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A review of key functionalities of Battery energy storage system in renewable energy
integrated power systems

Ujjwal Datta∗, Akhtar Kalam, Juan Shi
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Abstract

Renewable energy sources (RES), such as photovoltaics (PV) and wind turbines have been widely applied as alternative energy
solutions to address the global environmental concern and satisfy the energy demand. The large-scale amalgamation of intermittent
RES causes reliability and stability distress in the electric grid. To mitigate the nature of fluctuation from renewable energy sources,
a battery energy storage system (BESS) is considered one of the utmost effective and efficient arrangements which can enhance
the operational flexibility of the power system. This paper provides a comprehensive review to point out various applications of
BESS technology in reducing the adverse impacts of PV and wind integrated systems. The key focus is given to Battery connection
techniques, power conversion system, individual PV/wind and hybrid system configuration. The application of BESS is categorized
into three areas, active, reactive and active-reactive power features. The key findings of the existing research of BESS application
are summarized and discussed along with several simulation results. By taking a thorough review, the paper identifies the key
challenges of BESS application including battery charging/discharging strategy, battery connection, power conversion efficiency,
power converter, RES forecast and battery lifetime and suggests future research directions that could be explored during the design,
operation and implementation of BESS technology in the power system.
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1. Introduction

The installation of RES has grown remarkably and is
foreseen to expand expeditiously in upcoming years.
Integrating RES in the power network can minimize grid
losses and reduce carbon footprint. However, with inconsistent
and little predictable nature, RES can generate serious lapse
that may create difficulty in maintaining normal grid balance
i.e. load and generation equilibrium.1, 2 Rapid fluctuations,
especially from large-scale PV and wind farms put more stress
in power system3 such as voltage fluctuations, reverse power
flow, frequency deviations, etc. In extreme cases, these
phenomena can lead to a catastrophic collapse of the entire
system i.e. ”a complete blackout”. The adverse impact of RES
farm originates from variable solar radiation and wind speed
that changes seasonally, monthly, daily, hourly and even in
seconds.

Harmonic distortions and voltage flickering are a few of
the other problems that arise with the large-scale penetration of
PV and wind generating plants.4, 5 As the level of RES
penetration increases, frequent fluctuations in RES power
output may impose additional stress on conventional
generation (CG) units in order to maintain voltage and
frequency within the acceptable limit. This will minimize the
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lifespan of CG units and also increase operational cost in CG
units.4 Moreover, an increment in RES penetration reduces
accessible inertia in the system that increases the need for
additional spinning reserves and eventually imposes extra
costs.

In order to minimize the harmful effects of RES in the grid,
many countries are already maintaining compulsory grid codes
guideline considering such unpredicted situations to ensure
controlled fluctuations and reliable renewable energy operation
within the acceptable operating range.6, 7 The grid codes range
from limits in ramp-rate, fault-ride-through (FRT) capability,
voltage and frequency regulation capability, dispatchability,
etc. Few countries like Italy,8 Germany9 and UK10 have
already imposed financial penalties in the case of RES farms
do not maintain the promised output power schedule. If
auxiliary power reserves are not arranged as RES penetration
increases, the power system may encounter severe system
failure i.e. blackout can be more frequent in the future.

Energy storage technologies have the capability to regulate
their output and thus minimize the adverse impact of RES
indeterminacy. Among many existing energy storage
technologies, such as a flywheel, pump hydro, capacitor,
super-capacitor and compressed air energy storage, BESS
offers better flexibility in terms of capacity, siting facility and
fast response to fulfill the requirements of storage system
application.11, 12, 13 BESS can store energy and is able to
control active and reactive power flow independently at the
point of common coupling (PCC) and provides various
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services. BESS services may include transient frequency
stability,14 enhanced reliability,15 peak shaving,16 transmission
congestion management,17 output power leveling,18 ramp rate
control19 and dispatchability.20 BESS can also provide black
start and energy arbitrage facilities.21 The mitigation of output
power fluctuation, frequency regulation, peak shaving and
plant dispatchability can be improved by regulating the active
power output of BESS. Conversely, reactive power
reinforcement, voltage regulation and Low Voltage
Ride-Through (LVRT) can be realized by regulating BESS
reactive power output.

The earlier studies have presented a detailed discussion on
thermal management22 and the application of storage
technologies.23, 24 Authors in22, 24 presented an overview of
various energy storage technologies in terms of power/energy
density and efficiency. Various application modes of BESS
application for the last decade are briefly outlined by Zhang et
al.25 The implementation of Lithium-ion batteries in Europe,
the Middle East and Africa region are elaborately presented
in26 to highlight its technical services versus revenue and
future market potential in the region. However, these studies
did not provide an in-depth discussion of the particular
application of BESS and the identification of BESS application
in an order in which the in and out of BESS application can be
perceived. On the contrary, the study in27 has provided a brief
discussion on BESS application. Nevertheless, in-depth
analysis and the identification of key challenges are not given
careful consideration in the study.

The key objective of this study is to provide an extensive
investigation of active and reactive power contribution of
BESS in PV and wind renewable energy integrated system.
Compared to previous works, this study aims to put forward an
in-depth analysis of the BESS application. In addition, several
simulation based case studies are carried out to highlight
BESS applications in the grid. The mitigation of output power
fluctuation, frequency regulation, peak shaving and plant
dispatchability improvement by the active power regulation of
BESS are demonstrated. Conversely, reactive power
reinforcement, voltage regulation, Low Voltage Ride-Through
(LVRT) are realized by reactive power supervision of BESS.
The consideration of the aforementioned issues contributes in
the identification of various objectives, control strategies and
battery storage technologies. Furthermore, key findings of the
previous studies are summarized to bestow an overview of
existing BESS application and their relevance in grid
applications. Additionally, the key challenges and their viable
reasons are discussed in order to present the existing
challenges of integrating BESS in the grid. Finally, the
rigorous analysis aims to bring forth the idea of future research
opportunities on BESS for integrating into the grid.

The rest of the paper is organized as follows; Section 2
provides brief discussion of energy storage technologies.
Section 3 discusses BESS structures and types of battery
storage technology employed in wind and PV studies. Section
4 presents applications of BESS in PV and wind integrated
power systems. Section 5 presents key findings and key
challenges in the applications of BESS. Concluding remarks

are provided in section 6.

2. Energy Storage Technologies

Energy storage technology is subjected to the type of
storage, short-term and long-term operating time frame, power
and energy ratings and applications.28, 29

2.1. Storage Technologies-General Consideration
The available energy is possible to be stored for later use in

various energy forms including mechanical, magnetic and
electrical natures which can be summarized as shown in
Fig.1.30, 28, 29 These storage technologies are already
extensively discussed in earlier studies and hence these will
not be further elaborated in this article. Interested readers are
encouraged to consult the earlier studies 30, 28, 29, 31, 23, 24, 27 for
more details.

Electro‐chemical energy storage
• Electrolyte type batteries‐

Lithium‐ion, Lead‐acid, etc.
• Flow batteries‐

Vanadium Redox

Electrical energy storage
• Capacitors
• super‐capacitors

Superconducting 
magnetic energy 

storage 

Thermal type energy storage
• Sensible heat storage
• Latent heat storage

Mechanical type energy storage
• Flywheels
• Compressed air energy storage
• Pumped hydro storage

Energy 
Storage 

Technologies

Fig. 1 Types of energy storage technologies

2.2. Operating Time Frame, Power and Energy Rating
The application of energy storage technologies in the

power industry has existed for more than 150 years. Many
storage technologies with high potential have been advanced
and further research is ongoing for their application to
large-scale power systems. The application of available energy
storage technologies can be classified in terms of the
short-term and long-term periods as shown in Fig. 2.
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Fig. 2 Energy storage technologies capability- operating time frame

As indicated in Fig. 2, several battery storage technologies
are available in MW power and MWh energy capacity.
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However, mechanical storage systems are still at the forefront
in the course of higher power and energy rating. Recent
technical advancements in battery technologies are set in
motion for large-scale battery storage installation ever than
before.

3. BESS Technology and Batteries

The battery technologies have been in practice for more
than 100 years. However, only rechargeable or secondary
batteries are preferred in power system applications. The
battery technologies are gaining popularity in power system
applications due to their ability to provide operational
flexibility, rapid response, reduction in price/kWh32 and
technological advancement in recent battery technologies. The
batteries are widely used at all voltage levels in power
systems.33 Their application can ensure operational flexibility
and environmental benefits. However, large-scale application
of battery storage systems is not widely used because of their
low energy density and power capacity. Nevertheless, recent
advancements in battery technologies, especially in
lithium-ion batteries have increased the interest in their
application to large-scale power systems.

3.1. BESS Connection Diagrams

The basic structure of BESS mainly depends on the voltage
level it is intended to be connected. A typical BESS structure
may consist of battery banks (typically stacks of batteries in
parallel), DC/AC power conversion system. A transformer
might be needed to convert BESS output voltage level to the
grid voltage level if BESS is planned to be connected with
local distribution or transmission system. Very often, BESS
absorbs and delivers power to and from the grid which requires
a bi-directional Voltage Source Converter (VSC),34

current-source converters (CSC),35 with its choice mainly
depending on the purpose of BESS in that particular case
study. Commonly used BESS-PV configurations are shown in
Fig. 3. Each configuration has its own advantages and
disadvantages. In the case of Fig. 3(a), an additional DC/AC
converter will increase system cost. In addition, as BESS is
directly connected to the PCC, it requires an added circuit
protection system that further increases cost to the system.
However, the main advantage is that BESS can be regulated as
a separate storage system for grid service. The intermediate
DC-DC inverter with BESS in Fig. 3(b) provides the flexibility
to be connected with various DC-link voltage level as it allows
to increase the battery voltage to the high DC-link voltage.
The block diagram in Fig. 3(c) eliminates the need of a
DC-DC converter. This architecture is only suitable for a
battery voltage equal to the DC-link voltage. The battery
cannot be controlled and this requires proper inverter control
with the varying DC-link voltage as battery SOC varies for
grid synchronicity.

The classical BESS structure in a wind farm comprises a
very similar structure as employed in a solar PV system; a
battery bank, power conversion system and a transformer, if
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Fig. 3 Typical BESS connection in a PV-BESS energy system

needed. Most importantly, BESS application in the wind farm
is to store excess energy from wind power and deliver it during
low or no wind period. General schematic diagrams of a
wind-BESS combination are shown in Fig. 4. The battery is
connected in such a way that BESS can be regulated as an
independent storage system as shown in Figs. 4 (a) and (b)
whereas a battery can be connected to the DC-link in some
cases as shown in Fig. 4(c).
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Fig. 4 Typical BESS connection in a wind-BESS energy system

In the case of a hybrid energy system, the battery can be
coupled either to DC or AC bus, depending on design
constraints and preferences. The battery banks may be
integrated directly36, 37 or with a DC-DC power conversion
system to DC bus38. Another option for the BESS connection
is a battery bank with a DC/AC power conversion system to be
connected with the AC bus. A transformer can be installed at
BESS output before local AC bus39, 40, 41 or after local AC
bus42 to finally being connected with the grid. A few possible
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PV-wind-BESS structures are shown in Fig. 5.
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Fig. 5 Typical BESS connection in a PV-wind-BESS energy system

3.2. Power Conversion System and Converter Technologies

Power conversion system (PCS) is a power electronics
based interface to connect the storage system with AC. As a
battery storage system employs a DC interface, the battery can
be incorporated with DC terminal of PV, sharing the same DC
bus. However, in a wind farm terminal, such a possibility does
not exist. Therefore, PCS is necessary to connect a BESS with
the AC grid. With high efficiency, fast response and control
design, PCS perform both instantaneous active and reactive
power regulation, as demanded in the present-day grid
applications. The PCS comprises of two-level control- primary
and secondary control.43 Primary control generates gate drive
signals to control power converter depending on reference
charging mode and state of the system. The secondary control
receives active and reactive power command and selects
appropriate operation mode based on the SOC, electricity tariff
etc.

� Most trivial primary control approach is:

– Proportional-Integral (PI) control.

� Secondary control determines the operation mode of the
power converters. Three frequent practices are:

– Charge mode
– Discharge mode
– Standby mode.

The direction of power flow denotes BESS power output
i.e charging (negative) and discharging (positive) as shown in
Fig. 6. In an ideal condition, the BESS output is zero. However,
there will be a small amount of power flow in BESS in reality
due to the self-discharge of batteries and converter losses.

The most common power conversion system design
topologies are-

1. Single-stage converter (DC/AC)
2. Dual stage converter (DC/DC & DC/AC)
3. Single/dual-stage multi-port converter (multiple DC/DC

or DC/AC converters in parallel).

Fig. 6 Various operation modes of BESS

Single-stage converter (DC/AC) is one of the less complex
power electronics technologies for converting battery DC
voltage into a three-phase AC voltage.44 Many batteries are
connected in parallel and series for high voltage-high power
application. The addition of a medium frequency
transformer-isolated AC/AC converter with BESS DC/AC
converter eliminates the need for DC-link capacitors, reduces
the size of grid filter.45 However, this increases the total
harmonic distortion in the output voltage resulting from the
non-idealistic nature of switching.

A limitation of direct battery connection to DC-link
voltage is the wide operating range of DC-link voltage as
battery voltage alters according to its SOC status and so as the
DC-link voltage. Therefore, to accommodate these broad
voltage operating ranges, semiconductors need to be
over-sized for safe operation. The DC-link voltage can be
controlled by incorporating a DC/DC converter between the
battery and DC/AC converter that allows maintaining a
constant DC bus voltage regardless of battery SOC status.46 In
contrast to a non-isolated DC/DC converter,46 an isolated
bidirectional DC/DC converter enhances converter efficiency,
provides smoother power flow control and reduces costs.47

In order to connect BESS to the medium voltage grid
without a step-up transformer, the modular converter can be
designed in cascaded order. In a single-stage cascaded
H-bridge converter type connection, each series-connected cell
can contain equally distributed battery modules with smaller
battery strings (distributed) and each full-bridge converter can
control battery modules to regulate the power flow.48 In the
modular multilevel converter, long battery strings can be
connected to the common DC-link (centralized) with
submodules (SMs) in series to form converter arms. However,
a centralized battery connection hinders the advantage of a
cascaded structure.49 In a dual-stage multi-port converter, each
SM consists of DC converter with battery and DC/AC
converter.50

3.3. Quantities for Battery SOC Calculation
The SOC is the accessible battery capacity to participate in

charging/discharging cycles that is possible to define from the
perspective of power and energy application. The measurable
quantities for battery SOC estimated calculation are as follows:

• Cell/electrolyte Temperature
• Ambient temperature
• Ampere-hour counting
• Battery age
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• Cell voltage
• Concentration of the electrolyte.

In model free approach, Coulomb Counting Method51 and
Open Circuit Voltage52 methods are reasonable ways to
determine a battery SOC but the accuracy is debatable as the
estimation results are dependent on the initial error and
accumulated noise in voltage and current measurements. An
intelligent Recurrent Neural Networks (RNN) method based
on battery voltage/current and ambient temperature is another
way of estimating SOC.53 Nevertheless, RNN is a training
dependent method that may not perform satisfactorily for
unseen data sets and also as this ignores the internal
parameters of the battery, the error may persist in SOC
estimation.

On the contrary, model based method comprises of closed
loop approach that uses estimation algorithms for correcting
SOC error regularly from the voltage, current and temperature
measurements to provide more accurate SOC calculation. A
dual fractional-order extended Kalman filter54 or other types of
Kalman filter has been one of the most preferred algorithms
for estimating SOC. Battery surface temperature often varies
by a great number than the battery internal temperature and
hence battery shell temperature is added for better SOC
estimation.55 Nevertheless, as the battery parameters change
with battery aging and operating conditions, model based
approach still faces difficulties in providing reliable SOC
estimation.56 Few adaptive estimation approaches are available
in the literature for estimating SOC accurately and
reliably.57, 58, 59 The errors in measurement and model result in
incorrect SOC estimation60 and it can be said that there are
ample space for developing an accurate, robust and reliable
SOC estimation technique.

3.4. Battery Types

Rechargeable batteries are the most mature method of
energy storage61, 62 as chemical energy63 and are preferred in
the power system application. A battery comprises numerous
electrochemical cells coupled in series and/or in parallel based
on appropriate voltage and capacity requirements.64 Individual
cell is composed of positive and negative electrodes, separated
by liquid, paste, or solid electrolyte.65 The important
characteristics of rechargeable batteries are that transformation
of electrical energy to chemical energy (charge) and vice versa
(discharge) should be energy efficient and of minimal physical
changes.66

Rechargeable or secondary batteries can respond very
quickly (<s)67 which allows BESS to be a popular and widely
used option for steady-state and dynamic stability
enhancement in power systems. Some important features or
performance characteristics of batteries68, 69 that are intended
for power system applications are exhibited in Fig. 7:

The duration of energy storage ranges from hours to
months.65 Various battery technologies66, 28, 70, 71 used in the
renewable energy system are briefly discussed in the following
subsections.

Power and energy capacity 

Battery efficiency level

Battery life span

Battery temperatureState of charge (SOC)

Depth of discharge (DOD)

Battery self‐discharge

Battery sizing

Operation and maintenance 
requirements

Fig. 7 Typical BESS connection in a PV-BESS energy system

3.4.1. Lead Acid
Since the beginning of the practical application of

lead-acid batteries in 1860, it has been the most sophisticated
and frequently adopted rechargeable battery technology in the
power system. The lead-acid cell comprises a lead oxide
positive electrode and a sponge lead negative electrode- which
are isolated by a micro-porous substance.28 It has 70-90%
efficiency but a limited life cycle span (5-15 years) which
restricts its large-scale storage application.70 Flooded battery
and valve regulated (VRLA)72 types are the most common
types of the lead-acid battery.

3.4.2. Lithium-Ion (Li-ion)
With nearly 50 years of technology development, Li-ion is

well recognized in a hybrid electric vehicle or plug-in hybrid
vehicle and in power grid application.73 The anode of Li-ion
batteries is comprised of lithiated graphite or Lititanate and the
cathode is Li metal oxide or a Li metal phosphate separated by
electrolyte made of lithium salts.74, 28 With an efficiency of
nearly 100%,70 this technology is lucrative for 3Cs (computer,
communication, consumer) market applications. However, the
problem with Li-ion batteries is their high capital cost
($)/kWh. In Li-ion polymer batteries, electrodes are separated
by microporous poly-olefin.75 These batteries are becoming
more attractive in renewable energy and EV as a result of
higher power and energy density and less memory effect.75, 76

3.4.3. Sodium Sulfur (NaS)
NaS has four times higher power and energy density

compare to a lead-acid battery with nearly a similar energy
efficiency.28 The electrodes are composed of molten sulfur
(positive), molten sodium (negative) and separated by a strong
ceramic electrolyte, sodium alumina.28 A study in77 shows that
expensive NaS is more economical compare to cheap lead-acid
for a long-term period.

3.4.4. Nickel Cadmium
Nickel cadmium batteries have over 100 years of matured

technology. Nickel hydroxide is used as cathode and metallic
cadmium is used as an anode, separated by an alkaline
electrolyte.28 Nevertheless, NiCd is a robust alternative to
lead-acid batteries, with higher energy density ( 2 times) and
power density ( 6-7 times).28
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3.4.5. Zinc Hybrid Cathode
With a development of 13 years, zinc hybrid cathode battery

technology by Eos Znyth R© technology is a low cost DC battery
system with a price of $160/kWh which is almost 50% cheaper
than that of current lithium-ion battery technology.78, 79

3.4.6. Vanadium Redox Battery (VRB)
VRB28 accumulates energy by exchanging

(accepting/donating) electron between electrolytes during the
charging/discharging process. They have a really large cell
voltage which is beneficial to acquire large power and energy
than that of other redox flow batteries.80 The fast responsive
VRB81 has a round trip efficiency, including several losses, of
75% in their life time.82

3.4.7. Polysulphide Bromide
Polysulphide Bromide technology is a regenerative

reversible electrochemical reaction between sodium bromide
and sodium polysulphide electrolytes, a polymer membrane
that works as a separator between electrolytes.83 Positive
sodium is allowed to pass through and the efficiency of this
battery is about 75%.84

3.4.8. Zinc Bromine (ZnBr)
ZnBr is of hybrid form,28 a combination of Zinc and

Bromine, two electrolytes flow through two electrodes,
microporous polyolefin membrane as a separator and an
efficiency of about 75%.84 With a high energy density and low
cost, ZnBr is pondered as striking for large scale application.82

4. BESS Application in Renewable Energy System

The application of BESS in the electric grid has started
several decades ago. However, with the growing level of
intermittent RES penetration, BESS is becoming one of the
dominant energy storage technologies in the modern power
system application as shown in Fig. 8. BESS improves
reliability and provides operational adaptability to wind/PV
farms. Owing to complementary behavior, a hybrid
combination of solar PV and wind has drawn much broader
attention globally in recent years. However, regardless of an
interconnected system or hybrid islanded system, the stable
operation requires support from auxiliary energy sources. The
choices of the BESS application are presented in Fig.8 in that
reflects the various application modes in terms of active,
reactive and both the active and reactive power application.
These three aspects are considered since BESS can provide all
three services at the grid level. A comprehensive study of
existing researches on different types of BESS applications in
PV, wind and hybrid (PV-wind) integrated power systems are
analyzed and summarized in this section.

4.1. Output Power Smoothing with BESS

PV generation is mainly affected by solar radiation,
ambient temperature, panel temperature, cloud coverage and
operating characteristics. A consistent power flow to the grid

BESS 
Application

Active 
Power

Power 
smoothing/Levellin

g

Peak generation 
shaving/Load 

levelling

Frequency 
regulation

Dispatchability

Energy 
Arbitrage

Reactive 
Power

Voltage 
regulation

Fault-ride-through 
(FRT)

Active & 
Reactive Power

Both Voltage and 
frequency regulation

Black Start

Fig. 8 Typical BESS applications in renewable energy integrated system

from PV is always desirable and certainly, it is possible to
attain such expected stable power output.85 However, this can
result in rapid charging and discharging of batteries, thereby,
affecting the battery life cycle. On some occasions, battery
storage energy management strategy allows to purchase/sell
electricity to and from the grid.86 However, this does not
reduce peak-to-mean ratio (PMR) and hence an optimized
energy management strategy is suggested in87 that reduces
PMR in accordance with the variable sizes of integrated
battery capacity. The moving average method determines the
average generation of the system, compensates the error with
less storage capacity and ensures better load supply.88

However, this method has a memory effect that results in
frequency switching of BESS producing an increased energy
loss and thus reduces battery life cycle compared to the
ramp-rate control method.89 The value of window size defines
the degree of smoother output (ramp-rate in Watt/min) i.e.
longer window size reduces the change of ramp/min. An
approach for PV output smoothing with BESS is shown in
Fig. 9. BESS operates in charging or discharging mode
depending on the surplus or shortfall in PV energy to smooth
out PV power and meet the desired load demand. One of the
main drawback with this kind of approach is that BESS
undergoes huge number of charging/discharging cycle that
affects lifespan of a battery.

Fig. 9 PV output smoothing with BESS

Battery storage plays the foremost role to secure power
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leveling following wind variations. SOC status of battery is a
crucial measure of providing the capability of output power
smoothing at the desired level and duration. While providing
fluctuation smoothing service, a SOC feedback method is
presented in90 to avoid overcharging/discharging. In favor of
maintaining a constant wind power output at its terminal, a
battery storage system can store/supply surplus/shortfall in the
wind power system.42, 91 In order to maintain proportionate
economic expenditure and smoothing performance, an optimal
sized and fuzzy controlled charging/discharging strategy for
BESS is proposed in92 that concluded BESS as a cost-effective
solution for wind farm owners. A constrained
charging/discharging of multiple battery sets can prolong the
battery’s lifespan,93 however, the actual implementation is
essential for validating the proposed method.

A discrete Kalman filter is incorporated for eliminating the
bias errors and predicting the actual power of PV and wind
that reduces the requirement of BESS power for providing
smoothing service.94 Battery state-of-health (SOH) can also be
incorporated for improved battery health while smoothing
output with the coordinated regulation of battery power
output.95

4.2. Peak Generation/Load Shaving

Peak generation and peak load demand in industry,
commercial and residential buildings do not often coincide.
The battery storage system can store excess energy during
peak generation and supply the stored energy throughout the
peak demand period at a later time of the day. Additionally, a
battery can further be charged from the grid following a low
price period.

BESS installation facilitates the maximum use of available
PV generation by peak demand smoothening.16 BESS can
store excess energy during the day time and utilize stored
energy in the evening to support peak load demand96 and
significantly reduce the peak power flows in the network.97

The battery charging/discharging rate is updated in response to
the actual SOC with the desired SOC level98 and with
minimized cost and power loss.99 In some cases, peak load
demand in a feeder may not align with the utility-wide peak
demand and customer owned BESS can perform satisfactory
peak reduction if sufficient battery capacity is available.100 A
typical BESS operation for peak generation shaving is
illustrated in Fig. 10. BESS can store the surplus PV energy
during the daytime that can be used later on in the evening to
facilitate peak load demand reduction.

Demand peak-cutting is extremely important to reduce a
definite point of peak power consumption in commercial
buildings, factories and residential buildings that might cause
an extra cost to consumers and the adoption of BESS can
considerably reduce users’ electricity bills.101 However, in
response to a deregulated and competitive electricity
distribution system, peak time energy price may not be much
higher than that of regulated price, thereby affecting the
economic benefit of a battery storage system in such cases.

Fig. 10 PV peak generation shaving with BESS

4.3. Voltage Regulation
To ensure nominal voltage remains within the operating

limit, fluctuating renewable energy generations must follow
strict voltage regulation rules. Battery storage responds
quickly by charging/discharging the battery by following
voltage sags/swells and taking the initiative of maintaining a
steady voltage source in the power system. Voltage surge
arises during PV peak generation periods with little or no load
demands resulting in a power flow in a reverse direction to the
network. However, a large-scale distributed generation unit at
a single connection point can also result in voltage
violation.102 A variety of solutions have been proposed to
overcome such undesirable effects of large PV infiltration in
low voltage distribution networks.103, 104, 105, 106, 107 PV
curtailment can be one of the solutions but this will reduce
maximum use of PV generation capacity with the consequence
of minimizing financial benefit.103 Other adopted solutions are
PV converter reactive power compensation,104 installations of
voltage regulator105 and transformer tap adjustment.106 Grid
reinforcement may be another solution that can reduce feeder
losses but it is a costlier solution.107 BESS can be used to
consume surplus PV energy during the peak generation and
thus reducing the voltage rise impact of PV in grid 108 as
shown in Fig. 11. According to the network requirement,
BESS can be designed to regulate grid voltage within the
allowable limit by consuming surplus energy or regulating
reactive power.

To deal with voltage rise/drop that emerges at peak PV
generation or peak load demand, the battery storage system
plays an important role.109, 110, 111, 112, 113, 114, 115 Battery
charging/discharging can be controlled by local droop method
in regard to battery SOC,109 monitoring PCC voltage110 and
using measurements from distributed controllers.111 Battery
storage system may support increased PV penetration while
maintaining allowable voltage limit,112 reducing transformer
operational stress and resistive power losses113 and to achieve
the most functional combination of PV and BESS in mitigating
voltage regulation constraints.114 BESS active power111 or
priority on BESS reactive power coordinated with BESS active
power can be designed for providing voltage regulation.115

The overvoltage is possible to be controlled considering
wind power operation below maximum power point (MPP) but
this will incur unwanted energy loss. Few research is available
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Fig. 11 Voltage regulation with BESS in a PV integrated system

in wind farm voltage support utilizing a battery storage system.
Battery charge/discharge is regulated to control DC-link
voltage in a wind farm at varying wind speed conditions while
maintaining overall system efficiency and increase the lifespan
of the battery.116 Voltage regulation is achieved by controlling
both real and reactive power117 and SOC based active power
and dead band based reactive power control.118

Peak generation associated with PV during day time and
wind at night time may create voltage stability issues (voltage
rise/drop) for outreaching the power limit. Typically battery
system is integrated with a separate conversion system to store
and supply energy. However, in a PV-wind-BESS hybrid
system, based on the configuration, PV inverter can be utilized
to charge/discharge a battery at night to control voltage rise
issues that arises from wind farm surplus energy.119 An
optimum placement and size of BESS is imperative for
improved voltage regulation and prolonged life of the
battery.120

4.4. Frequency Regulation

The power system inertia decreases reciprocally with an
increased share of renewable energies. Hence, renewable
power plants must adjust their output power proportionally to
respond against frequency deviation. The PV controller can be
exploited in order to provide frequency control which is
subjected to over-frequency support through PV
curtailment.121 Under-frequency support is possible to carry
out but this requires PV to be operated at a point other than the
maximum power point (MPP).122 Since, PV output is
intermittent in nature and weather dependent, PV plants need
to arrange dispatchable auxiliary energy source to support
system frequency whenever needed. Batteries are widely
studied storage arrangements to support system frequency in a
PV plant. The battery can be charged during peak generation
and power can be supplied back to the system whenever low
PV output is available. Battery storage system reduces power
fluctuation and provides a fast response to a frequency
deviation.44 The combined control of PV and BESS can also
be an alternative for frequency regulation in which BESS
injects active power in the case of PV power deficit.123 The

power-frequency droop (P/f) characteristics as in (1) can be
fixed type123 or adaptive type, nevertheless, an adaptive P-f
demonstrates smoother transitions in various control
strategies.124 Coordinated optimized control of frequency
control and self-consumption for battery recharge can be
technically and economically demanding which requires a
trade-off between them.125 The amount of active power
regulation of BESS (P) is determined by the droop value RP− f

with respect to the changes in frequency deviation (df) from
the nominal set point as in (1).

P =
d f

RP− f
(1)

BESS not only reduces the frequency drop but also
diminishes frequency oscillation compared to without a BESS
as shown in Fig. 12. Conventional generators are getting
replaced by large-scale wind power plants and therefore wind
power plants must commence the duty of frequency regulation
support in the future. The participation of Wind farm in
frequency regulation has been evidenced via inertial control126

and pitch control.127 Mainly, low frequency support is
controlled by integrating a pitch control mechanism and high
frequency support is controlled by battery
charging/discharging accordingly.128 Battery storage system
can provide system frequency support on the basis of power
imbalances129 for the severe under-frequency situation.130 To
regulate system frequency, battery stores surplus energy
thereby providing a peak shaving facility, supplying stored
energy throughout the low wind period.41 However, it is
argued in131 that the coordinated control provides better
frequency regulation compared to individual BESS or wind
turbine control due to the need for large power in the
short-term. Nevertheless, in a coordinated control approach,
the wind farm can regulate its output for regulating frequency
and battery storage will compensate if regulation demand is
not satisfied.132 The effective utilization of BESS allows
reducing the amount of unexpected energy consumption while
preventing wind fluctuations and provide additional regulation
services without affecting the lifespan of the battery. However,
extra benefits and economic advantages are subjected to
accuracy in wind power estimation, market price and battery
technology.133

Fig. 12 Frequency regulation with BESS in a wind integrated 9-bus system

The shortcoming associated with wind and PV are
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dependent on unpredicted wind speed and irregular solar
radiation. Thus intermittent natural renewable generation often
results in difficulty to meet load demand that greatly affects
system frequency. In addition, rapid oscillation in hybrid
power output might lead the system to instability. Frequency is
possible to be controlled by sliding mode regulated wind
turbine pitch control and battery system.134 Battery storage
(over/under-frequency) and PV (over-frequency) may provide
primary frequency support and diesel generator can be used to
provide secondary frequency support for long term frequency
regulation service.135 Adaptive SOC can be incorporated in the
feedback control for regulating high frequency oscillations
where generators provide low frequency oscillations that
minimizes stress on the conventional generators providing
frequency control.136

4.5. Voltage and Frequency Regulation
Referring to temporary or permanent island operation,

following a fault in the system and passing clouds, BESS, as
an active and reactive power contributor is much more reliable
compared to other available conventional energy sources, for
instance, diesel power source, to satisfy generation-load
balance. An optimized operating scheme,137 single master
operation master/slave control 138 and PI controller based
control139 strategy is suggested to support ancillary services
such as voltage and frequency to a PV system considering
dynamic behavior of the network and connected loads.137, 139

The batteries can be charged either from PV surplus
energy137, 139 or grid following a low energy price period.137

In a grid connected mode, MG operation might be needed
in case of a grid fault. Therefore, an isolated system must be
able to maintain nominal voltage and frequency to guarantee
reliable operation. Battery storage system improves dynamic
performance by scaling down system voltage and frequency
fluctuation.140 VSC tracks the active and reactive power
following the grid demand, the available battery energy141 and
wind speed changes to regulate voltage and frequency of the
studied network.142 In some cases, an additional dump load
might be useful to dump excess energy beyond the battery
capacity to be stored.143 BESS for voltage and frequency
regulation in 9-bus system is shown in Fig. 13(a-b) which
demonstrates that BESS can improve grid voltage and
frequency by regulating its active and reactive power as
illustrated in Fig. 13 (c).

Intentional or unintentional islanding operation requires
voltage and frequency stability to serve the loads continuously.
Considering the intermittent nature of PV/wind in an islanded
hybrid system, fluctuation in voltage and frequency in
response to load-generation imbalances, a battery storage
system may enhance the power quality of the system. The
controller will detect the power deficit and control the battery
to maintain DC-link voltage and system frequency by
providing the required power.144 A combination of frequency
control by BESS and reactive power control by the PV/wind
converter is an alternative to maximize BESS use for
frequency regulation and PV/wind regulated voltage control in
an MG.145 Different controller may have a technical benefit
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Fig. 13 Voltage and frequency regulation with BESS in a wind integrated 9-bus
system

over another such as fuzzy controller may outperform PI
controller under different scenarios with advanced dynamic
response and minimum overshoot.146 However, rigorous
assessment of operational complexity, technical benefits etc.
need to be addressed clearly to draw any conclusion.

4.6. PV/Wind Plant Dispatchability

Non-dispatchability of RES in comparison to dispatchable
conventional power plants; acts as the main hurdle for RES to
be integrated in a large scale. RES dispatching ability
influences estimated power production to manage load demand
in real time. RES plant output power is estimated from weather
forecast on intra-hour to upto 39hrs.147 RES should have
sufficient feasibility of dispatchability due to forecasting error
and storage systems are recognized as the utmost solution in
such circumstance. Moreover, electricity authorities in some
countries, such as in California in the US,148 UK149 and
Italy150 are impelling incentives and obligatory specifications
to ensure RES penetration without impacting system reliability
by means of encouraging storage system establishment.

Battery storage improves PV plant dispatchability by
facilitating peak demand management, minimizing losses and
charge/discharge cycles of the battery.20 Dispatchability
schedule to determine battery charging/discharging operation
at a minimum cost may be based on forecasts generated one
day ahead20 or 1h ahead151 which largely depends on the
dispatch period and renewable generation types. A large size
of BESS capacity is required in order to minimize the error
between the forecasted PV and actual PV power dispatch.
BESS can be dispatched to constrain PV output within the
allowable maximum and minimum limit as shown in Fig. 14.

Battery storage system, as a simple charging/discharging
scheme, provides the flexibility to store surplus energy that can
reduce forecast error in real time wind power and contribute in
dispatchability improvement of wind farm.152 Dual BESS can
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Fig. 14 Dispatched PV power with BESS

provide added safety to BESS operation.153 However, dual
BESS may bring additional costs compared to a single BESS
topology. Optimal coordinated planning provides efficacious
handling of non-Gaussian wind power unpredictability154 and
economic dispatch as opposed to battery cost through effective
coordination and optimization.155 BESS not only can
minimize overall costs but also contributes to reducing carbon
emissions from the conventional generation units by
supporting higher wind penetrations without raising the
stability concern.156

The ultimate purpose of BESS usage in wind farm
dispatchability improvement is to smoothen wind farm output
power at a given dispatch period i.e. 30min or hourly dispatch
etc.157 Battery SOC plays a key role in power mismatch
compensation by using battery storage to improve the
dispatchability of the wind farm.158 When SOC is the primary
objective for dispatch scheduling, dispatchability is largely
reliant on battery capacity. Battery charging/discharging
efficiency also acts as a major determinant of dispatchability
improvement.159 To match load demand by hybrid system
output, BESS contributes to increasing dispatchability of the
hybrid system, reduce the spillage rate of PV/wind energy
when participating in dispatching event and thus reducing the
costs of the system.160

4.7. Fault Ride Through (FRT)

Typically, following grid faults, DG units are removed for
safe operation but the removal of large size PV plants will
affect negatively in such situation. Therefore, PV generation
plants need to have an adequate FRT or LVRT capability to
remain connected during faults period and provide active
power immediately following fault clearance. Unlike in a wind
power plant, a few studies are available on PV FRT capability
because of small capacity of PV and thereby neglecting the
negative impact on the grid.

In order to provide FRT service during the fault period,
battery storage is designed to consume surplus active power
during the fault and the possibility to contribute to reactive
power support to control DC-link voltage.161 The DC/DC
converter operates in buck mode to charge a battery from
available extra charge at DC-link.162 However, if DC-link

voltage exceeds the DC bus threshold or if SOC limits exceed
the allowable limit, the battery system should stop
functioning.163

With the increment of large-scale DG units, disconnection
of DG units tend to increase the vulnerability of an electric
grid. Therefore, recent grid codes considered such conditions
and included FRT requirements for the wind farm to be
connected to the existing electric grid. To enhance the
response of faults in wind turbine, the coordination of a battery
storage system and wind turbine is essential.164 Battery
storage reduces over-current during a transient fault in the
system and supports DC-link voltage converters to improve
dynamic stability.165

Following a transient disturbance in the system, distributed
renewable energy should remain connected to avoid
catastrophic failure of the system. Thereby, PV and wind
farms must ensure fault ride-through capability to avoid
possible instability in the system. Fault ride-through capability
improves the overall system stability.166

4.8. Black Start

Black start (BS) is defined as the ability of the grid to
regain its operating state after shutdown conditions resulting
from catastrophic failure without any grid support. To be
eligible for a BS source, the system must be capable of
self-starting, provide adequate power to start a non-BS
generating unit and maintain voltage and frequency stability.
BESS with VSC based active and reactive power regulation
capability to regulate voltage and frequency makes it one of
the ideal solution to form and adjust the grid voltage and
frequency.

BESS in wind167 and PV168 farms can be exploited to start
up these units as a BS source because BESS is capable of
providing the necessary excitation voltage that other non-BS
units require.169 This will enhance the BS ability of the grid
and widen the prospective application of PV/wind generation.
However, proper sizing167, 168 and allocation of start-up
sequence of BESS and other generating units170 are imperative
for enhancing the resiliency of the grid.

4.9. Energy Arbitrage

In day-ahead and real-time electricity markets, the price
varies throughout 24 hours which implies the possibility of
energy arbitrage as a part of the business strategy. In a
deregulated market, BESS can be engaged in energy arbitrage
to exploit the price differential between the peak and off-peak
hours171 and shift the energy from expensive to the
inexpensive hours172 and minimize the operating costs.173

However, in order to maximize the benefit of energy
arbitrage, it is extremely important to have an insight into the
price alteration of forthcoming hours in the day-ahead and
real-time market. A proper optimization platform can
significantly increase the profit of BESS for energy
arbitrage.174 BESS can be designed to provide multiple
services and in that case, synergies can maximize the
techno-economic benefit of BESS i.e. minimum revenue
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reduction during frequency response to maximize energy
arbitrage benefit.175 Nevertheless, the maximum benefit from
energy arbitrage is subjected to battery degradation and
price.176

5. Discussion on Key Findings and Challenges of BESS
Application

5.1. Key Findings of BESS Application

Thorough review of existing literatures unfolds the
importance of BESS application in renewable energy system to
provide required active and reactive power support. The key
finding of these studies are summarized as follows:

• The damping of active power oscillation is generally
provided by tracking output power as a reference and
BESS supplies the required power imbalances. In other
cases, voltage/frequency or both is used as an error
signal for BESS contribution.

• Direct integration of batteries on DC side of the DFIG
back-to-back converter or on a DC converter terminal of
a PV may eliminate the necessity of an additional PCS,
associated losses and thus minimize costs. However, this
may require the complex design to improve the
converter’s robustness with high power/energy transfer
capability.

• The adoption of a battery storage system to reduce
forecast error may not be always a cost effective
approach.147 The main determinants of cost-benefit are
the investment costs of battery, round trip efficiency and
service life.

• A large capacity of BESS is essential for reducing the
error between the forecasted and the actual generation
from RES which requires techno-economic justification
for the mandatory investment.151

• The performance of smoothing is ameliorated by battery
charging/discharging rates and thereby smoothing of
high ramp rates may result better output profile but at a
cost of quicker battery aging.

• Several minutes/hourly based dispatch strategy improves
the charging/discharging profile of batteries than that of a
constant output power smoothing and thus improves the
life span of the battery.

• Dual-BESS combination may significantly improve
battery charging/discharging management and is capable
of reducing the number of charge/discharge cycle,
however, this will incur more cost due to additional
battery set to maintain enough capacity of BESS.153

• SOC based battery control design is crucial to avoid
battery overcharging/discharging and adversely affecting
battery lifespan.177 However, with high forecast error,
SOC feedback based control strategy could be

unsuccessful in maintaining desired to smooth
performance90 over the long period.

• Coordinated and adaptive control algorithms always
provide robust performance and better power
tracking.154

5.2. Key Challenges of BESS Application and Future
Directions

Disregard of progressive research in this field, ample
opportunities are available to accomplish further research in
the applications of BESS in renewable energy systems. A
comprehensive study of BESS application in renewable energy
systems reveals the potential challenges associated with BESS
installation, the efficiency of BESS components and energy
regulation policy. The key challenges are summarized as
follows:

• Optimal sizing of battery in PV smoothing is greatly
affected by the maximum level of ramp-up and
minimum ramp-down boundary and an inappropriate
size will result very low and high capacity of BESS.19

• Battery energy efficiency and lifespan play a key role in
the optimal sizing of BESS. Thus, an improvement in
battery technology is imperative to bring down battery
costs.

• Sometimes a simple control approach can be effective for
smoother PV output but it may be subjected to memory
effect and result in reduced life cycle due to persistent
battery switching.89

• The constant charging/discharging of an individual
battery in a dual BESS system can be economically
advantageous but the actual implementation through a
single power conversion system is a demanding and
complex task that requires validation.93

• The installation cost of BESS is quite high so far which
impedes the attraction of BESS adoption by RES farm
owner. Therefore, a cost-efficacious and high efficient
BESS technology is required to minimize the
impediment of BESS implementation.

• BESS can be directly connected to the DC-link but this
lacks the control of the battery. To provide the regulation
capability, the battery can be coupled to the desired bus
via DC/DC or DC/AC converter. However, this will add
to the converter’s cost.

• An appropriate selection of DC-DC converter
(unidirectional/ bidirectional) is needed to handle the
required power conversion (low/high-power/energy
capacity) efficiently.

• In the case of multiple BESS structure, a proper power
allocation between individual batteries is always a
demanding and complex task. Decentralized battery sets
with multiple SMs provide better operational flexibility
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Table 1
Summary of the Battery storage system application in a PV/Wind Energy System.

Applications Objective Battery Types Control Algorithm Duration References

Output Power Smoothing

VRLA Simple moving average 8760h 88

Lead-Acid Simple moving average 10s 85

Li-ion ANN and grid-exchanged power profile 8760h 87

- Exponential smoothing 24h 89

- Discrete Kalman filter - 94

- Fuzzy-based discrete Kalman filter - 95

Peak Generation/Load
Shaving

Li-ion Algorithm for the management of the power flows 1517 h 96

- An efficient method of finding the potential peak shaving 8 h 97

- PSO based multi-objective planning approach 8 h 99

Li-ion Stochastic optimization-based battery operation framework 24 h 100

LiMn2O4 Joint optimization framework 15 h 101

Voltage Regulation

- Coordinated local droop and distributed consensus algorithm 24 h 109

LiFePO4 Coordinated control of distributed ESS with tap changer transformers 8 h 113

- Bang-bang controller using a hysteresis current controlled technique 0.25 s 117

- Coordinated active and reactive current control strategy 24 h 118

- Indirect feeder voltage control scheme 1.8 s 119

Frequency Regulation

- Central power plant controller 9.7h 123

Lead-Acid Step-wise inertial control method 100 s 130

Ni-Cd Proportional-integral-derivative (PID) regulator control scheme 16 s 41

- H∞ controller based wind-BESS coordination strategy 30 min 128

Ni-Cd Distributed Control System coordinated control 12 s 129

Lead-Acid Step-wise inertial control method 100 s 130

Li-ion State-machine-based coordinated control 24 h 130

Voltage and Frequency
Regulation

- Optimized operating scheme 3 s 137

- Single Master Operation (SMO) master/slave control 15 s 138

- PI controllers based control strategy 3.2 s 139

- Three-level hierarchical power quality control strategy 25 min 141

- Control coordination strategy of hybrid operation 10 s 143

Li-ion Fuzzy logic-based intelligent control technique 18 s 144

- Fuzzy logic control (FLC) and PI control scheme 6 s 146

PV Plant Dispatchability

- Parametric study of simplified imbalance settlement 8760 h 147

NaS Stochastic coordinated predictive controller scheme 60 h 154

- Two-stage optimization algorithm 24 h 155

- Adjustable robust power dispatch 24 h 156

Li-ion Optimal power control strategy 72 h 158

Fault Ride Through

- Two-stage power conversion system 14 s 161

- Bidirectional DC/DC converter OFF/ON operation 5 s 162

- Coordinated PV/battery control strategy 1 s 163

Li-ion Master slave control mode 18 s 166

Lead-Acid Supervisory control system 240 s 164

Black Start
Lead-Acid A copula selection and goodness-of-fit based method 80 min 167

Li-ion Stratified optimization strategy 60 min 168

- Systemic approach for Restoration and Black-Start 17 min 169

Energy Arbitrage

Li-ion Mixed Integer 60 min 171

- Cooperative hybrid storage model 24 h 172

Li-ion, VRF Multi-objective Mixed Integer Linear Programming 168 h 173

Li-ion Classification based scheme 21 month 174

Li-ion, VRF A techno-economic model 24 h 175

Lead-Acid Dynamic program approach 720 h 176

than the centralized converter module. Nevertheless, an
array of converters will incur higher costs.

• Accurate forecasting is able to alleviate proper planning
of battery charging/discharging to ensure an achievable
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unit commitment to the grid with economical battery
operation. However, it is often difficult to predict
accurately and hence, improvement in predicting
irradiance and wind speed is essential.

• The inaccuracy between the forecast and real-time
production of RES power output varies by a large
margin in 24h ahead market than 1h ahead market. This
results in the commitment for large BESS capacity in a
day-ahead market that increases the capital cost for
installation and hence, techno-economic feasibility is
demanding for participating in such dispatchable
market.151

• The requirement of battery power is highly unpredictable
than that of battery energy which causes troublesome in
real-time BESS operation.

• Dynamic impact of battery conversion efficiency to the
grid support is often ignored. There is a need to consider
the converter’s conversion efficiency including variable
charging/discharging resistance with respect to battery
SOC in real-time.

• The impact from the failure or disturbances in battery
storage systems to the connected network is open for
investigation.

• BESS can be adapted for various applications by
modifying its closed loop feedback control strategy and
incorporating a suitable battery SOC management and
SOC recovery strategy. A convenient battery SOC
recovery is pivotal for ensuring sufficient battery
capacity for participating in the energy market or
stability enhancement. This is particularly challenging
in terms of stability performance requirements versus
the economical charging of the battery.

6. Conclusion

With the proliferating nature of RES penetration, the
urgency of minimizing the adverse impact of RES has drawn
significant consideration in recent years. Considering this, an
attempt has been put forward to present BESS application in
RES integrated power system and how they have been adapted
for diminishing the adverse impact of RES. The study has
focused only on the transmission and distribution levels.

The literature survey points out that BESS is mostly used
to regulate active power or simultaneous active and reactive
power while participating in minimization RES impact in grid
voltage and frequency. In addition, as compared to smaller
window sizes for smoothing, the larger window provides a
better ramp profile per minute but this requires a larger battery
capacity to be installed. On the contrary, BESS employment
for reactive power management is not yet widely
acknowledged both in practice and academic research mainly
due to the financial reasoning of BESS installation. The
concern arises due to the fact that the fractional use of BESS

(reactive power can be provided by any other shunt devices
with lower cost) is not economical as compared to the use for
active and reactive power. While regulating power output,
battery SOC needs to be accurately calculated and considered
in the design to avoid any damage to battery life.

Integrating battery to the DC-link of DFIG generator/PV
can be a cost-effective solution to control the active/reactive
power supply. However, this has a shortcoming of DC-link
voltage to be regulated by battery SOC that needs to be
large-sized or limited SOC operating range for safe operation.
Remembering this, a separate DC/DC converter can provide
better operational flexibility but this will incur an additional
cost. The improvement in converter efficiency requires further
attention to minimize conversion losses and reduce the
requirement of battery power and energy capacity.

The development of a software program that allows the
user to choose an optimal BESS technology in terms of grid
conditions, costs, lifetime and power and energy capacity. In
the same token, the improvement in battery technology is
imperative to thrive in the energy industry.
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