

Conclusion: Acute exercise is an effective tool to modify BTMs, however, the response 

appears to be exercise modality-, intensity-, age- and sex-specific. There is further need 

for higher quality and larger RCTs in this area. 
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 Introduction  

The skeleton has protective, mechanical and metabolic roles, providing structural 

support and a site for calcium storage (1-3). Bone should be strong, to prevent fractures, 

but light, to enable movement in a gravitational environment (1). Bone turnover, the 

cellular machinery responsible for bone integrity and strength, is a finely balanced process 

responsive to mechanical loads and hormonal changes (4-6).   

Exercise is a non-pharmacological intervention that can improve bone health and 

reduce the risk of osteoporosis (7-11). The anabolic effects of exercise on osseous tissues 

are positively associated with the amount of mechanical strain exerted (12). In animals, 

the strain-adaptive remodelling response requires intermittent and dynamic, but not static, 

loading (13-18). Additionally, loading periods only need to be very short to stimulate 

adaptive responses, and that bone formation is threshold-driven and influenced by strain 

rate, frequency, amplitude and duration of loading (17-22). Altogether, these findings 

demonstrate that bone requires dynamic (not static) strains (i.e. impact loading) for 

adaptive responses and, higher physiological rates compared to low rates and applied 

rapidly, to increase this response (14-16, 19, 23). 

In humans, higher impact activities with rapid rates of loading (i.e. tennis/squash) 

are more osteogenic compared with lower impact sports (i.e. running/cycling) (24-26). 

Mechanical loads, produced by exercise, change local microenvironments of the 

canalicular networks within the bone framework via dynamic fluid shifts stimulating local 

osteocytes and ultimately bone turnover (27-29). Exercise serves varying purposes across 

the lifespan. In children, exercise is important for optimisation of peak bone mass, 

whereas, in older adults, exercise serves to maintain/reduce the rate of bone loss (9, 10, 

30). However, the search for a relationship between exercise and bone mineral density 

(BMD) demonstrates contradictory findings, some reporting beneficial effects (7, 11, 31), 

while others have not (32-34). Moreover, available human data shows that the magnitude 

of benefit on bone from exercise is inconsistent, often influenced by safety concerns 

leading to conservatively prescribed training loads (35-39).  

To optimise exercise effects on bone health a better understanding of the 

metabolic responses of bone tissue to various mechanical stimuli is needed. By 

convention, BMD is widely used as a measure of bone health to predict fracture risk (40), 

however, it represents a static bone mineral status and cannot be used to estimate acute 

bone metabolic changes such as those induced by acute exercise. Therefore, BTMs 
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represent an easy to measure option to assess the dynamic fluctuations in bone turnover 

(Table 1) (41). Using BTMs to describe bone metabolic activity comes with complexities, 

contributing to the lack of consensus in the literature. Whilst these markers are sensitive, 

they have high biological variability attributed to differences in i.e. blood sampling, study 

protocols, effects of feeding and circadian rhythm (41-43). As such, the aims of this 

systematic review were to 1) examine the effects of acute exercise on BTMs in adults 

over 50 years of age and to determine if middle-aged and older adults respond differently, 

and 2) to understand whether these effects were exercise modality-, exercise intensity-, 

sex- or BTM-specific.  

 

Table 5.1. Markers of bone turnover that have been used in the exercise literature 

Markers of bone resorption 

C‐terminal crosslinked telopeptide of type I collagen CTX, 
Crosslaps 

N-terminal telopeptide of type I collagen NTX 
Cross‐linked carboxyterminal telopeptide of type I collagen ICTP 
Tartrate-resistant acid phosphotase TRAP 
Receptor activator of nuclear factor κB ligand 
Sclerostin 

RANKL 
SCL 

Markers of bone formation 

Alkaline phosphatase (total) ALP 
Alkaline phosphatase (bone specific) B-ALP 
Procollagen I carboxyterminal propeptide PICP 
Procollagen type 1 n propeptide P1NP 
Osteocalcin OC 
Osteoprotegerin OPG 

 

 Methods 

This systematic review was conducted in accordance with the Preferred Reporting 

Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines (44) and was 

registered in the International Prospective Register of Systematic Reviews (PROSPERO) 

- CRD42020145359. 
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Figure 5.1 Identification screening and selection of studies (PRISMA Flow Diagram) 

5.3.1 Inclusion criteria 

The inclusion criteria for studies in brief were: (i) randomised controlled (RCT), 

cross-sectional or single arm trials including quasi-randomised design; (ii) adults ≥50 

years of age, middle-aged adults defined as mean age ≥50 to <65 years and older adults 

defined as mean age ≥65 years; (iii) intervention of interest includes acute bout or single-

bout of exercise; and (v) outcome of interest was BTMs (see supplementary 5.1, PICOS 

protocol). 
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5.3.2 Data extraction 

CS and AT performed the literature search (supplementary 5,2, search strategy) 

and extracted data from the included studies, IL revised discrepancies. The following data 

were extracted: (i) characteristics of the participants i.e. sample size, sex, age (years), 

height (centimetres), weight (kilograms) and body mass index (BMI, height/weight2); (ii) 

details of the acute exercise intervention (intensity, duration, volume, mode); and (ii) 

details of outcomes of interest (BTMs) measured at baseline and post- acute exercise.  

 

5.3.3 Quality assessment: Risk of bias and Methodological Index for Non-

Randomised Studies 

Risk of bias assessments were independently conducted by CS and AT. RCTs were 

assessed using the Cochrane Collaborations Risk of Bias 2 (ROB2) tool (45). We assessed 

selection bias (random sequence generation, allocation concealment), performance bias 

(blinding of participant and personnel), detection bias (outcome assessor blinding), 

attrition bias (handling of incomplete outcome data) and other bias including baseline 

imbalance on the primary outcome and selective reporting. All other trials not meeting 

the criteria for a RCT were assessed using the Methodological Index for Non-Randomised 

Studies (MINORS) scale (46).  

 

 Results 

We identified 3637 articles. After removal of duplicates, 1465 unique titles and 

abstracts were screened, and 1421 articles were excluded. The full text of 44 articles was 

reviewed and a further 31 were excluded, leaving 13 articles for inclusion in our 

qualitative synthesis (Fig. 5.1). The authors of four studies were contacted for further 

information (47-50). One intervention was described in two articles but with different 

stratification of groups, both articles were included and considered as a single trial (51, 

52). Another study had additional analyses published at a later date, both articles were 

included but considered as a single trial (49, 50). Herein for both of these studies, the first 

published paper will be referenced.  
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5.4.1 Quality assessment 

Results of the methodological quality assessments are shown in Table 5.2 and Figure 

5.2. Only 3 studies were RCTs (53-55) and assessed using the ROB2 tool. All others were 

assessed using the MINORs scale. No studies achieved a maximum quality score. Scores 

ranged on the ROB2 (Figure 5.2) and on the MINORs scale (Table 5.2) from 43.8% to 

87.5%. The most common source of likely methodological bias using the ROB2 tool was 

the randomisation process and deviations from the intended study endpoint. Using the 

MINORs scoring system, the likely source of methodological bias was the absence of 

unbiased assessment of the study endpoint (n= 10) and prospective calculation of study 

sample size (n= 8). 

 

Table 5.2. Quality rating scale (MINORs) 

MINORs Scale (detailed below and scored as: 0, not reported; 1, reported but 
inadequate; 2, reported and adequate) 
Field 9 to 10 only relevant for comparative studies 

Author, year 1.  2.  3.  4.  5.  6.  7. 8.  9.  10.  11.  12.  Score 
1. Kim, et al. 
(2014) 

1 1 0 1 0 2 2 0 n/a n/a n/a n/a 43.8 
% 

2. Levinger, et 
al. (2011) 

2 2 2 2 0 2 2 0 1 2 2 2 79.2 
% 

3. Levinger, et 
al. (2014) 

2 2 2 2 0 2 2 2 n/a n/a n/a n/a 87.5 
% 

4. Maimoun, et 
al. (2005) 

1 2 2 2 0 2 2 0 1 1 2 2 70.8 
% 

5. Rudberg, et 
al. (2000) 

2 1 0 2 0 2 2 0 n/a n/a n/a n/a 56.3 
% 

6. Thorsen, et 
al. (1995) 

2 1 1 2 0 2 2 0 n/a n/a n/a n/a 62.5 
% 

7. Thorsen, et 
al. (1996) 

2 1 1 2 0 2 2 0 n/a n/a n/a n/a 62.5 
% 

8. Aly, et al. 
(2017) 

1 1 2 2 0 2 2 0 n/a n/a n/a n/a 62.5 
% 

9. Wherry, et al. 
(2019) 

2 2 2 2 0 2 2 2 1 2 2 1 83.3 
% 

10. Zerath, et al. 
(1997) 

2 1 2 2 0 2 2 0 n/a n/a n/a n/a 68.8 
% 

MINORs Scale assessed as per; 1. A clearly stated aim; 2. Inclusion of consecutive 
patients; 3. Prospective data collection; 4. Endpoints appropriate to study aim; 5. unbiased 
assessment of study endpoint; 6. follow up period appropriate to the aim; 7. loss to follow 
up < 5%; 8. Prospective calculation of study size; 9. adequate control group; 10. 
contemporary groups; 11. Baseline equivalence of groups and 12. Adequate statistical 
analysis 
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Figure 5.2 Risk of bias ratings 

5.4.2 Study population and study design 

Descriptive characteristics and study outcomes of included studies are described 

in Table 5.3. Two studies included adults with osteoporosis (untreated) (54, 56), five 

studies excluded individuals with osteoporosis/conditions affecting bone metabolism (48, 

49, 52, 53, 57) and one study included adults with osteopenia (47). Four studies did not 

state whether they excluded participants with osteoporosis (55, 58-60). Five studies 

excluded individuals taking medications/supplements that effect bone metabolism (47, 

49, 52, 53, 57), one stated except for calcium and vitamin D (54), four studies included 

participants not taking medications (56, 58, 60, 61) and three studies did not refer to 

medication use (48, 55, 59). 

Of the thirteen studies included, eight were in middle-aged (mean age <65 years) 

(48, 49, 53-55, 58-60) and five were in older adults (mean age >65 years) (47, 52, 56, 57, 
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61). Sample sizes ranged from 11 to 150 (total combined data of the 13 studies n= 336 

[220 women, 116 men]). Participants’ age range was 52 to 73 years (mean age 62 ± 6 

years) and BMI was 23.5 to 33.1 kg/m2 (mean BMI 26.85 ± 3.33 kg/m2). Sex-distribution 

for included studies was predominately women (71%); 77% of middle-aged and 54% of 

older adults were women. 

 Eleven studies evaluated effects of acute AE exercise on BTMs (seven in middle-

aged (48, 49, 54, 55, 58-60), and four in older adults (47, 52, 57, 61)). Two studies 

evaluated effects of acute combined RE and impact (middle-aged adults) (48, 54), one 

study evaluated the effects of acute impact exercise alone (middle-aged adults) (53), and 

one study evaluated the effects of acute RE alone (older adults) (56) on changes in BTMs. 

Only two studies reported that the exercise was supervised (47, 53). Exercise protocols, 

blood sampling protocols and effects of acute exercise on BTMs have been described in 

Table 3 including all reported levels and significant changes. 

Nine studies reported that exercise and blood sampling were performed in the 

morning (48, 49, 52-55, 58, 59, 61), one was performed in the afternoon (60), and three 

did not state the time of the day (47, 56, 57). Seven studies were performed in the morning 

following an overnight fast (48, 49, 52-55, 59), one stated at least 12-hours of fasting (no 

indication of time) (56), and five studies were not performed in a fasted state (47, 57, 58, 

60, 61). One study involved a controlled pre-feed (47), and another stated a 2-hour fast 

after a meal free from milk and cheese (60). Only three studies reported controlling for 

exercise on preceding days (53, 58, 61). One study mentioned withholding dietary 

supplements (53). Post-exercise blood sampling varied greatly from one to four 

timepoints; four studies taking only immediately post (51, 52, 54, 57, 59), the longest 

taken at 72-hours (58, 61). 
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Table 5.3. Study characteristics and outcomes 

Study details 
Author, journal 

(year) 
 

Study 
design 

Participants 
Sample (n, M/F) 

Age (years) 
Height (cm) 

Weight (kg) or 
BMI (kg/m2) 
mean ± SD 

Acute exercise intervention 
T: type 

D: duration 
I: intensity 

S&R: sets and reps 
 

Blood sampling  
protocol 

T: timepoints 
C: controls 
B: BTMs 
measured 

Main findings 
Effects of acute exercise compared to baseline 

 

Middle-aged adults mean age 50 to 65 years 

Gombos et al. 
BMC 

Musculoskeletal 
Disorders 

(2016) (54) 

RCT Healthy middle-
aged women 
n= 150  
 
RE + IMP (n=50)  
60.2 ± 6.9 yrs 
162.6 ± 9.8 cm 
69.7 ± 11.8 kg 
26.3 ± 5.4 kg/m2 
-2.2 ± 0.7 T-score 
 
AER (n=50) 
58.7 ± 6.3 yrs 
159.6 ± 6.4 cm 
72.7 ± 14.8 kg 
27.2 ± 6.1 kg/m2 
-1.9 ± 0.9 T-score 
 
CON (n=50) 
57.8 ± 8.4 yrs 

Randomised to:  
1. RE + IMP 
T: resistance exercises of 
large muscle groups, core 
stabilisation and impact 
D: 5 mins warm up, 30 mins 
resistance exercises, 8 mins 
cool down 
I: not stated 
S&R: 3 sets of 4 to 8 reps 
 
2. AER 
T: brisk walking (W) at 100 
steps/min 
D: 46 mins 
I: moderate intensity at 3 to 6 
METs 
 
3. CON 
T: nil intervention 

T: baseline, post 
ex (+0 to 5 min) 
C: OFT, AM 
B: CTX, BALP 
and SCL 

Post exercise at 0 to 5 min (all mean ± SD) 
↑ BALP AER only 
RE+IMP 41.7 ± 12.8 to 41.8 ± 12.0 % 
AER 41.8 ± 7.6 to 42.1 ± 8.4 % * 
CON 42.2 ± 10.4 to 42.1 ± 10.2 % 
 
↓ CTX RE+IMP only 
RE+IMP 303.6 ± 156.8 to 276.4 ± 143.6 
pg/mL** 
AER 247.3 ± 106.2 to 253.9 ± 107.5 pg/mL 
CON 259.1 ± 110.2 to 256.7 ± 111.2 pg/mL 
 
↑ SCL AER only 
RE+IMP 26.8 ± 14.0 to 29.8 ± 15.7 pmol/L 
AER 23.6 ± 10.0 to 29.9 ± 10.8 pmol/L** 
CON 24.0 ± 8.8 to 24.2 ± 8.8 pmol/L 
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Study details 
Author, journal 

(year) 
 

Study 
design 

Participants 
Sample (n, M/F) 

Age (years) 
Height (cm) 

Weight (kg) or 
BMI (kg/m2) 
mean ± SD 

Acute exercise intervention 
T: type 

D: duration 
I: intensity 

S&R: sets and reps 
 

Blood sampling  
protocol 

T: timepoints 
C: controls 
B: BTMs 
measured 

Main findings 
Effects of acute exercise compared to baseline 

 

161.7 ± 5.0 cm 
69.5 ± 13.0 kg 
28.1 ± 3.9 kg/m2 

-2.1 ± 0.7 T-score 
(T-score site not 
stated) 

Levinger, I., et 
al. Osteoporos 
Int (2011) (48) 

Randomised 
parallel 
design 

Middle-aged obese, 
men 
n= 28 
 
AER (n= 13) 
52.8± 5.41 yrs 
174.9 ± 6.49 cm 
100.5 ± 18.75 kg 
32.7 ± 5.41 kg/m2 
 
RE + IMP (n= 15) 
52.1 ± 6.97 yrs 
177.7 ± 5.03 cm 
99.2 ± 13.94 kg 
31.5 ± 4.65 kg/m2 

Randomised to: 
1. AER 
T: cycling 
D: 45 mins 
I: 75% of VO2

Peak 
 
2. RE + IMP 
T: resistance exercise 
including power leg press 
and jumping 
D: 45 mins 
I: 70 to 75% of 1RM 
S&R: 2 x 5 sets of 8 leg 
press, 3 x 5 sets of 10 jumps 

T: baseline, post 
ex (+0, 30, 60 and 
+120 min) 
C: OFT, AM 
B: tOC (and 
ucOC) 

Post exercise to peak (all mean ± SD) 
↑ tOC AER group only 
AER 5.32 ± 2.89 to 6.08 ± 3.51 ng/mL ** 
RE+IMP 4.82 ± 1.63 to 5.01 ± 2.03 ng/mL 
 
↑ ucOC AER group only 
AER 4.64 ± 3.03 to 5.08 ± 3.5 ng/mL ** 
RE+IMP 3.93 ± 1.53 to 3.99 ± 1.51 ng/mL 
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Study details 
Author, journal 

(year) 
 

Study 
design 

Participants 
Sample (n, M/F) 

Age (years) 
Height (cm) 

Weight (kg) or 
BMI (kg/m2) 
mean ± SD 

Acute exercise intervention 
T: type 

D: duration 
I: intensity 

S&R: sets and reps 
 

Blood sampling  
protocol 

T: timepoints 
C: controls 
B: BTMs 
measured 

Main findings 
Effects of acute exercise compared to baseline 

 

Levinger, I., et 
al. JBMR 

(2014) (49) 
 

additional 
analysis for 
PINP and β-

CTX reported in 
Levinger, I., et 

al. BoneKEy 
Rep (2015) (50) 

Non-
randomised, 

case-
controlled 
crossover 

Middle-aged obese, 
non-diabetic men  
n= 11 
58.1 ± 7.29 yrs 
176 ± 5.64 cm 
102.5 ± 12.93 kg 
33.1 ± 4.64 kg/m2 

Completed both 
1. CON 
T: complete rest 
D: 30 mins 
 
2. AER 
T: cycle ergometer, high 
intensity exercise  
D: 30 mins 
I: 4 min warm up @ 50 to 60 
% HRPeak & cycling as: 
4 x 4min @ 90 to 95% 
HRPeak 2 min active recovery 
@ 50 to 60% HRPeak 

T: baseline, post 
ex (+0, 30 and 60 
min) 
C: OFT, AM 
B: tOC (and 
ucOC, 
ucOC/tOC) and 
P1NP and β-CTX 

Post exercise to peak (all mean ± SEM) 
NC tOC  
AER 18.2 ± 1.4 to 18.61 ± 1.48  ng/mL 
 
NC P1NP 
AER 36.1 ± 1.3  to 37.09 ± 1.56 µ/L-1 
 
↑ β-CTX (~16%) 
AER 306.5 ± 41 to 357.45 ± 50.33 µ/L-1 ** 
 
↑ ucOC (~2.1%)  
AER 10.6 ± 0.8 to 11.21 ± 0.69 ng/mL * 
 
↑ ucOC/OC (~1.9%) 
AER 58.9 ± 2.0 to 62.1 ± 1.9 % * 

Levinger, I., et 
al. Physiol Rep 

(2016) (55) 

Randomised, 
case-

controlled 
crossover 

Postmenopausal 
women  
n= 10 
62.8 ± 8.22 yrs 
161.2 ± 5.06 cm 
73.6 ± 10.75 kg 
28.3 ± 4.11 kg/m2 

Completed both: 
1. CON 
T: complete rest 
D: 30 mins 
 
2. AER 
T: cycle ergometer 

T: baseline, post 
ex (+0, 30, 60 and 
120 min)  
C: OFT, AM 
B: β-CTX, P1NP, 
tOC (and ucOC) 
 

Post exercise to peak (all mean ± SD) 
NC tOC  
28.1 ± 8.6 to 28.38 ± 8.76 ng/mL 

 
NC P1NP  
67.2 ± 7.6 to 62.6 ± 19.09 µ/L-1 
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Study details 
Author, journal 

(year) 
 

Study 
design 

Participants 
Sample (n, M/F) 

Age (years) 
Height (cm) 

Weight (kg) or 
BMI (kg/m2) 
mean ± SD 

Acute exercise intervention 
T: type 

D: duration 
I: intensity 

S&R: sets and reps 
 

Blood sampling  
protocol 

T: timepoints 
C: controls 
B: BTMs 
measured 

Main findings 
Effects of acute exercise compared to baseline 

 

D: 30 mins 
I: 70 to 75 % of VO2

Peak 
 

NC β-CTX  
429.3 ± 40.1 to 470.1 ± 145.61 µ/L-1 
 
↑ ucOC  
13.83 ± 6.71 to 15.04 ± 7.35 ng/mL ** 

Prawiradilaga 
et al. Biol Sport 

(2020) (53) 

RCT-
crossover 

Healthy, sedentary 
postmenopausal 
women  
n= 29 
60.0 ± 5.6 yrs 
165.2 ± 5.4 cm 
65.8 ± 7.7 kg 
24.1 ± 2.5 kg/m2  

Each participant performed 
in a random order 3 high-
impact exercise trials and 
CON 
 
Session 1- IMPACT 
T: 7 min low impact warm 
up on a gymnastic mat, then 
counter movement jump 
(CMJ) vertical jump with 
two leg launch and land. 
 
Session 2- IMPACT 
T: 7 min low impact warm 
up on a gymnastic mat then 
drop jump (DJ) from a 32 cm 
box, the landing continued 
into a vertical two-leg jump  
 

T: baseline, post 
ex (immediately 
after and +2 hrs) 
C: AM, OFT, nil 
vigorous exercise 
preceding 48 hrs, 
dietary 
supplements 
withheld 
B: P1NP, tOC, 
CTX 

Post exercise at 0 min (all mean ± SE) 
P1NP ↑ for CMJ, DJ and DDJ, NC for CON 
CMJ 70.2 ± 5.6 to 75.6 ± 6.3 µg/L** 
DJ 71.0 ±5.5 to 77.6 ± 5.8 µg/L** 
DDJ 73.0 ± 6.3 to 80.8 ± 6.8 µg/L** 
CON 71.9 ± 5.3 to 70.1 ± 5.6 µg/L 
 
tOC ↑ for DJ only NC for CMJ, DDJ and 
CON 
CMJ 31.2 ± 2.3 to 32.2 ± 2.4 µg/L 
DJ 30.7 ±2.2 to 32.4 ± 2.5 µg/L* 
DDJ 30.6 ± 2.2 to 31.8 ± 2.3 µg/L 
CON 31.1 ± 2.1 to 30.0 ± 2.0 µg/L 
 
NC for CTX all sessions 
CMJ 636.0 ± 83.4 to 635.5 ± 80.3 ng/L 
DJ 645.2 ± 88.3 to 666.2 ± 91.0 ng/L 
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Study details 
Author, journal 

(year) 
 

Study 
design 

Participants 
Sample (n, M/F) 

Age (years) 
Height (cm) 

Weight (kg) or 
BMI (kg/m2) 
mean ± SD 

Acute exercise intervention 
T: type 

D: duration 
I: intensity 

S&R: sets and reps 
 

Blood sampling  
protocol 

T: timepoints 
C: controls 
B: BTMs 
measured 

Main findings 
Effects of acute exercise compared to baseline 

 

Session 3- IMPACT 
T: 7 min low impact warm 
up on a gymnastic mat then 
DDJ (above) but performed 
diagonally forward 45° 
 
For session 1 to 3: 
D: not stated 
I: not stated 
S&R: 6 sets of 10 reps 
interspersed with 90 sec rest 
 
Session 4 CON 
T: complete rest 
 

DDJ 612.8 ± 85.9 to 632.8 ± 85.4 ng/L 
CON 590 ± 73.6 to 582.4 ± 74.4 ng/L 
 
Post exercise at 2 hrs 
NC for P1NP all sessions 
CMJ 70.2 ± 5.6 to 68.7 ± 6.0 µg/L 
DJ 71.0 ±5.5 to 67.5 ± 6.0 µg/L 
DDJ 73.0 ± 6.3 to 70.2 ± 6.0 µg/L 
CON 71.9 ± 5.3 to 70.6 ± 5.4 µg/L 
 
tOC ↓ for CMJ, DJ and CON only 
CMJ 31.2 ± 2.3 to 28.9 ± 2.2 µg/L** 
DJ 30.7 ±2.2 to 28.3 ± 2.5 µg/L** 
DDJ 30.6 ± 2.2 to 29.2 ± 2.2 µg/L 
CON 31.1 ± 2.1 to 28.1 ± 2.0 µg/L** 
 
CTX ↓ for all sessions 
CMJ 636.0 ± 83.4 to 527.9 ± 65.7 ng/L** 
DJ 645.2 ± 88.3 to 525.5 ±69.0 ng/L** 
DDJ 612.8 ± 85.9 to 519.0 ± 69.1 ng/L** 
CON 590 ± 73.6 to 501.7 ± 65.8 ng/L** 
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Study details 
Author, journal 

(year) 
 

Study 
design 

Participants 
Sample (n, M/F) 

Age (years) 
Height (cm) 

Weight (kg) or 
BMI (kg/m2) 
mean ± SD 

Acute exercise intervention 
T: type 

D: duration 
I: intensity 

S&R: sets and reps 
 

Blood sampling  
protocol 

T: timepoints 
C: controls 
B: BTMs 
measured 

Main findings 
Effects of acute exercise compared to baseline 

 

Rudberg et al. 
Calcif Tissue Int 

(2000) (60) 

Non-
randomised, 
single arm 

Postmenopausal 
women  
n= 8 
57 ± 4 yrs 
164 ± 5 cm 
69.5 ± 9.6 kg 
25.9 ± 3.6 kg/m2 
 
 

1. AER 
T: cycle GXT 
D: average duration of test 
was 24 mins 
I: workload ↑ by 30 W every 
6 min (start 30 W) until 
exhaustion 
 
 

T: baseline, post 
ex (+0 and 20 
min) 
C: PM, 2hrs post 
feed (NFT) 
B: ICTP, ALP 
total, B-ALP 1 
and 2 and tOC 

Post exercise at 0 min (all mean ± SD) 
↑ ALP total, ALP B/I, AP B1, ALP B2, ALP 
L1, ALP L3 
NC all other markers 
ALP total 3.08 ± 0.73 to 3.40 ± 0.70 ukat/L ** 
ALP B/I 0.12 ± 0.06 to 0.15 ± 0.07 ukat/L ** 
ALP B1 0.50 ± 0.18 to 0.63 ± 0.21 ukat/L ** 
ALP B2 1.18 ± 0.45 to 1.49 ± 0.45 ukat/L ** 
ALP B1/B2 0.43 ± 0.07 to 0.43 ± 0.08% 
tOC 3.2± 1.4 to 2.9 ± 1.0 µg/L 
ICTP 2.8 ± 0.9 to 2.7 ± 0.8 µg/L 
 
Post exercise at 20 min 
NS all markers 
ALP total 3.08 ± 0.73 to 3.32 ± 0.84 ukat/L  
ALP B/I 0.12 ± 0.06 to 0.14 ± 0.07 ukat/L  
ALP B1 0.50 ± 0.18 to 0.61 ± 0.20 ukat/L  
ALP B2 1.18 ± 0.45 to 1.46 ± 0.49 ukat/L  
ALP B1/B2 0.43 ± 0.07 to 0.43 ± 0.09% 
tOC 3.2± 1.4 to 3.5 ± 1.2 µg/L 
ICTP 2.8 ± 0.9 to 2.4 ± 0.5 µg/L 
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Author, journal 

(year) 
 

Study 
design 

Participants 
Sample (n, M/F) 

Age (years) 
Height (cm) 

Weight (kg) or 
BMI (kg/m2) 
mean ± SD 

Acute exercise intervention 
T: type 

D: duration 
I: intensity 

S&R: sets and reps 
 

Blood sampling  
protocol 

T: timepoints 
C: controls 
B: BTMs 
measured 

Main findings 
Effects of acute exercise compared to baseline 

 

Kristoffersson 
et al. Eur J Exp 

Musculoskel 
Res (1995) (58) 

Single arm Early 
postmenopausal 
women  
n= 15 
55  ± 3.87 yrs 
165 ± 3.87 cm 
65.0 ± 7.75 kg 
23.7 ± 2.32 kg/m2 

1.06 ± 0.03 g/cm2 

Total BMD 

1. AER 
T: jogging (6 degrees) 
D: 45mins 
I: 50% of VO2

Max estimated 
by 50% of HRMax reserve 

T: baseline, post 
ex (+1, 24 and 72 
hr) 
C: no-exercise for 
3 days prior/post, 
AM, NFT 
B: P1CP, ICTP, 
and tOC  

Post exercise at 1 hr (all mean ± SEM) 
↑ tOC  
tOC 4.8 ± 0.4 to 5.7 ± 0.5 µg/L ** 
PICP 129 ± 15 to 128 ± 15 µg/L 
ICTP 2.33 ± 0.25 to 2.48 ± 0.17µg/L 
 
Post exercise at 24 hr 
NC tOC, PICP or ICTP  
tOC 4.8 ± 0.4 to 5.5 ± 0.6 µg/L 
PICP 129 ± 15 to 134 ± 13 µg/L 
ICTP 2.33 ± 0.25 to 2.61 ± 0.21µg/L 
 
Post exercise at 72 hr 
NC tOC, PICP or ICTP  
tOC 4.8 ± 0.4 to 5.3 ± 0.5 µg/L 
PICP 129 ± 15 to 140 ± 12 µg/L 
ICTP 2.33 ± 0.25 to 2.61 ± 0.21µg/L 

Zerath et al. 
Med Sci Sp 

Exerc. (1997) 
(59) 

Single arm Healthy active 
males 
n= 24 
62.3 ± 5.39 yrs 
172.3 ± 5.39 cm 

1. AER 
T: maximal cycle GXT  
D: ~ 10 mins 
I: increased by 20 W every 2 
min until exhaustion 

T: baseline, post 
ex (+0 to 1 min) 
C: AM, OFT 
B: ALP, tOC 

Post exercise at 0-1 min (all mean ± SEM) 
↑ ALP and tOC 
ALP 41.7 ± 3.5 to 47.8 ± 3.7 µl/L-1 * 
tOC 6.18 ± 0.44 to 7.01 ± 0.36 ng.mL-1 * 



 172 

Study details 
Author, journal 

(year) 
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design 
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Sample (n, M/F) 
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Height (cm) 

Weight (kg) or 
BMI (kg/m2) 
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Blood sampling  
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T: timepoints 
C: controls 
B: BTMs 
measured 

Main findings 
Effects of acute exercise compared to baseline 

 

71.9 ± 8.33 kg 

Older adults mean age >65 years 

Aly et al. 
Geriatric Med 

and Care (2017) 
(57) 

Single arm # Elderly men & 
women 
n= 40 (26/14) 
66.2 ± 6.3 yrs 
163.64 ± 26.44 cm 
71 ± 5.5 kg 
25.24 ± 2.15 kg/m2 
 

1. AER 
T: treadmill GXT 
D: ~10 mins 
I: 3 min warm up @ 40% age 
predicted HRMax, gradual 
increase of exercise intensity 
until reaching 75 to 85% 
calculated HRMax 

T: baseline, post 
ex (+10 to 30 sec) 
C: NFT 
B: ALP 

Post exercise at 10-30 sec (all mean ± SD) 
↑ ALP  
ALP 63.76 ± 19.24 to 75.4 ± 21.9 ** 

 

Kim et al J 
Exerc Nutr 

Biochem (2014) 
(56) 

Single arm Elderly osteopenic 
women 
n= 11 (5 
osteoporotic) 
68.18 ± 3.19 yrs 
151.24 ± 2.94 cm 
54.29 ± 5.21 kg 
23.73 ± 2.07 kg/m2 

-2.51 ± 0.47 T-score 

All participants completed in 
the same order (1 week 
apart) 
1. CON 
T: nil intervention, rest in 
chair 
D: not stated 
 
2. RE 
T: pilates exercises 

T: baseline, post 
ex (+0 and 60 
min) 
C: At least 12 hr 
of fasting 
B: ALP 
 

Post exercise at 0 min (all mean ± SD) 
CON 60.2 ± 13.3 to 60.2 14.0  
RE 59.1 ± 14.0 to 58.5  ± 14.2 
 
Compared to baseline at 60 min 
↓ ALP at 60min 
CON 60.2  ± 13.3 to 58.9 ± 13.6  
RE 59.1  ± 14.0 to 57.1  ± 13.8** 
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Author, journal 

(year) 
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design 
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Sample (n, M/F) 
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Height (cm) 

Weight (kg) or 
BMI (kg/m2) 
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T: timepoints 
C: controls 
B: BTMs 
measured 

Main findings 
Effects of acute exercise compared to baseline 

 

*T-score is whole 
body 

D: ~70 mins including warm 
up and 50 mins of pilates 
exercises 
I: warm up (RPE 9 to 12), 
pilates exercises (RPE 10 to 
14) 
S&R: not stated 

Maimoun et al. 
Br J Sp Med 
(2005) (52) 

 
 
 
 
 
 
 
 

follow up study: 
Maimoun et al. 
J Sci & Sp. Med 

(2009) (51) 
 

Non-
randomised, 
single arm, 

group 
comparison 

Active elderly 
n= 21 (11/10) 
73.3 ± 9.1 yrs 
166.3 ± 9.2 cm 
65.8 ± 13.2 kg 
23.6 ± 2.9 kg/m2 
 
 
 
 
follow up study n= 
45 
Active  
n= 18 (10/8) 
71.7 ± 8.6 yrs 
166.9 ± 9.3 cm 

1. AER 
T: maximal treadmill GXT at 
preferred walking speed 
including a warm up walking 
at 0% grade, followed by 1 to 
2% gradient increase until 
exhaustion 
D: 5 min warm up followed 
by maximal incremental test 
of 8 to 12 mins duration 
I: maximal 
 
 

T: baseline, post 
ex (+0 min) 
C: OFT, AM 
B: CTX, tOC and 
BALP 

2005 study post exercise at 0 min (all mean ± 
SD) 

NC all markers 
CTX 5998 ± 3045 to 5959 ± 2866 pmol l-1 
tOC 12.7 ± 5.5 to 12.5 ± 5.3 ng ml-1 

BALP 13.1 ± 4.8 to 13.2 ± 4.7 ng ml-1 

 

 
 
 
 
2009 study post exercise at 0 min 
↑ BALP for moderately active group only, NC 
all other markers  
 
Active 
CTX 5998 ± 3045 to 5959 ± 2866 pmol l-1 
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B: BTMs 
measured 

Main findings 
Effects of acute exercise compared to baseline 

 

66.1 ± 13.3 kg 
23.5 ± 2.9 kg/m2 
 
Moderately active  
n= 18 (10/8) 
71.9 ± 7.3 yrs 
166.6 ± 7.8 cm 
70.7 ± 12.7 kg 
25.3 ± 3.2 kg/m2 

tOC 12.7 ± 5.5 to 12.5 ± 5.3 ng ml-1 

BALP 13.1 ± 4.8 to 13.2 ± 4.7 ng ml-1 

 

Moderately active  
CTX 5595 ± 2460 to 5385 ± 2201 pmol l-1 
tOC 12.2 ± 4.5 to 12.6 ± 3.9 ng ml-1 

BALP 11.6 ± 2.9 to 13.0 ± 4.1 ng ml-1 * 

 

Thorsen et al. 
Calcific Tissue 
Int (1996) (61) 

Single arm Postmenopausal 
women 
n= 12 
68 ±3.46 yrs 
167 ± 3.46 cm 
71.2 ± 7.97 kg 
25.3 ± 2.08 kg/m2 

1.05 ± 0.03 g/cm2 

total BMD 

1. AER 
T: brisk walking (-2 degrees) 
D: 90 mins 
I: 50% of VO2

Max estimated 
by 50% of HRMax reserve 

T: baseline, post 
ex (+1, 24 and 72 
hr) 
C: AM, NFT, no-
exercise for 3 
days prior or post 
B: ICTP, tOC, 
P1CP 

Post exercise at 1 hr (all mean ± SEM) 
NC tOC or PICP, ↓ in ICTP 
tOC 7.3 ± 0.5 to 7.4 ± 0.4 µg/L 
PICP 139 ± 11 to 132 ±10 µg/L 
ICTP 2.88 ± 0.12 to 2.48 ± 0.19µg/L * 
 
Post exercise at 24 hr 
NC tOC or ICTP, ↑ PICP  
tOC 7.3 ± 0.5 to 6.9 ± 0.5 µg/L 
PICP 139 ± 11 to 155 ±13 µg/L ** 
ICTP 2.88 ± 0.12 to 3.18 ± 0.32 µg/L 
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measured 

Main findings 
Effects of acute exercise compared to baseline 

 

Post exercise at 72 hr 
NC tOC, ↑ PICP, ↑ in ICTP  
tOC 7.3 ± 0.5 to 7.4 ± 0.8 µg/L 
PICP 139 ± 11 to 157 ±11 µg/L ** 
ICTP 2.88 ± 0.12 to 3.33 ± 0.21 µg/L ** 

Wherry et al. 
Med & Sci 
Sports Ex.  
(2019) (47) 

Non-
randomised, 
uncontrolled 

crossover 

Healthy 
recreationally 
active older adults 
n= 12 (5/7) 
67 ± 5 yrs 
1.7 ± 0.1 m 
67.7 ± 15.9 kg 
-1.6 ± 0.6 T-score 
(T-score is femoral 
neck) 
 

Two acute bouts of treadmill 
walking performed 1 to 4 
weeks apart under cool and 
warm conditions 
1. AER 
T: treadmill walking 
D: 60 mins (+ 5min warm up 
and 5 min cool down) 
I: 70 to 80% of HRMax 
 

T: baseline, post 
ex (peak, +15, 30, 
45 and 60 min) 
C: NFT, 
controlled pre-
feed 
B: CTX 
 

Post exercise at peak (all mean ± SD) 
↑ CTX both conditions  
Cool 0.255 ± 0.14 to 0.355 ± 0.17 ng/mL * 
Warm 0.255 ± 0.14 to 0.309 ± 0.114 ng/mL * 
 
Post exercise at 15 mins 
↑ CTX both conditions  
Cool 0.255 ± 0.14 to 0.353 ± 0.163 ng/mL * 
Warm 0.255 ± 0.14 to 0.353 ± 0.163 ng/mL * 
 
Post exercise at 30 mins 
↑ CTX both conditions  
Cool 0.255 ± 0.14 to 0.375 ± 0.16 ng/mL * 
Warm 0.255 ± 0.14 to 0.348 ± 0.115 ng/mL * 
 
Post exercise at 45 mins 
↑ CTX both conditions  
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B: BTMs 
measured 
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Effects of acute exercise compared to baseline 

 

Cool 0.255 ± 0.14 to 0.364 ± 0.184 ng/mL * 
Warm 0.255 ± 0.14 to 0.365 ± 0.127 ng/mL * 
Post exercise at 60 mins 
↑ CTX both conditions  
Cool 0.255 ± 0.14 to 0.400 ± 0.177 ng/mL * 
Warm 0.255 ± 0.14 to 0.391± 0.129 ng/mL * 
*changes not  different between conditions 

 

Keywords: RCT, randomised controlled trial; M, male; F, female; PoM, post-menopause; FT, fasting; OFT, overnight fasted; NFT, not fasted; 
AM, performed in morning; PM, performed in afternoon; RE, resistance exercise; RE+IMP, resistance and impact exercise; IMPACT, impact 
only exercise; 1RM, one repetition maximum) AER, aerobic exercise, CON, control; GXT, graded exercise test; ALP, alkaline phosphatase; 
BALP, bone specific alkaline phosphatase; PICP, Procollagen I Carboxyterminal Propeptide; P1NP, Procollagen Type 1 N Propeptide; OC, 
osteocalcin; ucOC, undercarboxylated osteocalcin; CTX, C‐Terminal Crosslinked Telopeptide of Type I Collagen; ICTP, Cross‐Linked 
Carboxyterminal Telopeptide of Type I Collagen; SCL, sclerostin 

NC, no change compared to baseline or control; ↑, significant increase compared to baseline or control; ↓, significant decrease compared to 
baseline or control, *p= <0.05, **p= <0.01
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5.4.3 Acute aerobic exercise 

 Effects on BTMs: middle-aged adults 

Two studies reported significant increases in ALP immediately following cycling 

GXTs performed to exhaustion in men and in middle-aged postmenopausal women (59, 

60). BALP also increased (range ~0.7 to 26%) in women after a cycling GXT to exertion, 

and also after moderate intensity walking (46mins, 3-6 METs)  (54, 60). Three studies 

reported significant increase in tOC (range ~13.4 to 18.8%) in men who cycled (GXT to 

exertion; and 75% VO2Peak, 30mins), and in middle-aged postmenopausal women who 

jogged (50% HRMax reserve, 45mins) (48, 58, 59). However, three cycling studies 

reported no change in tOC, one in men (90-95% HRPeak, 30 mins) and two in middle-aged 

postmenopausal women (70-75% VO2Peak, 30mins; GXT to exertion) (49, 55, 60). No 

significant change was reported in P1NP after cycling in middle-aged postmenopausal 

women (70-75% VO2Peak, 30mins) (55) or in men (90-95% HRPeak, 30mins) (49). Acute 

AE was also reported to have no effect on PICP in middle-aged postmenopausal women 

after jogging (50% HRMax reserve, 45mins) (58).  

One study reported that acute AE significantly increased (~16.6%) ß-CTX after 

cycling in men (90-95% HRPeak, 30mins), however, there was no change in ß-CTX after 

cycling (75% VO2Peak, 30mins) or CTX after walking (3-6 METs, 46mins) in middle-

aged postmenopausal women (49, 54, 55). Two studies measured ICTP with no 

significant changes in middle-aged postmenopausal women after jogging (50% HRMax 

reserve, 45mins) or cycling (to exertion, GXT)  (58, 60). SCL was reported to increase 

following brisk walking in middle-aged postmenopausal women (3-6 METs, 46mins) 

(54). 

 

 Effects on BTMs: older adults 

ALP significantly increased in men and women immediately following a treadmill 

GXT (stopped at 75-85% HRMax) (57). BALP also significantly increased (~12%) 

immediately following a treadmill GXT (to exertion), but only in men and women who 

were classed as moderately active (classified using a physical activity questionnaire) and 

not active based on baseline exercise levels (52). Two studies reported that tOC did not 

change in women after walking (50% HRMax reserve, 90mins) or in men and women after 
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a treadmill GXT (to exertion) (52, 61). PICP was reported to increase in women after 

walking (50% HRMax reserve, 90mins) (61). 

Wherry et al. (47) reported significant increases (range 34.6 to 77.3 %) in CTX 

levels at all post-exercise time points (peak, 15, 30, 45 and 60mins) in men and women 

who walked at moderate intensity (70-80% HRMax, 60mins). In contrast, Maimoun et al 

(52) reported no significant change in men and women following a maximal GXT 

(treadmill). Thorsen et al (61) reported a significant decrease (~13.8%) in 1CTP levels at 

1hr, but a significant increase (~15.5%) in levels at 72hrs post brisk walking (50% HRMax 

reserve, 90mins). 

 

5.4.4 Acute resistance with and without impact, or impact alone exercise 

 Effects on BTMs: Middle-aged and older adults 

The effect of acute RE with and without impact exercises, versus impact only 

exercise on BTMs greatly varied with a limited number of studies measuring the same 

BTMs. Studies involving RE+impact, no change was reported in BALP in middle-aged 

postmenopausal women, or in tOC in middle-aged men (48, 54). On the contrary, impact-

only exercise (three forms of jumping, see Table 3) significantly increased tOC (double 

jump group) and P1NP (all groups) immediately post, but at 2-hours tOC significantly 

decreased (all groups), with P1NP also reducing (non-significant) to below baseline levels 

(53). The drop in tOC (significant) and P1NP (non-significant) to below baseline levels 

was consistent with the control group in that study (53). CTX was the only consistent 

measured bone resorption marker shown to decrease following RE+impact and impact-

alone protocols in middle-aged women (53, 54). However, in the impact-alone study, the 

significant decrease at 2-hours post (not immediately after) was not significantly different 

to the control group (53). Only one study investigated acute RE in older women (56) and 

reported a significant decrease in ALP; no other BTMs were measured in this study. 

 

 Discussion 

We report that a) BTM responses to acute exercise vary between middle- and 

older-aged adults and that the BTM responses may be b) sex-specific and c) altered by 

exercise mode, intensity and duration. Additionally, responses to acute exercise stimuli 

may be d) BTM-specific, with some markers being more sensitive than others to the same 
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stimuli. We identified a major gap in the current field with a small number of studies 

investigating acute effects of exercise on BTMs in middle-aged adults (n= 8), and even 

fewer number in older-adults (n= 5). 

The application of mechanical stress (i.e. exercise) to the skeleton can preserve 

and increase BMD, serving as a key intervention in the prevention and management of 

osteoporosis (8-10). The effect of chronic, long-term, exercise on BMD in older adults is 

well established, shown to be modality- (AE, RE and impact-loading) and intensity-

dependent (9, 39, 62, 63). Evidence suggests that even walking is of limited value for 

improving bone health if not prescribed with features that increase loading (36, 39, 62, 

64-66). It is well accepted that RE with weight bearing and high impact is safe and 

effective to optimise bone health in older adults, as they result in high strain rates and 

peak forces and, reduce falls and fractures   (7, 9, 35, 37, 67). In fact, high-velocity power 

and rapid concentric contractions (inducing higher strain rates on bone) is more beneficial 

for functional performance (i.e. chair rise) in older adults (68-70). Additionally, regular 

weight-bearing impact, applied in multidirectional patterns, promotes bone 

maintenance/preservation (62, 71). While the evidence is clear from chronic, long term, 

exercise training studies what characteristics exercise protocols should consist of for 

beneficial effects on bone health in adults, the effects of acute exercise are unclear. 

Available data are conflicting and, as it is not appropriate to measure BMD after a single 

session, BTMs are used as a surrogate measure (41). Whether various modes of acute 

exercise with different modifiable characteristics alter bone metabolism differently in 

middle and older adults is underexplored. 

 

5.5.1 Age and sex-specific effects on BTM responses to acute exercise 

Based on this review, while acute exercise is sufficient to detect responses in 

BTMs, these responses may be age- and sex-specific, highlighting some possible 

consideration in the design of future acute exercise studies. For instance, all AE exercise 

studies investigating the tOC and BALP response in older adults (men and women) report 

no change after exercise, but some studies in middle-aged adults (men and women) report 

increases (48, 52, 54, 58-60). Conversely, ALP appears to have similar sensitivity in 

middle and older aged men and women (49, 57, 59, 60) and resorption markers CTX (men 

and women) and ICTP (women only) appear to increase in older adults, but not middle-

aged (47, 54, 58, 60, 61). Lastly, tOC and ß-CTX responses to AE also appears to be more 
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sensitive in middle-aged men than women, suggesting a possible sex-specific response 

(48, 55, 58-60). Differences in BTM responses between middle- and older-aged adults 

could be multifactorial, explained by age-related alterations to bone composition and 

hence bone turnover, and in women, menopausal effects, possibly altering the bone 

response (6, 72-76). Indeed, underlying bone pathophysiology is different in middle-aged 

vs older women who, are known to have elevated bone turnover rates, possibly explaining 

differences in responses (6, 77). Given bone resorption was not significantly altered in 

some of these studies in women (54, 55, 58, 60) may in fact, be beneficial (not stimulating 

further the negative balance of the remodelling process), however this is poorly 

understood and warrants further exploration. 

Of note, at baseline, some studies did not report/screen for bone health indices, as 

adults are known to be affected by age-related bone composition alterations, particularly 

women, this should be considered. Some studies excluded individuals with osteoporosis 

(48, 49, 52, 53), whereas others included adults with osteopenia/osteoporosis (47, 54, 56), 

possibly influencing BTM responses (78). Some studies in older adults pooled men and 

women data together (47, 57), only one confirming no sex-interaction in BTM responses 

(52). As older women are known to have different rates of bone turnover and 

consequently accelerated bone loss compared to men, bone responses may be altered (or 

attenuated) thus, men and women should be handled separately, or sensitivity tests 

performed (34, 72-76, 78).  

 

5.5.2 BTM responses modulated by exercise mode, intensity, and duration  

This review summarises that BTM responses to acute exercise may be modulated 

by the specific characteristics of the exercise protocol used. For instance, a majority of 

studies report no change in tOC following AE regardless of intensity (low, moderate, 

high) (49, 52, 55, 60, 61). However, tOC may be more sensitive only to AE that 

incorporates loads of greater ground-reaction force increasing in one study after jogging, 

but not after the majority of studies including cycling or walking protocols (49, 52, 55, 

58, 60, 61). Whereas, ALP, BALP and PICP increase after cycling and walking, 

suggesting these markers have higher sensitivity to AE with lower impact (52, 54, 57, 59-

61). Indeed, in three separate studies in middle-aged men utilising cycling protocols the 

tOC response was different, increasing only after moderate intensity cycling (30mins) 

and a short duration maximal exertion GXT, but not after high-intensity interval exercise 
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(30mins) (48, 49, 59). This suggests that exercise intensity and duration may be important, 

but there may be other possible modulating effects on the tOC response, which should be 

further explored. Markers reflecting bone resorption, CTX and ICTP appear to be more 

sensitive to AE protocols that are longer (≥ 60mins), not shorter duration (<45mins) (47, 

52, 54, 58, 60, 61). Whereas, ß-CTX (a different fragment of CTX) responds differently 

to cycling exercise of same duration (30mins), increasing only after high-intensity, but 

not moderate-intensity cycling, suggesting that in this instance, intensity may be 

important (49, 55).  

Despite the mounting evidence for the use of RE combined with weightbearing 

and impact loads distributed in dynamic and novel patterns for optimising bone health 

effects, little is known about the acute effects and available studies investigating these 

characteristics is limited. Based on this review, RE with impact does not stimulate a 

response in markers reflecting bone formation (48, 54). However, one study measured 

BALP only at immediately post exercise (54), the other measured tOC only up to 2-hours, 

possibly missing the kinetic response (48). Direct comparison of these study protocols is 

difficult, one study used core stabilisation bodyweight exercises with small impact 

exercises (steps, hopping) (54), the other study used power leg press RE (70 to 75% 

maximal strength) with high impact jumping, thus the impact and mechanical strain load 

on bone would be very different (48). However, it does appear that high impact exercise 

alone and RE alone is sufficient to detect a response in BTMs of formation. Indeed, ALP 

was decreased in one study following a RE regimen of pilates exercises, however, 

whether this is truly indicative of a bone-response is unclear, and other BTMs were not 

measured (41, 56, 79). Of note, only the study investigating impact alone using three 

sessions each containing a different form of jumping, reported increases of tOC and 

P1NP. P1NP increased for all jumping protocols, but tOC was only increased in the 

session where participants dropped from a height to an explosive vertical jump, not from 

jumping directly from the floor (53). Highlighting that, P1NP may be more sensitive than 

tOC to impact exercise, and that the tOC-specific response may require greater impact 

loads (ground reaction force) combined with high explosive movements to elicit a 

response. Based on these studies it appears that CTX decreases with RE combined with 

impact, and with impact alone protocols (53, 54). However, while both of these studies 

were RCTs, the impact only study which was crossover in design report that CTX 

decreases also in the control condition (53). This decrease was not different to the 
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decrease seen post the impact exercise, indicating that CTX is affected by 

circadian/diurnal effects (53, 80). 

Altogether, the evidence from this review, and from the literature demonstrates 

that exercise intensity, dynamic, and novelty of new loads (non-habitual nature) placed 

on the skeleton are important characteristics influencing the bone-exercise response (16, 

18, 23, 81, 82). However, only three studies included participants’ baseline fitness in the 

selection criteria (47, 48, 53). Three state (58, 60, 61) participants were non-regular 

exercisers, but one reports participants regularly cycling (1-6km/day, few days a week) 

(60). As habitual exercise was not considered in a majority of studies, protocols may lack 

in specificity, and although some used prior testing to define exercise intensity their 

protocols possibly lack in novelty of new load (12, 23, 83). Indeed, one interesting 

concept, explored by one study, was the possible effect on the BTM response based on 

the participants baseline fitness, whereby BALP was only shown to be significantly 

increased with AE exercise when older adults were further stratified into moderately 

active, or active groups (52). This possibly suggests that the BALP response in older 

adults may be dampened, modulated by the participants’ baseline fitness, supporting the 

principle that bone cells have a threshold level of adaptation and the need for 

consideration of individualised, progressive (graded, based on baseline fitness) and 

novelty in protocol loads, discussed earlier (12, 23, 83). This should be further explored 

in future research, as it likely impacts/dampens the BTM-response and therefore a 

skewness in results. 

 

5.5.3 BTM-specific responses to acute exercise 

To understand if different BTMs thought to reflect the same bone turnover phase 

have different sensitivities to acute exercise we compared study effects where >1 BTM 

reflecting the same bone formation or resorption phase was measured within the same 

study. AE appears to have a limited effect on tOC and P1NP, whereas other markers 

reflecting bone formation namely ALP, BALP and PICP appear to be more sensitive. 

Altogether, suggesting that tOC may be the least sensitive BTM of formation and supports 

the notion that these BTMs may represent different phases of osteoblastic function or 

formation (41).  Indeed, ALP activity includes serum derived from liver and bone, 

therefore changes in response of ALP may be non-specific to bone, as such BALP is 

recommended for its increased specificity (41, 79). 
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While AE appears to have a limited effect on tOC, one concept to raise about tOC 

is that it exists in the circulation in a carboxylated (cOC) reflecting more bone 

mineralisation, and undercarboxylated (ucOC) form, considered the more “bio-active” 

counterpart, acting as a hormone involved in energy metabolism and possibly a role in 

muscle maintenance and strength (84-90). When studies measured effects on tOC only, 

whether there is a shift in favor of cOC, or ucOC, is unclear, as only few studies measured 

this (48, 49, 55). In these studies, ucOC increased even with null change in tOC in two of 

them (49, 55). Therefore, regarding tOC, there is much more to be understood. 

One study measured >1 BTM reflecting resorption, interestingly SCL, a possible 

promoter of bone resorption, increased following walking, but not CTX (54, 91). 

Suggesting, SCL may be more sensitive than CTX, however, blood sampling was 

performed only once (immediately post) possibly missing peak change in CTX. Of note, 

SCL increases with age and high levels are associated with long-term physical in-

activity/immobilisation (92-95). Additionally, mechanical unloading increases the 

expression (gene and protein) of SCL, whereas SCL expression decreases with 

mechanical loading (in-vivo and in-vitro) (96, 97). Therefore, SCL may be an interesting 

marker to be included in future studies.  

BTMs are highly dynamic and sensitive, however, investigators should consider 

factors known to influence BTMs in preparation for testing i.e. circadian/diurnal rhythm, 

feeding, sleep, smoking, menopause age and exercise (41, 42, 74-76). Some studies were 

not performed in the fasted state and/or in the morning (47, 57, 58, 60, 61). In addition, 

blood sampling protocols largely differed between included studies, some sampling only 

immediately post exercise, others taking multiple samples but up to 2-hours post exercise, 

and others up to 72-hours post. As blood sampling represents only a small “snapshot 

window in time” it is possible, that at least those that only sampled immediately post may 

have missed the peak response of the BTM-kinetics. While there are some ethical 

considerations for invasive techniques and frequency of venepuncture and/or sampling 

volume, a better understanding of the time-course response of BTM-kinetics is required. 

Despite advances in quality assurance, laboratory errors commonly occur in pre-

analytical phases i.e. timing of sampling, selection of specimen, collection procedure and, 

sample transport, temperature and time to storage, thus extra rigor should be employed to 

ensure accurate and reproducible results (42, 43, 98, 99).  
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5.5.4 Limitations and strengths 

To our knowledge this is the first systematic review to examine effects of acute 

exercise on BTMs in adults >50 years of age, highlighting major gaps in the field and 

considerations for increased rigor in future trials. The current review emphasises that 

research into the effects of acute exercise on BTMs in middle-aged adults is limited and 

is even scarcer in older adults. Whilst the number of included studies is low (n = 13), it 

covers the only available research in this area. Several factors limit the generalisability of 

the findings; lack of RCTs, low quality of the evidence, small sample sizes, potential bias 

in the cohorts, large variance in the exercise and blood sampling protocols, and the use of 

different assays to detect BTMs.  

 

5.5.5 Conclusions 

Acute exercise is an effective tool to induce changes in serum BTMs, however, 

the response appears to be exercise modality-, intensity-, age- and sex-specific.  Large 

variability in study populations, exercise and blood sampling protocols explains 

conflicting results and as such, future studies should include tight control over factors that 

influence BTMs. Longer sampling periods of BTMs may assist in understanding the 

BTMs-kinetic responses. As is, the understanding of the influence of the possible 

endocrine regulation related to these BTMs. Further high-quality acute exercise studies 

are needed to identify new mechanistic target pathways for therapeutics and optimising 

exercise prescription for adults. 
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 Supplementary materials 
 

Supplementary 1 PICOS protocol 

 

Criteria for study inclusion 

Participants 
• Community dwelling, middle aged, and older adults > 50 years of age 

 
Intervention 

• Acute, single bout exercise including i.e. aerobic, resistance or other strength 
or fitness regime including jumping or circuit exercise. 

 
Outcome Measures 
Bone turnover markers including;  

• Total alkaline phosphatase ALP 
• Bone alkaline phosphatase B-ALP 
• Osteocalcin OC or undercarboxylated osteocalcin ucOC 
• C-terminal propeptide of type 1 procollagen P1CP 
• N-terminal propetide of type 1 pro-collagen P1NP 
• Cross-linked telopeptides of type I collagen include C terminal (CTX, 

carboxy-terminal cross-linked telopeptide) and N-terminal (NTX, amino-
terminal cross-linked telopeptide). 

• Sclerostin SCL 
 
Study Design 

• Randomised controlled trials 
• Controlled trials including quasi-randomised 
• Cross-sectional studies 
• single arm studies 
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Supplementary 2 Literature search strategy 

We developed search strategies to identify controlled trials involving acute exercise 

interventions in community dwelling, middle-aged and older adults >50 years of age.  We 

focused on the effect of exercise on commonly used blood bio-markers of bone turnover 

(see table 1). We searched PubMed, SCOPUS, EMBASE and the Web of Science for 

studies published up to 22nd April 2020. Our systematic search strategy included the 

following terms; [adult OR elderly OR older adult OR post-menopausal OR middle aged 

OR older men OR older women] AND [exercise OR acute exercise OR single bout 

exercise OR aerobic exercise OR aerobic training OR resistance exercise OR resistance 

training OR circuit weight training OR jumping OR plyometric OR cycle OR cycling OR 

running OR vibration OR physical training or circuit training OR weight training OR high 

intensity iteral training OR weight lifting OR impact exercise OR impact training] AND 

[bone formation marker OR bone remodelling marker OR bone resorption marker OR 

bone turnover marker OR bone marker OR bone biomarker OR osteocalcin OR total 

alkaline phosphatase OR total alkaline phosphatase activity OR bone alkaline 

phosphatase OR propeptide OR type 1 pro-collagen OR type 1 collagen OR carboxy-

terminal OR cross-linked telopeptide OR sclerostin]. 
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Chapter 6: Higher bone remodelling biomarkers are 

related to a higher muscle function in older adults: 

effects of acute exercise 

Context: 
This study involved a randomised crossover clinical trial, including older adults >60 years 

of age. Based on previous studies, we utilised acute exercise as a novel tool to investigate 

bone-muscle cross-talk via, the measurement of bone biomarkers. Here, the trial included 

two modes of exercise, as it was identified that there was limited studies using this 

exercise mode, and we hypothesised, based on the known optimal loading characteristics 

for bone responses, that resistance exercise may have a greater response on bone that 

aerobic exercise. To further explore this bone-muscle relationship, this clinical trial 

included rigorous musculoskeletal health assessments (detailed in our published study 

protocol, appendices 1) and we performed cross sectional analyses on this relationship 

with bone biomarkers. The overarching conclusion of this study provided evidence that 

this link between muscle function and bone biomarkers, may not be limited to ucOC but 

BTMs in general. We also demonstrate that it is likely that the speeding of BTM responses 

to acute exercise are not likely representing underlying bone turnover, but probably a 

result of metabolic factors, explained in detail in this publication and in the general 

discussion. 

The following paper, “Higher bone remodelling biomarkers are related to a higher muscle 

function in older adults: effects of acute exercise” is under review with Bone. This study 

was also presented at the following conferences: 

 Australian and New Zealand Bone and Mineral Society, Poster and e’poster 

presentation (2020) 

I also published a protocol paper for this larger study below (Appendix 5) 

Smith, C., Lin, X., Scott, D., Brennan-Speranza, T. C., Al Saedi, A., Moreno-Asso, A., 

Woessner, M., Bani Hassan, E., Eynon, N., Duque, G., & Levinger, I. (2021). Uncovering 

the Bone-Muscle Interaction and Its Implications for the Health and Function of Older 

Adults (the Wellderly Project): Protocol for a Randomized Controlled Crossover 

Trial. JMIR research protocols, 10(4),e18777. https://doi.org/10.2196/18777 

https://doi.org/10.2196/18777
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 Abstract  

It was suggested that the skeleton, via undercarboxylated osteocalcin (ucOC) 

might be linked to muscle mass and strength maintenance. However this relationship 

remains unclear and it may not be unique to ucOC, but to bone turnover markers (BTMS) 

in general. We tested the hypothesis that serum ucOC and bone turnover biomarkers are 

associated with muscle function, and that acute exercise could alter these serum levels. 

Thirty-five older adults (25 females/10 males, 72±6 years) participated. Baseline 

assessments included body composition (DXA), handgrip strength and a physical 

performance test (PPT) (gait speed, timed-up-and-go [TUG], stair ascent/descent). Leg 

muscle quality (LMQ) and stair climb power (SCP) were calculated. Participants 

performed (randomized) 30 mins aerobic (AE) (cycling 70%HRPeak) and resistance (RE) 

(leg press 70%RM, jumping) exercise. C-terminal telopeptide of type I collagen (CTX), 

procollagen of type I propeptide (P1NP), total osteocalcin (t)OC and ucOC were assessed 

at baseline and post-exercise. Data were analyzed using linear mixed models and simple 

regressions, adjusted for sex. At baseline, higher muscle strength (LMQ, handgrip) was 

related to higher P1NP, higher SCP related to higher P1NP and ß-CTX, and better 

physical performance (lower PPT) related to higher P1NP and ß-CTX (p<.05). Exercise, 

regardless of mode, decreased ß-CTX and tOC (all p<.05), P1NP and ucOC were not 

altered. Post-exercise, lower ß-CTX was associated with higher baseline handgrip 

strength, SCP and LMQ. Poorer baseline mobility (increased TUG time) was associated 

with higher ß-CTX. Independently of exercise mode, acute exercise decreases ß-CTX and 

tOC. Our data suggests that in older adults the relationship between muscle 

quality/function and BTMs is not specific to ucOC, but BTMs in general. Furthermore, 

increased BTM levels was linked to better muscle function. Altogether, our data 

strengthens the evidence for bone-muscle interaction, however, mechanisms behind this 

specific component of bone-muscle cross-talk remain unclear.  

 

Keywords: Aging; biochemical markers of bone turnover; exercise; bone-muscle 

interactions; skeletal muscle. 
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 Introduction 

In the last decade, there has been accumulating evidence that osteocalcin (OC) in 

its undercarboxylated form (ucOC) plays a role in bone-muscle cross-talk (1). Majority 

of mechanistic studies suggested that ucOC may be involved in muscle maintenance 

(mass and function) in rodents and in vitro studies (2-5). However, these findings was not 

supported by a recent study (6). In humans, there is some evidence demonstrating that 

ucOC and total (tOC) are related to muscle mass and strength (7-10), but data are limited 

to observational studies and often contradictory. For instance, in older females, higher 

ucOC/tOC was related to higher muscle strength in one study (7), while others reported 

higher ucOC/tOC was related to poorer physical function (timed-up-and-go, TUG) and a 

higher risk for falls-related hospitalization (8). In post-menopausal females who have 

previously had a fracture, lower ucOC was related to lower leg lean mass and higher falls 

risk (9). Additionally, adults with hypoparathyroidism treated with parathyroid hormone 

had increased ucOC/tOC, which was associated with increased elbow extension force 

(10). Importantly, it was elucidated that the link between bone and muscle is not specific 

for ucOC or tOC, but rather was suggestive of a broader link between bone remodelling 

(measured by serum biomarkers) and muscle (11, 12). Therefore, it is possible that other 

bone turnover markers (BTMs) used clinically to predict fracture risk, such as C-terminal 

telopeptide of type I collagen (CTX) and procollagen of type I propeptide (P1NP), are 

also involved in this specific aspect of the bone and muscle relationship (13). 

Exercise in older adults is a non-pharmacological intervention known to improve 

muscle and bone health (14-18). Acute exercise can modify BTMs, but the effect is likely 

to be influenced by exercise mode and intensity, as well as by sex and age (19). Bone and 

muscle are closely linked anatomically and metabolically, and also share certain 

endocrine actions  (1, 20). Indeed, both muscle and bone are regulated by mechanical 

loads, and evidence suggests bone mass may be tightly linked to skeletal muscle-derived 

mechanical loading (21-23). As such, the underlying muscle physiology (high or low 

mass/function) may partially explain bone biomarker responses to altered mechanical 

load, i.e. exercise (23-25). Altogether, mechanical load stimulated through acute exercise 

can be used as a tool to examine responses of bone biomarkers, and to explore whether 

these responses may be associated with muscle function and energy metabolism.  

The aims of the current study were to: (a) perform cross-sectional analyses to 

determine the relationship of baseline determinants of muscle mass and function with 
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tOC, ucOC, CTX and P1NP and b) determine the effect of acute aerobic (AE) and 

resistance (RE) exercise on bone biomarker responses. A secondary aim of this study is 

to explore if baseline muscle mass and function are related to the bone biomarker 

responses following acute exercise.  

 

 Methods 
6.3.1  Screening 

The full protocol of this randomized crossover trial has been previously published, 

see Figure 6.1 for study design schematic (26). Older adults >60 years without diabetes 

and not taking glucocorticoids were recruited from the community. Females were 

required to be a minimum of 12 months post-menopause. Exclusion criteria for 

participation included the presence of diabetes or taking any hyperglycaemic 

medications, had blood disorders, bone malignancies, taking warfarin or vitamin K 

supplementation or restriction, had a body mass index ≥40 kg/m, in the last 3 months 

reported any fractures or began new osteoporotic or antiresorptive treatments and 

engagement in a resistance exercise regimen for >2 sessions per week. Initially, 190 older 

adults were screened for eligibility, 118 did not meet the study criteria, or, following 

assessment by the study physician, were excluded due to complex medical status affecting 

their safe participation or primary study outcomes. Seventy-two were eligible, but 37 

declined to participate, and 5 were not cleared to participate by their local medical 

practitioner. Thirty-eight participants were enrolled, 3 participants withdrew prior to 

study completion due to a change in medical status or medications. Thirty-five older 

adults (25 females, 10 males) completed the randomized, cross-over study. Participant 

medication or supplementation use included antihypertensives (n=16), cholesterol 

lowering (n=12), other heart medications or blood thinners (n=9), vitamin D (n=7), 

antidepressants (n=5), none were taking glucocorticoids. Each participant was given 

written and verbal explanation of the study prior to signing the consent form. 
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Figure 6.1 Study design. Figure created with BioRender.com 

 

Baseline assessments occurred over two visits performed in the morning, 

following an overnight fast. Participants attended the laboratory where medical histories, 

current medications and anthropometric measurements were obtained, including body 

weight (digital scales) and height (stadiometer), and body mass index (BMI) was 

calculated (kg/m2). Whole-body composition and bone mineral density (BMD) were 

measured via whole-body dual-energy X-ray absorptiometry (DXA, Hologic, Horizon A, 

software version 5.6.0.4).  

Participants completed a graded exercise test (GXT) on a cycle ergometer to 

assess peak oxygen consumption (V̇O2Peak) and peak heart rate (HRPeak). The GXT 

protocol started at 10-30 W increasing by 10 to 30 W×min-1 according to participant 

ability. Participants were monitored by 12-lead electrocardiogram (ECG; Mortara, X-

Scribe II) and V̇O2 for each 15 sec interval by gas exchange analysis (Breeze, version 

3.02, Medical Graphics Corp.). Tests were terminated according to participants' self-

reported fatigue perception reaching a predetermined level (Borg scale Rating of 

Perceived Exertion=17) or clinical signs or symptoms [60]. Blood pressure was 

monitored using a manual sphygmomanometer and heart rate via the 12-lead ECG. HRPeak 

obtained during the GXT was used to calculate the workload for the acute aerobic exercise 

(AE) session. 

Handgrip strength was measured using a hand dynamometer, and gait velocity 

was measured using the instrumented walkway GAIT Rite system (CIR Systems Inc., 

Havertown, PA). Participants also performed a short physical performance test (PPT) 
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which involved four different mobility tasks:  timed assessed via GAIT rite system, the 

TUG and a timed stair ascent and descent, which consisted of a rapid ascent and safe 

descent of 10 stairs. Briefly, the TUG is performed as time to rise from a chair (46cm), 

walk 3 m, turn, walk back to the chair and sit. All measures were completed three times, 

the best time was recorded. A PPT score was then calculated as the sum of fastest time 

for each task. In addition, using the time obtained for the stair ascent, stair climb power 

(SCP) was then calculated (power = force x velocity) (27). Velocity was calculated as the 

vertical distance of the stairs divided by the time to ascend, and force as the participant's 

body weight multiplied by acceleration due to gravity (9.8 m/s).   

Leg muscle quality (LMQ), an estimate of specific force of a muscle group per 

unit of muscle mass, was calculated as follows: LMQ (kg/kg) = leg strength [kg[/(left leg 

lean mass [kg] + right leg lean mass [kg]) (28, 29). Maximal leg strength was measured 

on a leg press using the one-repetition maximum (1RM) test (30). The 1RM test was 

performed four to seven days after a familiarisation session and was used to calculate the 

intensity of the acute resistance exercise (RE) session. 

 

6.3.2 Acute exercise intervention 

Following the baseline assessments, participants completed two experimental 

sessions performed in a randomized order (sealed envelope method by an independent 

person to the study): one included acute aerobic (AE), and one acute resistance (RE) 

exercise conditions. Visits were ~  hours in duration, including the 30 min intervention 

(AE or RE) and were performed in the morning following an overnight fast. Twenty-four 

hours prior to their first session, participants completed a food diary, and this was 

replicated before the subsequent session. Participants were asked to refrain from 

structured exercise (48 hrs), limit physical activity (i.e. strenuous household chores) and 

alcohol ingestion (24 hrs) prior to testing visits. Visits were performed seven days apart, 

accounting for washout. 

A resting, baseline venous blood sample was taken once (BASE) prior to the first 

session, and used as baseline for all visits, then the single session of 30mins of AE or RE 

was performed. AE included 30 mins of cycling at a moderate intensity (70 to 75% of 

HRPeak), with the workload adjusted accordingly to achieve target HR. The target HR was 

calculated using the Karvonen heart rate reserve method: exercise target HR = (% of 

desired exercise intensity x (HRPeak-HRrest))+HRrest. RE included 30 min of strength and 
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power exercises performed as leg press for 5 sets of 10 rapidly concentric (as fast as 

possible) and slow eccentric (4sec) repetitions at 70 to 75% of 1RM as well as jumping 

for 5 sets of 10 jumps (jumping as high as they can, safely, without stopping). Recovery 

between sets was 2 mins. Following the acute exercise intervention, three venous blood 

samples were taken, including immediately post-exercise (0 mins), as well as 60 mins and 

120 mins thereafter. All participants recovered on a bed during the post-exercise recovery 

period. Procedures for the two sessions were identical. 

 

6.3.3 Blood sampling and biochemical analysis 

Venous blood was collected from an antecubital vein via an intravenous cannula 

with collection into ethylenediaminetetraacetic acid (EDTA) or clot activator serum 

separator tubes (SST). Blood samples were separated into plasma or serum via 

centrifugation (10min, at 3500rpm, 4°C). For serum only, centrifugation was completed 

following 10 mins of clotting time. Plasma/serum was subsequently aliquoted and stored 

at -80°C until analyzed. Serum ß-isomerized C-terminal telopeptides (ß-CTX) and 

procollagen 1 N-terminal propeptide (P1NP) were analyzed at the Medical University of 

Graz, Clinical Institute of Medical and Chemical Laboratory Diagnostics (Graz, Austria) 

and were measured using an electrochemiluminescence immunoassay (ECLIA) using a 

Cobas e immunoassay analyzer. Total serum osteocalcin (tOC) was measured using an 

automated immunoassay (Elecys 170; Roche Diagnostics, Mannheim, Germany). Serum 

ucOC was measured following Gundberg et al. (32) method by the same immunoassay 

after absorption of carboxylated OC on 5mg/mL hydroxyl-apatite slurry. Each sample 

was measured once and the inter-assay coefficients of variation were 5.4% and 9.2% for 

tOC and ucOC, respectively. Serum ucOC for 1 participant at timepoint 0 mins following 

AE was found to be a statistically significant outlier (>3SD away from the mean), and 

thus was excluded from the relevant analyses. 

Fasting glucose levels in serum were analysed using an automated analysis 

system (YSI 2300 STAT Plus® Glucose & Lactate Analyzer). Fasting insulin levels in 

serum were measured via ELISA kit purchased from ALPCO, based on the 

manufacturer’s instructions. Homeostatic Model Assessment for Insulin Resistance 

(HOMA-IR) was calculated using the formula: HOMA-IR = Glucose(mM) x Insulin 

(µU/mL) ÷ 22.5. 
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6.3.4 Study approval 

The study was approved by and conducted in accordance with the Melbourne 

Health (MH) and Victoria University (VU) Human Research Ethics Committee's (HREC) 

(MHHREC: 2017/08) and was registered with the Australian New Zealand Clinical Trials 

Registry (trial number: ACTRN12618001756213).  

 

6.3.5 Statistical methods 

All statistical analyses were performed using R version 4.1.0. Linear mixed-

effects models were used to examine a) if acute exercise alone (irrespective of exercise 

mode) or b) specific to exercise mode (AE and RE) could alter the levels of the 

biochemical variables of interest. Before running the linear mixed models, we calculated 

the Akaike information criterion (AICc), that corrects for small sample size to determine 

the most parsimonious model. All analyses were performed using a model where outcome 

was the bone biomarkers (ß-CTX, P1NP, tOC, ucOC); the fixed effects were group (AE 

or RE) and timepoint (BASE, and post-exercise blood sampling (0mins, 60mins and 

120mins), the interaction between group (AE, and RE) and timepoint and finally we 

adjusted for sex. The random effect was the participants' unique ID, accounting for 

repeated measures. Using Spearman rho’ correlations we examined whether changes in 

metabolic markers are associated with changes in BRMs post exercise. First, we 

calculated the percent change from baseline for 60mins and 120mins post exercise, which 

is what we have demonstrated previously to coincide with the peak change (31, 32), we 

then averaged these two together to get the average peak change post exercise. Simple 

linear regression were run to investigate whether outcomes related to muscle function 

explained any of the variability of bone biomarkers at baseline, and were adjusted for sex. 

PPT score for 1 participant was found to be a statistically significant outlier (5 SD away 

from the mean) and was excluded from the analyses. To meet the statistical assumptions 

of the regression (normally distributed residuals), P1NP, tOC and ucOC were log 

transformed. P values from the statistical analyses were adjusted for multiple testing using 

the false discovery rate (FDR) (33).The following packages were used in our analyses 

using R: lmerTest (34), tidyverse (35), lme4 (36), emmeans (37), MuMIn (38), sjstats 

(39), sjPlot (40), pbkrtest. 
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 Results 

Thirty-five older adults (10 Males, 25 Females) with mean age 72.8 ± 6.0 yrs and 

BMI of 28.3 ± 3.6 kg/m2 were included in this study (Table 6.1).  

 

Table 6.1 Baseline descriptive statistics 

 All (n=35) 

Sex (M/F) 10/25 

Age (years) 72.83 ± 6.00 

BMI (kg/m2) 28.28 ± 3.59 

Grip strength (kg) 30.63 ± 9.04 

Gait velocity (m/s) 2.74 ± 0.53 

SCP (W) 227.22 ± 77.30 

PPT (s) 23.45 ± 8.63 

Timed up and go (s) 8.61 ± 2.04 

Leg muscle quality (kg/kg) 7.78  ± 3.02 

VO2Peak (ml.kg.min) 17.90 ± 4.04 

Whole body BMD 1.07 ± .13 

Whole body T-score -.80 ± 1.47 

Appendicular lean mass 6.74 ± 1.09 

Biochemical measures  

ß-CTX (ng/mL) 0.44 ± 0.23 

P1NP (ng/mL) 40.30 (34.55–56.75) 

tOC (ng/mL) 21.68 (16.88-26.63) 

ucOC (ng/mL) 8.18 (6.06-11.44) 

ucOC/tOC (%) 40.45 ± 9.27 

Insulin (pmol/L) 6.77 (5.05-8.41) 

Glucose (mmol/L) 5.93±.65 

HOMA-IR 1.76 (1.24-2.23) 
BMD, bone mineral density; BMI, body mass index; SCP, stair climb power; PPT: 
physical performance test; ß-CTX, C-terminal telopeptide of type I collagen;  P1NP, 
procollagen of type I propeptide; tOC, total osteocalcin; ucOC, undercarboxylated 
osteocalcin. Data reported as mean ± SD or median (IQRs). 

6.4.1 Effects of acute exercise on bone biomarkers 

Individual responses to acute exercise are shown in Figure 6.2. Regardless of 

mode of exercise, ß-CTX decreased by 0.02 ng/mL immediately post (0 mins), this 
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decrease did not remain significant after adjustment for multiple comparisons (β= -0.02 

ng/mL, SE= 0.009, p= 0.03, FDR= 0.09) and by 0.03 ng/mL at 120 mins post-exercise 

(β= -0.03 ng/mL, SE= 0.009, p= 0.005, FDR= 0.04), compared to baseline. tOC was 

decreased by 6.5% at 120 mins post exercise compared to baseline, irrespective of mode 

of exercise (β= -0.063 log(ng/mL), SE= 0.01, p˂ 0.001, FDR< 0.001) (Table 6.2). There 

was no significant interaction between mode of exercise and time indicating that the 

response of ß-CTX and tOC to acute AE and RE were similar (Supplementary Table 1). 

P1NP, ucOC, ucOC/tOC and glucose were not significantly altered by either AE or RE. 

All analyses were adjusted for sex. The percent change in tOC and ucOC to acute exercise 

was inversely associated to the percent change in glucose post exercise (ρ= -0.44, p< 

0.001; ρ= -0.31, p= 0.01 respectively) see Figure 6.3.  

  



 209 

 

 

 

 

  

 

 

 

 

 

 

 

Figure 6.2 Bone remodelling markers response to acute aerobic (AE) and resistance 
exercise (RE) in older adults faceted by exercise mode. * Significantly different to 
baseline (BASE) based on the estimated marginal means of the linear mixed model, 
adjusted for sex. 

* * * 

* * * 
* 
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Table 6.2 Effects of acute exercise on bone biomarkers  

 

ß-CTX, C-terminal telopeptide of type I collagen; P1NP, procollagen of type I propeptide; 
tOC, total osteocalcin; ucOC, undercarboxylated osteocalcin. * significantly different to 
baseline p <0.05. ^ indicates nearing significantly different from baseline p <0.06. Linear 
mixed models were performed, and all models were adjusted for sex and adjusted for 
multiple comparisons. 

 

 

 
Figure 6.3 Relationship of the peak percentage change in glucose with tOC and ucOC 
post exercise 

Independent Predictor Estimate 95% CI p-value Adj p-value 

ß-CTX 

0 min -0.0194 -0.0371, -0.0018 0.03* 0.09 

60 min -0.0009 -0.0185, 0.0168 0.93 0.94 

 120 min -0.0251 -0.0428, -0.0075 0.005* 0.04* 

Log P1NP 

0 min 0.0193 -0.0163, 0.0548 0.29 0.58 

60 min -0.0136 -0.0492, 0.0220 0.45 0.68 

120 min -0.0198 -0.0554, 0.0157 0.27 0.58 

Log tOC 

0 min -0.0116 -0.0442, 0.0209 0.48 0.67 

60 min -0.0120 -0.0442, 0.0202 0.47 0.67 

120 min -0.0630 -0.0950, -0.0311 <0.001* <0.001* 

Log ucOC 

0 min -0.0340 -0.0990, 0.0310 0.31 0.61 

60 min -0.0556 -0.1195, 0.0082 0.09 0.27 

120 min -0.0612 0.1245, 0.0021 0.06^ 0.27 

ucOC/tOC 

0 min -0.7879 -3.4210, 1.8451 0.56 0.61 

60 min -1.5041 -4.0906, 1.0824 0.25 0.27 

120 min 0.1190 -2.4462, 2.6841 0.93 0.27 

p= <0.001 p= 0.01 
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We then investigated the responses within each exercise group (supplementary 

Table 2). Following RE but not AE, P1NP increased immediately post-exercise (p= 0.02), 

before returning to baseline levels by 60 mins. Compared to baseline the concentration of 

ucOC decreased 120 mins after the RE bout (p= 0.01) but was not changed by AE .  

 
6.4.2 Association of muscle function and bone biomarkers at baseline 

Higher hand grip strength and SCP were related to higher P1NP levels at baseline 

(β= 0.02 ng/mL, p= 0.04, FDR= 0.05; β= 0.002 ng/mL, p= 0.005 FDR= 0.02, 

respectively) (see Figure 6.4). There was a trend towards higher LMQ also being related 

to higher P1NP levels (β= 0.04 ng/mL, p= 0.06, FDR= 0.07). A higher SCP was related 

to higher β-CTX levels (β= 0.001 ng/mL, p= 0.03, FDR= 0.04). Higher gait velocity was 

related to higher β-CTX levels (β= 0.46 ng/mL, p= 0.03, FDR= 0.04). Poorer physical 

performance (higher PPT score) was related to lower ucOC, P1NP and β-CTX levels, 

after adjustments for multiple comparisons the correlation with ucOC was weaker (ucOC: 

β= -0.04 ng/mL, p= 0.04, FDR= 0.12; P1NP: β= -0.04 ng/mL, p= 0.02, FDR= 0.04; β-

CTX: β= -0.02 ng/mL, p= 0.02, FDR=0.04, respectively). TUG performance and ASM 

were not related to any bone biomarkers at baseline (all p>0.05). 

 

6.4.3 Associations of baseline muscle function with bone biomarker-responses after 

acute exercise 

Those with a higher baseline grip strength, muscle power (higher SCP) and 

muscle quality (higher LMQ) had a lower β-CTX exercise response (Table 6.3). A higher 

baseline grip strength and higher muscle quality also trended towards a lower tOC 

exercise response (p<0.06). Poorer baseline mobility indicated by a higher time to 

perform the TUG was associated with a lower P1NP exercise response, but a higher β-

CTX exercise response, after adjustment for multiple comparisons the correlation with 

P1NP was weak (P1NP: β= -0.005 ng/mL, p= 0.02, FDR= 0.10; β-CTX: β= 0.002 ng/mL, 

p= 0.02, FDR= 0.02). Gait velocity was not related to any of the bone biomarkers post-

exercise responses. 
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Figure 6.4 Baseline associations of muscle function with P1NP and β-CTX faceted by sex.  

*p value indicates significant relationship between outcome of interest and bone turnover marker based on a beta-regression adjusted for sex. 
FDR is the p value after adjustment for multiple comparisons.
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Table 6.3 The relationship of baseline muscle function with acute exercise responses on 
bone biomarkers 

Independent Muscle function * 
Time 

Estimate 95% CI p-value Adj p- 
value 

ß-CTX 

velocity m/s * Time -0.0208 -0.0434, 0.0019 0.07 0.073 

TUG* Time 0.0024 0.0004, 0.0044 0.02* 0.02* 

Grip strength* Time -0.0008 -0.0013, -0.0004 <0.001* 0.003* 

LMQ* Time -0.002 -0.0033, -0.0006 0.004* 0.007* 

SCP* Time -0.0001 -0.0001, -0.0000 0.001* 0.003* 

Log P1NP 

velocity m/s * Time 0.0385 -0.0075, 0.0844 0.10 0.25 

TUG* Time -0.0048 -0.0088, -0.0007 0.02* 0.10 

Grip strength* Time -0.0003 -0.0012, 0.0007 0.58 0.73 

LMQ* Time 0.0004 -0.0024, 0.0032 0.78 0.78 

SCP* Time 0 -0.0001, 0.0001 0.52 0.72 

Log tOC 

velocity m/s * Time -0.0264 -0.0668, 0.0139 0.19 0.33 

TUG* Time 0.0009 -0.0027, 0.0045 0.63 0.63 

Grip strength* Time -0.0008 -0.0016, 0.0000 0.05^ 0.14 

LMQ* Time -0.0023 -0.0047, 0.0001 0.06^ 0.14 

SCP* Time 0 -0.0001, 0.0001 0.63 0.63 

Log ucOC 

velocity m/s * Time 0.0238 -0.0558, 0.1034 0.56 0.77 

TUG* Time -0.0033 -0.0104, 0.0037 0.35 0.77 

Grip strength* Time -0.0002 -0.0018, 0.0014 0.84 0.84 

LMQ* Time 0.0012 -0.0035, 0.0059 0.62 0.77 

SCP* Time 0.0001 -0.0001, 0.0003 0.43 0.77 

ucOC/tOC 

velocity m/s * Time 1.6575 -1.5700, 4.8849 0.31 0.31 

TUG* Time -0.1567 -0.4426, 0.1293 0.28 0.31 

Grip strength* Time 0.0345 -0.0301, 0.0992 0.29 0.31 

LMQ* Time 0.1135 -0.0781, 0.3052 0.25 0.31 

SCP* Time 0.0048 -0.0027, 0.0124 0.21 0.31 
 

ß-CTX, C-terminal telopeptide of type I collagen;  P1NP, procollagen of type I 
propeptide; tOC, total osteocalcin; ucOC, undercarboxylated osteocalcin. Models were 
adjusted for group (AE and RE) and sex. * significantly different to baseline p<0.05. ^ 
indicates p <0.06. 
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 Discussion 
In the current study an acute bout of exercise had minimal effect or decreased 

bone biomarkers in older adults and this was not specific to the mode of exercise (AE or 

RE). Better muscle function at baseline were associated with higher bone turnover. 

Specifically at baseline, a higher concentration of circulating P1NP was associated with 

higher handgrip strength, leg power (SCP) and, better physical performance (lower PPT 

score). Similarly, higher ß-CTX levels was associated with higher leg power (SCP), better 

gait velocity and physical performance (lower PPT score). Finally, we found that the 

response of these BTMs to acute exercise may be influenced by underlying muscle 

function.  

 

6.5.1 Muscle function and bone biomarkers at baseline 

Skeletal muscle and bone play a fundamental role in enabling locomotion and 

movement. It is well known that alterations to mechanical loading regulate skeletal 

muscle and bone mass, with evidence suggesting that bone mass maintenance depends on 

muscle-derived mechanical loading (21, 22).  It has been suggested that bone, via ucOC 

is involved in muscle mass maintenance and strength in mice (2-5), but this was recently 

challenged (6). In humans, this remains unclear (7-9), and the link between the skeleton 

and muscle may not be specific to ucOC, but may include other BTMs i.e  CTX and P1NP 

(11, 12). Here we report for the first time, that CTX and P1NP, are also related to muscle 

function in older adults with our data suggesting that better muscle function at baseline is 

associated with higher BTMs. We report that better physical function is related to higher 

ß-CTX, P1NP and ucOC levels, although the relationship with ucOC was weak. 

Previously, In older females a higher ucOC/tOC was related to increased muscle strength 

in one study (7), and related to reduced mobility (poorer TUG performance) and increased 

falls risk (8). Yet, we did not observed this relationship in the current study. It is not clear 

why in the current study we did not observe a relationship with the ucOC/tOC ratio, but 

this perhaps due to the relatively small sample size compared to previous studies. While 

we adjusted for sex in our models, we were underpowered to examine if males and 

females have a different relationship between muscle function and bone biomarkers. Data 

in humans about the role of ucOC in muscle mass and function remains unclear due to 

findings being limited to association-based studies. Direct effects of ucOC on human 

muscle are required in future to elucidate this relationship.  
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6.5.2 Acute exercise effects  

Irrespective of exercise mode, serum ß-CTX decreased post exercise. This is in 

contrast to other acute AE studies in similar cohorts that report ß-CTX and CTX either 

increases (32, 41) or levels were not altered by AE (42, 43). Only one other study, to our 

knowledge, compared AE and RE in middle-aged, postmenopausal females (44). 

Similarly, they report CTX decreases after RE (with impact exercise), but, CTX was not 

altered by moderate AE, suggesting for that study, a mode-specific response of CTX to 

RE. Conflicting findings to the current study may be due to study design differences, the 

RCT in that study was not crossover in design. The females in that study were also 

younger (~12 to 15 years) possibly indicating a different phase of the postmenopausal 

period, which is known to affect BTMs (45), and were osteoporotic/osteopenic which 

may alter the osteogenic effect of exercise on bone (46). Other possible explanations for 

conflicting findings between studies could be explained by the fragment of CTX and 

analysis methods used (ELISA (43), chemiluminescence (41), ECLIA (32, 42, 44)) and 

different post-exercise blood sampling protocols may detect different time-course 

responses. Another factor that may create contracting results is whether the participants 

fasted or not prior to the trial as it is known that a meal can decrease BTMs (42). Given 

that ß-CTX is suggested to reflect bone resorption, and we report it decreases with acute 

exercise, it may indicate a tip in favor of the balance of (reduction in bone remodeling), 

and resultant over time, reduction in bone loss, however, exact mechanisms of this is 

poorly understood and warrant further investigation.  

Regardless of exercise mode, we show acute exercise decreased tOC (by 6.5%), 

with no change in ucOC. When we investigated each exercise mode individually, RE 

decreased levels of ucOC at 120 mins compared to baseline, with no change observed 

after AE. This is in contrast to other studies in older adults, some reported tOC increases 

following AE (47-49) and impact only (jumping) exercise (50), others that tOC is not 

altered after AE or RE (32, 42, 43, 51, 52). Measurement of tOC only however, limits our 

understanding of this hormone in general(53). OC exists in the circulation in two forms, 

which are suggested to reflect different underlying biological processes with ucOC 

considered bioactive with endocrine-like effects (54-57).  

Indeed, we previously showed in two separate studies that while AE did not alter 

tOC levels in middle-aged males and females, ucOC was increased (32, 42). Only few 
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studies to our knowledge, have measured ucOC following acute exercise in similar 

cohorts. We report previously that ucOC increases with moderate and high intensity AE 

(32, 42, 47) but, was not altered by RE (using the same protocol as the current study) 

(47). Conflicting data between that study (47), and the current could be related to different 

ucOC assay methods (ECLIA vs automated immunoassay following hydroxyl-apatite 

slurry), the males  were also younger (~22 years) and obese. It is not clear why a similar 

increase in ucOC was not observed in the current study. Increasing age is related to an 

altered hormonal status, particularly in postmenopausal females (45) which may 

influence BTM responses. Indeed, we previously showed that the increase in ucOC 

following acute exercise was also related to the insulin sensitizing effects of exercise (32). 

In the current study, acute exercise did not alter ucOC or glucose levels, however the 

change in tOC and ucOC following acute exercise was related to the change in glucose, 

suggesting some evidence for a link between OC and glucose metabolism. Older adults 

are also known to be characterized by altered muscle quality and metabolism and 

increased risk for insulin resistance (58, 59). Whether this may be one explanation for the 

conflicting findings warrants further exploration. 

 

6.5.3 Muscle function and bone biomarkers: acute exercise responses 

Given the close link between bone and muscle, we also investigated whether 

baseline muscle strength or function is related to the acute exercise response of bone 

biomarkers. Our data show that those with higher muscle strength (grip strength) had 

lower post-exercise ß-CTX levels, tOC also trended towards a lower post-exercise 

response. Similarly, higher leg power (SCP) and muscle quality (LMQ) was related to 

lower ß-CTX levels, whereas poorer mobility (slower time to perform the TUG) was 

related to an increase in ß-CTX. Taken together, this suggests that underlying muscle 

health status may be related to circulating levels of BTMs post exercise  or in other words, 

those with lower muscle strength at baseline had a greater change in BTMs post-exercise 

responses. This observation is similar to previous reports in other diseases, such as type 

2 diabetes where it was reported that those with higher glucose and HbA1c (poorer 

glucose metabolism) at baseline exhibit a greater reduction in glucose and HbA1c after 

exercise (60). In context to the current study, particularly ß-CTX, whereby greater 

baseline muscle strength, leg power and mobility were related to lower post-exercise 

levels as discussed earlier this may indicate a reduction in bone remodeling, but, this 
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warrants further research. Altogether our data suggest that the link between muscle 

function and BTMs includes commonly used bone biomarkers, and these could represent 

a biomarker for detecting a change in muscle function in older adults. These findings need 

to be confirmed in larger, prospective cohort studies. 

 

6.5.4 Future directions 

Comparing data across acute exercise studies is challenging due to factors 

influencing responses. Based on our understanding of bone loading, bone responds to 

loads of novel and dynamic distributions, suggesting bone should optimally load to RE, 

not AE particularly in a low gravitational environment i.e. cycling. However, our results 

suggest that load and gravity may not be the only factors affecting bone biomarker 

response, at least to acute exercise. Sex was significant in the analysis models, and 

explained some of the variability in ß-CTX, tOC and P1NP, indicating sex differences in 

the levels of these biomarkers. However, due small sample of males we were unable to 

examine whether responses were sex-specific. We previously demonstrated, albeit, in 

young adults that tOC and ucOC responses to high intensity AE were not sex-specific 

(61). However, recent review articles discuss evidence, potential mechanisms and 

physiological reasons for differences in sex-specific adaptations to exercise (62, 63). 

Whether there are sex-specific responses of bone biomarkers to acute exercise in older 

adults remains unclear, and should be explored. It is possible that the rapid change in bone 

biomarkers observed is not a reflection of altered bone turnover per se. The fluid shifts 

occurring within bone in response to exercise may alter the rate these proteins are released 

into the circulation, or that bone biomarkers are released during exercise from other 

organs, i.e. liver  (64, 65). However this is unlikely for those used in the current study. 

Other potential metabolic factors, i.e. reactive oxygen or nitrogen species, acidosis or 

serum calcium availability may also be involved (66-68). Precise mechanisms should be 

explored in future to elucidate the acute exercise effects on bone biomarkers in general. 

Lastly, while our data aligns with some but not all findings, further studies are required 

to understand the complex relationship of bone biomarkers with different exercise 

intensities or modes and adults in different stages of life (i.e in females pre- peri- or post-

menopause). Future studies should also consider multiple sampling timepoints over an 

extended period of time, and larger, randomized controlled studies are required. 
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6.5.5 Limitations 

This study includes community-dwelling older adults who did not have diabetes. 

Although the sample size was small, the results of this study should be considered 

hypotheses generating. The participants in this study were taking anti-cholesterol, 

Vitamin D and antidepressants, which may have affected the relationships (69, 70), 

however, this study was cross-over in nature in an attempt to control for such 

confounders. The strengths of this study were its crossover design, and control procedures 

including performing testing visits in a fasted state, performed in the morning and at the 

same time in an attempt to control for diurnal variation. The males and females were 

combined in all analyses and sex was adjusted for in all statistical models, but this may 

limit the correlations. However, due to the low sample size, we were underpowered to 

perform additional analyses stratified by sex. The study did not include control data; 

therefore, the acute exercise effects on these BTMs may also be influenced by diurnal 

variation although we tested all participants in the morning and following an overnight 

fast to minimize these effects.  

 

6.5.6 Conclusion 

We demonstrate in older adults that the relationship between muscle 

quality/function and BTMs is not specific to ucOC, but to BTMs in general. Furthermore, 

a higher circulating levels of BTMs are linked to better muscle function. Exercise (aerobic 

or resistance exercise) had minimal effects on BTMs and perhaps even reduced the levels 

of β-CTX and total OC. The results of this study may potentially strengthen the evidence 

for a bone-muscle interaction axis, however this needs to be explored and confirmed in 

future mechanistic studies. 
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 Supplementary materials 
 

Supplementary Table 1. Effects of acute exercise on BRMs: Results of the linear mixed 

model adjusted for sex 

 Predictor Estimate CI P-val 

ß-CTX 

Sex -0.1759 -0.3324 – -0.019 0.028* 
Group * 0 mins 0.0029 -0.0221 – 0.0278 0.823 
Group * 60 mins 0.0026 -0.0224 – 0.0275 0.840 
Group * 120 mins -.0031 -0.0281 – 0.0218 0.805 

P1NP 

Sex -0.4205 (-0.7030 – -0.1381) 0.004** 
Group * 0 mins 0.0355 (-0.0148 – 0.0858) 0.167 
Group * 60 mins 0.0017 (-0.0486 – 0.0520) 0.947 
Group * 120 mins -0.0118 (-0.0621 – 0.0385) 0.646 

tOC 

Sex -0.3115 (-0.6012 – -0.0219) 0.035* 
Group * 0 mins -0.0137 (-0.0595 – 0.0321) 0.557 
Group * 60 mins -0.0324 (-0.0778 – 0.0130) 0.162 
Group * 120 mins 0.0004 (-0.0452 – 0.0460) 0.987 

ucOC 

Sex -0.3125 -0.6493 – 0.0243 0.069 
Group * 0 mins 0.0155 -0.0756 – 0.1066 0.738 
Group * 60 mins -0.0156 -0.1055 – 0.0743 0.733 
Group * 120 mins -0.0384 -0.1287 – 0.0519 0.404 

ucOC/tO
C 

Sex 0.0568 -6.8135 – 6.9270 0.987 
Group * 0 mins 1.2949 -2.3964 – 4.9862 0.492 
Group * 60 mins 1.0875 -2.5553 – 4.7304 0.559 
Group * 120 mins -0.8089 -4.4680 – 2.8502 0.665 

 

Linear mixed models were performed and all models were adjusted for sex. ß-CTX, C-
terminal telopeptide of type I collagen;  P1NP, procollagen of type I propeptide; tOC, 
total osteocalcin; ucOC, undercarboxylated osteocalcin. 
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Supplementary Table 2. Within group time point responses- Estimated marginal means 
from the linear mixed model adjusted for sex. 

 

  Aerobic Resistance 

Independent Time 
point EMM CI EMM CI 

CTX 

BASE 0.405 0.323 - 0.487 0.405 0.323  -  0.487 
0m 0.385 0.303 -   0.467 0.388 0.306  -  0.470 
60m 0.404 0.322 -   0.486 0.407 0.325  -  0.489 

120m 0.380 0.298  -  0.462*^ 0.377 0.295  -  0.459*^ 

Log P1NP 

BASE 3.67 3.52  -   3.81 3.67 3.52  -   3.81 
0m 3.69 3.54  -   3.83 3.72 3.57  -   3.87* 
60m 3.65 3.50  -   3.80 3.65 3.51  -   3.80# 
120m 3.65 3.50  -  3.79 3.63 3.49  -  3.78# 

Log tOC 

BASE 2.97 2.81  -  3.12 2.97 2.81  -  3.12 
0m 2.95 2.80  -  3.11 2.94 2.79  -  3.09 
60m 2.95 2.80  -  3.11 2.92 2.77  -  3.07* 
120m 2.90 2.75  -  3.05*#^ 2.90 2.75  -  3.06* 

Log ucOC 

BASE 2.03 1.86  -  2.21 2.03 1.86  -  2.21 
0m 2.00 1.82 -   2.18 2.02 1.84  -  2.20 
60m 1.98 1.80   -  2.16 1.96 1.78  -   2.14 
120m 1.97 1.79  -   2.15 1.94 1.76  -  2.11* 

 ucOC/tOC 

BASE 40.5 36.5  -   44.4 40.5 36.5  -   44.4 
0m 39.7 35.7  -   43.6 41.0 37.0   -  44.9 
60m 39.0 35.0  -  42.9 40.0 36.1  -   44.0 
120m 40.6 36.7  -  44.5 39.8 35.8  -  43.7 

 

EMM= estimated marginal mean based on the linear mixed-effects model adjusted for 
sex. Results are averaged over the levels of sex. Confidence interval used: 0.95. P-value 
adjustment: Tukey method 

*indicates significantly different from baseline p=<.05 

# indicates significantly different from time point 0m p=<.05 
^indicates significantly different from time point 60m p = <.05 
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Chapter 7: General discussion and conclusions 

 Major findings 

Older adults are at high risk for sarcopenia and osteoporosis, which in turn can 

lead to falls, fractures and early mortality (78, 88, 94). Given the ageing population and 

increases in sedentary behaviours, sarcopenia prevalence and burdens are predicted to 

rise. Bone and muscle are closely linked and tightly regulated by mechanical load such 

as exercise. Yet, it is not clear which bone-derived hormones are involved in this 

crosstalk. The ucOC hormone is involved in glucose regulation and possibly muscle mass 

maintenance and strength, at least in rodents. Consequently, it was suggested that ucOC 

may have potential as a therapeutic target to treat metabolic disorders including insulin 

resistance and T2D, as well as muscle wasting. However, the data linking ucOC with 

glucose regulation, and in particular with muscle mass and strength in humans, are 

contradictory. Furthermore, given that BTMs are released by bone during remodelling, 

and BTM levels are altered by exercise, it can be hypothesised that BTMs might be 

involved in bone-muscle interaction. As such, the major aim of this thesis was to explore 

bone-muscle interaction by examining BTMs, with a focus on ucOC, and their 

relationship with muscle function in older adults.  

To address these aims four studies were conducted. Study 1 characterised for the 

first time the effect of ageing on OC forms and ratios in humans. This was a crucial step 

to understand OC changes across the lifespan in general. In Study 2, I performed a 

longitudinal analysis of the relationship between ucOC with physical function, including 

long term injurious falls risk over 15 years. This was an important next step to strengthen 

previous cross sectional based evidence linking ucOC to muscle function in humans. In 

Study 3, a systematic review was performed to determine how BTMs respond to acute 

exercise, given that exercise is the cornerstone approach to improve musculoskeletal 

health in all ages including older adults. It was important to investigate whether responses 

are specific to exercise mode, intensity, age and sex. Lastly, this thesis included a 

randomised crossover clinical exercise trial (Study 4) in an attempt to identify whether 

ucOC and BTMs are related to muscle function in older adults. The major novel findings 

of this thesis are listed below (and illustrated in Figure 7.1): 

i. Reference ranges (95% reference limits) for all OC forms and ratios across the 

adult male lifespan were defined (study 1). Circulating tOC, ucOC and cOC levels 
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follow a U-shape pattern with increasing age, whereas the ucOC/tOC ratio 

increases, and cOC/tOC decreases, indicating that the ucOC/tOC ratio is a good 

measure of the ageing effect on OC, and therefore perhaps has greater clinical 

utility. 

ii. In older women, a higher ucOC/tOC ratio was related to poorer physical function, 

including its long term decline, and injurious falls risk over 15 years (Study 2). 

The ratio was also sensitive to detect those older women that had a fear of falling. 

This study, in combination with Study 1, provided evidence of the potential 

clinical utility of the ucOC/tOC ratio as a biomarker to identify individuals at risk 

for a loss of physical function and increased falls risk. 

iii. Study 3 revealed the limited number of studies that have explored the effects of 

acute exercise on BTMs in middle-aged and older adults, highlighting a major gap 

in our understanding of acute exercise responses on bone biomarkers in older 

adults. 

iv. In study 4, I showed that exercise has minimal effect, and may even decrease ß-

CTX and tOC. I hypothesise that alteration to bone biomarkers following acute 

exercise may not reflect bone turnover per se, but may be a result of other 

metabolic processes. 

v. In the cross-sectional analysis of older adults (study 4), I identified that higher 

baseline BTMs was correlated with better baseline muscle function, suggesting 

that the link between muscle function and bone may not be specific to ucOC but 

to BTMs in general. 
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Figure 7.1 Summary of the major findings of this thesis.  Created with BioRender.com 
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7.1.1 Osteocalcin in ageing 

 The ucOC/tOC ratio increases with age and is related to poorer physical function 

and falls 

Results from this thesis provide evidence that measurement of tOC alone, as 

performed in many studies and clinically, limits our understanding of OC in general. The 

measurement of ucOC should also be considered and expressed as ucOC/tOC, which may 

have better clinical utility. Currently, the wide use and measurement of ucOC in a 

research setting is limited by the assay technique, no gold-standard or optimal method to 

measure ucOC exists, with the current methods all having limitations. Only the HAP 

method allows the expression of ucOC/tOC ratio, yet this method is highly dependent on 

technical details. Future steps for the potential usefulness of ucOC/tOC as a clinical 

biomarker would require the development of an automatic and reliable assay to detect 

ucOC, with the capability to express the ucOC/tOC ratio. Many available assays require 

running two independent assays on tOC (GLA-OC) and ucOC (GLU-OC) components, 

therefore the expression of ucOC as a ratio of tOC is not possible. Before being 

incorporated into standard clinical practice, future studies should determine age-based 

reference ranges in larger more heterogeneous cohorts, performed for example in both 

sexes and clinical populations. 

I demonstrated that the ucOC/tOC ratio, but not ucOC alone, is related to falls and 

falls-related hospitalisation. I also reported that the ucOC/tOC ratio is higher in women 

who had a fear of falling, this suggests that a fall had probably already occurred. My 

findings also suggest that ucOC/tOC may be a representative clinical biomarker, where 

no such biomarker currently exists, to detect individuals at high risk of a decline in 

physical function. This may enable interventions to begin early and possibly prevent 

hazard outcomes such as falls, at least in older females. These findings should be 

confirmed in males. Future research such as interventional studies that can demonstrate 

adaptation in muscle function with changes in the ucOC/tOC ratio and a reduction in falls 

are required. 

 

7.1.2 Acute exercise and muscle function 

 The acute responses of BTMs following exercise are not mode specific in older 

adults 
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Despite the known beneficial effects and role of exercise in maintaining 

musculoskeletal health, particularly in older adults who are at high risk for sarcopenia 

and osteoporosis, data from this thesis demonstrate that there is large under-representation 

of older adults in acute exercise studies that investigate BTMs. The evidence suggest that 

BTM responses to acute exercise may be specific to exercise mode, intensity, age and sex 

(study 3) (Figure 7.2).  

 

Figure 7.2 A schematic representation of the effects of acute exercise on BTMS reported 
in the exercise literature. 

In study 4, the data demonstrate that there was no difference in BTM responses 

based on the mode of exercise. Based on the founding principles to optimise bone loading 

(258, 524-526) and given that AE was performed in a low-gravitational environment 

(cycling) versus the power RE and jumping regimen, this was a surprising finding. My 

data suggest that load and gravity may not be the only determining factors of these 

particular bone biomarker responses to acute exercise. It is possible that exercise at 

different intensities and duration may elicit different BTM responses, possibly related to 

different recruitment of muscle fibres or substrate metabolism (such as aerobic or 

anaerobic energy metabolism) (555). I used moderate intensity AE and RE (study 4) and 

as such studies using a higher intensity are needed (30, 427). It is also possible that the 

rapid change that we and others observe following acute exercise may not reflect 



 233 

underlying bone turnover per se. It could be related to the fluid shifts within bone that 

alter the rate at which proteins are released (556). Some BTMs are also produced by other 

organs (557), but this is unlikely for the markers we studied in this thesis. Other metabolic 

factors could also be involved i.e. reactive oxygen or nitrogen species, acidosis or serum 

calcium availability (558-560). Finally, it is known that exercise shifts plasma volume, 

although whether this is also a confounding factor on circulating BTMs is unclear. Further 

larger RCTs are required that explore whether BTM responses are different based on 

different exercise intensities and duration in this population. Future studies should also 

measure plasma volume at baseline and during post-exercise blood sampling time points 

to account for exercise related fluid shifts on BTM levels. In addition, metabolic factors 

should be explored as a potential confounder on the BTM responses. 

 

 Muscle function is linked to BTMs 

Although this thesis performed a longitudinal study (study 2) strengthening the 

evidence of an association between ucOC/tOC with physical performance and falls risk, 

we did not assess the relationship with other BTMs. Study 4 reported that BTMs (P1NP 

and β-CTX), not ucOC, were linked to better muscle function. One explanation for the 

conflicting data between study 2, which supports the link between ucOC and muscle 

function, and study 4, which demonstrated no link, is the limited sample size in study 4. 

Despite this, data from this thesis strengthens the link between BTMs and muscle 

function. However, larger RCTs are required to confirm our findings, which should be 

considered as hypothesis-generating. 

Based on the findings of this thesis and on the understanding of bone metabolism, 

it is clear that bone remodelling and bone turnover in ageing is a complex process that is 

probably dependent on many factors i.e. population, sex and age, which could explain 

some of the variability of results in the literature. In addition, the link between BTMs and 

muscle function may also involve other factors such as skeletal mechanoreceptors, the 

effects of comorbidities, medications, poor nutrition, vitamin D deficiency, secondary 

hyperparathyroidism, and impaired renal function (561-563). Assessment of these was 

beyond the scope of this thesis. Whether BTMs could be used to identify those at risk of 

low muscle function and falls is yet to be studied and will require much larger longitudinal 

cohort studies.  
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 Limitations and suggestions for future research  

Specific limitations for each study are described in the relevant sections (chapter 

3 to 6). General limitations of this thesis are described below. 

1. Study 1 reported age-reference ranges of OC forms and ratios for adult males. As 

such, the findings cannot be generalised to females. Similarly, Study 2 included 

only older females. Therefore, the relationship of ucOC with physical function 

and falls may be different in males. Future research should replicate these studies 

in both sexes 

2. In Study 3 I performed a systematic review rather than a meta-analysis as the 

number of studies identified was low and the studies used different outcomes, 

blood sampling methods and exercise protocols. In future, when more studies 

become available in this population, this data should be meta-analysed to confirm 

magnitude and direction of BTM responses as well as delineate factors 

contributing to this relationship i.e. sex, age, body mass index, exercise protocol 

characteristics. 

3. In Study 4 I only used one baseline blood sample for both study visits in order to 

reduce the number of blood samples taken during the trial (n=9 blood samples, 

which was approximately 150mL per visit). It is possible that baseline levels of 

BTMs may be different on different days. I have tried to reduce this risk by having 

all trials performed in the morning in a fasting state. In addition, there are many 

metabolic factors that may be involved in the alteration of circulating BTM levels 

in response to acute exercise, these should be investigated.  

4. Moderate intensity AE and RE was used in study 4, this may be too low to 

examine responses of bone and muscle which may in part explain a lack of change 

in BTMs. Future studies using high intensity AE and RE are needed to clarify 

these findings. 

5. OC is vitamin K dependent, yet vitamin K was not assessed in the current thesis. 

Thorough dietary and nutrient analysis as a potential confounder of OC and 

potentially other BTMs should be performed in future studies. 

6. The data supporting a bone-muscle interaction in Study 2 and study 4 are 

observational in nature, and are not evidence of a direct cause-effect of this 

relationship. It will be important to investigate directly the cause-effect 
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relationship between ucOC and muscle mass regulation or muscle function, and 

the mechanisms of action and signalling pathways involved. 

7. Lastly, the relationship suggested between increased BTMs and higher muscle 

function (study 4) is correlative in nature and needs to be confirmed in a much 

larger cohort, across different populations (age groups, clinical populations) and 

the relationship explored in a longitudinal design. 

 

 General conclusions  

In conclusion, this thesis adds significant new knowledge supporting the growing 

body of evidence for bone-muscle interaction via ucOC and potentially BTMs.  

• The ucOC/tOC ratio increases with increasing age, and a higher ucOC/tOC is 

related to poorer physical function and long term injurious falls risk. Suggesting 

that ucOC/tOC ratio could be used to identify those at high risk for a decline in 

physical function and falls. Future research should measure ucOC to build our 

understanding of this hormone in human health, and across clinical populations 

i.e. T2D and sarcopenia.  

• Besides ucOC, this thesis also uncovered a potential link between BTMs in bone-

muscle crosstalk. While this data need to be confirmed in larger studies, for 

translation of this thesis findings, this may have important clinical utility. Given 

BTMs are already used clinically, it would be an easy to implement strategy into 

current clinical practice.  

• Acute exercise can alter BTM levels. The variability in responses may be 

explained partly by sex. The acute exercise effects observed on BTMs may not 

reflect underlying bone turnover per se, but possibly a consequence of metabolic 

and other processes which are poorly understood and currently under explored. 
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Appendix 1 Published version of manuscript: Sarcopenia definition: Does it really 
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A B S T R A C T   

The loss of muscle mass, strength and function, known as sarcopenia, is common in older adults, and is associated 
with falls, fractures, cardiometabolic diseases, and lower quality of life. Sarcopenia can also occur secondarily to 
chronic diseases. Recently, sarcopenia was recognized as a disease with an International Classification of Disease 
(ICD) code, yet, at least five definitions for its clinical identification exist. Most definitions include three themes: 
low muscle mass, strength and physical performance. However, the definitions vary by the number of themes 
needed to diagnose sarcopenia and, within each theme various parameters and cut-off levels exist. The lack of 
consensus on what constitutes a diagnosis can create confusion and hesitation in sarcopenia diagnosis. Currently, 
no pharmacological treatment exists for sarcopenia. Resistance training (RT) is safe and effective to improve 
muscle mass, strength and physical performance in older adults and clinical populations. Based on current 
guidelines, whether an individual is defined as “sarcopenic”, or not, does not change the way RT is prescribed. 
Here, we present evidence and the inconsistencies in sarcopenia definitions and recommend that focus should be 
on optimizing ways to prescribe RT and increase long-term adherence, rather than on slight modifications to 
sarcopenia definitions.   

1. Sarcopenia and its definitions: scope of the problem 

Older adults can now expect to live to over 80 years of age (Woessner 
et al., 2021). However, increases in life years does not always translate 
to healthy life years. Rather, it is commonly accompanied by disability, 
increased risk for chronic disease and a poor quality of life (Kennedy 
et al., 2014). The loss of muscle mass and strength and/or physical 
function is known as sarcopenia, depending on the clinical definition 
used to identify it (Bhasin et al., 2020; Chen et al., 2020; Cruz-Jentoft 
et al., 2019; Fielding et al., 2011; Studenski et al., 2014). Sarcopenia 
is common in older adults (> 65 years) with estimated prevalence 
varying between 10% and 50%, large variability in prevalence is 
contingent on the definition used (Cruz-Jentoft et al., 2014; Shafiee 
et al., 2017). Sarcopenia is commonly associated with a higher risk of 
falls and fractures, reduced capacity to perform activities of daily living 
(ADLs) and a loss of independence (Beaudart et al., 2017; Zhang et al., 
2018). It is a multifactorial disease, and some of its risk factors include 

age, sex, low level of physical activity, poor diet and, chronic inflam-
mation. As such, sarcopenia often develops in conjunction with presence 
of cardiometabolic disease (Collamati et al., 2016; Mesinovic et al., 
2019). Sarcopenia was recognized as a disease with its own Interna-
tional Classification of Disease, ICD-10 code (M62.84)(Anker et al., 
2016). Although one can hypothesize that this new ICD code will pro-
mote screening for sarcopenia and therefore treatment and manage-
ment, there is no consensus on its diagnostic criteria. This lack of 
agreement in the cut-off criteria to diagnose sarcopenia between orga-
nizations, clinicians and researchers limits the use of an ICD code, 
potentially complicating the effective management of the disease. 

Currently, there is no universally accepted definition for sarcopenia. 
The validity and predictive values for adverse outcomes based on the 
available definitions is varied (Levinger and Duque, 2021; Sim et al., 
2019a, b). There are at least five definitions used to diagnose sarcopenia 
including the European Working Group on Sarcopenia in Older People 
(EWGSOP2) (Cruz-Jentoft et al., 2019); the Foundation for the National 
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Institutes of Health (FNIH) (Studenski et al., 2014); Asian Working 
Group for Sarcopenia (AWGS) (Chen et al., 2020); Sarcopenia Defini-
tions and Outcomes Consortium (SDOC) (Bhasin et al., 2020); and the 
International Working Group on Sarcopenia (IWGS) (Fielding et al., 
2011). Of these, three represent updates to original definitions (Chen 
et al., 2014; Cruz-Jentoft et al., 2010; Studenski et al., 2014). 

The criteria used to identify sarcopenia according to the five most 
commonly used definitions can be generally categorized into three main 
themes: a) muscle strength, usually hand grip strength, an assessment of 
upper limb strength (four of the five definitions) which has shown to 
have the capacity to identify older adults at risk for falls and fractures 
(Cöster et al., 2020; Karlsson et al., 2012; Rosengren et al., 2012); b) 
muscle mass, usually appendicular skeletal muscle mass adjusted to 
height or body mass index (BMI) (four of the five definitions) and c) 
physical performance i.e. gait speed, an assessment of mobility that has 
been associated with survival and predicts incident disability in older 
adults (four of the five definitions) (Perera et al., 2016; Studenski et al., 
2011). As seen in Fig. 1, even within these three themes, there are a 

diverse range of acceptable parameters included in each definition 
which may measure a different muscle characteristic. For example, 
muscle strength defined by EWGSOP2 includes hand grip strength, or 
the 5-time chair stand, an easy, portable assessment of lower limb 
muscle power, which has been shown to be associated with falls, frailty, 
slowness and functional limitation in activities of daily living in older 
adults (Alcazar et al., 2018; Baltasar-Fernandez et al., 2021; Shea et al., 
2018; Ward et al., 2015). Of note, even among those definitions that 
include the same muscle parameter, different cut-off values are used 
(Fig. 1). To our knowledge, there are also working groups currently 
formulating new definitions for sarcopenia, some of which suggest 
adding additional diagnostic measures including calf circumference (Mo 
et al., 2020), muscle density assessed by computed tomography (CT) 
(Wang et al., 2020b), hand grip strength asymmetry (Parker et al., 2020) 
and perhaps even lip, tongue and suprahyoid muscle strength (Abe et al., 
2020; Yamaguchi et al., 2020). The reality of numerous definitions for 
sarcopenia existing (including possibly more to come) together with a 
lack of agreeance on cut-off levels for individual muscle parameters, 

Fig. 1. Most commonly used definitions for sarcopenia: EWGSOP2 (European Working Group on Sarcopenia in Older People); FNIH (Foundation for the National 
Institutes of Health); AWGS (Asian Working Group for Sarcopenia); SDOC (Sarcopenia Definitions and Outcomes Consortium), IWGS (International Working Group 
on Sarcopenia). Abbreviations: M = male; F = female; ASM = appendicular skeletal muscle mass; SPPB = short physical performance battery; TUG = timed up-and- 
go; DXA = dual-energy X-ray absorptiometry Dashed line in EWGSOP2: compromised physical performance is used only to determine severity of sarcopenia once 
sarcopenia has already been diagnosed. *If all three themes are identified as compromised then this would identify severe sarcopenia based on the revised 
AWGS [13]. 
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leads to confusion in its diagnosis in both clinical and research settings. 
Inconsistent reports in the literature related to prevalence of sarcopenia 
are shown largely to be explained by the definitions chosen. In other 
words, when different definitions and cut off points are used, different 
results are obtained (Grosicki et al., 2020; Petermann-Rocha et al., 2019; 
Sim et al., 2019a, b). Not only does this lead to variable and inconsistent 
reports, it may also contribute to hesitation in a clinical setting to di-
agnose a patient as “sarcopenic”. The complexity in reaching an agree-
able definition maybe, at least in part, be due to the fact that older adults 
with sarcopenia, similar to frailty, are characterized as a very hetero-
geneous group, which may have some practical challenges clinically 
(Cesari and Kuchel, 2020). However, it is not just the definition that is 
important to identify sarcopenia, but also which health professional/s 
is/are responsible for its diagnosis (Yeung et al., 2020). For example, 
dieticians, exercise physiologists and physiotherapists should all play a 
role. An important question that remains is whether the use of a different 
clinical definition for sarcopenia changes the negative outcomes asso-
ciated with its progression. This should be explored in future studies. 

Discrepancies between agreeable cut off levels and parameters used 
to define sarcopenia raise an important clinical question: is having a 
precise cut-off level for the diagnosis of a patient as “sarcopenic” critical for 
disease management? A specific diagnostic cut-off level is undeniably 
pivotal for the accurate prescription of pharmacological treatment and is 
also valuable from a patient perspective as increased knowledge can 
increase self-empowerment (Wurcel et al., 2019). As stated by Cesari 
and Kuchel (2020) “we must not let the perfect become the enemy of the 
good.” In other words, additional parameters and definitions or criteria 
for sarcopenia may complicate and possibly hinder the prescription of 
the only known effective treatment for sarcopenia, specifically, a life-
style approach incorporating progressive resistance training (RT) in 
conjunction with a healthy diet comprising adequate protein and energy 
intake (Dickinson et al., 2013; Fiatarone et al., 1994; Tieland et al., 
2012). 

2. Sarcopenia: what is our best defense? 

One of the most consistent changes with advanced age is the decline 
in skeletal muscle mass and strength. Skeletal muscle comprises ~40% 
of the human body weight, and its functions are widespread, including 
postural, mobility, energy storage and metabolism. Longitudinal data 
clearly demonstrates a decline in muscle mass, muscle strength and 
power beginning ~35 years of age (Frontera et al., 2000). Notably, 
muscle strength and power decline to a greater extent than muscle mass, 
accounting for much of the disability and functional limitations associ-
ated with these age-related changes and not muscle mass, per se (Fron-
tera et al., 2000; Goodpaster et al., 2006). 

Sarcopenia often presents as a comorbidity of other cardiometabolic 
diseases and has common risk factors (increasing age, physical inac-
tivity, chronic inflammation and malnutrition) (Booth et al., 2012; 
Collamati et al., 2016; Mesinovic et al., 2019; Pacifico et al., 2020). 
Many of these chronic cardiometabolic diseases (such as cardiovascular 
disease, type 2 diabetes, and others) also share the skeletal muscle 
biological characteristics of sarcopenia with alterations to muscle size 
(fiber number and atrophy of type II fibers, motor units), increased fat 
infiltration, decreased capillarization, chronic inflammation, increased 
oxidative stress and insulin resistance, of which, exercise has been 
shown to effectively mitigate (Furman et al., 2019; Kalyani et al., 2014; 
Moylan and Reid, 2007; Suzuki et al., 2018). Notably, some of the loss of 
muscular power and function experienced by older adults and clinical 
populations can be attributed to age-related neuromuscular loss (Hunter 
et al., 2016). 

There are currently no approved pharmacotherapies for the treat-
ment of sarcopenia. Phase 2 clinical trials testing the effect of an anti-
myostatin antibody showed minimal effect on muscle function (Becker 
et al., 2015). The only intervention that consistently shows to improve 
muscle mass, strength, and physical function in older adults is exercise 

training and particularly progressive resistance training (RT) (Bårdstu 
et al., 2020; Henwood et al., 2008; Kalapotharakos et al., 2007, 2005; 
Kirk et al., 2019a; Mertz et al., 2021). Progressive RT is a safe and 
effective approach to attenuate, and in some cases reverse the 
age-related loss of muscle mass and strength (Dent et al., 2018; Fragala 
et al., 2019; Landi et al., 2014). 

3. Resistance exercise: the front line defense 

Progressive RT is considered a first-line strategy to prevent and 
manage sarcopenia (Dent et al., 2018; Fragala et al., 2019; Izquierdo 
et al., 2021). It provides numerous benefits including increasing muscle 
mass, strength, endurance, power and physical function, and lowering 
the risk of falls and associated injury such as fracture (Bårdstu et al., 
2020; Fiatarone et al., 1990; Henwood et al., 2008; Kalapotharakos 
et al., 2007, 2005; Liu-Ambrose et al., 2004; Skelton et al., 1995). These 
are essential muscle characteristics which are required to perform ADLs 
in older adults and clinical populations (Kraemer et al., 2001; Pollock 
et al., 2000; Wang et al., 2020a). RT is also consistently demonstrated to 
be safe, effective and recommended for almost all populations including 
healthy older adults and those with chronic diseases such as cardio-
vascular disease, cancer, type 2 diabetes, osteoporosis and chronic 
obstructive pulmonary disease (COPD) (American College of Sports 
Medicine, 2017; Beck et al., 2017; Fragala et al., 2019; Hayes et al., 
2019; Hordern et al., 2012; Izquierdo et al., 2021; Morris et al., 2021; 
Selig et al., 2010; Sharman et al., 2019). Notably, many patients with 
these diseases are also characterized by traits consistent with sarcope-
nia, with significant impairments in the capacity to perform ADLs and 
poorer quality of life (Bekfani et al., 2016; Leenders et al., 2013). Ac-
cording to the American College of Sports Medicine (ACSM), RT should 
be a component of every exercise program for healthy adults, and those 
with clinical conditions (American College of Sports Medicine, 2017). 
Extensive evidence on the benefits of RT in healthy older adults and 
those with chronic disease is well defined, but the question remains: 
“Does RT prescription change if a patient is diagnosed with sarcopenia, 
defined by any or different definitions?” The answer is probably not. 

4. Resistance training guidelines: show me the differences!? 

The general principle of RT prescription is that the exercise programs 
should be progressed and individualized to each person (American 
College of Sports Medicine, 2009). Many organizations have and 
continue to release independent RT guidelines for older adults and 
clinical populations (American College of Sports Medicine, 2017; 
Izquierdo et al., 2021). Regarding sarcopenia, while it is independently 
recognized as a disease, it commonly unveils as a consequence of many 
other chronic diseases, even despite substantial differences in patho-
physiology, progression and symptoms (Collamati et al., 2016; Mesi-
novic et al., 2019; Pacifico et al., 2020). The pharmacological treatment 
of each disease vary in many ways, but the RT recommendations are 
similar. While it is not possible to provide an overview of all available 
guidelines from various organizations, herein we provide a proof of 
concept to demonstrate the similarities in RT guidelines across the 
healthy and disease continuum, using best practice clinical exercise 
guidelines from ACSM and recommendations for healthy individuals 
from both ACSM and the International Conference on Frailty and Sar-
copenia Research (ICFSR) consensus (Table 1) (American College of 
Sports Medicine, 2017; Izquierdo et al., 2021). We have focused, in 
particular, on diseases commonly observed in conjunction with 
sarcopenia. 

When observing Table 1, there are noticeable similarities existing 
regarding resistance exercise prescription guidelines, irrespective of 
disease status. Regarding exercise intensity, some evidence suggests that 
similar increases in muscle strength have been observed when using an 
intensity of either moderate or heavy loads (between 40% and 90% of 1- 
repetition maximum, 1RM) once total volume is accounted for and if 
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lower loads are carried out to fatigue (da Silva et al., 2018; Morton et al., 
2016). In addition, comparable improvements in strength can be seen in 
older adults who performed two versus three days per week of RT 
(Ralston et al., 2018; Stec et al., 2017). 

Given that a surprisingly low number of older adults currently meet 
exercise guidelines (Bennie et al., 2019), researchers and clinicians 
should focus on how to engage individuals in RT that is enjoyable in 
order to increase adherence for long lasting benefits. The RT guidelines 
presented could be summarized by suggesting to complete structured 
exercise at least two to three days per week. Additionally, to combine 
whole body movements including upper and lower body exercises, of 
two to four sets each, and using a rep range that can be completed using 
a moderate to heavy intensity load until fatigue. Importantly, individ-
ualization of each component should occur regardless of disease state. 
This broader summary indicates that the general recommendations for 
RT in conditions with traits of sarcopenia do not differ substantially. The 
lack of variation in these guidelines also suggests that, in terms of RT 
guidelines, a specific disease diagnosis does not result in a major 
different RT recommendation. 

However, it should be acknowledged that there are different ap-
proaches to RT. One of which is power training, a specific type of RT 
where muscle contractions are performed at high velocity. This type of 
exercise improves muscle power and has been associated with improved 
capacity to perform ADLs in older adults (Lopes et al., 2016; Ramír-
ez-Campillo et al., 2014; Reid and Fielding, 2012), in those with 
mobility limitations (Reid et al., 2015), and even in those that are frail 
(Cadore et al., 2014a; Coelho-Júnior and Uchida, 2021). However, 
power training is yet to be incorporated into RT guidelines and as such, 
expertize from the exercise professional and caution should be consid-
ered if it is to be used as part of a RT program. Specifically, when pre-
scribing RT to older adults (with, or without sarcopenia traits), 
guidelines should be adopted as a guide to clinical practice 
in-conjunction with an in-depth knowledge of patient’ conditions and 
treatments. This approach will assist with the delivery of an optimal 
exercise program that can be performed safely by the individual. 

Indeed, the definition of sarcopenia itself may also yield a different 
understanding of what is being treated i.e. increasing muscle mass or/ 
and increasing muscle strength (i.e. handgrip strength) or/and 
improving physical performance (reducing time to complete the timed 
up and go). Furthermore, the prescription of any treatment, even exer-
cise, requires an assessment of both risk and benefit for the individual. 
The risk associated with RT is typically minimal if it is prescribed within 
the guidelines of ACSM (American College of Sports Medicine, 2017) 
and it is usually only associated with a delayed onset of muscle soreness 
(DOMs)(Cheung et al., 2003). DOMs is a common experience following 
RT and can be experienced by individuals of all fitness levels following 
unaccustomed physical activity. It is typically characterized by muscle 
soreness and discomfort that increases with intensity within the first 
24 h following exercise, and usually subsiding within a few days 
(Armstrong, 1984; Cheung et al., 2003). 

The benefits of RT in older adults and clinical populations with 
characteristics of sarcopenia go beyond the skeletal muscle level (i.e. 
improved strength) and includes improved capacity to perform ADLs, 
increased cognitive function (Cassilhas et al., 2007; Martín Del Campo 
Cervantes et al., 2019) and improved quality of life (Giuliano et al., 
2017; Levinger et al., 2007). RT also reduces cardiometabolic risk fac-
tors (Balducci et al., 2012; Hsieh et al., 2018). For older adults who are 
frail, living in nursing homes or institutionalized, and often 

Table 1 
Internationally recognized exercise prescription guidelines for older adults and 
common clinical populations that share characteristics of sarcopenia.  

Association 
(year) 

Population Frequency 
(days per 
week) 

Exercise prescription for 
resistance exercise 

Sets Reps Intensity 

ICFSR 
Consensus 
(2021) 
(Izquierdo 
et al., 2021) 

Older adults 2–3 1–2 8–12 50–80% 
1RM 

ACSM (2017) 
(American 
College of 
Sports 
Medicine, 
2017) 

Older adults 2–3 1 10–15 40–50% 
1RM 

ACSM (2017) 
(American 
College of 
Sports 
Medicine, 
2017) 

Healthy 2–3 2–4 8–12 60–70% 
1RM 

ACSM (2017) 
(American 
College of 
Sports 
Medicine, 
2017) 

Obese 2–3 2–4 8–12 60–70% 
1RM 

ACSM (2017) 
(American 
College of 
Sports 
Medicine, 
2017) 

Type two 
diabetes 

2 1–3 10–15 Moderate 
(50–69% 
1RM) to 
vigorous 
(70–85% 
1RM). 

ACSM (2017) 
(American 
College of 
Sports 
Medicine, 
2017) 

Cardiovascular 
disease 

2–3 1–3 10–15 40–60% 
1RM, BORG 
RPE 11–13 

ACSM (2017) 
(American 
College of 
Sports 
Medicine, 
2017) 

Chronic heart 
failure 

1–2 2 10–15 40–70% 
1RM 

ACSM (2017) 
(American 
College of 
Sports 
Medicine, 
2017) 

Chronic kidney 
disease 

2–3 1 8–12 65–75% 
1RM (1RM 
estimated 
from 3RM) 

ACSM (2017) 
(American 
College of 
Sports 
Medicine, 
2017) 

Peripheral 
arterial disease 

2 1 8–12 60–80% 
1RM 

ACSM (2017) 
(American 
College of 
Sports 
Medicine, 
2017) 

Dyslipidaemia 2–3 2–3 8–12 Moderate 
(50% 1RM) 
to vigorous 
(75–80% 
1RM), 
< 50% 1RM 
to improve 
endurance 

ACSM (2017) 
(American 
College of 
Sports 
Medicine, 
2017) 

Hypertension 2–3 2–4 8–12 60–80% 
1RM 
*older 
adults 
40–50% 
1RM 

ACSM (2017) 
(American 
College of 
Sports 

Arthritis 2–3 2–4 8–12 60–80% 
1RM 
*lower 
intensity for  

Table 1 (continued ) 

Association 
(year) 

Population Frequency 
(days per 
week) 

Exercise prescription for 
resistance exercise 

Sets Reps Intensity 

Medicine, 
2017) 

untrained 
(50–60%)  
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characterized by multimorbidity, the evidence for beneficial effects of 
RT on such outcomes is conflicting, likely due to large heterogeneity of 
the population as well as the definition for frailty used (Chin et al., 
2008). The degree of frailty may also be critical in the effectiveness of an 
exercise program (Chin et al., 2008). However, benefits including 
improved functional outcomes (Cadore et al., 2014b; Fiatarone et al., 
1990; Hassan et al., 2016; Martín Del Campo Cervantes et al., 2019) and 
quality of life (Cadore et al., 2014b) have been reported in this popu-
lation (Cadore and Izquierdo, 2015; Cadore et al., 2013). Indeed, there 
will be some instances whereby RT may not be suitable in particular 
populations due to very low function level or safety considerations. In 
that scenario, exercise prescription should be modified, and adapted to 
the physical function level of the individual taking into account 
comorbidities, and risk/benefit to participation. 

5. Other considerations 

This review focuses on RT as a treatment for sarcopenia. However, it 
is important to acknowledge that other lifestyle interventions may assist 
in muscle mass and strength preservation during ageing. This includes a 
balanced approach to the diet including a variety of nutritious foods 
from the five food groups: vegetables, fruits, grains, proteins (i.e. lean 
meat, fish, nuts and legumes) and dairy (milk, yoghurt etc.) (Brownie 
et al., 2015). Prospective studies have demonstrated that when dietary 
protein intake is low it is linked to functional decline in older adults 
(Bradlee et al., 2017; Mendonça et al., 2019; Mustafa et al., 2018b; Yuan 
et al., 2021). Some evidence also demonstrates that adequate protein 
intake (>1 g/kg/day) can reduce the rate of decline in hand grip 
strength and mobility (McLean et al., 2016; Mustafa et al., 2018a). 
However, supplementation with protein above recommended levels in 
older men > 65 years who were functionally limited, had no effect on 
muscle mass, strength or power (Bhasin et al., 2018). Recommendations 
advise that older adults (> 65 years) have higher daily protein re-
quirements than younger adults to maintain/regain lean mass and 
function, and, these requirements increase for those that exercise, and 
are even higher again for those with acute or chronic illness (Bauer et al., 
2013). 

Some evidence suggests a possible additive effect on muscle strength 
in older adults when combining protein intake with RT (Cermak et al., 
2012; Dickinson et al., 2013; Tieland et al., 2012) or a physically active 
lifestyle (Bradlee et al., 2017). However, others do not support this link 
(de Carvalho Bastone et al., 2020; Mertz et al., 2021; Roschel et al., 
2021), particularly if dietary protein is already adequate prior to 
beginning RT (Kirk et al., 2019b; Labata-Lezaun et al., 2020). For 
detailed evidence on nutritional interventions for maintaining muscle 
mass and strength into old age please see a recent review by Cruz-Jentoft 
(Cruz-Jentoft et al., 2020). 

6. Where from here: use it or lose it 

The reduction in muscle mass, strength and function is part of the 
ageing process, and it creates a challenge to individuals and health care 
systems globally. Whether an individual is diagnosed as “sarcopenic” or 
not has no effect on the way RT is prescribed based on current recom-
mended guidelines. As such, the current focus on refining sarcopenia 
definitions, where five (or more) already exist, may in fact do more harm 
than good as it may add confusion in the identification of sarcopenia. 
Moreover, it is plausible that researchers and clinicians will handpick 
the definition most relevant to their needs. A large body of research 
demonstrates that RT and a healthy diet including adequate dietary 
protein and energy intake, remains the best approach in our efforts to 
prevent and manage loss of muscle mass, strength and physical function. 
It also provides broader health benefits such as risk reduction for car-
diovascular and metabolic disease. From a clinical perspective, regular 
exercise is recognized as a cornerstone for public health, and yet, despite 
known health benefits, a large percentage of adults do not meet 

recommended guidelines (Merom et al., 2012; National Center for 
Health Statistics, 2015). Moreover, an abundance of studies demonstrate 
the importance of targeted resistance exercise, yet self-initiated partic-
ipation levels are low (Burton et al., 2017; Merom et al., 2012). Future 
focus for research should be aimed at understanding how to increase 
engagement and long-term adherence to exercise, importantly RT, to 
prevent functional decline and morbidity. 
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Baltasar-Fernandez, I., Alcazar, J., Mañas, A., Alegre, L.M., Alfaro-Acha, A., Rodriguez- 
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Supplementary table 1. Correlative link between total OC and glucose control indices 
 

Study 
 

Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Achemlal, (564) 
Cross-sectional 

Males with poorly controlled 
T2D 

n= 75 (35 T2D/35 CON) 
T2D: 54 yrs; CON: 53 yrs 

ECLIA,  Roche Diagnostics 
T: a.m.; C: N/R 

↓ tOC T2D vs CON 
15.3±4.1 vs 18.3±5.3 ng/mL 

 

Aoki, (565) 
Cross-sectional 

 

Subjects with NGT, IFG, 
IGT and T2D 

n= 55 (45 M/ 10 F) 
(NGT 39/PDM 11/T2D 5) 

M 47 yrs; F 56 yrs 

Biomedical Technologies Inc 
T: a.m.; C: fasting 

↑ tOC T2D vs NGT 
6.2±1.9 vs 4.1±1.3 ng/mL 

 

Bae, (566) 
Cross-sectional 

 

Community based men and 
postmenopausal women with 

and without MetS 
n= 567 (198 M/ 369 PoM) 

M: 57 yrs; F: 57 yrs 

ECLIA,  Roche Diagnostics 
T: a.m.; C: fasting 

↓ tOC in PoM women with 
MetS vs non-MetS 

18.9±7.7 vs 22.5±7.3 ng/mL 
*ns in men 

Bao (567), 
Cross-sectional 

 

181 men who underwent 
coronary angiography with 

and without MetS 
Non-MetS 76/MetS 105 

65 yrs 

ECLIA,  Roche Diagnostics 
T: a.m.; C: fasting 

↓ tOC MetS vs non-MetS 
4.5±1.9 vs 4.9±2.4 ng/mL 
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Study 
 

Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Bao, (414) 
 

Patients with T2D 
n= 59 (29 M/ 10 PreM/20 

PoM) 
55 yrs 

ECLIA, Roche Diagnostics 
T: N/R; C: fasting 

tOC ns males vs females 
14.7 ± 4.5 vs 15.61 ± 6.03 ng 

⁄mL 

Buday, (568) 
Cross sectional 

 
 

Adults exhibiting changes in 
glucose tolerance 

n= 290 (135 F/155 M) 
F: 47 NGT/GI 89 
M: NGT 72/GI 83 

F: NGT: 47 yrs; GI: 51 yrs 
M: NGT 34 yrs; GI 48 yrs 

elecys 2010 immunohistochemical 
automat Roche Diagnostic kits, 

Germany 
T: N/R; C:  fasting 

ns between NGT and GI 
Women 18.9±7.5 vs 18.1±7.6 

ng/mL 
Men 19.9±8.3 vs 19.1±9.2 

ng/mL 
 

Cakatay, (569) 
Case-control 

Adults with T2D and healthy 
age-matched CON 

n= 70 
35 T2D (18 F/17M) 
35 CON (20 F/15M) 

T2D F 56 yrs;  M 52 yrs 
CON F 54 yrs;  M 49 yrs 

RIA, Diagnostic Systems Laboratories 
T: a.m.; fasting 

↓ tOC T2D vs CON 
F: 0.8±0.1 vs 2.4±0.2 mmol/l 
M: 0.9±0.1 vs 2.1±0.4 mmol/l 

Mean±SEM 
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Study 
 

Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Chen. (346) 
Cross-sectional 

 

Middle aged and elderly 
adults 

n= 1729 (783 M/946 F) 
M 61 yrs, F 69 yrs 

RIA 
T: N/R; C: fasting 

↓ tOC MetS vs non-MetS 
4.5±1.9 vs. 4.9±2.4 ng ⁄ ml, 

 
no significant difference in PoM 

with and without MetS 
5.3±2.9 vs. 5.4±2.9 ng ⁄ ml 

Chouodray,   
(365) 

Cross sectional 
 

Pre- and post-menopausal 
women with T2D and age and 

BMI matched controls 
n= 98 T2D (51 PreM/ 47 PoM) 

n= 102 controls (53 PreM/49 
PoM) 

T2D 50 yrs; CON: 50 yrs 
*PreM and PoM combined 

ELISA (Quidel Corporation) 
T: a.m.; C: fasting 

↓ tOC T2D vs controls (PreM 
and PoM combined) 

4.2±1.9 vs 9.7±3.2 ng/mL 
 
 

Confafreux, 
(381) 

Cross sectional 
 

Elderly men 
n=798 
65 yrs 

two-site IRMA (IRMA, ELSA-OSTEO; 
CIS Bio International) 

 
T: N/R; C: fasting 

↓ tOC MetS vs non-MetS 
18.4±6.9 vs 19.5±6.7ng/mL 

 
↓ tOC in in those with elevated 

BGL vs normal BGL 
18.6±6.6 vs 20.1±6.9 ng/mL 
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Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Dalgard, (388) 
Prospective 

healthy, non-diabetic (at 
baseline, 1997–2000) adult 
mono- and dizygotic twins 

n= 1071 (574 F/497 M) 
38 yrs 

CLIA, iSYS, Immunodiagnostic 
Systems Ltd. 

T: N/R; C: fasting 

Baseline: tOC ↑ M vs F 
24.4(18.6-33.2) vs 22.3 (17.4-

29.9) ng/mL 
Median (25-75 percentiles) 

*data not presented for those 
with and without T2D 

 
tOC negatively associated with 
the prevalence of T2D 0.9 (0.9–

0.9) 
(odds ratio [OR], 95% 

confidence interval 

Daniele, 
(343) 

Individuals with NGT and 
IGT (pre-diabetics) 

n= 122 (43 NGT/ 122 IGT) 
45 yrs 

human-specific Milliplex map kit 
T: a.m.; C: fasting 

 
 

tOC ns between NGT and IGR 
 

divided according to glucose 
tolerance status, ↓ tOC in 
combined IFG-IGT and 

isolated IGT subjects vs IFG 
and NGT 

5.4±0.2 and 7.2±0.3 vs. 
8.0±0.5 and 8.3±0.3 ng/mL 

Mean±SEM 
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Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Dobnig, (344) 
Prospective 

cohort 

Elderly females including 
T2D and CON 

n= 1664 (583 T2DM/1081 
CON) 

T2D 83 yrs; CON 84 yrs 

intact OC 1-49 and large N-MID 
fragments 1-43 elecys N-MID 

osteocalcin 
T: N/R; C: non-fasting 

↓ tOC T2D vs CON 
33.9±20.8 vs 40.0±21.3 ng/mL 

 

Dou, (570) 
Cross sectional 

 

Subjects with and without 
NAFLD men 

n= 1558 (Non-NAFLD 
1109/NAFLD 449) 

All 54 yrs 
Non-NAFLD 54 yrs; NAFLD 53 yrs 

ECLIA  Roche Diagnostics 
T: N/R; C: fasting 

↓ tOC in NAFLD v non-
NAFLD 

16.2±4.9 vs 17.1±5.4 ng/mL 

Garcia-Martin, 
(345) 

Cross-sectional 
 

Postmenopausal women 
n= 54 
56 yrs 

ECLIA,  Roche Diagnostics 
T: N/R; C: fasting 

 

↓ tOC in IFG vs NGT 
10.7 ± 6.1 vs 17.3±7.4 ng/mL 

Gennari, (571) 
Cross-sectional 

 

T2D, T1DM and age, sex 
matched controls 

 
40 T2D/43 T1DM/83 CON 

T2D 63 yrs; T1D 44 yrs 
CON young- 35 yrs; CON old 

63 yrs 

intact osteocalcin, DiaSorin Diagnostics 
T: a.m.; C:  fasting 

ns between groups 
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Study 
 

Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Hwang, (410) 
Cross-sectional 

 

adults 
 

n= 425 
(NGT 23/pre-T2D 150/ T2D 

252) 
53 yrs 

IRMA, Osteo-RIA CT Kit, Cis Bio 
International 

T: a.m.; C: fasting 

tOC different between groups 
(NGT, Pre-DM, T2D) *data not 

available 
↓ tOC T2D vs Pre-DM 

15.3 ±6.8 v 19.1±8.9 ng/mL 

Hwang, (352) 
Retrospective 

 

nondiabetic men 
n= 1229 
47 yrs 

ELISA, Metra TM Osteocalcin (Quidel, 
Santa Clara, CA) 

T: a.m,.; C;  fasting 

tOC tertiles 
T1: 0.83±0.20 mmol/L 
T2 1.28±0.11 mmol/L 
T3 1.83±0.32 mmol/L 

HOMA-IR varied inversely with 
tOC tertiles. ns BGL, HbA1c 

Ns development of T2D across 
tOC tertiles 

Im, (334) 
Cross-sectional 

Postmenopausal women 
n= 339 (259 NG/40 IFG/31 

T2D) 
57 yrs 

ECLIA, Roche 
T: N/R; C: fasting 

↓ tOC T2D vs NG and IFG 
17.5±6.4 vs 22.2±9.4 and 

21.1±8.2 ng/mL 
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Study 
 

Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Kanazawa, 
(401) 

Cross-sectional 
 

PoM and men with T2D 
(untreated for T2D or 

osteoporosis) and PoM and 
men with OGTT data 

101 PoM/ 152 M with T2D 
18 PoM / 2 M with OGTT 

PoM 62 yrs; M 56 yrs 

IRMA [125I]-bone gla protein (BGP) as 
a 

competitive radioligand, and bound 
radioactivity was measured using 

a gamma counter 
T: N/R; C: fasting 

Post OGTT examinations by 
tertiles based on tOC levels: 

PoM: lowest tOC tertile 
showed hyperglycemia and 
hyperinsulinemia vs highest 

tertile 
 

Men in lowest TOC tertile also 
exhibited hyperinsulinemia 

*levels N/R 

Kim, (386) 
Cross-sectional 

 

Obese men 
n= 86 (15 normal/71 
obese/overweight) 

normal weight 41 yrs 
Obese/overweight 38 yrs 

ECLIA; Roche 
T: N/R; C: fasting 

tOC not different between 
normal weight and 

obese/overweight group 
14.1±5.2 vs 14.0±4.4 ng/mL 

 
↓ tOC in obese and overweight 
subjects with visceral obesity 
12.7±3.2 vs 18.6±4.9 ng/mL 
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Study 
 

Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Kim, (572) 
Cross sectional 

 

PreM and PoM women 
Unmatched women 

n= 617 (301 PreM /316 PoM) 
Matched women n= 122 (61 

PreM/61 PoM) 
Unmatched women PreM 42 

yrs; PoM 56 yrs 
Matched women PreM 47 yrs; 

PoM 48 yrs 

ECLIA, Roche 
T: N/R; C: fasting 

tOC levels associated with 
fasting insulin and HOMA-IR 

in postmenopausal women 
only 

tOC ns between groups 
*levels not reported 

Kindblom, 
(333) 

Cross-sectional 

Non-diabetic and diabetic 
elderly men 

n= 1010 
(857 non-T2D/153 T2D) 

75 yrs 

monoclonal antibodies against human 
OC, 1-43 and 1-49, ECLIA, elecsys N-

MID 
T: a.m.; C: fasting 

↓ tOC T2D vs nondiabetic 
21.7±8.2 vs 27.6±13.8 ug/L 

 

Liao, (384) 
Cross sectional 

Adult men 
n= 2400 (MetS 219 /non-MetS 

2181) 
Non-Mets: 37 yrs; MetS 42 yrs 

ECLIA,  Roche Diagnostics 
T: a.m.; C: fasting 

↓ tOC in MetS vs non-MetS 
20.0±1.3 vs 24.0±1.4 ng/mL 

Liatis, (394) 
Prospective 

 

Adults at high risk of T2D 
n= 307 
54 yrs 

N-Mid Osteocalcin ELISA; 
Immunodiagnostic Systems Ltd 

T: N/R; C: fasting 

↓ tOC in those with IFG 
and/or IGT vs NGT 

6.0±3.1 vs. 7.3±4.0 ng/mL 
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Study 
 

Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Lerchbaum, 
(380) 

Cross sectional 
 

Adult men and women 
n= 2671 (1449 M/ 1222 F) 

M 55 yrs; F 54 yrs 
Median 

 
 

IDS-iSYS MultiDiscipline Automated 
Analyser (Immunodiagnostic Systems 

Limited) 
T: 8:00am to 8:00pm; C: non fasting 

Higher tOC lower odds of 
MetS and T2D 

Men: 1SD ↑tOC of 7.0 ng/mL 
OR of MetS = 0.8 (0.7-0.9) 

 
Women: 1SD ↑tOC of 9.6 

ng/mL OR of MetS = 0.8 (0.6-
0.9) 

 
Men: 1 SD ↑ntOC of 7.0 ng/mL 

OR of T2D 0.6 (0.5-0.7) 
 

Women: For 1 SD ↑ tOC of 9.6 
ng/mL OR of T2D 0.6 (0.5-0.8) 

 
OR (95% CI) 

Lopes, (573) 
 

Cross sectional 

Post-menopausal women with 
osteopenia/osteoporosis with 

and without T2D 
n= 43 (20 CON/20 T2D) 

T2D: 59 yrs; CON: 58 yrs 
 

ELISA (DIAsource ImmunoAssays) 
T: a.m.; C: fasting 

↓ tOC T2D vs controls 
10.2±5.4 vs 14.8±5.3 ng/mL 
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Study 
 

Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Ma, (574) 
 

Cross sectional 

Community based study of 
middle aged and elderly men 

with chronic diseases 
 

n= 1077 
(T2D and pre-diabetes 638/ HGT 

638/ IGR 302/ NDD: 137) 
*NDD, new diagnosed diabetes 

61 yrs 

ECLIA *analyser/manufacturer N/R 
T: N/R; C: fasting 

tOC according to glucose 
tolerance status 

↓ tOC in IGR and NDD than 
NGT 

NGT 19.2 (18.6- 19.8) vs IGR 
17.7 (16.8-18.5) vs NDD 
17.4(16.1-18.7) ng/mL 

Median (IQR) 
*significantly different among 

groups 

Movahed, (358) 
Cross-sectional 

 

Postmenopausal women 
n= 382 
59 yrs 

N-MID Osteocalcin ELISA (Nordic 
Bioscience Diagnostics A/S) 

T: N/R; C: fasting 

below median tOC (lower 
tOC) vs above median tOC 

(higher tOC) had higher FBG 
8.2 ±1.1 vs 14.1±1.4 ng/mL 

ns between MetS vs non-MetS 

Oosterwerff, 
(383) 

Cross sectional 
 

Community-dwelling elderly 
subjects 

n= 1284 (629 M/ 655 W) 
(MetS: 476/Non-MetS 808) 

MetS: 75 yrs 
Non-MetS 75 yrs 

IRMA (Biosource Diagnostics) 
T: a.m.; C: non fasting 

↓ tOC in MetS vs non-MetS 
1.8(1.3-2.4) vs 2.1(1.6-2.8) 

mmol/L 
Median(IQR) 
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Study 
 

Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Oz, (367) 
Cross-sectional 

 

T2D and non-T2D 
n= 100 

52 T2DM (37 F/15 M) 
48 Non-T2DM (34 F /14 M) 

41-64 yrs (range) 

microenzyme-linked immunosorbent 
assay, micro-ELISA, Tecan 

T: N/R; C:fasting 

↓ tOC T2D vs CON 
8.1±5.7 vs 15.8±8.24 ng/mL 

 

Papastefanou, 
(575) 

Case-control 

Pregnant women 
n= 134 (40 GDM/ 94 controls) 

GDM 33 yrs; controls 30 yrs 

N-MID OC, ECLIA; Roche Diagnostics 
T: 9:00 am to 18:00pm; C: not fasted 

GDM group, first trimester 
higher tOC vs control 

8.8±2.6 vs 7.3± 3.0 ng/mL 

Pittas, (338) 
Prospective 

cohort 

Healthy and elderly 
n= 380 
71 yrs 

two site-IRMA, Nichols Institute 
T: a.m.; C: fasting 

Divided into tertiles by tOC 
Q3 (Highest tOC) mean FPG 
was 97.1 vs. Q1 (lowest tOC) 

104.8 mg/dl 
 

Sarkar, (366) 
Cross sectional 

 

Men with T2D and age and 
BMI matched controls 

n= 112 (56 T2D/56 controls) 
52 yrs 

ELISA (Quidel Corporation) 
T: a.m.; C: fasting 

↓ tOC T2D vs CON 
3.6±1.6 vs 7.9±2.5 ng/mL 

Shu, (576) 
Cross-sectional 

 

Post-menopausal with and 
without T2D 

n=50 (50 T2D/50 CON) 
T2D 63 yrs; CON 60 yrs 

ELISA N-mid Osteocalcin (IDS Ltd.) 
T & C: N/R 

↓ tOC T2D vs CON 
4.5±2 vs 6.2±2 nmol/L 
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Study 
 

Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Shu, (364) 
retrospective 

Middle-aged adults 
n= 1870 (1279 men/ 591 

women) 
(1482 NGT/429 IGT/85 IFG) 

47 yrs 

Elecsys N-MID OC assay, ECLIA 
Roche 

T: N/R; C: fasting 

Baseline: 
↓ tOC higher prevalence of 

IFG, IGT 
Prevalence of MetS lowest in 
those with highest tOC levels 
(quartile 4) when cohort was 
subgrouped by tOC based on 

quartiles. 
Q1 11.2±1.5 vs Q4 24.4±4.9 

ng/mL 
 

3-years follow up; those with 
higher tOC at baseline had 
lower incidence of diabetes 
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Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Szulc, (577) 
prospective 

cohort 
 
 
 

*follow up study 
of same cohort 
Confavreux, 

(381) 

MINOS Prospective cohort 
study of men with 

osteoporosis 
n= 762 

MetS 65 yrs, non-MetS 66 yrs 
 
 

MINOS Prospective cohort 
study of men with 

osteoporosis 
n= 798 

Age: 65 yrs 

human-specific, two-site IRMA, ELSA-
OSTEO; CIS Bio International 

T: a.m.; C: fasting 
 
 
 

human-specific, two-site IRMA, ELSA-
OSTEO; CIS Bio International 

T: N/R; C: fasting 

↓ tOC MetS vs non-MetS 
18.3±10.3 vs 19.7±6.9 

 
 
 
 

↓ tOC Higher MetS traits vs 
lower MetS traits 

five criteria 15.0±5.1 vs 0–2 
criteria 19.5±6.7 ng/mL 

Tan, (385) 
Cross-sectional 

 

Adult men 
n= 2344 

MetS 297/non-MetS 2047 
MetS 42 yrs; Non-MetS: 37 yrs 

ECLIA,  Roche Diagnostics 
T: N/R; C: fasting 

↓ tOC MetS vs non-MetS 
20.3±1.4 vs 24.1±1.4 ng/mL 

 

Terzi, (578) 
Prospective, 
Case-control 

Post-menopausal women with 
and without MetS 

n=230 (63 MetS/167 non-MetS) 
MetS: 58 yrs; Non-MetS 56 yrs 

ECLIA (Roche, Germany) 
T: a.m.; C : fasting 

↓ tOC MetS vs non-MetS 
17.6±7.0 vs 21.2±5.8 ng/mL 
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Study 
 

Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Urano, 
(392) 

Cross sectional 

PoM women with and 
without diabetes 

n= 1691 (61 T2D/ 1630 
controls) 

65 yrs 
 

tOC (EIA) 
T: N/R; C: Non fasting, 

 

Those with lower baseline tOC 
<6.1ng/mL had ↑ risk of T2D 

than those with higher 
baseline tOC >6.5 ng/mL (over 

7.6 ± 6.1 yrs) 
 

Sig different across quartiles 
based on tOC levels 

Q1 4.2±1.2 vs Q4 12.8±3.2 
ng/mL 

Winhofer, (579) 
Case-control 

study 

Pregnant women with and 
without gestational diabetes 

n= 78 (26 GDM/ 52 NGT) 
GDM 27 yrs, NGT 28 yrs 

ECLIA,  Roche Diagnostics, Roche 
T: N/R; C: fasting 

During pregnancy: ↑ tOC in 
GDM than NGT 

15.6±4 vs 12.6±4.0 ng/mL 
 

postpartum ns between groups 
36.2±10.2 vs 36.2±13.0 ng/mL 

Xu, (580) 
Cross sectional 

 

non-T2D with and without 
first degree relatives with 

T2D 
N= 1206 (non-FDR 957/ FDR 

249) 
59 yrs 

Median 

ECLIA,  Roche Diagnostics 
T: N/R; C: fasting 

↓ tOC  FDR vs non-FDR 
19.8±5.7 vs 20.7±6.8 ng/mL 

 
Those with NAFLD- those 
with FDR ↓ tOC than those 

without FDR *Levels not 
reported 
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Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Yang, (382) 
Cross sectional 

 

Community-based post-
menopausal women 

n= 1789 
57 yrs 

ECLIA,  Roche Diagnostics 
T: a.m.; C: fasting 

↓ tOC MetS vs non-MetS 
18.5 (15.5-23.5) vs 21.1(16.9-

26.3) ng/mL 
Median (IQR) 

Yang, (581) 
Retrospective 

 

trauma patients 
n= 394 (296 males/98 females) 

Low HbA1c n = 301 (224 
M/77F) 

High HbA1c n =93 (72 M/21 
F) 

HbA1c-low: 49 yrs 
HbA1c-high: 52 yrs 

N-MID OC automated ECLIA 
immunoassay (Roche) 

T: N/R; C: fasting 

low HbA1c group had ↑ tOC 
vs high HbA1c group 

11.6±5.8 vs 9.1±3.7 ug/L 

Yeap, (336) 
Cross-sectional 

 

Men > 70 years with and 
without MetS 

n= 2765 (MetS 797/non-MetS 
1968) 
76 yrs 

automated Elecys assay 
T: a.m. ; C: fasting 

↓ tOC MetS vs no-MetS 
20.1±.4 vs 21.4±.2 ug/L 

Mean±SEM 

Yilmaz, (582) 
Case- control 

 

NAFLD and age and sex 
matched controls 

99 NAFLD/75 CON 
NAFLD 48 yrs; CON 48 yrs 

 

solid-phase enzyme-amplified 
sensitivity immunoassay performed on 

microtiter plates (GenWay hOST-
EASIA, GenWay Biotech, Inc.) 

T: a.m.; C:  fasting 

↓ tOC NAFLD vs CON 
2.2 (2.2–2.4 ng/mL) vs 2.3 (2.2–

2.4 ng/mL) 
Median (IQR) 
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Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Zhang, (583) 

acromegalic patients and sex-
, age-, and BMI-matched 

healthy controls 
Acromegalic n=50; controls 

n=30 
48 yrs 

ECLIA (Roche Diagnosis, Mannheim, 
Germany) 

T: N/R; C: fasting 

↓ tOC acromegalic vs CON 
19.46±6.69 55.45±34.02 ng/mL 

Zhang, 
(584) 

Adult men and women at 
risk for cardiovascular 

disease 
n= 461 (299 M/162 F) 

M 62 yrs; F 63 yrs 

ECLIA (Elecsys N-MID Osteocalcin 
Calset; Roche Diagnostics 

T: a.m.; C:  fasting 

↓ tOC in coronanry heart 
disease vs non-coronoary heart 

diseae 
12.2 (9.5-15.1) vs (13.6 (10.7-

18.0) ng/mL 
Median (IQR) 

Zhou, (585) 
Cross-sectional 

Postmenopausal women with 
T2D and age matched non-

T2D 
(890 T2D/689 CON) 

58 yrs 

IRMA- ALSA-OSTEO kit. 
T:N/R; C: fasting 

T2D with low <25 and high 
BMI >25 have ↓ tOC vs 

controls 
 

< 25 kg/m2 BMI group 
12.5±0.3 vs 16.9±0.1 

 
>25 kg/m2 BMI group 

10.2±0.2 vs 12.8±0.1 
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Population 
Sample size (n) 
Mean age (yrs) 

Assay 
T: time of sampling 

C: fasting/non-fasting 

Main outcome 
Mean±SD (unless stated) 

Zhou, (586) 
Cross-sectional 

 

Adults with T2D and NGT 
n= 500 

254 men (128 T2D/126 NGT) 
53 yrs 

66 PreM (33 T2D/33 NGT) 
43 yrs 

180 PoM (92 T2D/88 NGT) 
62 yrs 

ECLIA,  Roche Diagnostics 
T= N/R; C= fasting 

↓ tOC T2D vs NGT 
15.1(10.8-18.3) vs 16.8(11.8-

20.6) ng/mL 
Median(IQR) 
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A R T I C L E I N F O
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A B S T R A C T

Purpose: Osteocalcin (OC), an osteoblast-specific secreted protein expressed by mature osteoblasts, is used in
clinical practice and in research as a marker of bone turnover. The carboxylated (cOC) and undercarboxylated
(ucOC) forms may have a different biological function but age-specific reference ranges for these components are
not established. Given the different physiological roles, development of reference ranges may help to identify
people at risk for bone disease.
Methods: Blood was collected in the morning after an overnight fast from 236 adult men (18 to 92 years old) free
of diabetes, antiresorptive, warfarin or glucocorticoid use. Serum was analyzed for total osteocalcin (tOC) and
the ucOC fraction using the hydroxyapatite binding method. cOC, ucOC/tOC and cOC/tOC ratios were calcu-
lated. Reference intervals were established by polynomial quantile regression analysis.
Results: The normal ranges for young men (≤30 years) were: tOC 17.9–56.8 ng/mL, ucOC 7.1–22.0 ng/mL, cOC
8.51–40.3 ng/mL (2.5th to 97.5th quantiles). Aging was associated with a “U” shaped pattern for tOC, cOC and
ucOC levels. ucOC/tOC ratio was higher, while cOC/tOC ratio was lower in men of advanced age. Age explained
∼31%, while body mass index explained ∼4%, of the variance in the ratios.
Conclusions: We have defined normal reference ranges for the OC forms in Australian men and demonstrated
that the OC ratios may be better measures, than the absolute values, to identify the age-related changes on OC in
men. These ratios may be incorporated into future research and clinical trials, and their associations with
prediction of events, such as fracture or diabetes risk, should be determined.

1. Introduction

Osteoporosis affects 1.2 million Australians, with a further 6.3
million affected by osteopenia, with both rates projected to rise in the

years to come [1,2]. Six percent of men aged over 50 years have os-
teoporosis, increasing to 13% in those over 70 years [1,2]. Circulating
levels of bone turnover markers (BTMs) are used in research and clin-
ical practice to predict fracture risk [3–5]. Reference intervals and
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treatment targets of BTMs for older women, based on premenopausal
data, have been extensively characterized, however, only a few studies
are available for men [6–8].

Serum total osteocalcin (tOC), an osteoblast-specific secreted pro-
tein expressed by mature osteoblasts, is the most abundant, non-col-
lagenous protein found within the bone matrix and is used as a BTM
[9,10]. tOC exists in the circulation in two major forms; γ-carboxylated
(cOC) and undercarboxylated (ucOC) which lacks γ-carboxylation at
one or more sites [11]. cOC is thought to be predominately located in
bone, whereas ucOC may participate in glucose metabolism, influen-
cing muscle mass and strength [12–22]. Previous studies indicate cir-
culating tOC is highest in early adulthood, lower in mid-life, and with
mixed results shown in older adults [23–31]. Despite the differences in
the biological functions of the OC forms, few studies report both forms
and tOC levels, or their age-specific distributions. Consequently, normal
ranges of OC forms and ratios (ucOC, cOC, ucOC/tOC, cOC/tOC) in men
are not quantified.

The aims of the current study were to determine how tOC, ucOC,
cOC and the ratios ucOC/tOC and cOC/tOC change with age in adult
men and to define normative ranges of the OC forms and OC ratios in
this population.

2. Material and methods

2.1. Study population

This is a cross-sectional study representative of men across the adult
lifespan, utilizing collected fasted baseline (resting) sera samples of a
total of 236 men aged 18 to 92 years. The datasets include data from the
following studies: (a) the Health In Men Study (HIMS), a population-
based cohort study, comprising of 4248 men aged 70 to 89 years, as-
sessed in 2001-04, who have been followed-up since initial recruitment
in 1996 (Perth, Western Australia); From men in HIMS who had pre-
viously had tOC and ucOC assessed [12], after excluding men with
diabetes, heart disease or osteoporosis, 99 men were randomly selected
for the current study; (b) the Nepean Osteoporosis and Frailty (NOF)
study, a cross-sectional study of older adults with frailty and other
comorbidities (Western Sydney, Australia). A total of 23/76 samples
were eligible after exclusions for diseases (i.e. diabetes) and medica-
tions known to affect OC and bone metabolism, 23 were eligible [32];
(c) exercise studies at Victoria University investigating bone health,
comprising 20 healthy men aged 21 to 70 years [33,34]; (d) the Gene
Smart Study, is an ongoing international, multi-center study that is a
part of the recently established ATHLOME Consortium [35,36]. To date
(April 2019), 94 men have completed the study. At the time of estab-
lishing the current study only 74 samples from healthy, young men
(aged 18 to 45 years) were collected and were included in the current
study; and (e) the Vegetable Intake and Blood Pressure (VIABP) study is
a randomised, controlled, cross-over study of 30 non-smoking, non-
diabetic participants (20 men, 10 women) with pre-hypertension or
untreated grade 1 hypertension, only samples from men, aged 40 to 74
years (first baseline visit), were included [37]. All volunteers signed a
consent form for participation in the respective studies.

In total, of the 236 men included in this study, 17 men from the NOF
study and 5 men from the VIABP used medications including anti-
hypertensives (NOF, n=9); antiplatelets (NOF, n=2), nitrates (NOF,
n=2); statins (NOF, n=7; VIABP, n= 2); ventolin (NOF, n=2);
proton pump inhibitors (NOF, n= 6; VIABP, n= 1); diuretics (NOF,
n=2); non-steroidal anti-inflammatory drugs (NSAIDs) (NOF, n=2;
VIABP, n=2); opioids (NOF, n= 1); anticholinergic/anti-muscarinic
(NOF, n= 1) and vitamin D/calcium (NOF, n= 2).

2.2. Quantification of serum osteocalcin (tOC) and undercarboxylated
osteocalcin (ucOC)

The stored sera samples were selected on the following criteria: a)

samples collected in the morning following an overnight fast (to
minimize circadian variation); b) samples were analyzed at the same
laboratory, by the same technician and following the same metho-
dology; and c) all samples were collected as serum and kept in aliquots
in long term storage at -80C until assayed and no freeze-thaw cycles
previously reported.

Frozen serum samples from each clinical trial were obtained from
long-term storage and analyzed using identical technique and equip-
ment, and performed by the same technician. Serum tOC was measured
using an automated immunoassay (Elecsys 170; Roche Diagnostics).
Serum ucOC was measured by the same immunoassay after absorption
of carboxylated OC on 5mg/mL hydroxyl-apatite slurry, following the
method described by Gundberg et al [11] and Chubb et al [8].

The Elecsys N-MID Osteocalcin assay uses two monoclonal anti-
bodies specifically directed against epitopes on the N-MID fragment and
the N-terminal fragment. The assay hence detects the stable N-MID
fragment as well as the (still) intact OC. The test is non-dependent on
the unstable C-terminal fragment (amino acids 43–49) of the OC mo-
lecule and thus ensures constant measurement results under routine
conditions in the laboratory. Test Principle (from Roche N-MID
Osteocalcin product insert). Sandwich immunoassay – assay duration
18min. 1st incubation: 20 u L of sample, a biotinylated monoclonal N-
MID OC specific antibody and a monoclonal N-MID OC -specific anti-
body labelled with a ruthenium complex [Tris (2,2′-bipyridyl)ruthe-
nium(II)-complex; Ru(bpy)32+] react to form a sandwich complex. 2nd
incubation: after addition of streptavidin-coated microparticles, the
complex becomes bound to the solid phase via interaction of biotin and
streptavidin. The reaction mixture is aspirated into the measuring cell
where the microparticles are magnetically captured onto the surface of
the electrode. Unbound substances are then removed with ProCell/
ProCell M. Application of a voltage to the electrode then induces a
chemiluminescent emission which is measured by a photomultiplier.
Results are determined via a calibration curve which is generated by 2-
point calibration and a master curve provided via the reagent barcode.
The reagents used for the measurement of OC were the Roche N-mid
Osteocalcin (Roche Diagnostics, Mannheim) on the Roche E170
Analyzer (Elecys 170; Roche Diagnostics). This is the same reagent and
instrument used in previous studies by Chubb et al [8] and Levinger
et al [15,18,38]. The hydroxyapatite used was Calbiochem Hydro-
xyapatite, Fast Flow catalog # 391,947 as described by Gundberg et al
[11] and as used in our previous work [15,18,38].

Using commercial control material (Roche Precivaria controls level
1 and 2), the following inter-assay variability was seen over 16 analy-
tical runs for OC on the Roche E170: N= 16, mean 19.02, SD 0.33, CV
1.71%; N=16, mean 91.41, SD 3.01, CV 3.29%. Using an OC standard
material purchased from Sigma chemicals spiked into OC free serum,
the following interassay variability was seen over 7 analytical runs for
the tOC and % binding to hydroxyapatite: High concentration N=7,
mean total 193.43, SD 14.70, CV 7.60%; High concentration N=7,
mean % bound 79.17%, SD 2.21, CV 2.80%; Low concentration N=6,
mean total 18.21, SD 1.78, CV 9.78%; Low concentration N=6, mean
% bound 73.94%, SD 4.62, CV 6.25%. This % binding was similar to
that seen in previous studies [39–41].

2.3. Statistical analysis

All statistical analyses were performed using R version 1.1.453 [42].
We initially intended to use quantile regression as previously published
[43] to generate 95% reference ranges for the bone markers and ratios
within the cohort, but we noted that age strongly modified the re-
ference ranges. Therefore, instead of using arbitrary age cut-offs and
splitting our cohort into smaller age groups, we performed polynomial
regression of degree 2 for tOC, cOC and ucOC, and simple regression for
the ratios cOC/tOC and ucOC/tOC. We generated 95% reference ranges
for each of the bone markers as a continuous function of age, with the
predict() function. The 95% reference ranges are easily readable as red
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dashed lines on the individual figures. We also added body mass index
(BMI) as a covariate to each of the models to determine whether ad-
justment for BMI was required. Reference ranges for men< 30 years
were given as the 2.5th-97.5thquantiles of each bone marker. We also
report the 95% CI for the upper and lower limits of the reference
ranges. All data are presented as mean ± SD. For all statistical ana-
lyses, p values< 0.05 were considered statistically significant.

3. Results

A total of 236 men were included with a mean age of 58.1 ± 21.7
years and BMI of 26.2 ± 3.8 kg/m2 (Table 1, sample of men per decade
of age are presented in Table 2). tOC, ucOC and cOC (Fig. 1A-C) all
displayed a “U shaped” relationship across the aging continuum, with
lowest levels observed around 55 years of age. Specifically, from 18 to
59 years old, tOC levels diminished in a non-linear fashion from
∼42 ng/mL to∼18 ng/mL; tOC levels were higher after 59 years of age
in a non-linear fashion, attaining ∼24.2 ng/mL at 80 years old. ucOC
and cOC levels show similar associations with age. From 18 to 52 years
old, ucOC levels diminished from ∼14.7 ng/mL to ∼8.7 ng/mL; ucOC
levels increased after 52 years of age, attaining ∼12.6 ng/mL at 80
years old. From 18 to 63 years old, cOC levels diminished from
∼27.1 ng/mL to ∼8.3 ng/mL; cOC levels were higher after 63 years of
age, attaining ∼11.6 ng/mL at 80 years old.

Mean and SD for the absolute values of OC forms were calculated to
determine the dispersion of individual values between young
(< 30 years) and older adults (> 70 years); tOC in young men was
lower than older adults (35.31 ± 11.56 versus 22.33 ± 10.17); ucOC
was similar in young and older men (12.66 ± 4.29 versus
11.59 ± 4.79) and cOC was higher in younger men compared to older
(22.65 ± 8.69 versus 10.74 ± 6.22).

In contrast to the individual forms, there was an incremental rise in
ucOC/tOC ratio across age (Fig. 1D) while the cOC/tOC ratio was lower
(Fig. 1E). Adjusting for the effect of BMI, on average, men have
0.3 ± 0.03% lower cOC/tOC ratio per decade; conversely, increments
of 0.3 ± 0.03% of ucOC/tOC per decade of age were observed. Age
explained ∼31% of the variance while BMI explained ∼4% of the

variance in the ratios. BMI was not associated with individual measures
of tOC, cOC and ucOC and as such was not adjusted for in those models
(Table 3).

The recommended reference ranges (2.5th to 97.5th quantiles) and
95% confidence limits for the lower and upper limits, based on the data
of the young (< 30 years old), healthy men are presented in Table 4 for
all OC forms and ratios.

4. Discussion

We report that in adult men (a) for all OC forms, aging was asso-
ciated with a u-shape pattern expressed across the lifespan and, (b) age
accounted for∼30% of the inter-individual variability in the ucOC/tOC
and cOC/tOC ratios.

Circulating tOC is used in clinical practice as one of the measures to
assess bone disease and as a surrogate measure for bone turnover
[9,10,44,45]. As reported [23,25,27], we confirm that circulating tOC
follows a u-shape pattern across the lifespan with high values in young
individuals and in older individuals. This pattern with aging was also
observed in the current study for cOC and ucOC. Clinically, this ob-
served pattern limits the capacity of using the absolute concentration of
OC forms for risk stratification. For instance, mean circulating tOC
concentrations of 30 ng/mL can be observed in a 30 year old and
70 year old man, but in younger men it may indicate modelling and
remodelling associated with the consolidation of bone, while in older
men it may indicate increased bone remodelling, bone loss and emer-
ging bone fragility [4,9–13,16–22,46].

We observed that ucOC was higher in older adults compared to
middle aged adults (Fig. 1), but similar in young men. The higher levels
of ucOC in older adults is intriguing, ucOC has been reported to be
involved in both glucose and lipid metabolism, and low ucOC is asso-
ciated with an increased risk for cardiovascular disease and diabetes
[12,13,21,22,47,48], even after adjustment for body mass index [13].
As such, one may speculate that older adults will have lower ucOC,
compared to middle aged individuals, as age is associated with in-
creased risk for diabetes, this however was not supported by the evi-
dence. Whether the increase in ucOC in older adults is due to a re-
duction in vitamin K intake or a potential compensatory mechanism to
maintain normal circulating glucose levels in older adults is not clear
and should be explored in future studies.

In contrast to absolute OC values, OC ratios (cOC/tOC and ucOC/
tOC) may be more sensitive to the physiological changes associated
with aging. In the current study cOC/tOC ratio was significantly lower
in advanced age. Others have demonstrated that lower cOC/tOC ratio
can predict fracture risk particularly in older men [49]. Taken together,
our data indicates that the ratio may be more useful for risk stratifi-
cation and likely provides a better reflection of disease status including
osteoporosis, fracture risk or metabolic diseases. Future research that
includes clinical outcomes is required to confirm this.

The reference ranges for tOC have previously been established and
are commonly used in clinical practice [25,50]. In the current study, we
used data from young, healthy men to estimate the reference range for
“optimal” levels as it corresponds to the time where bone mass peaks
[51]. Our reported reference range for young, healthy men for tOC was
17.9 to 56.8 ng/mL (2.5th to 97.5th quantiles), which is slightly lower
than the clinical standard. We have used fasting and morning sampling
times to minimize the effect of diurnal variation and feeding, both of
which are reported to effect BTMs [52–54]. This may suggest the re-
ferences range used in clinical practice appears to be acceptable,
however may need to be slightly adjusted.

As described above, assessing tOC limits the capacity to differentiate
men based on age and to interpret underlying pathophysiology, there-
fore better clinical differentiation of this protein and its potential bio-
logical effects are needed [22–28,55]. We are not aware of any pub-
lished reference interval data across the adult lifespan in men for cOC,
ucOC or the ratios of cOC/tOC and ucOC/tOC. One study published

Table 1
Descriptive characteristics of our cohort of fasted adult men.

Entire cohort (mean ± SD)

Sample (n) 236
Age (years) 58.14 ± 21.73
BMI (kg/m2) 26.18 ± 3.83
tOC (ng/mL) 24.78 ± 10.58
cOC (ng/mL) 13.51 ± 7.69
ucOC (ng/mL) 11.26 ± 4.48
ucOC/tOC 0.48 ± 0.12
cOC/tOC 0.52 ± 0.12

All data reported as mean ± SD. BMI, body mass index; tOC, total
osteocalcin; ucOC, undercarboxylated osteocalcin; and cOC; car-
boxylated osteocalcin.

Table 2
Total number of men per decade of age.

Age group Total n

< 20 years 8
20 to 29 years 32
30 to 39 years 28
40 to 49 years 18
50 to 59 years 13
60 to 69 years 16
70 to 79 years 93
80 to 89 years 27
> 90 years 1
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data distributions for cOC and cOC/tOC [49], and another published
reference intervals for ucOC and ucOC/tOC [8], however both studies
were performed in older men>70 years old. We propose that the ratios
of ucOC/tOC and cOC/tOC should be used in both clinical practice, and
in future research, as they are potentially more robust measures to a)
distinguish the effect of aging on OC forms, and b) better understand
the underlying aberrant physiology and biological action of OC in
general.

There are some potential limitations of our study. The current study
focused on ranges of OC levels in men across the adult lifespan aged 18
to 92 years by combining separate study cohorts with different proto-
cols for inclusion and exclusion criteria’s and with different geo-
graphical locations which may introduce bias in our results. Whilst this
study encompasses a large age range of adult men, there is only a small
number of men in the youngest and oldest groups. However, the sam-
ples used in the current study were all from men without diseases (i.e.
diabetes and osteoporosis) and medications (i.e. bisphosphonates and
glucocorticoids) known to effect OC and bone metabolism. We have

Fig. 1. Relationship between age and circulating levels of tOC, ucOC, cOC and the OC-ratios with confidence and prediction intervals in healthy adult men.

Table 3
β estimates: Regression coefficients for all OC forms and ratios in adult men.

β estimate Regression coeff. Estimate ± Std. error p value Adjusted R2

tOC (ng/mL)
Age −1.6 ± 0.20 4.20×10 -14*** 0.29
Age2 0.014 ± 0.0019 7.73×10 -12***
cOC (ng/mL)
Age −1.11 ± 0.138 4.30×10-14*** 0.39
Age2 0.00877 ± 0.00130 1.11×10-10***
ucOC (ng/mL)c
Age −0.53 ± 0.097 9.98×10 -8*** 0.11
Age2 0.0051 ± 0.0091 7.25×10 -8***
ucOC/tOC
BMI 0.00692 ± 0.00173 8.49×10-5*** 0.35 (adjusted to BMI)
Age 0.00300 ± 0.000305 < 2×10-16*** 0.31 (unadjusted)
cOC/tOC
BMI −0.00692 ± 0.00173 8.49×10-5*** 0.35 (adjusted to BMI)
Age −0.00300 ± 0.000305 < 2×10-16*** 0.31 (unadjusted)

*** p-value ≤0.01, * p-value ≤0.05. BMI, body mass index; tOC, total osteocalcin; ucOC, undercarboxylated osteocalcin; and cOC; carboxylated osteocalcin.

Table 4
Normal reference ranges and 95% confidence limits for a reference cohort of
young, healthy men.

Reference range (2.5th-
97.5th quantiles)

95% CI for the limits of the
reference range

Lower limit Upper limit

tOC (ng/mL) 17.85 - 56.78 14.30 – 20.65 54.00 - 70.20
ucOC (ng/mL) 7.07 - 22.03 6.00 - 7.58 17.60 - 23.68
cOC (ng/mL) 8.51 - 40.33 4.28 – 10.75 33.33 - 52.60
ucOC/tOC 0.23 - 0.60 0.22 - 0.26 0.54 - 0.70
cOC/tOC 0.39 - 0.77 0.29 - 0.44 0.74 - 0.78

tOC, total osteocalcin; ucOC, undercarboxylated osteocalcin; and cOC; car-
boxylated osteocalcin.
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used the methods proposed by Gundberg et al. [11] to analyze cOC and
ucOC, which is considered as the gold standard. However, different
research groups use different methodologies to analyze ucOC and the
levels depend on the technical details including antibody, specific
surface of the hydroxyapatite, amount of the apatite or ELISA used. As
such, the reference ranges calculated in the current study may not re-
flect the levels analyzed with different techniques. The study is also
cross-sectional in nature and does not include clinical measures hence,
we cannot ascertain whether these reference ranges are associated with
incident or prevalence of disease. In the current study the ucOC/tOC in
young men was relatively high. It is not clear why the fraction of ucOC
was high and plausible explanations may include a non-specific binding
to C-terminal fragments which do not contain GLA or diet with low
vitamin K, which is required for OC carboxylation. Lastly, several fac-
tors may affect circulating OC levels including vitamin D or K, and al-
though we did include people on vitamin K supplementation, we did
not measure it.

The strengths of our study include a full adult age range in men, a
population at higher risk of cardiovascular diseases and poorer out-
comes after bone fracture [56–58]. Additionally, all samples were col-
lected at the same time of day and in a fasted state. Therefor this is the
first step in the validation of reference ranges for all OC forms and
ratios in adult men. In addition, all OC analysis was completed by the
same technician, in the same laboratory and utilizing the same meth-
odology and assays, minimizing variation due to technical error. The
methods used in this study are automated and widely available how-
ever, the reference ranges proposed are only valid for the measurement
of OC using the same assay, technical aspects and methodology. Mea-
surement of OC may also be different according to countries and,
therefore may limit the generalizability of the data. Future studies
should explore the effect of aging on OC forms in women as the ranges
and pattern of change across the adult lifespan may be different than
observed for men.

In summary, we have defined normal reference ranges for the OC
forms and demonstrated that the OC ratios may be better measures,
than the absolute values, to identify the aging effect on OC in men.
These ratios may be incorporated into future research and clinical trials,
and their associations with prediction of events, such as fracture or
diabetes risk, should be determined.
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A R T I C L E  I N F O   
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A B S T R A C T   

Background: Bone turnover is the cellular machinery responsible for bone integrity and strength and, in the 
clinical setting, it is assessed using bone turnover markers (BTMs). Acute exercise can induce mechanical stress 
on bone which is needed for bone remodelling, but to date, there are conflicting results in regards to the effects of 
varying mechanical stimuli on BTMs. 
Objectives: This systematic review examines the effects of acute aerobic, resistance and impact exercises on BTMs 
in middle and older-aged adults and examines whether the responses are determined by the exercise mode, 
intensity, age and sex. 
Methods: We searched PubMed, SCOPUS, Web of Science and EMBASE up to 22nd April 2020. Eligibility criteria 
included randomised controlled trials (RCTs) and single-arm studies that included middle-aged (50 to 65 years) 
and older adults (>65 years) and, a single-bout, acute-exercise (aerobic, resistance, impact) intervention with 
measurement of BTMs. PROSPERO registration number CRD42020145359. 
Results: Thirteen studies were included; 8 in middle-aged (n = 275, 212 women/63 men, mean age = 57.9 ± 1.5 
years) and 5 in older adults (n = 93, 50 women/43 men, mean age = 68.2 ± 2.2 years). Eleven studies included 
aerobic exercise (AE, 7 middle-aged/4 older adults), and two included resistance exercise (RE, both middle- 
aged). AE significantly increased C-terminal telopeptide (CTX), alkaline phosphatase (ALP) and bone-ALP in 
middle-aged and older adults. AE also significantly increased total osteocalcin (tOC) in middle-aged men and 
Procollagen I Carboxyterminal Propeptide and Cross-Linked Carboxyterminal Telopeptide of Type I Collagen in 
older women. RE alone decreased ALP in older adults. In middle-aged adults, RE with impact had no effect on 
tOC or BALP, but significantly decreased CTX. Impact (jumping) exercise alone increased Procollagen Type 1 N 
Propeptide and tOC in middle-aged women. 
Conclusion: Acute exercise is an effective tool to modify BTMs, however, the response appears to be exercise 
modality-, intensity-, age- and sex-specific. There is further need for higher quality and larger RCTs in this area.   

1. Introduction 

The skeleton has protective, mechanical and metabolic roles, 

providing structural support and a site for calcium storage [1–3]. Bone 
should be strong, to prevent fractures, but light, to enable movement in a 
gravitational environment [1]. Bone turnover, the cellular machinery 
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responsible for bone integrity and strength, is a finely balanced process 
responsive to mechanical loads and hormonal changes [4–6]. 

Exercise is a non-pharmacological intervention that can improve 
bone health and reduce the risk of osteoporosis [7–11]. The anabolic 
effects of exercise on osseous tissues are positively associated with the 
amount of mechanical strain exerted [12]. In animals, the strain- 
adaptive remodelling response requires intermittent and dynamic, but 
not static, loading [13–18]. Additionally, loading periods only need to 
be very short to stimulate adaptive responses, and that bone formation is 
threshold-driven and influenced by strain rate, frequency, amplitude 
and duration of loading [17,19–23]. Altogether, these findings demon-
strate that bone requires dynamic (not static) strains (i.e. impact 
loading) for adaptive responses and, higher physiological rates 
compared to low rates and applied rapidly, to increase this response 
[14–16,19,24]. 

In humans, higher impact activities with rapid rates of loading (i.e. 
tennis/squash) are more osteogenic compared with lower impact sports 
(i.e. running/cycling) [25–27]. Mechanical loads, produced by exercise, 
change local microenvironments of the canalicular networks within the 
bone framework via dynamic fluid shifts stimulating local osteocytes 
and ultimately bone turnover [28–30]. Exercise serves varying purposes 
across the lifespan. In children, exercise is important for optimisation of 
peak bone mass, whereas, in older adults, exercise serves to maintain/ 
reduce the rate of bone loss [9,10,31]. However, the search for a rela-
tionship between exercise and bone mineral density (BMD) demon-
strates contradictory findings, some reporting beneficial effects 
[7,11,32], while others have not [33–35]. Moreover, available human 
data shows that the magnitude of benefit on bone from exercise is 
inconsistent, often influenced by safety concerns leading to conserva-
tively prescribed training loads [36–40]. 

To optimise exercise effects on bone health a better understanding of 
the metabolic responses of bone tissue to various mechanical stimuli is 
needed. By convention, BMD is widely used as a measure of bone health 
to predict fracture risk [41], however, it represents a static bone mineral 
status and cannot be used to estimate acute bone metabolic changes such 
as those induced by acute exercise. Therefore, BTMs represent an easy to 
measure option to assess the dynamic fluctuations in bone turnover 
(Table 1) [42]. Using BTMs to describe bone metabolic activity comes 
with complexities, contributing to the lack of consensus in the literature. 
While these markers are sensitive, they have high biological variability 
attributed to differences in i.e. blood sampling, study protocols, effects 
of feeding and circadian rhythm [42–44]. As such, the aims of this 
systematic review were to 1) examine the effects of acute exercise on 
BTMs in adults over 50 years of age and to determine if middle-aged and 
older adults respond differently, and 2) to understand whether these 
effects were exercise modality-, exercise intensity-, sex- or BTM-specific. 

2. Methods 

This systematic review was conducted in accordance with the 
Preferred Reporting Items for Systematic Reviews and Meta-Analysis 

(PRISMA) guidelines [45] and was registered in the International Pro-
spective Register of Systematic Reviews (PROSPERO) - 
CRD42020145359. 

2.1. Inclusion criteria 

The inclusion criteria for studies in brief were: (i) randomised 
controlled (RCT), cross-sectional or single arm trials including quasi- 
randomised design; (ii) adults ≥50 years of age, middle-aged adults 
defined as mean age ≥50 to <65 years and older adults defined as mean 
age ≥65 years; (iii) intervention of interest includes acute bout or single- 
bout of exercise; and (v) outcome of interest was BTMs (see supple-
mentary 1, PICOS protocol). 

2.2. Data extraction 

CS and AT performed the literature search (supplementary 2, search 
strategy) and extracted data from the included studies, IL revised dis-
crepancies. The following data were extracted: (i) characteristics of the 
participants i.e. sample size, sex, age (years), height (centimetres), 
weight (kilograms) and body mass index (BMI, height/weight2); (ii) 
details of the acute exercise bout (intensity, duration, volume, mode); 
and (ii) details of outcomes of interest (BTMs) measured at baseline and 
post-acute exercise. 

2.3. Quality assessment: risk of bias and methodological index for non- 
randomised studies 

Risk of bias assessments were independently conducted by CS and 
AT. RCTs were assessed using the Cochrane Collaborations Risk of Bias 2 
(ROB2) tool [46]. We assessed selection bias (random sequence gener-
ation, allocation concealment), performance bias (blinding of partici-
pant and personnel), detection bias (outcome assessor blinding), 
attrition bias (handling of incomplete outcome data) and other bias 
including baseline imbalance on the primary outcome and selective 
reporting. All other trials not meeting the criteria for a RCT were 
assessed using the Methodological Index for Non-Randomised Studies 
(MINORS) scale [47]. 

3. Results 

We identified 3637 articles. After removal of duplicates, 1465 unique 
titles and abstracts were screened, and 1421 articles were excluded. The 
full text of 44 articles was reviewed and a further 31 were excluded, 
leaving 13 articles for inclusion in our qualitative synthesis (Fig. 1). The 
authors of four studies were contacted for further information [48–51]. 
One intervention was described in two articles but with different strat-
ification of groups, both articles were included and considered as a 
single trial [52,53]. Another study had additional analyses published at 
a later date, both articles were included but considered as a single trial 
[50,51]. Herein for both of these studies, the first published paper will 
be referenced. 

3.1. Quality assessment 

Results of the methodological quality assessments are shown in 
Table 2 and Fig. 2. Only 3 studies were RCTs [54–56] and assessed using 
the ROB2 tool. All others were assessed using the MINORs scale. No 
studies achieved a maximum quality score. Scores ranged on the ROB2 
(Fig. 2) and on the MINORs scale (Table 2) from 43.8% to 87.5%. The 
most common source of likely methodological bias using the ROB2 tool 
was the randomisation process and deviations from the intended study 
endpoint. Using the MINORs scoring system, the likely source of meth-
odological bias was the absence of unbiased assessment of the study 
endpoint (n = 10) and prospective calculation of study sample size (n =
8). 

Table 1 
Markers of bone turnover that have been used in the exercise literature.  

Markers of bone resorption 

C-terminal crosslinked telopeptide of type I collagen CTX, Crosslaps 
Cross-linked carboxyterminal telopeptide of type I collagen ICTP 
Sclerostin SCL   

Markers of bone formation 

Alkaline phosphatase (total) ALP 
Alkaline phosphatase (bone specific) B-ALP 
Procollagen I carboxyterminal propeptide PICP 
Procollagen type 1 N propeptide P1NP 
Osteocalcin OC  
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3.2. Study population and study design 

Descriptive characteristics and study outcomes of included studies 
are described in Table 3. Two studies included adults with osteoporosis 
(untreated) [55,57], five studies excluded individuals with 

osteoporosis/conditions affecting bone metabolism [49,50,53,54,58] 
and one study included adults with osteopenia [48]. Four studies did not 
state whether they excluded participants with osteoporosis [56,59–61]. 
Five studies excluded individuals taking medications/supplements that 
effect bone metabolism [48,50,53,54,58], one stated except for calcium 
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Fig. 1. Identification screening and selection of studies (PRISMA Flow Diagram).  

Table 2 
Quality rating scale (MINORs).  

MINORs Scale (detailed below and scored as: 0, not reported; 1, reported but inadequate; 2, reported and adequate) 
Field 9 to 10 only relevant for comparative studies 

Author, year 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. Score 

1. Kim, et al. (2014)  1  1  0  1  0  2  2  0 n/a n/a n/a n/a 43.8% 
2. Levinger, et al. (2011)  2  2  2  2  0  2  2  0 1 2 2 2 79.2% 
3. Levinger, et al. (2014)  2  2  2  2  0  2  2  2 n/a n/a n/a n/a 87.5% 
4. Maimoun, et al. (2005)  1  2  2  2  0  2  2  0 1 1 2 2 70.8% 
5. Rudberg, et al. (2000)  2  1  0  2  0  2  2  0 n/a n/a n/a n/a 56.3% 
6. Thorsen, et al. (1995)  2  1  1  2  0  2  2  0 n/a n/a n/a n/a 62.5% 
7. Thorsen, et al. (1996)  2  1  1  2  0  2  2  0 n/a n/a n/a n/a 62.5% 
8. Aly, et al. (2017)  1  1  2  2  0  2  2  0 n/a n/a n/a n/a 62.5% 
9. Wherry, et al. (2019)  2  2  2  2  0  2  2  2 1 2 2 1 83.3% 
10. Zerath, et al. (1997)  2  1  2  2  0  2  2  0 n/a n/a n/a n/a 68.8% 

MINORs Scale assessed as per; 1. A clearly stated aim; 2. Inclusion of consecutive patients; 3. Prospective data collection; 4. Endpoints appropriate to study aim; 5. 
unbiased assessment of study endpoint; 6. follow up period appropriate to the aim; 7. loss to follow up <5%; 8. Prospective calculation of study size; 9. adequate control 
group; 10. contemporary groups; 11. Baseline equivalence of groups and 12. Adequate statistical analysis. 
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and vitamin D [55], four studies included participants not taking med-
ications [57,60–62] and three studies did not refer to medication use 
[49,56,59]. 

Of the thirteen studies included, eight were in middle-aged (mean 
age < 65 years) [49,50,54–56,59–61] and five were in older adults 
(mean age > 65 years) [48,53,57,58,62]. Sample sizes ranged from 11 to 
150 (total combined data of the 13 studies n = 336 [220 women, 116 
men]). Participants’ age range was 52 to 73 years (mean age 62 ± 6 
years) and BMI was 23.5 to 33.1 kg/m2 (mean BMI 26.85 ± 3.33 kg/m2). 
Sex-distribution for included studies was predominately women (71%); 
77% of middle-aged and 54% of older adults were women. 

Eleven studies evaluated effects of acute AE exercise on BTMs (seven 
in middle-aged [49,50,55,56,59–61], and four in older adults 
[48,53,58,62]). Two studies evaluated effects of acute combined RE and 
impact (middle-aged adults) [49,55], one study evaluated the effects of 
acute impact exercise alone (middle-aged adults) [54], and one study 
evaluated the effects of acute RE alone (older adults) [57] on changes in 
BTMs. Only two studies reported that the exercise was supervised 
[48,54]. Exercise protocols, blood sampling protocols and effects of 
acute exercise on BTMs have been described in Table 3 including all 
reported levels and significant changes. 

Nine studies reported that exercise and blood sampling were per-
formed in the morning [49,50,53–56,59,61,62], one was performed in 
the afternoon [60], and three did not state the time of the day 
[48,57,58]. Seven studies were performed in the morning following an 
overnight fast [49,50,53–56,59], one stated at least 12 h of fasting (no 
indication of time) [57], and five studies were not performed in a fasted 
state [48,58,60–62]. One study involved a controlled pre-feed [48], and 
another stated a 2-hour fast after a meal free from milk and cheese [60]. 
Only three studies reported controlling for exercise on preceding days 
[54,61,62]. One study mentioned withholding dietary supplements 
[54]. Post-exercise blood sampling varied greatly from one to four 
timepoints; four studies taking only immediately post [52,53,55,58,59], 
the longest taken at 72 h [61,62]. A range of biochemical assays were 
used to analyse the circulating BTMs including electro-
chemiluminescence immunoassay (ECLIA), enzyme-linked immunosor-
bent assay (ELISA), radioimmunoassay (RIA) and immunoradiometric 
assay (IRMA) (Table 3). 

3.3. Acute aerobic exercise 

3.3.1. Effects on BTMs: middle-aged adults 
Two studies reported significant increases in ALP immediately 

following cycling GXTs performed to exhaustion in men and in middle- 
aged postmenopausal women [59,60]. BALP also increased (range ~ 0.7 
to 26%) in women after a cycling GXT to exhaustion, and also after 
moderate intensity walking (46 min, 3–6 METs) [55,60]. Three studies 
reported a significant increase in tOC (range ~ 13.4 to 18.8%) in men 
who cycled (GXT to exhaustion; and 75% VO2

Peak, 30 min), and in 
middle-aged postmenopausal women who jogged (50% HRMax reserve, 
45 min) [49,59,61]. However, three cycling studies reported no change 
in tOC, one in men (90–95% HRPeak, 30 min) and two in middle-aged 
postmenopausal women (70–75% VO2

Peak, 30 min; GXT to exertion) 
[50,56,60]. No significant change was reported in P1NP after cycling in 
middle-aged postmenopausal women (70–75% VO2

Peak, 30 min) [56] or 
in men (90–95% HRPeak, 30 min) [50]. Acute AE was also reported to 
have no effect on PICP in middle-aged postmenopausal women after 
jogging (50% HRMax reserve, 45 min) [61]. 

One study reported that acute AE significantly increased (~16.6%) 
β-CTX after cycling in men (90–95% HRPeak, 30 min), however, there 
was no change in β-CTX after cycling (75% VO2

Peak, 30 min) or CTX after 
walking (3–6 METs, 46 min) in middle-aged postmenopausal women 
[50,55,56]. Two studies measured ICTP with no significant changes in 
middle-aged postmenopausal women after jogging (50% HRMax reserve, 
45 min) or cycling (to exertion, GXT) [60,61]. SCL was reported to in-
crease following brisk walking in middle-aged postmenopausal women 
(3–6 METs, 46 min) [55]. 

3.3.2. Effects on BTMs: older adults 
ALP significantly increased in men and women immediately 

following a treadmill GXT (stopped at 75–85% HRMax) [58]. BALP also 
significantly increased (~12%) immediately following a treadmill GXT 
(to exertion), but only in men and women who were classed as moder-
ately active (classified using a physical activity questionnaire) and not 
active based on baseline exercise levels [53]. Two studies reported that 
tOC did not change in women after walking (50% HRMax reserve, 90 
min) or in men and women after a treadmill GXT (to exhaustion) 
[53,62]. PICP was reported to increase in women after walking (50% 
HRMax reserve, 90 min) [62]. 

Wherry et al. [48] reported significant increases (range 34.6 to 
77.3%) in CTX levels at all post-exercise time points (peak, 15, 30, 45 
and 60 min) in men and women who walked at moderate intensity 
(70–80% HRMax, 60 min). In contrast, Maimoun et al. [53] reported no 
significant change in men and women following a maximal GXT 
(treadmill). Thorsen et al. [62] reported a significant decrease (~13.8%) 
in 1CTP levels at 1 h, but a significant increase (~15.5%) in levels at 72 
h post brisk walking (50% HRMax reserve, 90 min). 

3.4. Acute resistance with and without impact, or impact alone exercise 

3.4.1. Effects on BTMs: middle-aged and older adults 
The effect of acute RE with and without impact exercises, versus 

impact only exercise on BTMs greatly varied with a limited number of 
studies measuring the same BTMs. In studies involving RE + impact, no 
change was reported in BALP in middle-aged postmenopausal women, 
or in tOC in middle-aged men [49,55]. On the contrary, impact-only 
exercise (three forms of jumping, see Table 3) significantly increased 
tOC (double jump group) and P1NP (all groups) immediately post, but at 
2-h tOC significantly decreased (all groups), with P1NP also reducing 
(non-significant) to below baseline levels [54]. The drop in tOC (sig-
nificant) and P1NP (non-significant) to below baseline levels was 
consistent with the control group in that study [54]. CTX was the only 
consistent measured bone resorption marker shown to decrease 
following RE + impact and impact-alone protocols in middle-aged 
women [54,55]. However, in the impact-alone study, the significant 
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Table 3 
Study characteristics and outcomes.  

Study details 
Author, journal (year) 

Study design Participants 
Sample (n, M/F) 
Age (years) 
Height (cm) 
Weight (kg) or 
BMI (kg/m2) 
mean ± SD 

Acute exercise bout 
T: type 
D: duration 
I: intensity 
S&R: sets and reps 

Blood sampling and assay protocol 
T: timepoints 
C: controls 
B: bone turnover markers measured 
A: assay protocol 

Main findings 
Effects of acute exercise 
compared to baseline 

Middle-aged adults mean age 50 to 65 years 
Gombos et al. BMC Musculoskeletal 

Disorders (2016) [54] 
RCT Healthy middle-aged 

women 
n = 150  

RE + IMP (n = 50) 
60.2 ± 6.9 yrs. 
162.6 ± 9.8 cm 
69.7 ± 11.8 kg 
26.3 ± 5.4 kg/m2 

− 2.2 ± 0.7 T-score  

AER (n = 50) 
58.7 ± 6.3 yrs. 
159.6 ± 6.4 cm 
72.7 ± 14.8 kg 
27.2 ± 6.1 kg/m2 

− 1.9 ± 0.9 T-score  

CON (n = 50) 
57.8 ± 8.4 yrs. 
161.7 ± 5.0 cm 
69.5 ± 13.0 kg 
28.1 ± 3.9 kg/m2 

− 2.1 ± 0.7 T-score 
(T-score site not stated) 

Randomised to: 
1. RE + IMP 
T: resistance exercises of large muscle groups, core 
stabilisation and impact 
D: 5 min warm up, 30 min resistance exercises, 8 min 
cool down 
I: not stated 
S&R: 3 sets of 4 to 8 reps  

2. AER 
T: brisk walking (W) at 100 steps/min 
D: 46 min 
I: moderate intensity at 3 to 6 METs  

3. CON 
T: nil intervention 

T: baseline, post ex (+0 to 5 min) 
C: OFT, AM 
B: CTX, BALP and SCL 
A: CTX - ECLIA, 
BALP - photometric assay, 
SCL - ELISA 

Post exercise at 0 to 5 min 
(all mean ± SD) 
↑ BALP AER only 
RE + IMP 41.7 ± 12.8 to 
41.8 ± 12.0% 
AER 41.8 ± 7.6 to 42.1 ±
8.4%* 
CON 42.2 ± 10.4 to 42.1 ±
10.2%  

↓ CTX RE + IMP only 
RE + IMP 303.6 ± 156.8 to 
276.4 ± 143.6 pg/mL** 
AER 247.3 ± 106.2 to 
253.9 ± 107.5 pg/mL 
CON 259.1 ± 110.2 to 
256.7 ± 111.2 pg/mL  

↑ SCL AER only 
RE + IMP 26.8 ± 14.0 to 
29.8 ± 15.7 pmol/L 
AER 23.6 ± 10.0 to 29.9 ±
10.8 pmol/L** 
CON 24.0 ± 8.8 to 24.2 ±
8.8 pmol/L 

Levinger, I., et al. Osteoporos Int (2011) 
[48] 

Randomised parallel 
design 

Middle-aged obese, men 
n = 28  

AER (n = 13) 
52.8 ± 5.41 yrs. 
174.9 ± 6.49 cm 
100.5 ± 18.75 kg 
32.7 ± 5.41 kg/m2  

RE + IMP (n = 15) 
52.1 ± 6.97 yrs. 
177.7 ± 5.03 cm 
99.2 ± 13.94 kg 
31.5 ± 4.65 kg/m2 

Randomised to: 
1. AER 
T: cycling 
D: 45 min 
I: 75% of VO2

Peak  

2. RE + IMP 
T: resistance exercise including power leg press and 
jumping 
D: 45 min 
I: 70 to 75% of 1RM 
S&R: 2 × 5 sets of 8 leg press, 3 × 5 sets of 10 jumps 

T: baseline, post ex (+0, 30, 60 and + 120 min) 
C: OFT, AM 
B: tOC (and ucOC) 
A: tOC - CLIA, ucOC - ECLIA 

Post exercise to peak (all 
mean ± SD) 
↑ tOC AER group only 
AER 5.32 ± 2.89 to 6.08 ±
3.51 ng/mL ** 
RE + IMP 4.82 ± 1.63 to 
5.01 ± 2.03 ng/mL  

↑ ucOC AER group only 
AER 4.64 ± 3.03 to 5.08 ±
3.5 ng/mL ** 
RE + IMP 3.93 ± 1.53 to 
3.99 ± 1.51 ng/mL 

Levinger, I., et al. JBMR (2014) [49]  

Additional analysis for PINP and β-CTX 
reported in Levinger, I., et al. BoneKEy 
Rep (2015) [50] 

Non-randomised, case- 
controlled crossover 

Middle-aged obese, non- 
diabetic men 
n = 11 
58.1 ± 7.29 yrs. 
176 ± 5.64 cm 
102.5 ± 12.93 kg 
33.1 ± 4.64 kg/m2 

Completed both 
1. CON 
T: complete rest 
D: 30 min  

2. AER 
T: cycle ergometer, high intensity exercise 
D: 30 min 
I: 4 min warm up @ 50 to 60% HRPeak & cycling as: 

T: baseline, post ex (+0, 30 and 60 min) 
C: OFT, AM 
B: tOC (and ucOC, ucOC/tOC) and P1NP and β-CTX 
A: tOC - automated immunoassay, ucOC - automated 
immunoassay following hydroxyl-apatite slurry, P1NP 
- ELCIA, β-CTX - ECLIA 

Post exercise to peak (all 
mean ± SEM) 
NC tOC 
AER 18.2 ± 1.4 to 18.61 ±
1.48 ng/mL  

NC P1NP 
AER 36.1 ± 1.3 to 37.09 ±
1.56 μ/L− 1 

(continued on next page) 
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Table 3 (continued ) 

Study details 
Author, journal (year) 

Study design Participants 
Sample (n, M/F) 
Age (years) 
Height (cm) 
Weight (kg) or 
BMI (kg/m2) 
mean ± SD 

Acute exercise bout 
T: type 
D: duration 
I: intensity 
S&R: sets and reps 

Blood sampling and assay protocol 
T: timepoints 
C: controls 
B: bone turnover markers measured 
A: assay protocol 

Main findings 
Effects of acute exercise 
compared to baseline 

4 × 4 min @ 90 to 95% HRPeak 2 min active recovery @ 
50 to 60% HRPeak  ↑ β-CTX (~16%) 

AER 306.5 ± 41 to 357.45 
± 50.33 μ/L− 1**  

↑ ucOC (~2.1%) 
AER 10.6 ± 0.8 to 11.21 ±
0.69 ng/mL*  

↑ ucOC/OC (~1.9%) 
AER 58.9 ± 2.0 to 62.1 ±
1.9%* 

Levinger, I., et al. Physiol Rep (2016) [55] Randomised, case- 
controlled crossover 

Postmenopausal women 
n = 10 
62.8 ± 8.22 yrs. 
161.2 ± 5.06 cm 
73.6 ± 10.75 kg 
28.3 ± 4.11 kg/m2 

Completed both: 
1. CON 
T: complete rest 
D: 30 min  

2. AER 
T: cycle ergometer 
D: 30 min 
I: 70 to 75% of VO2

Peak 

T: baseline, post ex (+0, 30, 60 and 120 min) 
C: OFT, AM 
B: β-CTX, P1NP, tOC (and ucOC) 
A: β-CTX - ECLIA, P1NP - ELCIA, tOC - automated 
immunoassay, ucOC - automated immunoassay 
following hydroxyl-apatite slurry 

Post exercise to peak (all 
mean ± SD) 
NC tOC 
28.1 ± 8.6 to 28.38 ± 8.76 
ng/mL  

NC P1NP 
67.2 ± 7.6 to 62.6 ± 19.09 
μ/L− 1  

NC β-CTX 
429.3 ± 40.1 to 470.1 ±
145.61 μ/L− 1 

↑ ucOC 
13.83 ± 6.71 to 15.04 ±
7.35 ng/mL** 

Prawiradilaga et al. Biol Sport (2020) [53] RCT-crossover Healthy, sedentary 
postmenopausal women 
n = 29 
60.0 ± 5.6 yrs. 
165.2 ± 5.4 cm 
65.8 ± 7.7 kg 
24.1 ± 2.5 kg/m2 

Each participant performed in a random order 3 high- 
impact exercise trials and CON  

Session 1- IMPACT 
T: 7 min low impact warm up on a gymnastic mat, then 
counter movement jump (CMJ) vertical jump with two 
leg launch and land.  

Session 2- IMPACT 
T: 7 min low impact warm up on a gymnastic mat then 
drop jump (DJ) from a 32 cm box, the landing continued 
into a vertical two-leg jump  

Session 3- IMPACT 
T: 7 min low impact warm up on a gymnastic mat then 
DDJ (above) but performed diagonally forward 45◦

For session 1 to 3: 
D: not stated 
I: not stated 
S&R: 6 sets of 10 reps interspersed with 90 s rest  

T: baseline, post ex (immediately after and + 2 h) 
C: AM, OFT, nil vigorous exercise preceding 48 h, 
dietary supplements withheld 
B: P1NP, tOC, CTX 
A: P1NP - CLIA, tOC - CLIA, CTX - CLIA 

Post exercise at 0 min (all 
mean ± SE) 
P1NP ↑ for CMJ, DJ and 
DDJ, NC for CON 
CMJ 70.2 ± 5.6 to 75.6 ±
6.3 μg/L** 
DJ 71.0 ± 5.5 to 77.6 ± 5.8 
μg/L** 
DDJ 73.0 ± 6.3 to 80.8 ±
6.8 μg/L** 
CON 71.9 ± 5.3 to 70.1 ±
5.6 μg/L  

tOC ↑ for DJ only NC for 
CMJ, DDJ and CON 
CMJ 31.2 ± 2.3 to 32.2 ±
2.4 μg/L 
DJ 30.7 ± 2.2 to 32.4 ± 2.5 
μg/L* 
DDJ 30.6 ± 2.2 to 31.8 ±
2.3 μg/L 
CON 31.1 ± 2.1 to 30.0 ±

(continued on next page) 
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Table 3 (continued ) 

Study details 
Author, journal (year) 

Study design Participants 
Sample (n, M/F) 
Age (years) 
Height (cm) 
Weight (kg) or 
BMI (kg/m2) 
mean ± SD 

Acute exercise bout 
T: type 
D: duration 
I: intensity 
S&R: sets and reps 

Blood sampling and assay protocol 
T: timepoints 
C: controls 
B: bone turnover markers measured 
A: assay protocol 

Main findings 
Effects of acute exercise 
compared to baseline 

Session 4 CON 
T: complete rest 

2.0 μg/L  

NC for CTX all sessions 
CMJ 636.0 ± 83.4 to 635.5 
± 80.3 ng/L 
DJ 645.2 ± 88.3 to 666.2 ±
91.0 ng/L 
DDJ 612.8 ± 85.9 to 632.8 
± 85.4 ng/L 
CON 590 ± 73.6 to 582.4 ±
74.4 ng/L  

Post exercise at 2 h 
NC for P1NP all sessions 
CMJ 70.2 ± 5.6 to 68.7 ±
6.0 μg/L 
DJ 71.0 ± 5.5 to 67.5 ± 6.0 
μg/L 
DDJ 73.0 ± 6.3 to 70.2 ±
6.0 μg/L 
CON 71.9 ± 5.3 to 70.6 ±
5.4 μg/L  

tOC ↓ for CMJ, DJ and CON 
only 
CMJ 31.2 ± 2.3 to 28.9 ±
2.2 μg/L** 
DJ 30.7 ± 2.2 to 28.3 ± 2.5 
μg/L** 
DDJ 30.6 ± 2.2 to 29.2 ±
2.2 μg/L 
CON 31.1 ± 2.1 to 28.1 ±
2.0 μg/L**  

CTX ↓ for all sessions 
CMJ 636.0 ± 83.4 to 527.9 
± 65.7 ng/L** 
DJ 645.2 ± 88.3 to 525.5 ±
69.0 ng/L** 
DDJ 612.8 ± 85.9 to 519.0 
± 69.1 ng/L** 
CON 590 ± 73.6 to 501.7 ±
65.8 ng/L** 

Rudberg et al. Calcif Tissue Int (2000) 
[59] 

Non-randomised, single 
arm 

Postmenopausal women 
n = 8 
57 ± 4 yrs. 
164 ± 5 cm 
69.5 ± 9.6 kg 
25.9 ± 3.6 kg/m2 

1. AER 
T: cycle GXT 
D: average duration of test was 24 min 
I: workload ↑ by 30 W every 6 min (start 30 W) until 
exhaustion 

T: baseline, post ex (+0 and 20 min) 
C: PM, 2 h post feed (NFT) 
B: ICTP, ALP total, B-ALP 1 and 2 and tOC 
A: ICTP - RIA, B-ALP 1 and 2 - HPLC, tOC - RIA, ALP 
total - unclear 

Post exercise at 0 min (all 
mean ± SD) 
↑ ALP total, ALP B/I, AP B1, 
ALP B2, ALP L1, ALP L3 
NC all other markers 
ALP total 3.08 ± 0.73 to 
3.40 ± 0.70 ukat/L** 

(continued on next page) 
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Table 3 (continued ) 

Study details 
Author, journal (year) 

Study design Participants 
Sample (n, M/F) 
Age (years) 
Height (cm) 
Weight (kg) or 
BMI (kg/m2) 
mean ± SD 

Acute exercise bout 
T: type 
D: duration 
I: intensity 
S&R: sets and reps 

Blood sampling and assay protocol 
T: timepoints 
C: controls 
B: bone turnover markers measured 
A: assay protocol 

Main findings 
Effects of acute exercise 
compared to baseline 

ALP B/I 0.12 ± 0.06 to 0.15 
± 0.07 ukat/L** 
ALP B1 0.50 ± 0.18 to 0.63 
± 0.21 ukat/L** 
ALP B2 1.18 ± 0.45 to 1.49 
± 0.45 ukat/L** 
ALP B1/B2 0.43 ± 0.07 to 
0.43 ± 0.08% 
tOC 3.2 ± 1.4 to 2.9 ± 1.0 
μg/L 
ICTP 2.8 ± 0.9 to 2.7 ± 0.8 
μg/L  

Post exercise at 20 min 
NS all markers 
ALP total 3.08 ± 0.73 to 
3.32 ± 0.84 ukat/L 
ALP B/I 0.12 ± 0.06 to 0.14 
± 0.07 ukat/L 
ALP B1 0.50 ± 0.18 to 0.61 
± 0.20 ukat/L 
ALP B2 1.18 ± 0.45 to 1.46 
± 0.49 ukat/L 
ALP B1/B2 0.43 ± 0.07 to 
0.43 ± 0.09% 
tOC 3.2 ± 1.4 to 3.5 ± 1.2 
μg/L 
ICTP 2.8 ± 0.9 to 2.4 ± 0.5 
μg/L 

Thorsen et al. Eur J Exp Musculoskel Res 
(1995) [60] 

Single arm Early postmenopausal 
women 
n = 15 
55 ± 3.87 yrs. 
165 ± 3.87 cm 
65.0 ± 7.75 kg 
23.7 ± 2.32 kg/m2 

1.06 ± 0.03 g/cm2 Total 
BMD 

1. AER 
T: jogging (6 degrees) 
D: 45 min 
I: 50% of VO2

Max estimated by 50% of HRMax reserve 

T: baseline, post ex (+1, 24 and 72 h) 
C: no-exercise for 3 days prior/post, AM, NFT 
B: P1CP, ICTP, and tOC 
A: P1CP - RIA, ICTP - RIA, tOC - IRMA 

Post exercise at 1 h (all 
mean ± SEM) 
↑ tOC 
tOC 4.8 ± 0.4 to 5.7 ± 0.5 
μg/L** 
PICP 129 ± 15 to 128 ± 15 
μg/L 
ICTP 2.33 ± 0.25 to 2.48 ±
0.17 μg/L  

Post exercise at 24 h 
NC tOC, PICP or ICTP 
tOC 4.8 ± 0.4 to 5.5 ± 0.6 
μg/L 
PICP 129 ± 15 to 134 ± 13 
μg/L 
ICTP 2.33 ± 0.25 to 2.61 ±
0.21 μg/L  

Post exercise at 72 h 
NC tOC, PICP or ICTP 

(continued on next page) 
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Table 3 (continued ) 

Study details 
Author, journal (year) 

Study design Participants 
Sample (n, M/F) 
Age (years) 
Height (cm) 
Weight (kg) or 
BMI (kg/m2) 
mean ± SD 

Acute exercise bout 
T: type 
D: duration 
I: intensity 
S&R: sets and reps 

Blood sampling and assay protocol 
T: timepoints 
C: controls 
B: bone turnover markers measured 
A: assay protocol 

Main findings 
Effects of acute exercise 
compared to baseline 

tOC 4.8 ± 0.4 to 5.3 ± 0.5 
μg/L 
PICP 129 ± 15 to 140 ± 12 
μg/L 
ICTP 2.33 ± 0.25 to 2.61 ±
0.21 μg/L 

Zerath et al. Med Sci Sp Exerc. (1997) [58] Single arm Healthy active males 
n = 24 
62.3 ± 5.39 yrs. 
172.3 ± 5.39 cm 
71.9 ± 8.33 kg 

1. AER 
T: maximal cycle GXT 
D: ~10 min 
I: increased by 20 W every 2 min until exhaustion 

T: baseline, post ex (+0 to 1 min) 
C: AM, OFT 
B: ALP, tOC 
A: ALP - autoanalyzer, tOC - RIA 

Post exercise at 0–1 min (all 
mean ± SEM) 
↑ ALP and tOC 
ALP 41.7 ± 3.5 to 47.8 ±
3.7 μL/L− 1* 
tOC 6.18 ± 0.44 to 7.01 ±
0.36 ng⋅mL− 1*  

Older adults mean age >65 years 
Aly et al. Geriatric Med and Care (2017) 

[57] 
Single arm # Elderly men & women 

n = 40 (26/14) 
66.2 ± 6.3 yrs. 
163.64 ± 26.44 cm 
71 ± 5.5 kg 
25.24 ± 2.15 kg/m2 

1. AER 
T: treadmill GXT 
D: ~10 min 
I: 3 min warm up @ 40% age predicted HRMax, gradual 
increase of exercise intensity until reaching 75 to 85% 
calculated HRMax 

T: baseline, post ex (+10 to 30 s) 
C: NFT 
B: ALP 
A: ALP - kinetic assay 

Post exercise at 10–30 s (all 
mean ± SD) 
↑ ALP 
ALP 63.76 ± 19.24 to 75.4 
± 21.9 ** 

Kim et al J Exerc Nutr Biochem (2014) 
[56] 

Single arm Elderly osteopenic 
women 
n = 11 (5 osteoporotic) 
68.18 ± 3.19 yrs. 
151.24 ± 2.94 cm 
54.29 ± 5.21 kg 
23.73 ± 2.07 kg/m2 

− 2.51 ± 0.47 T-score 
*T-score is whole body 

All participants completed in the same order (1 week 
apart) 
1. CON 
T: nil intervention, rest in chair 
D: not stated  

2. RE 
T: pilates exercises 
D: ~70 min including warm up and 50 min of pilates 
exercises 
I: warm up (RPE 9 to 12), pilates exercises (RPE 10 to 14) 
S&R: not stated 

T: baseline, post ex (+0 and 60 min) 
C: At least 12 h of fasting 
B: ALP 
A: ALP - modular DDP analysis 

Post exercise at 0 min (all 
mean ± SD) 
CON 60.2 ± 13.3 to 60.2 
14.0 
RE 59.1 ± 14.0 to 58.5 ±
14.2  

Compared to baseline at 60 
min 
↓ ALP at 60 min 
CON 60.2 ± 13.3 to 58.9 ±
13.6 
RE 59.1 ± 14.0 to 57.1 ±
13.8** 

Maimoun et al. Br J Sp Med (2005) [52]  

Follow up study: Maimoun et al. J Sci & 
Sp. Med (2009) [51] 

Non-randomised, single 
arm, group comparison 

Active elderly 
n = 21 (11/10) 
73.3 ± 9.1 yrs. 
166.3 ± 9.2 cm 
65.8 ± 13.2 kg 
23.6 ± 2.9 kg/m2  

Follow up study n = 45 
Active 
n = 18 (10/8) 
71.7 ± 8.6 yrs. 
166.9 ± 9.3 cm 
66.1 ± 13.3 kg 
23.5 ± 2.9 kg/m2  

Moderately active 

1. AER 
T: maximal treadmill GXT at preferred walking speed 
including a warm up walking at 0% grade, followed by 1 
to 2% gradient increase until exhaustion 
D: 5 min warm up followed by maximal incremental test 
of 8 to 12 min duration 
I: maximal 

T: baseline, post ex (+0 min) 
C: OFT, AM 
B: CTX, tOC and BALP 
A: CTX - ELISA, tOC - IRMA, BALP - IRMA 

2005 study post exercise at 
0 min (all mean ± SD) 
NC all markers 
CTX 5998 ± 3045 to 5959 
± 2866 pmol/L− 1 

tOC 12.7 ± 5.5 to 12.5 ±
5.3 ng/mL− 1 

BALP 13.1 ± 4.8 to 13.2 ±
4.7 ng/mL− 1  

2009 study post exercise at 
0 min 
↑ BALP for moderately 
active group only, NC all 
other markers  

(continued on next page) 
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Table 3 (continued ) 

Study details 
Author, journal (year) 

Study design Participants 
Sample (n, M/F) 
Age (years) 
Height (cm) 
Weight (kg) or 
BMI (kg/m2) 
mean ± SD 

Acute exercise bout 
T: type 
D: duration 
I: intensity 
S&R: sets and reps 

Blood sampling and assay protocol 
T: timepoints 
C: controls 
B: bone turnover markers measured 
A: assay protocol 

Main findings 
Effects of acute exercise 
compared to baseline 

n = 18 (10/8) 
71.9 ± 7.3 yrs. 
166.6 ± 7.8 cm 
70.7 ± 12.7 kg 
25.3 ± 3.2 kg/m2 

Active 
CTX 5998 ± 3045 to 5959 
± 2866 pmol/L− 1 

tOC 12.7 ± 5.5 to 12.5 ±
5.3 ng/mL− 1 

BALP 13.1 ± 4.8 to 13.2 ±
4.7 ng mL− 1  

Moderately active 
CTX 5595 ± 2460 to 5385 
± 2201 pmol L− 1 

tOC 12.2 ± 4.5 to 12.6 ±
3.9 ng mL− 1 

BALP 11.6 ± 2.9 to 13.0 ±
4.1 ng mL− 1* 

Thorsen et al. Calcific Tissue Int (1996) 
[61] 

Single arm Postmenopausal women 
n = 12 
68 ± 3.46 yrs. 
167 ± 3.46 cm 
71.2 ± 7.97 kg 
25.3 ± 2.08 kg/m2 

1.05 ± 0.03 g/cm2 total 
BMD 

1. AER 
T: brisk walking (− 2 degrees) 
D: 90 min 
I: 50% of VO2

Max estimated by 50% of HRMax reserve 

T: baseline, post ex (+1, 24 and 72 h) 
C: AM, NFT, no-exercise for 3 days prior or post 
B: ICTP, tOC, P1CP 
A: ICTP - RIA, tOC - IRMA, P1CP - RIA 

Post exercise at 1 h (all 
mean ± SEM) 
NC tOC or PICP, ↓ in ICTP 
tOC 7.3 ± 0.5 to 7.4 ± 0.4 
μg/L 
PICP 139 ± 11 to 132 ± 10 
μg/L 
ICTP 2.88 ± 0.12 to 2.48 ±
0.19 μg/L*  

Post exercise at 24 h 
NC tOC or ICTP, ↑ PICP 
tOC 7.3 ± 0.5 to 6.9 ± 0.5 
μg/L 
PICP 139 ± 11 to 155 ± 13 
μg/L** 
ICTP 2.88 ± 0.12 to 3.18 ±
0.32 μg/L  

Post exercise at 72 h 
NC tOC, ↑ PICP, ↑ in ICTP 
tOC 7.3 ± 0.5 to 7.4 ± 0.8 
μg/L 
PICP 139 ± 11 to 157 ± 11 
μg/L** 
ICTP 2.88 ± 0.12 to 3.33 ±
0.21 μg/L** 

Wherry et al. Med & Sci Sports Ex. (2019) 
[47] 

Non-randomised, 
uncontrolled crossover 

Healthy recreationally 
active older adults 
n = 12 (5/7) 
67 ± 5 yrs. 
1.7 ± 0.1 m 
67.7 ± 15.9 kg 
− 1.6 ± 0.6 T-score 
(T-score is femoral neck) 

Two acute bouts of treadmill walking performed 1 to 4 
weeks apart under cool and warm conditions 
1. AER 
T: treadmill walking 
D: 60 min (+ 5 min warm up and 5 min cool down) 
I: 70 to 80% of HRMax 

T: baseline, post ex (peak, +15, 30, 45 and 60 min) 
C: NFT, controlled pre-feed 
B: CTX 
A: CTX - chemiluminescence 

Post exercise at peak (all 
mean ± SD) 
↑ CTX both conditions 
Cool 0.255 ± 0.14 to 0.355 
± 0.17 ng/mL* 
Warm 0.255 ± 0.14 to 
0.309 ± 0.114 ng/mL*  

(continued on next page) 
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Table 3 (continued ) 

Study details 
Author, journal (year) 

Study design Participants 
Sample (n, M/F) 
Age (years) 
Height (cm) 
Weight (kg) or 
BMI (kg/m2) 
mean ± SD 

Acute exercise bout 
T: type 
D: duration 
I: intensity 
S&R: sets and reps 

Blood sampling and assay protocol 
T: timepoints 
C: controls 
B: bone turnover markers measured 
A: assay protocol 

Main findings 
Effects of acute exercise 
compared to baseline 

Post exercise at 15 min 
↑ CTX both conditions 
Cool 0.255 ± 0.14 to 0.353 
± 0.163 ng/mL* 
Warm 0.255 ± 0.14 to 
0.353 ± 0.163 ng/mL*  

Post exercise at 30 min 
↑ CTX both conditions 
Cool 0.255 ± 0.14 to 0.375 
± 0.16 ng/mL* 
Warm 0.255 ± 0.14 to 
0.348 ± 0.115 ng/mL*  

Post exercise at 45 min 
↑ CTX both conditions 
Cool 0.255 ± 0.14 to 0.364 
± 0.184 ng/mL* 
Warm 0.255 ± 0.14 to 
0.365 ± 0.127 ng/mL* 
Post exercise at 60 min 
↑ CTX both conditions 
Cool 0.255 ± 0.14 to 0.400 
± 0.177 ng/mL* 
Warm 0.255 ± 0.14 to 
0.391 ± 0.129 ng/mL* 
*changes not different 
between conditions 

Keywords: RCT, randomised controlled trial; M, male; F, female; PoM, post-menopause; FT, fasting; OFT, overnight fasted; NFT, not fasted; AM, performed in morning; PM, performed in afternoon; RE, resistance exercise; 
RE+IMP, resistance and impact exercise; IMPACT, impact only exercise; 1RM, one repetition maximum; AER, aerobic exercise, CON, control; GXT, graded exercise test; ALP, alkaline phosphatase; BALP, bone specific 
alkaline phosphatase; PICP, Procollagen I Carboxyterminal Propeptide; P1NP, Procollagen Type 1 N Propeptide; OC, osteocalcin; ucOC, undercarboxylated osteocalcin; CTX, C-Terminal Crosslinked Telopeptide of Type I 
Collagen; ICTP, Cross-Linked Carboxyterminal Telopeptide of Type I Collagen; SCL, sclerostin; ECLIA, electrochemiluminescence immunoassay; ELISA, enzyme-linked immunosorbent assay; CLIA, chemiluminescent 
immunometric assay; RIA, radioimmunoassay; HPLC, high-performance liquid chromatography; IRMA, immunoradiometric assay. 
NC, no change compared to baseline or control; ↑, significant increase compared to baseline or control; ↓, significant decrease compared to baseline or control, *p ≤ 0.05, **p ≤ 0.01. 
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decrease at 2-h post (not immediately after) was not significantly 
different to the control group [54]. Only one study investigated acute RE 
in older women [57] and reported a significant decrease in ALP; no other 
BTMs were measured in this study. 

4. Discussion 

We report that a) BTM responses to acute exercise vary between 
middle- and older-aged adults and that the BTM responses may be b) 
sex-specific and c) altered by exercise mode, intensity and duration. 
Additionally, responses to acute exercise stimuli may be d) BTM- 
specific, with some markers being more sensitive than others to the 
same stimuli. We identified a major gap in the current field with a small 
number of studies investigating acute effects of exercise on BTMs in 
middle-aged adults (n = 8), and even an fewer number in older-adults (n 
= 5). 

The application of mechanical stress (i.e. exercise) to the skeleton 
can preserve and increase BMD, serving as a key intervention in the 
prevention and management of osteoporosis [8–10]. The effect of 
chronic, long-term exercise training on BMD in older adults is well 
established, shown to be modality- and intensity-dependent 
[9,40,63,64]. Evidence suggests that walking is of limited value for 
improving bone health if prescribed without additional load bearing 
exercises [37,40,63,65–67]. It is well accepted that RE with weight 
bearing and high impact is safe and effective to optimise bone health in 
older adults, as they result in high strain rates and peak forces and, 
reduce falls and fractures [7,9,36,38,68]. In fact, high-velocity power 
and rapid concentric contractions (inducing higher strain rates on bone) 
is beneficial for functional performance (i.e. chair rise) in older adults 
[69–71]. Additionally, regular weight-bearing impact, applied in 
multidirectional patterns, promotes bone maintenance/preservation 
[63,72]. While the evidence is clear from chronic, long term, exercise 
training studies what characteristics exercise protocols should consist of 
for beneficial effects on bone health in adults, the effects of acute ex-
ercise are unclear. Available data are conflicting and, as it is not 
appropriate to measure BMD after a single session, BTMs are used as a 
surrogate measure [42]. Whether various modes of acute exercise with 
different modifiable characteristics alter bone metabolism differently in 
middle and older adults is underexplored. 

4.1. Age and sex-specific effects on BTM responses to acute exercise 

Based on this review, while acute exercise is sufficient to detect re-
sponses in BTMs, these responses may be age- and sex-specific, high-
lighting some possible consideration in the design of future acute 
exercise studies. For instance, all AE exercise studies investigating the 
tOC and BALP response in older adults (men and women) report no 
change after exercise, but some studies in middle-aged adults (men and 
women) report increases [49,53,55,59–61]. Conversely, ALP appears to 
have similar sensitivity in middle and older aged men and women 
[50,58–60] and resorption markers CTX (men and women) and ICTP 
(women only) appear to increase in older adults, but not middle-aged 
[48,55,60–62]. Lastly, tOC and β-CTX responses to AE also appears to 
be more sensitive in middle-aged men than women, suggesting a 
possible sex-specific response [49,56,59–61]. Differences in BTM re-
sponses between middle- and older-aged adults could be multifactorial, 
explained by age-related alterations to bone composition and hence 
bone turnover, and in women, menopausal effects, possibly altering the 
bone response [6,73–77]. Indeed, underlying bone pathophysiology is 
different in middle-aged vs older women who, are known to have 
elevated bone turnover rates, possibly explaining differences in re-
sponses [6,78]. Given bone resorption was not significantly altered in 
some of these studies in women [55,56,60,61] may in fact, be beneficial 
(not stimulating further the negative balance of the remodelling pro-
cess), however this is poorly understood and warrants further 
exploration. 

Of note, at baseline, some studies did not report/screen for BMD 
and/or T-score, as adults are known to be affected by age-related bone 
composition alterations, particularly women, this should be considered. 
Some studies excluded individuals with osteoporosis [49,50,53,54], 
whereas others included adults with osteopenia/osteoporosis 
[48,55,57], possibly influencing BTM responses [79]. Some studies in 
older adults pooled men and women data together [48,58], only one 
confirming no sex-interaction in BTM responses [53]. As older women 
are known to have different rates of bone turnover and consequently 
accelerated bone loss compared to men, bone responses may be altered 
(or attenuated) thus, men and women should be handled separately, or 
sensitivity tests performed [35,73–77,79]. 

4.2. BTM responses modulated by exercise mode, intensity, and duration 

This review summarises that BTM responses to acute exercise may be 
modulated by the specific characteristics of the exercise protocol used. 
For instance, a majority of studies report no change in tOC following AE 
regardless of intensity (low, moderate, high) [50,53,56,60,62]. How-
ever, tOC may be more sensitive only to AE that incorporates loads of 
greater ground-reaction force increasing in one study after jogging, but 
not after the majority of studies including cycling or walking protocols 
[50,53,56,60–62]. Whereas, ALP, BALP and PICP increase after cycling 
and walking, suggesting these markers have higher sensitivity to AE 
with lower impact [53,55,58–60,62]. Indeed, in three separate studies in 
middle-aged men utilising cycling protocols the tOC response was 
different, increasing only after moderate intensity cycling (30 min) and 
a short duration maximal exertion GXT, but not after high-intensity 
interval exercise (30 min) [49,50,59]. This suggests that exercise in-
tensity and duration may be important, but there may be other possible 
modulating effects on the tOC response, which should be further 
explored. Markers reflecting bone resorption, CTX and ICTP appear to be 
more sensitive to AE protocols that are longer (≥60 min), not shorter 
duration (<45 min) [48,53,55,60–62]. Whereas, β-CTX (a different 
fragment of CTX) responds differently to cycling exercise of same 
duration (30 min), increasing only after high-intensity, but not 
moderate-intensity cycling, suggesting that in this instance, intensity 
may be important [50,56]. 

Despite the mounting evidence for the use of RE combined with 
weightbearing and impact loads distributed in dynamic and novel pat-
terns for optimising bone health effects, little is known about the acute 
effects and available studies investigating these characteristics is 
limited. Based on this review, RE with impact does not stimulate a 
response in markers reflecting bone formation [49,55]. However, one 
study measured BALP only immediately post exercise [55], the other 
measured tOC only up to 2-h, possibly missing the kinetic response [49]. 
Direct comparison of these study protocols is difficult, one study used 
core stabilisation bodyweight exercises with small impact exercises 
(steps, hopping) [55], the other study used power leg press RE (70 to 
75% maximal strength) with high impact jumping, thus the impact and 
mechanical strain load on bone would be very different [49]. However, 
it does appear that high impact exercise alone and RE alone is sufficient 
to detect a response in BTMs of formation. Indeed, ALP was decreased in 
one study following a RE regimen of pilates exercises, however, whether 
this is truly indicative of a bone-response is unclear, and other BTMs 
were not measured [42,57,80]. Of note, only the study investigating 
impact alone using three sessions each containing a different form of 
jumping, reported increases of tOC and P1NP. P1NP increased for all 
jumping protocols, but tOC was only increased in the session where 
participants dropped from a height to an explosive vertical jump, not 
from jumping directly from the floor [54]. Highlighting that, P1NP may 
be more sensitive than tOC to impact exercise, and that the tOC-specific 
response may require greater impact loads (ground reaction force) 
combined with high explosive movements to elicit a response. Based on 
these studies it appears that CTX decreases with RE combined with 
impact, and with impact alone protocols [54,55]. However, while both 
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of these studies were RCTs, the impact only study which was crossover 
in design report that CTX decreases also in the control condition [54]. 
This decrease was not different to the decrease seen post the impact 
exercise, indicating that CTX is affected by circadian/diurnal effects 
[54,81]. 

Altogether, the evidence from this review, and from the literature 
demonstrates that exercise intensity, dynamic, and novelty of new loads 
(non-habitual nature) placed on the skeleton are important character-
istics influencing the bone-exercise response [16,23,24,82,83]. How-
ever, only three studies included participants’ baseline fitness in the 
selection criteria [48,49,54]. Three state [60–62] participants were non- 
regular exercisers, but one reports participants regularly cycling (1-6 
km/day, few days a week) [60]. As habitual exercise was not considered 
in a majority of studies, protocols may lack in specificity, and although 
some used prior testing to define exercise intensity their protocols 
possibly lack in novelty of new load [12,24,84]. Indeed, one interesting 
concept, explored by one study, was the possible effect on the BTM 
response based on the participants baseline fitness, whereby BALP was 
only shown to be significantly increased with AE exercise when older 
adults were further stratified into moderately active, or active groups 
[53]. This possibly suggests that the BALP response in older adults may 
be dampened, modulated by the participants’ baseline fitness, sup-
porting the principle that bone cells have a threshold level of adaptation 
and the need for consideration of individualised, progressive (graded, 
based on baseline fitness) and novelty in protocol loads, discussed 
earlier [12,24,84]. This should be further explored in future research, as 
it likely impacts/dampens the BTM-response and therefore a skewness 
in results. 

4.3. BTM-specific responses to acute exercise 

To understand if different BTMs thought to reflect the same bone 
turnover phase have different sensitivities to acute exercise we 
compared study effects where >1 BTM reflecting the same bone for-
mation or resorption phase was measured within the same study. AE 
appears to have a limited effect on tOC and P1NP, whereas other 
markers reflecting bone formation namely ALP, BALP and PICP appear 
to be more sensitive. Altogether, suggesting that tOC may be the least 
sensitive BTM of formation and supports the notion that these BTMs may 
represent different phases of osteoblastic function or formation [42]. 
Indeed, ALP activity includes serum derived from liver and bone, 
therefore changes in response of ALP may be non-specific to bone, as 
such BALP is recommended for its increased specificity [42,80]. 

While AE appears to have a limited effect on tOC, one concept to 
raise about tOC is that it exists in the circulation in a carboxylated (cOC) 
form reflecting more bone mineralisation, and undercarboxylated 
(ucOC) form, considered the more “bio-active” counterpart, acting as a 
hormone involved in energy metabolism and possibly a role in muscle 
maintenance and strength [85–91]. When studies measured effects on 
tOC only, whether there is a shift in favor of cOC, or ucOC, is unclear, as 
only few studies measured this [49,50,56]. In these studies, ucOC 
increased even with null change in tOC in two of them [50,56]. There-
fore, regarding tOC, there is much more to be understood. 

One study measured >1 BTM reflecting resorption, interestingly SCL, 
a possible promoter of bone resorption, increased following walking, but 
not CTX [55,92]. Suggesting, SCL may be more sensitive than CTX, 
however, blood sampling was performed only once (immediately post) 
possibly missing peak change in CTX. Of note, SCL increases with age 
and high levels are associated with long-term physical in-activity/ 
immobilisation [93–96]. Additionally, mechanical unloading increases 
the expression (gene and protein) of SCL, whereas SCL expression de-
creases with mechanical loading (in-vivo and in-vitro) [97,98]. There-
fore, SCL may be an interesting marker to be included in future studies. 

The BTM responses following exercise may be too fast to be a result 
of new protein being synthesized and secreted by bone. However, there 
are at least two possible explanations for the rapid alteration of 

circulating BTMs: 1) it is known that bone responds to fluid shifts [99], 
which occurs during exercise and as such, it is possible that proteins that 
were already produced are now released into the circulation at a faster 
rate and 2) it is plausible that the BTMs are stored in other organs, such 
as the liver [100], and these are released during exercise. These hy-
potheses should be tested in future studies. 

BTMs are highly dynamic and sensitive, however, investigators 
should consider factors known to influence BTMs in preparation for 
testing i.e. circadian/diurnal rhythm, feeding, sleep, smoking, meno-
pause age and exercise [42,43,75–77]. Some studies were not performed 
in the fasted state and/or in the morning [48,58,60–62]. In addition, 
blood sampling protocols largely differed between included studies, 
some sampling only immediately post-exercise, others taking multiple 
samples up to 2-h post-exercise, and others up to 72-h post-exercise. As 
blood sampling represents only a small “window in time” it is possible 
that some studies, particularly those that only sampled immediately 
post-exercise may have missed the peak response of the BTM-kinetics. As 
such, it is not clear whether there is an “optimal” time to assess BTMs 
following exercise. It is highly recommended that blood sampling is 
taken at several time points post-exercise, perhaps immediately after 
exercise and then every 30–60 min up to 2–3 h post-exercise, to identify 
the “peak response” of each individual. The data for each time point, in 
addition to the “peak response” and perhaps the area under the curve 
should be presented. While there are some ethical considerations for 
invasive techniques and frequency of venepuncture and/or sampling 
volume, a better understanding of the time-course response of BTM- 
kinetics is required. Despite advances in quality assurance, laboratory 
errors commonly occur in pre-analytical phases i.e. timing of sampling, 
selection of specimen, collection procedure and, sample transport, 
temperature and time to storage, thus extra rigor should be employed to 
ensure accurate and reproducible results [43,44,101,102]. 

4.4. Limitations and strengths 

To our knowledge this is the first systematic review to examine ef-
fects of acute exercise on BTMs in adults >50 years of age, highlighting 
major gaps in the field and considerations for increased rigor in future 
trials. The current review emphasises that research into the effects of 
acute exercise on BTMs in middle-aged adults is limited and is even 
scarcer in older adults. While the number of included studies is low (n =
13), it covers the only available research in this area. Several factors 
limit the generalizability of the findings; a lack of RCTs, low quality of 
the evidence, small sample sizes, potential bias in the cohorts, large 
variance in the exercise and blood sampling protocols, and the use of 
different assays to detect BTMs. The latter is an important factor that 
may lead to differences in findings between studies as the sensitivity of 
each assay may vary. In addition, it will be important for future studies 
to explore the chronic adaptation of BTMs to exercise training, to 
identify the optimal frequency, intensity and mode of exercise that 
should be taken to elicit optimal bone responses. 

5. Conclusions 

Acute exercise is an effective tool to induce changes in serum BTMs, 
however, the response appears to be exercise modality-, intensity-, age- 
and sex-specific. Large variability in study populations, exercise and 
blood sampling protocols explains conflicting results and as such, future 
studies should include tight control over factors that influence BTMs. 
Longer sampling periods of BTMs may assist in understanding the BTMs- 
kinetic responses. Further high-quality acute exercise studies are needed 
to identify new mechanistic target pathways for therapeutics and opti-
mising exercise prescription for adults. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.bone.2020.115766. 
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Abstract

Background: Bone and muscle are closely linked anatomically, biochemically, and metabolically. Acute exercise affects both
bone and muscle, implying a crosstalk between the two systems. However, how these two systems communicate is still largely
unknown. We will explore the role of undercarboxylated osteocalcin (ucOC) in this crosstalk. ucOC is involved in glucose
metabolism and has a potential role in muscle maintenance and metabolism.

Objective: The proposed trial will determine if circulating ucOC levels in older adults at baseline and following acute exercise
are associated with parameters of muscle function and if the ucOC response to exercise varies between older adults with low
muscle quality and those with normal or high muscle quality.

Methods: A total of 54 men and women aged 60 years or older with no history of diabetes and warfarin and vitamin K use will
be recruited. Screening tests will be performed, including those for functional, anthropometric, and clinical presentation. On the
basis of muscle quality, a combined equation of lean mass (leg appendicular skeletal muscle mass in kg) and strength (leg press;
one-repetition maximum), participants will be stratified into a high or low muscle function group and randomized into the
controlled crossover acute intervention. Three visits will be performed approximately 7 days apart, and acute aerobic exercise,
acute resistance exercise, and a control session (rest) will be completed in any order. Our primary outcome for this study is the
effect of acute exercise on ucOC in older adults with low muscle function and those with high muscle function.

Results: The trial is active and ongoing. Recruitment began in February 2018, and 38 participants have completed the study as
of May 26, 2019.

Conclusions: This study will provide novel insights into bone and muscle crosstalk in older adults, potentially identifying new
clinical biomarkers and mechanistic targets for drug treatments for sarcopenia and other related musculoskeletal conditions.

Trial Registration: Australia New Zealand Clinical Trials Registry ACTRN12618001756213;
https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375925.

International Registered Report Identifier (IRRID): DERR1-10.2196/18777
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Introduction

Background
Adults reach their peak muscle and bone mass in the third
decade of life, after which an age-related loss of skeletal muscle
and bone mass occurs [1,2]. Under certain conditions, for
reasons that are not fully understood, this loss of bone mass
(osteoporosis) and muscle (sarcopenia) is accelerated and, in
some cases, occurs concurrently [3-5]. Emerging evidence
suggests that this parallel and exponential loss of bone and
muscle mass and strength is driven, at least in part, by bone and
muscle crosstalk. The skeleton and skeletal muscle are closely
linked anatomically, biochemically, and metabolically and
modulate each other in endocrine and paracrine manners [6].
Many factors may be involved in this crosstalk, including
genetics, changes in vitamin D and parathyroid hormone (PTH)
levels, aging, increased levels of systemic and local
inflammatory markers (ie, interleukin-6 [IL-6] and tumor
necrosis factor), obesity and adipokines, mechanical loading,
and altered hormones (ie, osteocalcin, resistin, and myostatin)
[7,8]. The exact mechanisms involved in this crosstalk remain
partially explored, although it has been proposed that
undercarboxylated osteocalcin (ucOC) and possibly circulating
osteoprogenitor (COP) cells may be mediators [6,9-12].

Serum total osteocalcin (tOC) is an osteoblast-specific secreted
protein within the circulation that can be present in two major
forms, as follows: γ-carboxylated osteocalcin (cOC) and ucOC
lacking γ-carboxylation at one or more sites [13]. cOC, which
is predominantly located in bone, is at least partly involved in
bone mineralization, whereas ucOC has been shown to be
involved in glucose metabolism—at least in mice—with new
evidence suggesting a role in influencing muscle mass and
strength [10,14-24]. Osteocalcin-deficient mice have reduced
muscle mass and strength [17], and lower ucOC levels following
hindlimb immobilization in rats are associated with reduced
muscle mass and muscle force [25]. Treatment with ucOC can
increase the cross-sectional area of the extensor digitorum
longus, improve grip strength in mice, and stimulate myotube
formation in C2C12 myoblast cultures in vitro [16]. In humans,
we and others have shown that exercise increases serum ucOC
levels and improves muscle metabolism and whole-body glucose
control [10], most likely via increased insulin signaling protein
levels within skeletal muscle, and that a decreased ratio of
ucOC/tOC correlates with lower muscle strength in older women
[19]. However, the effect of acute exercise on ucOC in older
adults remains unknown; in particular, the role of ucOC in
human myotubes and its association with muscle function
parameters (ie, strength and mass) remain unclear.

Exercise causes a series of physiological responses in the bone
and skeletal muscle, improving glucose regulation and insulin
sensitivity and, importantly, promoting pro-osteogenic factors,
including increasing bone formation biomarkers such as
osteocalcin [26-31]. Exercise is a known nonpharmacological

approach to improving bone health, reducing the risk of
osteoporosis, and, importantly, concomitantly improving muscle
function [32-35]. Thus, exercise represents an efficacious
approach in older persons to reduce age-associated alterations
related to sarcopenia, which currently has no available drug
treatments. Evidence suggests that various mechanical factors
including exercise stimulate the differentiation of mesenchymal
stem cells (MSCs) into osteoblasts [36,37]. COP cells circulate
within the blood and are MSC-like with osteogenic potential
and a precursor for the osteoblastic lineage and potentially
osteocalcin [11]. It remains unknown whether exercise, with
stimuli promoting pro-osteogenic factors (ie, high load bearing
resistance exercise [RE], impact, and jumping exercise), can
mitigate the aging process in skeletal muscle and bone through
its effect on COP cell levels and therefore osteocalcin [38].
Even a single acute bout of exercise (ie, aerobic exercises
[AERs] and REs) elicits positive effects on the bone endocrine
and biomarker response and can increase ucOC and insulin
sensitivity [9,10,39-42]. However, the exact mechanism by
which ucOC influences skeletal muscle function, strength, and
metabolism in older adults remains unclear.

Objectives
The primary objective of this study is to determine the change
in circulating ucOC following acute exercise interventions
between older adults with low and high muscle function
(stratified based on leg muscle quality [LMQ]; see the Lower
Limb Maximal Strength and LMQ section for the LMQ
equation). To extend the current knowledge of ucOC in humans,
and as an adjunct to this study, we will also perform in vitro
experiments on cultured primary myotubes to uncover the
mechanistic pathways of action of ucOC. In addition, as a
secondary objective, we will aim to quantify the lineage of COP
cells before and after exercise, as COP cells can potentially act
as a regeneration and antiaging inducible factor and a precursor
for osteocalcin.

Hypotheses
We hypothesize that older adults with lower muscle function,
compared to those with normal or higher muscle function, will
(1) be characterized by lower levels of circulating ucOC and
those with lower ucOC will be associated with poorer glucose
control and (2) be characterized by abnormal skeletal muscle
signaling (muscle hypertrophic or atrophic pathways). Both
AER and RE will increase ucOC; however, we hypothesize that
this will be to a greater degree in those with lower muscle
function. We will test these hypotheses at baseline and after
acute exercise. This project has the potential to identify novel
biomarkers for interactions between bone and muscle, with
implications for future drug targets or clinical interventions and
the management of those with or at risk of sarcopenia or reduced
muscle function.
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Methods

Design
This study is a randomized controlled crossover trial (Figure 1)
approved by the Melbourne Health (MH) Human Research
Ethics Committee (reference number: 2017/08) and is registered
with the Australian New Zealand Clinical Trials Registry (trial

number: ACTRN12618001756213). The trial is a multicenter
clinical trial conducted at the Institute for Health and Sport,
Victoria University, Melbourne, Victoria, Australia, and the
Australian Institute for Musculoskeletal Science (AIMSS) in
Western Health, St Albans, Victoria, Australia. The trial will
be conducted in accordance with the Helsinki Declaration, and
reporting of the study will adhere to the CONSORT
(Consolidates Standards of Reporting Trials) guidelines [43,44].

Figure 1. Study design. 1RM: one-repetition maximum; AER: aerobic exercise; pQCT: peripheral quantitative computed tomography; RE: resistance
exercise.

Participants
Men and women aged 60 years or older will be recruited.
Women will be required to be a minimum of 12 months
postmenopause; this is because of the potential alteration in
hormones that occur during perimenopause, which can interact
with or affect the specific project outcomes of this study. The

inclusion and exclusion criteria are listed in Textbox 1.
Additional study exclusions will include the inability to provide
informed consent independently for safety reasons (particularly
as we take some invasive measures) and an inability to
understand English, as this may potentially be a safety concern
if unable to communicate during visits that include maximal
exertion testing and acute exercise bouts.

Textbox 1. Study eligibility.

Inclusion criteria

• Males and females aged 60 years

• Females >12 months postmenopause

Exclusion criteria

• Any fractures within the previous 3 months

• Have begun a new osteoporotic treatment within the previous <3 months or have begun taking antiresorptive medications within the previous
<3 months

• Have diabetes mellitus or are taking hyperglycemic medications

• Any hematological, myelodysplastic, or myeloproliferative disorder

• Any bone malignancy

• Taking warfarin of vitamin K supplementation or restriction

• BMI≥40 kg/m2

• Engagement in a resistance exercise regime for more than 2 sessions per week

Recruitment
Prospective participants will be recruited using advertisement
flyers. These will be displayed at Western Health sites (Sunshine

and Footscray Hospitals, Victoria, Australia) and provided for
use within the general community and other media outlets.
Interested participants will self-initiate contact with the research
team via email or phone. Those interested will be screened
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against the inclusion and exclusion criteria. Eligible participants
will be provided with information for the participants and
participant-informed consent forms. A physical examination
and an approval to participate in the study will be required from
the patients’ physician. Please refer to Multimedia Appendix 1
for the schedule of enrollment, interventions, and assessments.

Initial Screening

Summary of Initial Screening
The initial screening will be used for clinical characterization
of the volunteers as well as for bone and muscle quantification
and quality. It includes 2 separate visits of 3-4 hours’ duration
(visits 1 and 2; Figure 1), performed in any order and up to 14
days apart. Both visits will be performed in the morning and
following an overnight fast. The measures obtained during these
visits are explained in detail below.

Bone and Muscle Health

Dual Energy X-Ray Absorptiometry

Body composition and bone mineral density (BMD) will be
assessed using a dual energy x-ray absorptiometry (DXA)
scanner (Hologic, Horizon A, software version 5.6.0.4). Total
BMD as well as the neck of the femur and lumbar spine BMD
will be assessed. Lean body mass and fat mass will also be
assessed. The DXA scan will ideally be performed in the
morning following an overnight fast by experienced personnel.
This will be completed by the AIMSS.

Bone Microarchitecture and Fat Infiltration

Peripheral quantitative computed tomography (pQCT; Stratec
XCT3000, Stratec Medizintechnik GmbH) will be used to
quantify muscle and bone mass, density, and adipose infiltration
at the nondominant forearm and foreleg [45,46].

Single 2.5-mm transverse scans will be obtained at 4% and 66%
of tibial length (measured form the palpable tip of medial
malleolus) and 4% and 66% of the radial length (from the radial
condyle), with a voxel size of 0.4 mm. All pQCT scans will be
acquired and analyzed by an experienced operator, and the
device will be calibrated on the scan date using the
manufacturer’s phantom. Calf and forearm muscle

cross-sectional areas (mm2) and densities (mg/cm3) will be
determined using the manufacturer’s algorithms and software
(version 6.2). The calf intramuscular adipose tissue

cross-sectional area (cm2) will be quantified as previously
described [47]. Trabecular and cortical bone densities and
structure will be assessed at the relevant regions of interest. All
imaging will be performed by an appropriate expert
(radiographer).

Blood Sample

Quantification of Bone Remodeling and Cardiometabolic
Biomarkers

Beta-isomerized C-terminal telopeptide (a bone resorption
marker) and procollagen 1 N-terminal propeptide (a bone
formation marker) will be quantified using a Roche Hitachi
Cobas e602 immunoassay analyzer, according to the
manufacturer’s guidelines. Hormones (PTH), lipids, glucose

and insulin, inflammation markers (C-reactive protein and serum
IL-6), and potentially other cardiovascular or health markers
will be analyzed according to standard hospital procedures.

Genotyping and Target Genetic Variants Analyses

We will target either candidate gene variants [48,49] or
Genome-Wide Association–based variants previously related
to skeletal muscle and bone health [50,51]. Genomic DNA will
be extracted from residual blood samples from Becton Dickinson
(BD) Vacutainer EDTA tubes using the MagSep Blood gDNA
kit (0030 451.00, Eppendorf) or GeneJET Genomic Whole
Blood DNA Purification Kit (#K0781 Thermo Scientific). Gene
variants will be determined using the TaqMan SNP assay
(Applied Biosystems, Thermo Fisher Scientific) by QuantStudio
7 Flex (Applied Biosystems, Thermo Fisher Scientific).
Genotyping will be replicated in another independent institute,
as previously described [52,53], to validate the results.

Muscle Function and Strength

Grip Strength and Gait Velocity

Grip strength will be measured using a hand dynamometer; a
result of <20 kg for women and <30 kg for men will identify
low muscle strength [54,55]. A 4 m gait velocity assessment
will be performed by using the instrumented walkway, which
has an acceleration (GAITRite), and by timing with a stopwatch,
and reduced physical function will be determined as <80
cm/second. Both the grip strength and gait velocity thresholds
noted are accepted as a measurement of sarcopenia [54,55] and
will form the definition in this study.

Lower Limb Maximal Strength and LMQ

Participants will perform a one-repetition maximum (1RM) test
on a leg press. This will be performed twice, with the first visit
serving as familiarization. 1RM is defined as the heaviest weight
lifted once with the proper technique and without compensatory
movements [56]. Results from this study will guide appropriate
prescription for the acute RE session.

LMQ, an estimate of specific force, has been shown to decrease
with age and is described as the amount of force a muscle group
can produce per unit of muscle mass [57]. We will calculate
LMQ as follows:

LMQ = leg strength (kg)/(left leg lean mass [kg] + right leg lean
mass [kg]) (1) [58].

Leg strength will be defined as the participants’ 1RM, and leg
lean mass will be obtained from the DXA assessment.

Physical Performance Test

Participants will complete a physical performance test (PPT),
adapted from Levinger et al [59], and will include 4 functional
mobility tasks: (1) a gait velocity assessment (described earlier),
(2) timed up and go test, (3) stair climbing power (SCP), and
(4) stair descending. All tests will be scored in time (seconds).

The timed up and go test is a simple performance-based
assessment that requires minimal equipment, including a
standard arm chair (approximately 46 cm), a 3-m walkway with
a floor mark, and a stopwatch (time, seconds). It is performed
as time (seconds) taken to rise from a seated position, walk 3
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m, turn, walk back to the chair, and then sit. The SCP consists
of a rapid ascent of 10 stairs and is calculated as follows:

Power = force × velocity (2)

[60]

Velocity is calculated as the vertical distance of the stairs
divided by the time it takes to ascend the stairs. Force is
calculated as the participants’ body weight multiplied by

acceleration due to gravity (9.8 m/s2). The stair descent will be
the time to safely descend 10 stairs. The rest between ascent
and descent will be 45 seconds. Participants will undergo 4
attempts on each task, and the best time will be recorded for
each task. The PPT score will be the sum of the fastest times
recorded for each test.

Aerobic Capacity and Vascular Health
Peak oxygen consumption will be assessed on a cycle ergometer
with the initial intensity beginning at 10-30 W and increasing

by 10-30 W×minute-1 according to participant ability.
Participants will be monitored by a 12-lead electrocardiogram
(Mortara, X-Scribe II). Oxygen consumption for each 15-second
interval will be measured by gas exchange analysis (BreezeEx,
version 3.02, Medical Graphics Corporation), with routine
calibration of gas concentrations and flow before each test. The
test will be terminated according to participants’ self-reported
fatigue perception reaching a predetermined level (using the
Borg scale, ratings of perceived exertion [RPE]=17) or clinical
signs or symptoms [61]. Blood pressure will be monitored at
baseline, regular intervals (each stage), and post exercise using
a manual sphygmomanometer, and heart rate will be monitored
via the 12-lead electrocardiogram.

Vascular endothelial function will be assessed by brachial artery
flow–mediated dilatation, used in clinical trials as a reproducible
method to assess endothelial function [62,63]. Vascular stiffness
will be assessed by noninvasive measures of pulse wave velocity
(simultaneous comparison of carotid and femoral arterial pulses)
and pulse wave analysis (pulsations recorded at the brachial
artery to produce central aortic pressure waveforms) using
applanation tonometry (SphygmoCor EXCEL system V1, AtCor
Medical) [64].

Questionnaires and Lifestyle Behaviors

Physical Activity Log

Participants will complete a lifestyle behavior and physical
activity log. This log has been developed for the purpose of this
study and will have questions related to average sleep cycles
and normal physical activity levels on weekdays versus
weekends (stratified into moderate, hard, and very hard
activities). The physical activity component includes
consideration for activities of daily living and structured
exercise, with examples provided.

Dietary Behavior

A 3-day dietary log will be given to participants on their first
visit, to be returned on visit 2 for investigators to analyze normal
dietary behaviors. Participants are encouraged to eat normally
while they are recording (ie, not to adjust food quantities) and
are instructed to complete the dietary log on 2 weekdays and 1

weekend day (consecutively). This log also requests a timed
record of physical activity behaviors, including the time and
intensity, the time at which food and drinks are ingested, and
the time and quantity of medications and supplements.

Falls Risk Questionnaire

The Falls Risk for Older People in the Community (FROP-Com)
was developed by the National Ageing Research Institute as a
modified version of the Falls Risk for Hospitalized Older People
for better utility in the community [65]. The FROP-Com is
simple, takes only 10-15 minutes to complete, is low cost,
requires no equipment, and can be administered by any health
professional. It is a comprehensive fall risk assessment, covering
13 risk factors for falls set out in 26 questions with dichotomous
or ordinal scoring (from 0 to 3). The overall score is indicative
of fall risk, with the total score ranging from 0 to 60, with higher
scores indicating greater risk. The tool has demonstrated good
reliability and has a moderate capacity to predict falls [65].

Mini Nutritional Assessment Questionnaire

The Mini Nutritional Assessment (MNA) is a widely used tool
for assessing nutritional status in older adults. It is simple to
administer, low cost, and validated, with high sensitivity,
specificity, and reliability. The MNA classifies the interviewee
as well nourished (score≥24), at risk of malnutrition (score
between 17 and 23.5), or malnourished (score<17). The MNA
also correlates with clinical assessments and objective measures,
such as albumin, BMI, triceps skinfold, caloric intake, and
vitamin status, and low scores are related to the incidence of
clinical events and mortality [66-69].

Charlson Comorbidity Index Questionnaire

The Charlson Comorbidity Index (CCI) is a validated measure
of 1-year mortality risk and burden of disease and is used in
clinical research to understand the influence of comorbidities
and predict outcomes [70-72]. In clinical practice, the CCI
assists with the stratification of patients into subgroups based
on disease severity to assist with targeted models of care and
resource allocation. The CCI includes 17 comorbidities (with
2 subgroups for diabetes and liver disease) that are weighted
from 1 to 6 for mortality risk and disease severity. These scores
are then tallied to form the total CCI score.

Randomization
Following baseline assessments, participants will be randomized
into the acute intervention to explore the characteristics of older
adults (by sex) with low or high muscle function (Figure 1).
Participants will be randomized individually by a researcher
external to this project (they will have no contact with the
participants before or during the trial). This person will also
have no intellectual or personal investment in the study design,
data collection, or outcome. The order of the 3 conditions for
each participant (AER, RE, or control) will be randomized using
a sealed envelope method (block allocation) to prevent carryover
effects between conditions. The envelopes will be stored
separately in a locked cabinet, and each envelope will contain
3 pieces of paper that will state “AER,” “RE,” and “CON.”
These pieces of paper will be folded to reduce their transparency.
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Study Intervention

Acute Intervention

Participants will complete the acute intervention (visit 3, 4, and
5) up to 14 days after completing the screening assessments and
will complete the AER, RE, and CON conditions (Textbox 2)
in a randomized order (described below). These visits will

include blood sampling and optional skeletal muscle biopsies.
Participants can elect to have none, 1 (at rest, for a baseline
measure), or 4 biopsies (1 at rest for baseline and 1 following
each condition). Each testing visit is approximately 3 hours in
duration, including the 30-minute intervention (exercise or rest),
and visits will be performed approximately 7 days apart,
accounting for washout.

Textbox 2. Acute intervention.

Description of interventions

• Aerobic exercise: Performed on the cycle ergometer for 30 minutes at an intensity corresponding to 70%-75% of peak heart rate; this is based
on data obtained from the exercise capacity assessment. Intensity will be adjusted every 5 minutes to maintain the desired heart rate range.

• Resistance exercise: The protocol is as we have previously performed [10] and includes 30 minutes of strength and power exercises at intensities
corresponding to 70%-75% of the predetermined one-maximal repetition based on the individual’s test results. Leg press will be performed as
5 sets of 10 rapidly concentric (as fast as possible) and slow eccentric (4 seconds) repetitions. Recovery between sets and exercise will be 2
minutes. Participants will also perform jumping sequences as 5 sets of 10 jumps (jumping as high as they can 10 times without stopping). Power
training is effective to increase muscle strength and bone density and is safe for older adults [73-75].

• Control: This session will include 30 minutes of supine bed rest.

All testing visits will be monitored and supervised by accredited
exercise physiologists (AEPs), who will follow the structured
protocol as dictated for that particular session (AER, RE, and
CON). The AEP will also monitor signs and symptoms in
response to exercise training and will record Borg RPE, blood
pressure, and heart rate at frequent time points. Any adverse
signs and symptoms will be documented, including feelings of
fatigue, soreness, light-headedness, and any injuries. Blood
sampling and intravenous cannulation will be performed by
personnel who are experienced in the technique, and muscle
biopsy will be performed by an experienced medical physician.

Control Procedures

For testing visits 3, 4, and 5, participants will arrive at the
laboratory between 7 AM and 8 AM following an overnight
fast and with abstinence from exercise or reduced general
activity (ie, heavy to moderate activities of daily living) in the
preceding 24 hours and for all follow-up sessions. These
sampling procedures will be followed at all visits to account
for circadian or diurnal rhythms [76]. Participants may be
requested to abstain from particular medications (eg, aspirin),
as advised by the medical doctor, if electing for a muscle biopsy.

To assist with adherence to study protocols, participants will
be monitored via regular communication with the study
coordinator on the days preceding each study visit. As a general
consideration for participation in this study, participants will
be encouraged not to alter their current physical activity levels,
exercise habits, or dietary intakes for the entirety of the study.
Participants are asked to report whether there have been any
alterations in medications throughout the study, as we request
that all medication interventions are stable for at least more than
three months.

Biospecimen Sampling Protocols

On arrival and following supine rest (approximately 15 minutes),
a cannula will be inserted into the antecubital vein, and a
baseline (resting) blood sample (40 mL; biopsy, if consented)
will be obtained. These baseline (resting) samples will be
obtained on the first visit only, serving as the baseline for all

other visits thereafter. Four additional blood samples following
the 30-minute acute intervention will be collected immediately
after the intervention (0-minute time point) and at 30, 60, and
120 minutes postintervention (total of 100 mL) to observe
changes in tOC, ucOC, COP, and other measures. If elected, a
postintervention biopsy will be conducted at the 60 minutes
time point. At all time points, blood samples will be collected
into EDTA and serum-separating tubes vacutainers for the
appropriate collection of serum or plasma. Following 10-minute
clotting time, samples will be centrifuged for 10 minutes at 4°
C and immediately transferred to long-term storage at −80° C
in 2 mL aliquots for later analysis.

Outcome Measures

Primary Outcomes

The primary outcome for this study is the peak change in
circulating levels of ucOC from baseline compared with
postacute exercise blood sampling time points (0, 30, 60, and
120 minutes) following the 3 acute interventions (AER, RE,
and CON) between the low muscle function and high muscle
function groups.

Secondary Outcomes

The secondary outcomes for this study are (1) the difference in
protein content related to atrophic and hypertrophic protein
signaling at baseline between the low muscle function and high
muscle function groups and (2) the difference in protein
signaling (protein content) from baseline and compared with
the postmuscle sampling timepoint (60 minutes) following the
3 acute interventions (AER, RE, and CON) between the low
muscle function and high muscle function groups.

Data Collection and Analysis

Quantification of Osteocalcin

Serum tOC will be analyzed as described previously
[9,10,19,39]. In brief, tOC will be measured using an automated
immunoassay (Elecsys 170; Roche Diagnostics). Serum ucOC
will be measured by the same immunoassay after absorption of
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cOC on 5 mg/mL hydroxyl-apatite slurry, following the method
described by Gundberg et al [77].

Quantification of COP Cells

COP cell analysis will be performed as described previously
[78,79]. In brief, peripheral blood samples (20 mL) will be
collected (EDTA tubes) and processed for Ficoll-based gradient

separation, and approximately 5×106 peripheral blood
mononuclear cells (PBMCs) will be obtained. Approximately

1×106 PBMCs will be resuspended in fluorescence activated
cell sorting (FACS) buffer, followed by a 10-minute blocking
with fragment crystallizable receptor blocking reagent (BD
Biosciences). Staining will then be performed with a viability
marker (30 minutes), followed by washing (×2) with phosphate
buffered saline (containing 5% fetal calf serum). Cells will be
incubated with mouse antihuman CD45-Pacific Blue,
CD3-PerCP, and CD19-APC (40 minutes). Staining of
intracellular components will be permeabilized with
Cytofix/Cytoperm (BD Biosciences) according to the
manufacturer’s instructions, followed by incubation with mouse
antihuman osteocalcin-phycoerytrhin at 4 °C (40 minutes), and
then washed with Perm or wash buffer (×2).

Flow Cytometry

Cells will be analyzed using a BD FACS Canto II. FACS DiVa
software will be used to analyze 50,000 total events for each
sample and for the fluorescence minus one (FMO) controls. A
total of 3 lasers and 8 different photomultiplier tube (PMT)
channels will be used for the 6-color staining panel. Two FMOs
will contain fluorochromes, except for the one to be controlled
for. Compensation beads will be used to set the compensation
controls for each fluorochrome. The PMT voltage values for
fluorochromes will be set for each cell type based on the
compensation controls. Doublet discrimination will be applied,
and viability will be assessed by negative staining using the
Live/Dead stain. Offline analysis will be performed using Flow
Jo analytical software (Treestar).

Gating Strategy

Cells will be gated for size, shape, and granularity using forward
and side scatter parameters, as previously described by our
group [78,79]. Briefly, serial gating steps will be applied to
quantitate cellular populations. First, dead cells will be excluded,
and then, a region will be set to encompass lymphocyte-,
monocyte-, and granulocyte-enriched areas, followed by doublet
discrimination, T cell (CD3) and B cell (CD19) elimination.
For COP cells, after gating on live single mononuclear cells (on
forward and side scatter plots), the CD45 and osteocalcin double
positive cells will be calculated. Cutoff points to assign antigen
positivity will be performed against matching FMO controls.
The use of FMO significantly increases the sensitivity and
specificity of analysis, as they effectively minimize the effect
of nonspecific antibody binding and cell-specific
autofluorescence. The gating quantification will be performed
twice for the accurate quantification of the percentage of COP
cells.

Muscle Sampling Protocol and Analyses

Summary of Sampling Procedure

If elected, the muscle samples (1 or 4) will be taken from the
vastus lateralis (approximately 150 mg) under local anesthesia
(xylocaine 1%) by percutaneous needle biopsy technique,
modified to include suction [80]. Excised tissue will be snap
frozen in liquid nitrogen and stored at −80° C for later analysis.
Proteins involved in muscle degradation and hypertrophy (ie,
anabolic and catabolic pathways; ubiquitin-proteasome,
autophagy-lysosome, and caspase-3–mediated proteolytic
pathways) as well as glucose uptake will be assessed, as
described previously [81-84].

Protein Extraction and Western Blotting

All muscle samples (baseline and postintervention samples)
will be used to analyze the content and activation of signaling
proteins involved in muscle degradation and hypertrophy by
using western blotting, as described previously [84-86]. Western
blotting is a method commonly used to detect and analyze the
abundance and posttranslational modifications (such as
phosphorylation) of proteins. Briefly, muscle samples will be
homogenized in a radioimmunoprecipitation assay buffer using
a TissueLyzer (QIAGEN). Then, proteins in the lysate will be
separated based on protein molecular weight via gel
electrophoresis. Proteins will be subsequently transferred to a
polyvinylidene fluoride membrane where specific proteins can
be probed using specific antibodies. Finally, signals generated
through electrogenerated chemiluminescence will be detected
and analyzed using ChemiDoc Imaging Systems (Bio-Rad
Laboratories).

Primary Skeletal Muscle Cell Culture

A portion of the muscle obtained at rest (baseline) will be used
for cell culture for future molecular analyses [87]. This will be
established according to the method described by Blau and
Webster [88] and by Gaster et al [89] and previously detailed
by McAinch et al [90]. Briefly, muscle samples (50-100 mg)
will be washed, minced, and enzymatically dissociated with
trypsin. Cells will be cultured in a coated flask with extracellular
matrix, and the growth medium (α-minimal essential medium
[α-MEM]+10% fetal bovine serum+0.5%
penicillin-streptomycin+0.5% antifungal) will be changed every
other day until they reach 80% confluence. Then, satellite cells
will be selected using CD56+ magnetic microbeads (Miltenyi
Biotec) and transferred to bigger flasks coated with extracellular
matrix to increase cell number (up to 4 passages). Once the cells
reach 80% confluence, they will be differentiated using a
differentiation medium (α-MEM+2% horse serum+0.5%
penicillin-streptomycin+0.5% antifungal) for 5-6 days. Before
the experimental treatment, cells will be starved for 1 hour in
a  se rum-f ree  med ium (α -MEM+0.5%
penicillin-streptomycin+0.5% antifungal).

In vitro treatment with ucOC at concentrations of 0 ng/mL, 30
ng/mL, and 100 ng/mL in serum-free medium for 60 minutes
and 24 hours in the presence or absence of insulin (100 nM for
the last 15 minutes) for the determination of glucose uptake
(2-deoxy-D-[3H] glucose) and western blotting will be
performed. Analysis of targeted proteins (described above) will
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be performed as described previously [39,91]. The dose response
is important because the physiological effect of ucOC in muscles
from mice and humans may be different, and the concentrations
used are all physiologically relevant.

Participant Retention and Withdrawal
Once a participant is enrolled into the trial, the study coordinator
will keep in contact with him or her for the entire study period.
We estimate that the dropout rate in this population will be
approximately 10%. Participants may withdraw from the study
at any given time. The investigators or medical staff may also
withdraw participants from the study due to safety or medical
concerns.

Statistical Analysis and Determination of Sample Size
The primary endpoint for this study is the change in ucOC levels
from baseline to the peak, postintervention sampling time point.
The analysis will include a comparison of changes in ucOC
levels in response to each intervention from baseline to
postintervention sampling time points (0, 30, 60, and 120
minutes) between the low muscle function and normal or high
muscle function groups, by using repeated measures analysis
of variance (ANOVA). Comparisons of multiple means will be
examined using a 2-factor (exercise type×time point) repeated
measures ANOVA. For all significant interaction and main
effects, a priori comparisons of means (baseline vs all
postexercise time points) will be conducted using the Fisher
least significant difference test (P<.05). Multivariable regression
models will be used to determine associations between selected
measurements, adjusting for BMI and sex. Data will be analyzed
using the Statistical Package for the Social Sciences, version
22 (SPSS Inc), and statistical significance will be declared at
P<.05.

In 10 postmenopausal women, we previously reported that the
change in ucOC levels following exercise is approximately 9%
[39]. We will recruit 54 participants (equal number of men and
women) who will be dichotomized as low muscle function
versus high muscle function (27 per group). After adjusting for
a loss to follow-up rate of 10% (5.4/54), this sample size will
be large enough to detect an estimated 4% difference in changes
in ucOC levels (SD 6%) between groups with a type I error rate
of 5%, type II error rate of 20%, and power of >80% (G*Power
3.1.9.2 for Windows) [92].

Data Monitoring

Data Management and Monitoring

Details of the procedures for data management have been
reviewed and approved by the MH Human Research Ethics
Committee and can be located via study reference, 2017/08. A
trial management group (TMG) has been formed to manage
potential risks and for structured oversight of the trial [93]. The
type of oversight that this TMG will provide includes regular
meetings to review individual safety reports and data relating
to quality, protocol adherence, and participant retention rates.
The TMG committee will include the principal investigator;
individuals responsible for the daily running of the trial,
including the trial coordinator; and an appointed independent
member.

All electronic data will be stored on password-protected
computers. Hard copies of any data will be kept in a locked
filing cabinet in a secure office. All data collection tools and
questionnaire data will be deidentified.

Harms

All adverse events associated with the study, or occurring during
study participation, will be recorded. All adverse events will be
reported to the TMG and ethics committees (MH and Victoria
University) with strategies to reduce the risk for future events.
The ethics committees have the power to pause or even stop
the research in the case of a severe adverse event. The study
personnel will monitor the clinical signs and symptoms of
dyspnea, shortness of breath, nausea, faint-headedness and
light-headedness, signs of inflammation, or infection throughout
the study period.

Auditing

The TMG will meet and run an internal audit of the trial at
regular intervals annually. The principal investigator, IL, is
responsible for the overall conduct and preservation of the
integrity of this trial and has extensive experience as a lead
research investigator in numerous human clinical trials.

Ethics and Dissemination
This study and its protocols and data collection tools have been
reviewed and approved by the MH Human Research Ethics
Committee (ref approval number: HREC/17/MH/335; local
project number: 2017/208), and local ethical approval has been
confirmed at Victoria University as a mirror approval of MH.
Any modifications to the study objectives, procedures, protocols,
data collection tools, and study personnel will require a formal
amendment from the ethics committee. All protocols related to
consenting procedures, data collection and access to participant
data, procedures for maintenance of participant confidentiality,
and plans for dissemination of study results can be found in the
reviewed and approved documents of trial reference 2017/208.

Results

The trial is active, with participant recruitment and intervention
delivery currently ongoing (MH Human Research Ethics
Committee ref approval number: HREC/17/MH/335; Western
Health Sunshine Hospital local project number: 2017/208;
protocol version number: 6 25/06/2018). Recruitment for this
trial began in February 2018, and 38 participants have completed
the study as of May 26, 2019. The results of this study will be
published throughout the trial, and the main study findings are
expected to be published by June 2021.

Discussion

Previous research suggests that crosstalk exists between the
skeleton and skeletal muscle; however, this crosstalk has not
been fully described or clearly elucidated, particularly in
humans. In addition, a lack of physical activity accelerates the
widespread cellular and molecular changes induced by aging,
resulting in an increased prevalence of many chronic diseases
[94]. Detecting the age-related conditions associated with
inactivity and early intervention are essential for reducing the

JMIR Res Protoc 2021 | vol. 10 | iss. 4 | e18777 | p. 8https://www.researchprotocols.org/2021/4/e18777
(page number not for citation purposes)

Smith et alJMIR RESEARCH PROTOCOLS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


economic burden of aging on the health care systems worldwide.
The development of affordable and universally accessible ways
to prevent chronic disorders, such as tailored exercise programs,
in combination with the development of robust blood
biomarkers, will considerably improve the ability to predict and
detect chronic diseases and reduce the health and economic
burden caused by aging in a cost-effective manner [95].

This project is designed to uncover a novel crosstalk pathway
between bone and muscle in older adults via ucOC. Current
evidence from predominately cross-sectional studies suggests
that osteocalcin, via ucOC, in humans may be associated with
muscle function [10,19]. Evidence from animal and preclinical
studies is encouraging, indicating a promising role for ucOC in
improving muscle metabolism and function [16,17,25].
However, the roles of ucOC in humans and its relationship with
muscle function and metabolism remain unknown. Evidence
suggests that COP cells have a dynamic capacity to mobilize
to sites of fracture repair and have the capacity to be upregulated
under varying pathological or physiological bone forming
processes, such as puberty and fracture [79,96-102]. However,
it is unknown whether exercise stimulus, with osteogenic

capacity, can increase the COP cell population and upregulate
tOC and therefore ucOC.

The proposed project aims to overcome this gap by
characterizing ucOC levels in older adults with a spectrum of
muscle functions and in response to an acute exercise
intervention. Importantly, we will investigate this bone and
muscle crosstalk by determining the associations between the
parameters of muscle function (ie, muscle signaling, muscle
mass, and muscle strength) and ucOC. In the future, we plan to
directly assess this association at a cellular level in human
primary myotubes (those prepared in this study) to determine
the direct effects of ucOC on muscle protein signaling and
glucose uptake. The results of this study will provide a greater
understanding of skeletal muscle metabolism and the crosstalk
between muscle and bone in the older adult population. We aim
to establish ucOC as a biomarker for muscle function and bone
and muscle crosstalk in older adults to target potential
mechanisms for future therapeutic studies. We also aim to
advance the development of personalized clinical exercise
guidelines for sarcopenia and other musculoskeletal conditions.
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