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Abstract: This paper is devoted to establishing some Hermite–Hadamard-type inequalities for
interval-valued functions using the coordinated h-convexity, which is more general than classical
convex functions. We also discuss the relationship between coordinated h-convexity and h-convexity.
Furthermore, we introduce the concepts of minimum expansion and maximum contraction of interval
sequences. Based on these two new concepts, we establish some new Hermite–Hadamard-type
inequalities, which generalize some known results in the literature. Additionally, some examples are
given to illustrate our results.

Keywords: Hermite–Hadamard inequality; interval double integral; coordinated h-convex; interval-
valued functions

1. Introduction
The following double-inequality

f
( a + b

2

)
≤ 1

b− a

∫ b

a
f (t)dt ≤ f (a) + f (b)

2
,

is known as the Hermite–Hadamard (H–H) inequality, where f : [a, b] → R is a convex
function.

Due to its key role in convex analysis, the H–H inequality has been used as a powerful
tool to acquire a large number of nice results in integral inequalities and optimization theory.
Recently, it has been generalized by means of different types of convexity, such as s-convex
functions [1–4], log-convex [5–7], harmonic convexity [8], and especially for h-convex
functions [9]. Since 2007, various extensions and generalizations of H–H inequalities for
h-convex functions have been established in [10–16].

On the other hand, the theory of interval analysis has a long history which can be traced
back to Archimedes’ computation of the circumference of a circle. However, it fell into oblivion
for a long time because of lack of applications to other sciences. In 1924, Burkill [17] developed
some elementary properties of functions of intervals. Shortly afterwards, Kolmogorov [18]
generalized Burkill’s results from single-valued functions to multi-valued functions. Of
course, there are many other excellent results that have been achieved over the next two
decades. Please note that Moore was the first to recognize how to use interval analysis to
compute the error bounds of the numerical solutions of computer. Since the publication of
the first monograph on interval analysis by Moore [19] in 1966, the theoretical and applied
research on interval analysis has attracted much attention, and also has yielded fruitful results
over the past 50 years. More recently, numerous famous inequalities have been extended
to set-valued functions by Nikodem et al. [20], especially, to interval-valued functions by
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Budak et al. [21], Chalco-Cano et al. [22,23], Costa et al. [24–26], Román-Flores et al. [27,28],
Flores-Franulič et al. [29], Zhao et al. [30–33].

Motivated by Dragomir [34], Latif and Alomari [10], and Sarikaya et al. [15], we
introduce the coordinated h-convex for interval-valued functions (IVFs). Additionally, we
discuss the relationship between coordinated h-convexity and h-convexity. We introduce
two new concepts of interval sequences, minimum expansion and maximum contraction.
Using these two new concepts, we establish new interval version of Hermite–Hadamard-
type inequalities, which are the main results of this paper. Finally, we give some examples
to illustrate our main results. Furthermore, the present results can be considered to be tools
for further research in generalized convexity, interval optimization, and inequalities for
IVFs, among others.

The paper is organized as follows. Section 2 contains some necessary preliminaries.
In Section 3, the coordinated h-convex concept for IVFs is given. Moreover, we establish
some H–H-type inequalities for coordinated h-convex IVFs. We end with Section 4 of
conclusions.

2. Preliminaries

In this section, we recall some basic definitions, notations, properties, and results on
interval analysis, which are used throughout the paper. A real interval [u] is the bounded,
closed subset of R defined by

[u] = [u, u] = {x ∈ R| u ≤ x ≤ u},

where u, u ∈ R and u ≤ u. The numbers u and u are called the left and the right endpoints
of [u, u], respectively. When u and u are equal, the interval [u] is said to be degenerate. In
this paper, the term interval will mean a nonempty interval. We call [u] positive if u > 0 or
negative if u < 0. The inclusion “⊆" is defined by

[u, u] ⊆ [v, v]⇐⇒ v ≤ u, u ≤ v.

For an arbitrary real number λ and [u], the interval λ[u] is given by

λ[u, u] =


[λu, λu] if λ > 0,
{0} if λ = 0,
[λu, λu] if λ < 0.

For [u] = [u, u] and [v] = [v, v], the four arithmetic operators (+, −, ·,/) are defined by

[u] + [v] = [u + v, u + v],

[u]− [v] = [u− v, u− v],

[u] · [v] =
[

min{uv, uv, uv, uv}, max{uv, uv, uv, uv}
]
,

[u]/[v] =
[

min{u/v, u/v, u/v, u/v},
max{u/v, u/v, u/v, u/v}

]
, where 0 /∈ [v, v].

We denote by RI the set of all intervals of R, and by R+
I and R−I the set of all positive

intervals and negative intervals of R, respectively.
The Hausdorff distance between [u, u] and [v, v] is defined by

d
(
[u, u], [v, v]

)
= max

{
|u− v|, |u− v|

}
.

Then, (RI , d) is a complete metric space. For more basic notations on IVFs, see [30,35].
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Definition 1 ([9]). Let [0, 1] ⊆ I ⊆ R, and h : I → R+ with h 6≡ 0. Then f : I → R+ is called
h-convex (i.e., f ∈ SX(h, I,R+)), if for all s, t ∈ I and α ∈ (0, 1) we have

f (αs + (1− α)t) ≤ h(α) f (s) + h(1− α) f (t). (1)

h is called supermultiplicative if
h(st) ≥ h(s)h(t) (2)

for all s, t ∈ I. If “ ≥ ” in (2) is replaced with “ ≤ ”, then h is called submultiplicative. Additionally,
we say that h is multiplicative if the equality holds in (2).

Definition 2 ([30]). f : I → R+
I is called h-convex if for all s, t ∈ I and α ∈ (0, 1) we have

h(α) f (s) + h(1− α) f (t) ⊆ f (αs + (1− α)t). (3)

If “ ⊆ ” in (3) is reversed, then f is called concave. Let SX(h, I,R+
I ) denote the family of all

h-convex IVFs.

The Riemann integral for IVF is introduced in [35]. The set of all Riemann integrable
IVFs and real-valued functions on [a, b] are denoted by IR([a,b]) andR([a,b]), respectively.
Moreover, we have

Theorem 1 ([35]). Let f : [a, b] → KI be an IVF with f =
[

f , f
]
. Then f ∈ IR([a,b]) iff

f , f ∈ R([a,b]) and

(IR)
∫ b

a
f (t)dt =

[
(R)

∫ b

a
f (t)dt, (R)

∫ b

a
f (t)dt

]
.

A set of numbers {ti−1, ξi, ti}m
i=1 is called a tagged partition P1 of [a, b] if

a = t0 < t1 < · · · < tm = b

and if ti−1 ≤ ξi ≤ ti for all i = 1, 2, . . . , m. Moreover, if we let ∆ti = ti − ti−1, then P1 is said
to be δ-fine if ∆ti < δ for all i. Let P(δ, [a, b]) denote the set of all δ-fine partitions of [a, b].
If {ti−1, ξi, ti}m

i=1 is a δ-fine P1 of [a, b], and if {sj−1, ηj, sj}n
j=1 is a δ-fine P2 of [c, d], then the

rectangles
∆i,j = [ti−1, ti]× [sj−1, sj]

partition the rectangle ∆ = [a, b]× [c, d] and the points (ξi, ηj) are inside the rectangles
[ti−1, ti]× [sj−1, sj]. Furthermore, by P(δ, ∆) we denote the set of all δ-fine partitions P of
∆ with P = P1 × P2, where P1 ∈ P(δ, [a, b]) and P2 ∈ P(δ, [c, d]). Let ∆Ai,j be the area of
rectangle ∆i,j. In each rectangle ∆i,j, where 1 ≤ i ≤ m, 1 ≤ j ≤ n, choose arbitrary (ξi, ηj)
and obtain

S( f , P, δ, ∆) =
m

∑
i=1

n

∑
j=1

f (ξi, ηj)∆Ai,j.

We call S( f , P, δ, ∆) an integral sum of f associated with P ∈ P(δ, ∆).
Now, we recall the concept of interval double integral.

Definition 3 ([32]). Let f : ∆ → RI . Then f is called ID-integrable on ∆ with the ID-
integral U = (ID)

∫∫
∆ f (t, s)dA, if for any ε > 0 there exists δ > 0 such that

d
(
S( f , P, δ, ∆), U

)
< ε

for any P ∈ P(δ, ∆). The collection of all ID-integrable functions on ∆ will be denoted by
ID(∆).
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Theorem 2 ([32]). Let ∆ = [a, b]× [c, d]. If f : ∆→ RI is ID-integrable on ∆, then

(ID)
∫∫

∆
f (t, s)dA = (IR)

∫ b

a
(IR)

∫ d

c
f (t, s)dsdt.

Example 1. Suppose that ∆ = [0, 1]× [1, 2]. Let f : ∆→ RI be defined by

f (s, t) = [st, s + t].

Then f (t, s) is ID-integrable on ∆ and

(ID)
∫∫

∆
f (s, t)dA = (ID)

∫ 1

0

∫ 2

1
f (s, t)dsdt

= (IR)
∫ 1

0

[
(IR)

∫ 2

1
[st, s + t]ds

]
dt

=

[
3
4

, 2
]

.

3. Main Results

In this section, all considered ∆ will mean [a, b]× [c, d], i.e., ∆ = [a, b]× [c, d]. We begin
by introducing some new concepts of IVFs.

Definition 4. Let h : [0, 1] ⊆ I → R+ with h 6≡ 0. Then f : ∆ → R+
I is called a coordinated

h-convex IVF on ∆ if the partial mappings

ft : [a, b]→ R+
I , ft(s) = f (s, t),

and
fs : [c, d]→ R+

I , fs(t) = f (s, t),

are h-convex for all t ∈ [c, d] and s ∈ [a, b]. Then the set of all coordinated h-convex IVFs on ∆ is
denoted by SX(ch, ∆,R+

I ).

Definition 5. Let f : ∆→ R+
I . Then f is called an h-convex IVF in ∆ if for any (s1, t1), (s2, t2) ∈

∆ and α ∈ [0, 1] we have

h(α) f (s1, t1) + h(1− α) f (s2, t2) ⊆ f (αs1 + (1− α)s2, αt1 + (1− α)t2). (4)

The set of all h-convex IVFs in ∆ is denoted by SX(h, ∆,R+
I ).

Theorem 3. If f ∈ SX(h, ∆,R+
I ), then

f ∈ SX(ch, ∆,R+
I ).

Proof. Assume that f ∈ SX(h, ∆,R+
I ). Let

fs : [c, d]→ R+
I , fs(t) = f (s, t).

Then for all α ∈ [0, 1] and t1, t2 ∈ [c, d], we have

fs(αt1 + (1− α)t2) = f (s, αt1 + (1− α)t2)

= f (αs + (1− α)s, αt1 + (1− α)t2)

⊇ h(α) f (s, t1) + h(1− α) f (s, t2)

= h(α) fs(t1) + h(1− α) fs(t2).

Hence,
fs(t) = f (s, t)
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is h-convex on [c, d] for any s ∈ [a, b]. The fact that

ft(s) = f (s, t)

is also h-convex on [a, b] for all t ∈ [c, d] goes likewise.

Remark 1. The converse of Theorem 3 is not generally true.

Example 2. Let
h(α) = α, ∆1 = [0, 1]× [0, 1],

and f : ∆1 → R+
I be defined:

f (s, t) = [s, 6− es] · [t, 6− et] = [st, (6− es)(6− et)].

Obviously, we have that
f ∈ SX(ch, ∆1,R+

I ),

and
f /∈ SX(h, ∆1,R+

I ).

Indeed, if
(s, 0), (0, t) ∈ ∆1

and α ∈ [0, 1], we have:

f (αs + (1− α)0, α · 0 + (1− α)t) = f (αs, (1− α)t)

= [α(1− α)st, (6− eαs)(6− e(1−α)t)]

and

α f (s, 0) + (1− α) f (0, t) = [0, 30− 5αes − 5et + 5αet]

If s, t 6= 0 and α 6= 0, then

f (αx, (1− α)w) 6⊇ α f (x, 0) + (1− α) f (0, w).

Thus, f /∈ SX(h, ∆1,R+
I ).

In what follows, without causing confusion, we will delete notations of (R), (IR), (ID).

Theorem 4. Let f : ∆ → R+
I and h : [0, 1] → R+ be continuous functions and h

( 1
2
)
6= 0. If

f ∈ SX(ch, ∆,R+
I ), then

1

4
(

h
( 1

2
))2 f

( a + b
2

,
c + d

2

)

⊇ 1
4h
( 1

2
) [ 1

b− a

∫ b

a
f
(

s,
c + d

2

)
ds +

1
d− c

∫ d

c
f
( a + b

2
, t
)

dt
]

⊇ 1
(b− a)(d− c)

∫ b

a

∫ d

c
f (s, t)dsdt

⊇ 1
2

∫ 1

0
h(t)dt

[
1

b− a

∫ b

a
f (s, c)ds +

1
b− a

∫ b

a
f (s, d)ds

+
1

d− c

∫ d

c
f (a, t)dt +

1
d− c

∫ d

c
f (b, t)dt

]

⊇
(

f (a, c) + f (a, d) + f (b, c) + f (b, d)
)( ∫ 1

0
h(t)dt

)2
.
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Proof. Assume that f ∈ SX(ch, ∆,R+
I ). Then, the mapping

gs : [c, d]→ R+
I , gs(t) = f (s, t)

is h-convex on [c, d] for each s ∈ [a, b]. Consequently, we have

h
(1

2

)[
gs(αc + (1− α)d) + gs((1− α)c + αd)

]
⊆ gs

(αc + (1− α)d
2

+
(1− α)c + αd

2

)
= gs

( c + d
2

)
.

Integrating both sides of above inequality over [0, 1], we have∫ 1

0
gs

( c + d
2

)
dt ⊇ h

(1
2

) ∫ 1

0

[
gs(αc + (1− α)d) + gs((1− α)c + αd),

gs(αc + (1− α)d) + gs((1− α)c + αd)
]
dt

= h
(1

2

)[ ∫ 1

0

[
gs(αc + (1− α)d) + gs((1− α)c + αd)

]
dt,

∫ 1

0

[
gs(αc + (1− α)d) + gs((1− α)c + αd)

]
dt
]

= h
(1

2

)[ 2
d− c

∫ d

c
gs(t)dt,

2
d− c

∫ d

c
gs(t)dt

]
= h

(1
2

) 2
d− c

∫ d

c
gs(t)dt.

Similarly, we obtain

1
d− c

∫ d

c
gs(t)dt ⊇

(
gs(c) + gs(d)

) ∫ 1

0
h(t)dt.

Then,

1

2h
(

1
2

) gs

( c + d
2

)
⊇ 1

d− c

∫ d

c
gs(t)dt ⊇

(
gs(c) + gs(d)

) ∫ 1

0
h(t)dt.

That is

1

2h
(

1
2

) f
(

s,
c + d

2

)
⊇ 1

d− c

∫ d

c
f (s, t)dt ⊇

(
f (s, c) + f (s, d)

) ∫ 1

0
h(t)dt.

Integrating over [a, b], we have

1

2h
(

1
2

) 1
b− a

∫ b

a
f
(

s,
c + d

2

)
ds ⊇ 1

(b− a)(d− c)

∫ b

a

∫ d

c
f (s, t)dsdt

⊇
∫ 1

0
h(t)dt

[ 1
b− a

∫ b

a
f (s, c)ds +

1
b− a

∫ b

a
f (s, d)ds

]
.

Similarly, for
gt : [a, b]→ R+

I , gt(s) = f (s, t),

we have

1

2h
(

1
2

) 1
d− c

∫ d

c
f
( a + b

2
, t
)

dt ⊇ 1
(b− a)(d− c)

∫ b

a

∫ d

c
f (s, t)dsdt

⊇
∫ 1

0
h(t)dt

[ 1
d− c

∫ d

c
f (a, t)dt +

1
d− c

∫ d

c
f (b, t)dt

]
.



Mathematics 2021, 9, 2352 7 of 14

Finally, we obtain

1

4
(

h
( 1

2
))2 f

( a + b
2

,
c + d

2

)

=
1

4h
( 1

2
) [ 1

2h
( 1

2
) f
( a + b

2
,

c + d
2

)
+

1
2h
( 1

2
) f
( a + b

2
,

c + d
2

)]

⊇ 1
4h
( 1

2
) [ 1

b− a

∫ b

a
f
(

s,
c + d

2

)
ds +

1
d− c

∫ d

c
f
( a + b

2
, t
)

dt

]

⊇ 1
(b− a)(d− c)

∫ b

a

∫ d

c
f (s, t)dsdt

⊇ 1
2

∫ 1

0
h(t)dt

[
1

b− a

∫ b

a
f (s, c)ds +

1
b− a

∫ b

a
f (s, d)ds

+
1

d− c

∫ d

c
f (a, t)dt +

1
d− c

∫ d

c
f (b, t)dt

]

⊇ 1
2

( ∫ 1

0
h(t)dt

)2(
f (a, c) + f (b, c) + f (a, d) + f (b, d)

+ f (a, c) + f (b, c) + f (a, d) + f (b, d)
)

⊇
(

f (a, c) + f (a, d) + f (b, c) + f (b, d)
)( ∫ 1

0
h(t)dt

)2
.

This concludes the proof.

Remark 2. Theorem 4 gives an interval generalization of ([34] [Theorem 1]) and ([10] [Theorem 7]).

Lemma 1 ([30]). Let g ∈ R([c,d]) such that g : [c, d]→ [m, M], h : I → [0, ∞) be a multiplica-
tive function and f : [m, M] → R+

I be h-convex and continuous. If the following limit exists, is
finite and

lim
t→0+

h(t)
t

= k > 0,

then

f
( ∫ d

c g(t)dt
d− c

)
⊇ k

d− c

∫ d

c
f (g(t))dt.

Let
{[

ui, ui
]}

be a sequence of intervals. If there exists an interval [u, u] such that

[
ui, ui

]
⊆ [u, u]

for all i, then [u, u] is an expansion of interval sequence
{[

ui, ui
]}

. If [u, u] such that

[u, u] ⊆ [u′, u′]

for any expansion [u′, u′] of
{[

ui, ui
]}

, then [u, u] is called the minimum expansion of{[
ui, ui

]}
and is denoted by

[u, u] = Emin
i

{[
ui, ui

]}
.

If there exists an interval [v, v] such that[
ui, ui

]
⊇ [v, v]
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for all i, then [v, v] is called a contraction of
{[

ui, ui
]}

. If [v, v] such that

[v, v] ⊇ [v′, v′]

for every contraction [v′, v′] of
{[

ui, ui
]}

, then [v, v] is the maximum contraction of
{[

ui, ui
]}

and is denoted by

[v, v] = Cmax
i

{[
ui, ui

]}
.

Now, we denote the mapping

H : [0, 1]× [0, 1]→ R+
I

by

[u, u] = Emin
i

{[
ui, ui

]}
.

If there exists an interval [v, v] such that

[v, v] = Cmax
i

{[
ui, ui

]}
.

H(µ, ν) =
1

(b− a)(d− c)

∫ b

a

∫ d

c
f
(

µs + (1− µ)
a + b

2
, νt + (1− ν)

c + d
2

)
dsdt.

The next theorem generalizes the result of Dragomir ([34] [Theorem 2]).

Theorem 5. Let ∆ = [a, b]× [c, d] and ∆1 = [0, 1]× [0, 1]. Suppose that f ∈ SX(ch, ∆,R+
I ).

Then
(1) H ∈ SX(ch, ∆1,R+

I ).
(2) We have :

Emin
(µ,ν)∈∆1

{H(µ, ν)} = 1
k2 f

( a + b
2

,
c + d

2

)
=

1
k2 H(0, 0).

Cmax
(µ,ν)∈∆1

{H(µ, ν)} = h∆1

1
(b− a)(d− c)

∫ b

a

∫ d

c
f (s, t)dsdt = h∆1 H(1, 1),

where

h∆1 = sup
(µ,ν)∈∆1

{
h(µ)h(ν) + 2h

(1
2
)(

h(µ)h(1− ν) + h(1− µ)h(ν) + 2h(1− µ)h(1− ν)h
(1

2
))}

.

Proof. (1) Fix ν ∈ [0, 1]. Then for all α, β ≥ 0 with

α + β = 1

and µ1, µ2 ∈ [0, 1], we have

H(αµ1 + βµ2, ν)

=
1

(b− a)(d− c)

∫ b

a

∫ d

c
f
(
(αµ1 + βµ2)s +

(
1− (αµ1 + βµ2)

) a + b
2

, νt + (1− ν)
c + d

2

)
dsdt

=
1

(b− a)(d− c)

∫ b

a

∫ d

c
f
(

α
(

µ1s + (1− µ1)
a + b

2

)
+ β

(
µ2s + (1− µ2)

a + b
2

)
,

νt + (1− µ)
c + d

2

)
dsdt

⊇ 1
(b− a)(d− c)

∫ b

a

∫ d

c

(
h(α) f

(
µ1s + (1− µ1)

a + b
2

, νt + (1− ν)
c + d

2

)
+
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h(β) f
(

µ2s + (1− µ2)
a + b

2
, νt + (1− ν)

c + d
2

))
dsdt

= h(α)
1

(b− a)(d− c)

∫ b

a

∫ d

c
f
(

µ1s + (1− µ1)
a + b

2
, νt + (1− ν)

c + d
2

)
dsdt+

h(β)
1

(b− a)(d− c)

∫ b

a

∫ d

c
f
(

µ2s + (1− µ2)
a + b

2
, νt + (1− ν)

c + d
2

)
dsdt

= h(α)H(µ1, ν) + h(β)H(µ2, ν).

Similarly, we can have Hµ(ν) is h-convex. This shows that

H ∈ SX(ch, ∆1,R+
I ).

(2) Since f ∈ SX(ch, ∆,R+
I ), from Lemma 1 we have

H(µ, ν) =
1

b− a

∫ b

a

[
1

d− c

∫ d

c
f
(

µs + (1− µ)
a + b

2
, νt + (1− ν)

c + d
2

)
dt

]
ds

⊆ 1
k(b− a)

∫ b

a
f
(

µs + (1− µ)
a + b

2
,

1
d− c

∫ d

c

[
νt + (1− ν)

c + d
2

]
dt
)

ds

=
1

k(b− a)

∫ b

a
f
(

µs + (1− µ)
a + b

2
,

c + d
2

)
ds

⊆ 1
k2 f

( 1
b− a

∫ b

a

[
µs + (1− µ)

a + b
2

]
ds,

c + d
2

)
=

1
k2 f

( a + b
2

,
c + d

2

)
.

On the other hand, we have

H(µ, ν) ⊇ 1
(b− a)(d− c)

∫ b

a

[
h(ν)

∫ d

c
f
(

µs + (1− µ)
a + b

2
, t
)

dt

+ h(1− ν)
∫ d

c
f
(

µs + (1− µ)
a + b

2
,

c + d
2

)
dt

]
ds

⊇ 1
(b− a)(d− c)

∫ b

a

[
h(ν)

∫ d

c

(
h(µ) f (s, t) + h(1− µ) f

( a + b
2

, t
))

dt

+ h(1− ν)
∫ d

c

(
h(µ) f

(
s,

c + d
2

)
+ h(1− µ) f

( a + b
2

,
c + d

2

)
dt

]
ds

=
1

(b− a)(d− c)

∫ b

a

∫ d

c

[
h(ν)h(µ) f (s, t)dsdt + h(ν)h(1− µ) f

( a + b
2

, t
)

dsdt

+ h(1− ν)h(µ) f
(

s,
c + d

2

)
dsdt + h(1− ν)h(1− µ) f

( a + b
2

,
c + d

2

)
dsdt

]

=
h(ν)h(µ)

(b− a)(d− c)

∫ b

a

∫ d

c
f (s, t)dsdt +

h(ν)h(1− µ)

d− c

∫ d

c
f
( a + b

2
, t
)

dt

+
h(1− ν)h(µ)

b− a

∫ b

a
f
(

s,
c + d

2

)
ds + h(1− ν)h(1− µ) f

( a + b
2

,
c + d

2

)
⊇ h(µ)h(ν)

(b− a)(d− c)

∫ b

a

∫ d

c
f (s, t)dsdt +

h(ν)h(1− µ)

d− c

∫ d

c

( 2h
( 1

2

)
b− a

∫ b

a
f (s, t)ds

)
dt

+
h(1− ν)h(µ)

b− a

∫ b

a

( 2h
( 1

2

)
d− c

∫ d

c
f (s, t)dt

)
ds

+
4h(1− µ)h(1− ν)

(
h
( 1

2

))2

(b− a)(d− c)

∫ b

a

∫ d

c
f (s, t)dsdt

=

[
h(µ)h(ν) + 2h

( 1
2
)(

h(ν)h(1− µ) + h(1− ν)h(µ) + 2h(1− ν)h(1− µ)h
( 1

2
))]

· 1
(b− a)(d− c)

∫ b

a

∫ d

c
f (s, t)dsdt.
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Let

h∆1 = sup
(µ,ν)∈∆1

{
h(µ)h(ν) + 2h

(1
2
)(

h(µ)h(1− ν) + h(1− µ)h(ν) + 2h(1− µ)h(1− ν)h
(1

2
))}

.

The intended result follows.

Remark 3. If h(t) = t, then
k = 1, h∆1 = 1.

In addition, If f = f , then Theorem 5 reduces to Theorem 2 given by Dragomir [34].

Example 3. Suppose that ∆ = [0, 2]× [0, 2], h(t) = t, and ∆1 = [0, 1]× [0, 1]. Let f : ∆→ RI
be defined by

f (s, t) =
[
s2t2, 8

√
st
]
.

For (µ, ν) ∈ (0, 1]× (0, 1]. Then H ∈ SX(ch, ∆1,R+
I ) and

H(µ, ν) =
1

(b− a)(d− c)

∫ b

a

∫ d

c
f
(

µs + (1− µ)
a + b

2
, νt + (1− ν)

c + d
2

)
dsdt

=
1
4

∫ 2

0

∫ 2

0
f
(

µs + 1− µ, νt + 1− ν
)

dsdt

=
1
4

∫ 2

0

∫ 2

0

[
(µs + 1− µ)2(νt + 1− ν)2, 8

√
(µs + 1− µ)(νt + 1− ν)

]
dsdt

=

[
(6 + 2µ2)(6 + 2ν2)

36
,

8
9µν

(
(1 + µ)

3
2 − (1− µ)

3
2

)
·
(
(1 + ν)

3
2 − (1− ν)

3
2

)]
.

Furthermore, by the following Figures 1 and 2, we have

inf
(µ,ν)∈∆1

{
(6 + 2µ2)(6 + 2ν2)

36

}
= 1,

sup
(µ,ν)∈∆1

{
(6 + 2µ2)(6 + 2ν2)

36

}
=

16
9

,

inf
(µ,ν)∈∆1

{
8

9µν

(
(1 + µ)

3
2 − (1− µ)

3
2

)
·
(
(1 + ν)

3
2 − (1− ν)

3
2

)}
=

64
9

,

sup
(µ,ν)∈∆1

{
8

9µν

(
(1 + µ)

3
2 − (1− µ)

3
2

)
·
(
(1 + ν)

3
2 − (1− ν)

3
2

)}
= 8,

and
H(0, 0) = [1, 8], H(1, 1) =

[16
9

,
64
9

]
.

Then, we obtain
Emin
(µ,ν)∈∆1

{H(µ, ν)} = f (1, 1) = H(0, 0).

Cmax
(µ,ν)∈∆1

{H(µ, ν)} = h∆1

1
(b− a)(d− c)

∫ b

a

∫ d

c
f (s, t)dsdt

=
1
4

∫ 2

0

∫ 2

0

[
s2t2, 8

√
st
]
dsdt

=
[16

9
,

64
9

]
= H(1, 1).
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Figure 1. Illustration of Example 3: Let f (s, t) =
[
s2t2, 8

√
st
]
, (µ, ν) ∈ ∆1 = [0, 1] × [0, 1]. then

H(µ, ν) =
(6+2µ2)(6+2ν2)

36 . From the above graph of the function H(µ, ν), we have 1 ≤ H(µ, ν) ≤ 16
9 .

Figure 2. Illustration of Example 3: Let f (s, t) =
[
s2t2, 8

√
st
]
, (µ, ν) ∈ ∆1 = [0, 1] × [0, 1]. then

H(µ, ν) =
8
(
(1+µ)

3
2 −(1−µ)

3
2

)
·
(
(1+ν)

3
2 −(1−ν)

3
2

)
9µν . From the above graph of the function H(µ, ν), we

have 64
9 ≤ H(µ, ν) ≤ 8.

Remark 4. Please note that if h(t) = t, then we have k = 1 and h∆1 = 1, and we obtain

Emin
(µ,ν)∈∆1

{H(µ, ν)} = H(0, 0),

and
Cmax
(µ,ν)∈∆1

{H(µ, ν)} = H(1, 1).

The next theorem generalizes the result of Dragomir ([34] [Theorem 3]).

Theorem 6. Suppose that f ∈ SX(h, ∆,R+
I ). Then

(1) H ∈ SX(h, ∆1,R+
I ).

(2) Define the mapping

h̃ : [0, 1]→ R+
I , h̃(µ) = H(µ, µ).

Then h̃ ∈ SX(h, [0, 1],R+
I ) and

Emin
µ∈[0,1]

{
h̃(µ)

}
=

1
k2 h̃(1), inf

µ∈[0,1]
h̃(µ) = h∆1 h̃(0),
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where

h∆1 = sup
(µ,µ)∈∆1

{
4h
(1

2
)(

h(µ)h(1− µ) + h2(1− µ)h
(1

2
))

+ h2(µ)

}
.

Proof. (1) Suppose that
(µ1, ν1), (µ2, ν2) ∈ ∆1.

Then for all α ∈ [0, 1], we have

H(α(µ1, ν1) + (1− α)(µ2, ν2))

= H(αµ1 + (1− α)µ2, αν1 + (1− α)ν2)

=
1

(b− a)(d− c)

∫ b

a

∫ d

c
f
(
(αµ1 + (1− α)µ2)s +

[
1− (αµ1 + (1− α)µ2)

] a + b
2

,

(αν1 + (1− α)ν2)t +
[
1− (αν1 + (1− α)ν2)

] c + d
2

)
dsdt

=
1

(b− a)(d− c)

∫ b

a

∫ d

c
f
(

α
(

µ1s + (1− µ1)
a + b

2
, ν1t + (1− ν1)

c + d
2

)
+ (1− α)

(
µ2s + (1− µ2)

a + b
2

, ν2t + (1− ν2)
c + d

2

)
dsdt

⊇ 1
(b− a)(d− c)

∫ b

a

∫ d

c

(
h(α) f

(
µ1s + (1− µ1)

a + b
2

, ν1t + (1− ν1)
c + d

2

)

+ h(1− α) f
(

µ2s + (1− µ2)
a + b

2
, ν2t + (1− ν2)

c + d
2

))
dsdt

= h(α)
1

(b− a)(d− c)

∫ b

a

∫ d

c
f
(

µ1s + (1− µ1)
a + b

2
, ν1t + (1− ν1)

c + d
2

)
dsdt

+ h(1− α)
1

(b− a)(d− c)
·
∫ b

a

∫ d

c
f
(

µ2s + (1− µ2)
a + b

2
, ν2t + (1− ν2)

c + d
2

)
dsdt

= h(α)H(µ1, ν1) + h(1− α)H(µ2, ν2).

This shows that H ∈ SX(h, ∆1,R+
I ).

(2) Let µ1, µ2 ∈ [0, 1]. Then for all α ∈ [0, 1], we have

h̃(αµ1 + (1− α)µ2) = H(αµ1 + (1− α)µ2, αµ1 + (1− α)µ2)

= H(α(µ1, µ1) + (1− α)(µ2, µ2))

⊇ h(α)H(µ1, µ1) + h(1− α)H(µ2, µ2)

= h(α)h̃(µ1) + h(1− α)h̃(µ2).

Then
h̃ ∈ SX(h, [0, 1],R+

I ).

From Theorem 5, we obtain

Emin
µ∈[0,1]

{
h̃(µ)

}
=

1
k2 h̃(1), inf

µ∈[0,1]
h̃(µ) = h∆1 h̃(0),

where

h∆1 = sup
(µ,µ)∈∆1

{
4h
(1

2
)(

h(µ)h(1− µ) + h2(1− µ)h
(1

2
))

+ h2(µ)

}
.

and the result follows.

Remark 5. If h(t) = t, then
k = 1, h∆1 = 1.

In addition, If f = f , then Theorem 6 reduces to Theorem 3 given by Dragomir [34].
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4. Conclusions

The classical Hermite–Hadamard inequality is one of the most named inequalities
and it is deeply connected with the research of convex analysis and inequality theory.
This inequality and some generalizations have been exhaustively explored in the past few
decades. On the other hand, interval-valued functions play an important role in interval
optimization, interval differential equations, among others filed of mathematics.

In this work, we introduced coordinated h-convexity for interval-valued functions.
With the help of minimum expansion and maximum contraction of interval sequences,
we established some Hermite–Hadamard-type inequalities for interval-valued functions.
Since these main inequalities are given using new assumptions than those used in the
previous research articles [10,15,34], our results are original and more general. As a
future research direction, we intend to use more general convexity to investigate new
interval Hermite–Hadamard-type inequalities, and some potential applications in interval
optimization.
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