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Abstract

The COVID-19 epidemic has a catastrophic impact on global well-being and public health.

More than 27 million confirmed cases have been reported worldwide until now. Due to the

growing number of confirmed cases, and challenges to the variations of the COVID-19,

timely and accurate classification of healthy and infected patients is essential to control and

treat COVID-19. We aim to develop a deep learning-based system for the persuasive classi-

fication and reliable detection of COVID-19 using chest radiography. Firstly, we evaluate the

performance of various state-of-the-art convolutional neural networks (CNNs) proposed

over recent years for medical image classification. Secondly, we develop and train CNN

from scratch. In both cases, we use a public X-Ray dataset for training and validation pur-

poses. For transfer learning, we obtain 100% accuracy for binary classification (i.e., Normal/

COVID-19) and 87.50% accuracy for tertiary classification (Normal/COVID-19/Pneumonia).

With the CNN trained from scratch, we achieve 93.75% accuracy for tertiary classification.

In the case of transfer learning, the classification accuracy drops with the increased number

of classes. The results are demonstrated by comprehensive receiver operating characteris-

tics (ROC) and confusion metric analysis with 10-fold cross-validation.

1 Introduction

The novel coronavirus (COVID-19) is an infectious disease which started late December 2019

and has spread across the world. The World Health Organization (WHO) announced a

COVID-19 as a pandemic on the 11th of March 2020. This epidemic continues to have a cata-

strophic impact on health and wellbeing worldwide. A critical step in the COVID-19 combat

cycle is to develop an efficient classification system so that patients can begin to receive prompt

medical care, treatment, and control transmission.

During this short time, many researchers have attempted to develop various screening tools

and classification systems. For example, reverse transcriptase-polymerase chain reaction

(RT-PCR) is the critical screening tool to detect severe acute respiratory syndrome (SARS)-

COV-2 [1] and as well as COVID-19. While the RT-PCR test is the standard screening tool to
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detect COVID-19, it also has limitations. The procedure of RT-PCR is very complicated and

also time-consuming [2–4]. Therefore, attempts have been made to diagnose COVID-19

through chest radiography imaging such as computed tomography (CT) or chest x-ray images.

Tao et al. [2], for example, reported the diagnostic importance and accuracy of CT chest

images over RT-PCR in COVID-19. Their findings show that a chest CT has a high sensitivity

for the diagnosis of COVID-19.

On the other hand, Guan et al. [5], reported radiographic abnormalities of positive

COVID-19 cases such as interstitial abnormalities, bilateral abnormalities, and ground-glass

opacity in both CT and chest x-ray images. Although most of the previous discussion has

focused on CT scan imaging, resulting in increased image specificity in acquisitions, there are

many benefits using chest x-ray imaging for COVID-19 monitoring. The downside of CT

imagery is processing time. Also, good high-quality CT scanners are not available in many

developing countries; in that case, timely scanning of COVID-19 is impossible. On the other

hand, chest x-rays are the most viable and are generally available clinical imagery method,

playing a significant role in primary care and observational studies [6, 7].

CNN has been explored extensively in the field of COVID-19 classification and detection

[8, 9], largely exceeding previous techniques for image recognition [10]. Overall, CNN has

illustrated enormous healthcare capacity to classify patients at higher risk of developing a dis-

ease. The application of CNN ranges from binary classification to multi-class classification.

CNNs have already shown good results in discovering the intricate structures in high-dimen-

sional datasets, with multi-layer function representations.

However, timely detection of COVID-19 with high classification accuracy and minimal

data is still an open challenge. The quantity of annotated data for training and data quality are

two key factors while building a detection system. Chest x-ray images obtained from publicly

available dataset for experiments shown in Fig 1 are limited in numbers. Hence, due to the lim-

ited volume of COVID-19 data samples, transfer learning is considered a suitable approach for

classification purposes. In transfer learning, transfer of learned parameters from a source task

to a target task is the key to achieving the highest accuracy in a limited dataset. Transfer learn-

ing results are encouraging and have illustrated the effectiveness of deep learning (DL) net-

works in binary classification [11]. To evaluate the model’s effectiveness in the diagnosis of

COVID-19, we performed various experiments. The pipeline process is illustrated in Fig 2 and

the primary contributions of this research are summarized as follows:

• We propose CNNs (VGG16, InceptionV3, Xception) transfer learning based models in two

classification scenarios; (i) Scenario I consists of Normal/COVID-19 classification and (ii)

Scenario II consists of Normal/COVID-19/Pneumonia classification.

Fig 1. Chest x-ray images: (A) normal; (B) COVID-19 positive; (C) viral pneumonia.

https://doi.org/10.1371/journal.pone.0262052.g001
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• We have proposed an innovative five-layers CNN architecture to classify the scenarios to

improve performance accuracy.

• Our experiment results demonstrate the effectiveness of models in classification scenarios

and their potential for COVID-19 classification, detection, prevention, and control.

The organization of this paper is as follows. Section I presents the literature review with sur-

veying articles. Section II includes all required materials and associated methods for the

research in this paper. Section III addresses the results obtained and comparisons. Section IV

discusses the developed methods, performances and automated COVID-19 Detection. Finally,

section V concludes this article and future work.

2 Background

The demand for faster diagnosis of COVID-19, multiple studies implemented to highlight

design solutions and scientific facts regarding this highly infectious disease. Some image iden-

tification, analysis, interpretation, and decision-making techniques are listed in this section.

Deep Learning (DL) [12] has been proposed and has successfully acquired promising results in

terms of accuracy in various fields [11, 13–17]. Case studies on COVID-19 screening of CT

images were presented by authors such as Xu et al [18], Gozes et al. [19], Li et al. [20], Shi et al.

[21]. Authors Xu et al. [18] discussed that COVID-19 exhibits its characteristics that vary from

other forms of viral pneumonia, like viral influenza-A pneumonia. The study’s objective was

to develop an initial screening framework for COVID-19 by automated pulmonary CT images

of COVID-19, pneumonia, and normal cases. They employed 618 CT scan sample images

before augmentation, and their model obtained an accuracy of 89.7%. The author’s method

includes image pre-processing, segmentation of the multiple regions (patches) adopting volu-

metric network (V-Net) [22] bases segmentation model V-Net-IR-RPN [23], which trained for

pulmonary tuberculosis purpose. Finally, classification was performed by ResNet using seg-

mented patches of COVID-19, pneumonia, and Normal images. Shan et al. [24] proposed a

method for the automated segmentation and quantification of infection in COVID-19 patient

CT scans. The data collected consisted of 549 CT images. A Human-In-The-Loop (HITL)

technique was introduced to facilitate the manual delineation of CT images for processing.

This allows the generation and enrichment of a training set provided as input to an ML system

operating over the infected COVID-19 region to an automatic segmentation stage. The mecha-

nism repeats these measures from these auto-contoured areas to support radiologists in their

Fig 2. The pipeline process.

https://doi.org/10.1371/journal.pone.0262052.g002

PLOS ONE Automated detection of COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0262052 January 21, 2022 3 / 26

https://doi.org/10.1371/journal.pone.0262052.g002
https://doi.org/10.1371/journal.pone.0262052


refining of annotations. The proposed model yielded classification accuracy of approximately

91.6% between automated and manual segmentation approach, and an average mean percent-

age of infection (POI) error of 0.3% for the entire lung on the validation dataset. Manual classi-

fication often takes 1-5 hours; the HITL approach significantly decreases the categorization

time to four minutes after three model upgrade iterations.

Ng et al. [25] stated that pulmonary infections could be more clearly visible in CT images

than in x-ray images of the chest. However, COVID-19 using chest x-ray images implemented

as they represent comprehensive resources that are often analyzed upstream of CT scans.

Recently, an initiative by Cohen et al. [26] to provide a repository comprising of COVID-19

positive, Middle East respiratory syndrome (MERS), Acute respiratory distress syndrome

(ARDS), and SARS cases with annotated CT and chest x-ray images, so that the research group

and community data scientists can use the dataset to analyze and develop AI systems for

COVID-19 detection. After the immediate public disclosure of the suggested COVID-19 data,

several automated diagnostic systems have been designed using a chest x-ray image [27–35].

Most of the studies have adopted DL-based architecture for developing the COVID-19 diag-

nostic tool and achieved promising accuracy. Thus, this is significant to note that the COVID-

19 dataset continues to grow as new patient cases are continually growing and making publicly

accessible regularly. Wang et al. [9] introduced a DL architecture called COVID-19 in which

authors utilize the open dataset of the Chest x-ray images (Pneumonia) and the COVID-19

public dataset by [26]. The author’s derived chest x-ray dataset, called COVIDx, comprises of

5941 posteroanterior chest radiography in 2839 patient cases. Their analysis targets four image

categories: healthy, bacterial-infection, non-COVID viral-infection, and COVID-19 viral-

infection. The dataset includes 1203 patients as healthy, 931 patients with bacterial pneumonia,

660 patients with non-COVID-19 viral pneumonia, and 68 x-rays from 45 patients with

COVID-19. The authors use the principles of residual architecture design by He et al. [36],

they utilize generative synthesis by Wong et al. [37] a machine-driven strategy for developing

the final COVID-Net network topology that achieves 83.5% as global test accuracy. However,

this result was performed, including small sample data relating to only ten COVID-19 cases.

3 Materials and methods

The research’s overarching objective is to evaluate the performance of automated detection of

COVID-19 from Chest x-ray images through an empiric assessment of classification improve-

ment techniques. An experiment was performed using two sources of x-ray dataset. The asso-

ciated objectives for this research identified as follows:

• Building a robust framework for COVID-19 classification using a chest x-ray.

• Classify chest x-ray images with proposed CNN and 3 pre-trained models.

• Evaluate and Compare the performance of the models with performance metrics.

3.1 Data collection

Initially, the data repository by Cohen et al. [38] was analyzed to collect COVID-19 images. A

set of x-ray images collected from Cohen et al. [26]. The dataset contains 296 images in which

83 female and 175 male positive COVID-19 cases. Not all patient’s details are provided with

complete metadata in this data set. Further, bacterial pneumonia x-ray images by Kermany

et al. [39] were obtained for COVID-19 and Pneumonia’s classification. In particular, we

merged and updated the two data repositories to create the experiment dataset. The gathered

data consists of 1341 healthy images, 296 images with positive and suspected COVID-19, and
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3875 images with viral and bacterial Pneumonia positive images. Therefore, data imbalance

can be observed in the gathered data shown in Fig 3, which can give misleading classification

results. Therefore, we examined all the images manually and remove overexposed, underex-

posed images. Finally, we selected 140 images from each category for our experiments.

3.2 Convolutional neural network

Recently, CNNs are the most studied machine learning (ML) algorithms for medical lesions

diagnosis using images [40]. The justification behind this is that CNNs retain complex features

when scanning input images. As stated above, spatial relationships are of primary importance

in radiology, such as how the bone joins the muscle, or where standard lung tissue interfaces

with infected cells. The system architecture is illustrated in Fig 4 and selected hyperparameters

are shown in Table 1. This proposed CNN architecture has five convolution layers that take a

chest image tensor of 244 × 244 as its input. Subsequently, the first convolution layer uses 5 × 5

× 3 kernel filters with stride 1 × 1, and a total of 64 such filters are employed. The next layer,

Fig 3. Variation in chest x-ray images distribution.

https://doi.org/10.1371/journal.pone.0262052.g003

Fig 4. Feature extraction of the input image is performed via the convolution, ReLU and pooling layers, before

classification by the fully connected layer.

https://doi.org/10.1371/journal.pone.0262052.g004
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which receives the output from the first layer, is a max-pooling layer with 2 × 2 stride, reducing

the input to half of its size 112 × 112. For all layers, the output from the pooling layer passes

through the ReLU activation feature. The nonlinear output obtained now fed into the next

convolution layer with 5 × 5 × 64 with 128 filters, and the stride value is the same 1 × 1. The

obtained output pass through a max-pooling layer with the same 2 × 2 strides, which again

reduced the input to half of its size 56 × 56. After the output pass through ReLU activation, it is

fed into the third convolution layer with 256 filters and the kernel size 5 × 5 × 128 with 1 × 1

stride. The output is passed to a max-pooling layer, which results in a tensor of shape 28 × 28.

Again the output pass through ReLU activation, fed into the fourth convolution layer with 512

filters and kernel size 5 × 5 × 256 and with the same stride 1 × 1. The output from the fourth

convolution is max-pooled to a size of 14 × 14. After ReLU activated and it is pass to a fifth

convolution layer with 512 filters and 14 × 14 × 512 kernel size to accommodate the output of

all the filters from previously configured layers, and max-pooling of output from that layer

with a stride of size 2 × 2 produces an output of size 14 × 14. Now the resulting tensor has the

shape 7 × 7 × 512. The obtained tensor is flattened with 25,088 neurons. The weighed values

that emerge as neurons demonstrate the proximity to the symptoms of COVID-19. The drop-

out layer is applied here to drop values to handle network overfitting. In our work, we used a

dropout rate of 0.5 during training. The fully connected layer converts the tensor with 25,088

neurons to 64 neurons and adds ReLU activation to the output. A tensor with 64 neurons is

the product of the fully connected layers; these 64 neurons are translated into neuron counts

equal to the number of categories to which the retinal image belongs, healthy, COVID-19, and

pneumonia.

3.2.1 Convolution layer. This layer comprises a filter set (kernel). Each filter is convoluted

against the input image and then extract features by creating a new layer. Each layer signifies

some of the important features or characteristics of the input image. The � symbol identifies

the operation of the convolution. The output (or function map) F(t) is defined below when

input In(t) is convoluted with a filter or f(a) kernel.

FðtÞ ¼ ðIn � f ÞðtÞ: ð1Þ

If t can only accept integer values, the following discrete convolution is provided by the fol-

lowing equation:

FðtÞ ¼
X

a

InðaÞ � f ðt � aÞ: ð2Þ

The above assumes a one-dimensional convolutional operation. A two dimension convolu-

tion operation with input In(m, n) and a kernel f(a, b) is defined as:

FðtÞ ¼
X

a

X

b

Inða; bÞ � f ðm � a; n � bÞ: ð3Þ

Table 1. Hyper-parameters of the build CNN model and preferred weights in this study.

R1 R2 R3 R4 R5 R6 R7 R8

CNN 224�224 RMSprop 32 10-fold 3e-4 BCE

CCE

50

R1—Model, R2—Image Size, R3—Optimizers, R4—Mini Batch Size, R5—cross validation, R6—Initial Learning Rate, R7—Loss function, R8—Epoch, BCE—Binary

cross-entropy, CCE—Categorical cross-entropy.

https://doi.org/10.1371/journal.pone.0262052.t001
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By the commutative law, the kernel is flipped and the above is equivalent to:

FðtÞ ¼
X

a

X

b

Inðm � a; n � bÞ � f ða; bÞ: ð4Þ

Neural networks implement the cross-correlation function, which is the same as convolu-

tion but without flipping the kernel.

FðtÞ ¼
X

a

X

b

Inðmþ a; nþ bÞ � f ða; bÞ: ð5Þ

3.2.2 Rectified Linear Unit (ReLU) layer. This layer is an activation function that sets the

negative input value to zero, which optimizes and speeds up analyses and training, and helps

prevent the gradient from disappearing. Mathematically, this described as:

RðxÞ ¼ maxð0; xÞ: ð6Þ

In which x is input to the neuron.

3.2.3 Maxpooling layer. This Layer is a sample-based discretization method. It is

employed to down-sample an input design (input image, hidden-layers, output matrix, etc.),

and compressing it is dimensionality and enabling assumptions about the components avail-

able in the binned sub-regions to be made. This will decrease the size of learning parameters

and provide fundamental interpretation invariance to internal depiction, thus further reducing

the cost of computation. Our model adopted the kernel size of 3 × 3 during the Maxpooling

process. After the final convolution block, the network flattened to one dimension.

3.2.4 Batch normalization. Batch normalization enables every layer of the network to

learn a little more independently of the other layers. It also normalizes the output from the pre-

vious activation layer by subtracting the batch mean and dividing the batch standard deviation

[41] to improve the steadiness of the neural network.

3.2.5 Fully connected layer. This layer takes the output of the previous layer (Convolu-

tional, ReLU, or Pooling) as its input and calculates the probability values for classification

into the various groups.

3.2.6 Loss function. This layer applies a soft-max function to the input data sample. This

layer is used for the final prediction. Therefore, our loss function is given as:

Li ¼ � log
eby
Pc

j e
bj

 !

ð7Þ

Where βj is the jth element of the vector of class scores β, βy is the CNN score for the positive

class and c is classes for each image. The softmax ensures a proper prediction probability in the

log of the equation.

3.2.7 Regularization. An efficient regularization method named as a dropout is

employed. This strategy was being proposed by Srivastava et al. [42]. During the training pro-

cess, the dropout is conducted by maintaining the neuron active with a certain probability P or

by setting it to 0. In our study, we set hyperparameter to 0.50 because it outputs in the maxi-

mum amount of regularization [43].

3.3 Transfer learning

Knowledge transfer from source to target tasks is often the only option in highly technical

domains in which the availability of huge-scale quality data tends to be challenging. The use of

pre-trained weights is not only an effective optimization technique but often supports
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classification sensitivity. The first layer of CNN learns to identify common characteristics such

as borders, textures, or patterns. In contrast, the upper layers concentrate more on sophisti-

cated and detailed aspects of the image, such as pathological lesions. Training only the top

layer of the network with the target dataset while adopting the remaining layers’ initialized

parameters is the widely used method, especially in the computer-aided diagnosis (CAD)

domain. Apart from performance benefits, fewer training parameters often reduce the chance

of over-fitting, which is a severe issue in the training cycle for Neural Networks [44]. A brief

overview of the transfer learning-based CNNs used for automatic COVID-19 detection given

in this section. This study used the Keras DL Framework by F. Chollet. [45] and TensorFlow

as backend, which includes pre-trained, DL models made available in Keras Applications

alongside weights. In this analysis, we employed VGG16, InceptionV3, and Xception model

with pre-trained weights on the ImageNet database as S. Pal. [46], and K. Simonyan [47].

Based on WorldNet’s hierarchical structure, the ImageNet data comprises over 3.2 million per-

fectly annotated images, spread over 5247 categories [48]. Hence, the employed models are

explained below.

3.3.1 VGG16. The pre-trained VGG16 framework has learned to obtain image character-

istics that can differentiate between one image class to another and displayed good results

when applied to image classification and recognition in other target tasks [46, 47]. The VGG16

Deep CNN model or VGGNet, which includes 144 million parameters, comprises 16 convolu-

tion layers with a deep visual field of 3 × 3, five max-pooling layers of size 2 × 2 for spatial pool-

ing, followed by three fully connected layers with the final layer as the soft-max layer [48].

ReLu applied to all hidden layers. The model also uses the regularisation of the dropouts in the

fully connected layers. If the fully connected classifier (or bottleneck layer) eliminated from

the pre-trained VGG16 network, it could be used as a feature vector generator for our images

to generate semantic image vectors. VGG16 model used as pre-trained and softmax as a classi-

fier. The general structure and parameters of VGG16, which yielded high-performance accu-

racy in chest x-ray images, are presented in Table 2 and hyper parameters are presented in

Table 3.

3.3.2 InceptionV3. Szegedy et al. [49] first introduced the “Inception” micro-architecture

in their paper. The inception module aims to serve as a “multi-level function extractor” by

Table 2. The layers and layer parameters of the VGG16 model.

Layers layer Type Output Shape Trainable parameters

1 Cov2d [224, 224, 64] 1792

2 Cov2d [224, 224, 64] 36928

4 Cov2d [112, 112, 128] 73856

5 Cov2d [112, 112, 128] 147585

6 Cov2d [56, 56, 256] 295168

7 Cov2d [56, 56, 256] 590080

8 Cov2d [56, 56, 256] 590080

9 Cov2d [56, 56, 256] 590080

10 Cov2d [28, 28, 512] 1180160

11 Cov2d [28, 28, 512] 2359808

12 Cov2d [28, 28, 512] 2359808

13 Cov2d [14, 14, 512] 2359808

14 Cov2d [14, 14, 512] 2359808

15 Cov2d [14, 14, 512] 2359808

16 Cov2d [14, 14, 512] 2359808

https://doi.org/10.1371/journal.pone.0262052.t002
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computing 1 × 1, 3 × 3, and 5 × 5 convolution layers within the same network module—these

filters’ output is then stacked along the channel dimension and then fed into the next network

layer. The Inception V3 framework present in the Keras core obtained from the later released

version by Szegedy et al. [50] in “Rethinking the Inception Framework for Computer Vision

(2015)”. The Inception-v3 model trained for ImageNet benchmark datasets with images from

1000 label classes [51]. This model comprises two parts: feature extraction part with a CNN

and classification part with fully connected and softmax layers. Selected hyper parameters are

shown in Table 4.

3.3.3 Xception. F. Chollet. [45] introduced a CNN neural network that entirely focused

on depthwise separable convolution layers known as Xception. This architecture has 36 convo-

lutional layers that form the network’s base for extracting features. The 36 convolutional layers

made up of 14 modules, all of which have residual linear associations surrounding them,

except the first and last modules. Under the MIT license, an open-source Xception implemen-

tation using Keras and TensorFlow supported the Keras Applications module. This architec-

ture provides better performance than Inception V3, ResNet-50, ResNet-101, ResNet 152, and

VGG on ImageNet dataset. We preferred these models because they are well developed and

have shown excellent results when applied to a variety of classification cases for medical

images. Hyper parameters selected for this model are shown in Table 5.

3.4 Proposed method using transfer learning

The developed scheme encompasses two main components: image pre-processing and the sec-

ond is a deep transfer framework. Fig 5 shows the proposed pre-processing/ Deep Transfer

Learning Model. The morphological operation was mainly used for the pre-processing step,

Table 3. Hyper-parameters of the VGG16 model and preferred weights in this study.

R1 R2 R3 R4 R5 R6 R7 R8

VGG16 224�224 ADAM 32 10-fold 1e-4 BCE

CCE

20

R1—Model, R2—Image Size, R3—Optimizers, R4—Mini Batch Size, R5—cross validation, R6—Initial Learning Rate, R7—Loss function, R8—Epoch, BCE—Binary

cross-entropy, CCE—Categorical cross-entropy.

https://doi.org/10.1371/journal.pone.0262052.t003

Table 4. Hyper-parameters of the InceptionV3 model and preferred weights in this study.

R1 R2 R3 R4 R5 R6 R7 R8

InceptionV3 224�224 ADAM 32 10-fold 1e-4 BCE

CCE

20

R1—Model, R2—Image Size, R3—Optimizers, R4—Mini Batch Size, R5—cross validation, R6—Initial Learning Rate, R7—Loss function, R8—Epoch, BCE—Binary

cross-entropy, CCE—Categorical cross-entropy.

https://doi.org/10.1371/journal.pone.0262052.t004

Table 5. Hyper-parameters of the Xception model and preferred weights in this study.

R1 R2 R3 R4 R5 R6 R7 R8

Xception 224�224 ADAM 32 10-fold 1e-4 BCE

CCE

20

R1—Model, R2—Image Size, R3—Optimizers, R4—Mini Batch Size, R5—cross validation, R6—Initial Learning Rate, R7—Loss function, R8—Epoch, BCE—Binary

cross-entropy, CCE—Categorical cross-entropy.

https://doi.org/10.1371/journal.pone.0262052.t005

PLOS ONE Automated detection of COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0262052 January 21, 2022 9 / 26

https://doi.org/10.1371/journal.pone.0262052.t003
https://doi.org/10.1371/journal.pone.0262052.t004
https://doi.org/10.1371/journal.pone.0262052.t005
https://doi.org/10.1371/journal.pone.0262052


whereas the deep transfer framework was used during the training, validation, and testing

phase. The proposed model in details, Set of transfer learning models be defined by Γ =

{VGG16, InceptionV3, Xception}. The top layer of each deep transfer model is removed and

trained with the COVID-19 X-ray Images dataset (X, Y); where X the set of N input data, each

of size, 224 × 224, and Y have the same class, Y = {y/y�{Normal;COVID − 19;Pneumonia}}.

Dataset segregated to training and testing sets, training set (trainx; trainy) by 80 percent for

training, and 20 percent for testing. The selection of 80 percent for training and 20 percent

for validation has proven effective in many research areas. The training samples is then

divided into mini-batches, each of size n = 32, so that each mini-batch (Xi;Yi)�(trainx;trainy)

where, i ¼ 1; 2; 3; . . . . . . ::; Nn and iterative process optimises the CNN framework for the

reduction of functional loss as demonstrated in Eqs 7 and 8 for categorical and binary cross-

entropy loss.

Lb ¼ �
Xc0¼2

i¼1

tilogðbiÞ ¼ � t1logðb1Þ � ð1 � t1Þlogð1 � b1Þ ð8Þ

where, C0 two classes c1 and c2; t[0, 1] and β1 for class c1; t2 = 1 − t1 and β2 = 1 − β1 are the

ground-truth and the score for c2.

3.5 Experiment setup

We divided our classification tasks in the scenario I and scenario II as represented in Table 6.

The respected classes were train in our built CNN and 3 pre-trained models; VGG16, Incep-
tionV3, and Xception respectively. The image resolution has standardized to a uniform size fol-

lowing the input requirements of each model. The number of epochs, i.e., completely forward

and backward passes through the network set 20 to the already pre-trained models and 50 for

build CNN. The training/testing split set to 80/20. The stratified random sampling performed

Fig 5. Proposed pre-trained method for COVID-19 detection.

https://doi.org/10.1371/journal.pone.0262052.g005

Table 6. Description of classification task.

Scenario Classification

I Normal / COVID-19

II Normal / COVID-19 / PNEUMONIA

https://doi.org/10.1371/journal.pone.0262052.t006
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to ensure proportional class distribution. Mini-batch size set to 32, and the binary cross-

entropy and categorical cross-entropy loss function selected due to its suitability for a binary-

class classification and multi-class classification task. The default Optimiser for pre-trained

models was Adam with a learning rate of 1e − 4, and for the build, CNN is RMSprop with a

learning rate of 3e − 4. The standard evaluation metric of Accuracy (Acc), Sensitivity (Se), and

Specificity (Sp) on testing data set used for final results validation.

3.6 Performance improvement

3.6.1 Fine-tuning for pre-trained models. The classification algorithms adopted for the

study were pre-trained on a large-scale collection of ImageNet data covering various classes

such as cars, fruits, horses, etc. The algorithms achieve superior performance for the object-

based training data set on classification tasks, while proving restricted in their deployment to

narrow domains, such as medical lesion detection. Detection of abnormal symptoms in chest

x-ray images depends on a broad range of specific features within an image and their positions.

There is a new representation of input image in each CNN layer by progressive extraction of

the most distinctive features. For instance, the first layer of a network can learn edges, for

example, while the last layer can identify lung opacification for COVID-19 and Pneumonia

classification. Therefore, the following parameters considered in this experimental study: (i)

the removal of the top layer and the re-training of the network; and our adopted approach (ii)

the removal of the n top layers and the re-training. The parameter n varies around the utilized

CNNs, which depends on the total number of layers in each model structure. The n threshold
was selected, and the following segments of the model were ‘un-frozen’ and fine-tuned. The

preliminary n layers were regarded as a fixed-feature extractor [52], while the subsequent lay-

ers fitted to unique x-ray characteristics.

3.6.2 Data re-sampling. In a classification task, a challenge of unbalanced classes can

observe when the data set has a meager number of sample data in one or more types, which

leads to the problem of misclassification. Data set can be balanced using under-sampling or

over-sampling methods. In this study, we implemented both the processes in the dataset.

Undersampling performed by randomly deleting the classes with sufficient datasets and over-

sampling performed using Keras DL library via the class ImageDataGenerator class.

3.6.3 Contrast enhancement. To accomplish contrast enhancement in the chest x-ray

images, mathematical morphology has been used. Mathematical morphology approaches

work hinged on the structural values of objects. To pull out the elements of an image, these

methods use relationships between classes and mathematical fundamentals, which help explain

areas. In morphological operators, the input consists of two data sets. The original image is

included in the first set, and the second one illustrates the structural element (SE), which is

also called a mask. The original image is in grey level or binary, and the mask is a 0s and 1s
value matrix [53]. In morphological operators, if the gray-level image matrix id represented by

I(x, y) and the SE by S(u, v), the erosion and dilation operators are defined as Eqs 9 and 10

[54].

IYS ¼ min
u;v
fIðxþ u; yþ vÞ � Sðu; vÞg ð9Þ

I � S ¼ max
u;v
fIðx � u; y � vÞ þ Sðu; vÞg ð10Þ

The erosion operator decreases the objects’ size and increases the size of an image’s holes

and eliminates very tiny information from that image. It makes the final image appear darker

than the original image by removing bright areas under the SE. The dilation operator operates
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in reverse; in other words, the size of objects increases and holes in the image decreases,

respectively. Therefore, the opening operator is similar to implementing the dilation and ero-

sion operations on the same image Eq 11, while the closing operator acts in reverse Eq 12.

I � S ¼ ðIYSÞ � S ð11Þ

I � S ¼ ðI � SÞYS ð12Þ

The opening operator eliminates poor relations between artifacts and small information,

while small gaps are eliminated, and the closing operator fills cracks. The size and shape of a

SE are usually chosen arbitrarily; however, disk-shaped SE is used more frequently than other

masks for medical images.

The top-hat result is obtained from the variation between the source images and its opening

with a SE. In contrast, the variation between the closure by a SE and the input image defines

the bottom-hat transform output. In the case of the top-hat transform, bright objects that are

shorter than the SE fetched. On the other side, dark components obtained with the transfor-

mation of the bottom hat, which is inferior to the SE. Thus, by integrating the additional out-

come of top-hat and the subtraction result of bottom-hat with its original image, we can create

an improved image in which the essential objects are more visualized. Fig 6 illustrate top-hat

performance, Bottom-hat, and the product of combined transform. The equation can assess

with top-hat, bottom-hat, and enhanced picture where I is the input image, then S is the struc-

turing part, �means to opening and • to closing.

Ith ¼ I � ðI � SÞ ð13Þ

Ibh ¼ ðI � SÞ � I ð14Þ

Icomb ¼ I þ Ith � Ibh ð15Þ

3.7 Visualize feature maps

The feature maps, or activation maps, record the input applied with filters, such as the source

images or other feature maps. The purpose of visualizing a feature map for particular source

images would explain what attributes in the feature maps are observed or retained. The idea

would be that the feature maps near the input detect fine-grained or small information while

featuring maps near the model output to capture more distinctive characteristics. The first

layer of CNN always learns features like edges, lines patterns, color, and deeper layer network

to identify more complex features like pathological lesions. Later layers construct their features

by merging features from previous layers. To analyze the visualization of feature maps, we

used the highest performed model with x-ray, i.e., VGG16 model, and used to create activa-

tions. The activations for VGG16 network models shown in Fig 7.

3.8 Classification performance analysis

Different metrics have been used to evaluate the efficiency of the highest performing DL

model in the Scenario I and Scenario II. To calculate the true or false classification of the

COVID-19 diagnosed in the Xray images evaluated as follows. Initially, the cross-validation

estimator [55] is adopted and plotted in a confusion matrix as shown in Table 7. The confusion

matrix has the following four predicted outcomes. True Positive (TP) has been identified with

the right diagnosis and a variety of abnormalities. True Negative (TN) is an erroneously calcu-

lated number of periodic instances. False positives (FP) are a set of periodic instances. The
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following performance metrics are used to calculate the values of possible outcomes in the con-

fusion matrix Table 7.

Accuracy: Accuracy is an essential metric for the evaluation of the results of DL classifiers.

It is a summary of the true positive and true negatives divided by the confusion of the matrix

components’ total values. The most accurate model is an excellent one, but it is imperative to

ensure that symmetric sets of data with almost equal false positive values and false negative val-

ues. Thus, the elements of the confusion matrix mentioned above will be calculated to evaluate

the effectiveness of our proposed classification model for the COVID-19 database.

Accuracyð%Þ ¼
TP þ TN

TPþ FN þ TN þ FP
100%: ð16Þ

Fig 6. (A) and (C) original chest x-ray COVID-19 and Pneumonia images; (B) and (D) contrast enhanced image

using Icomb.

https://doi.org/10.1371/journal.pone.0262052.g006
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Sensitivity (Recall): sensitivity is measured as the number of accurate positive predictions

divided by the sum of positive. The best sensitivity is 1.0, whereas the worst is 0.0. We calculate

sensitivity using following equation;

Sensitivity ¼
TP

TP þ FN
ð17Þ

Fig 7. Visual feature maps in first layer and deep layer.

https://doi.org/10.1371/journal.pone.0262052.g007

Table 7. Confusion matrix.

Predictive Positive Predictive Negative Total

Actual Positive TP FN TP + FN
Actual Negative FP TN FP + TN

Total TP + FP FN + TN

TP = True Positive, FN = False Negative, FP = False Positive, TN = True Negative.

https://doi.org/10.1371/journal.pone.0262052.t007
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Specificity: specificity is measured as the number of correct negative predictions divided by

the sum of negatives. The best specificity is 1.0, whereas the worst is 0.0. We calculate sensitiv-

ity using the following equation;

Specificity ¼
TN

TN þ FP
ð18Þ

Precision: precision is the fraction of the correct positive labelled by our model to all nega-

tive labelled. Precision has been calculated as follows;

Precision ¼
TP

TP þ FP
ð19Þ

4 Experiments results

The algorithms implemented using MatLab for morphological operations, Keras 2.3 library,

with TensorFlow 2 as a back-end and Python 3.8 programming language in jupyter notebook

with a processor of 2.3 GHz Intel Core i9 and RAM of 16 GB 2400 MHz DDR4 with Intel

UHD Graphics 630 1536 MB.

4.1 Results by selected models

The implemented models are tested in two distinct scenarios. The proposed CNN and 3 pre-

trained CNN models are evaluated to obtain accuracy on the test data set. Testing accuracy

(%) is used to estimate the accuracy and precision of the proposed model, which is presented

in Tables 8 and 9. The confusion matrix is also one of the precise metrics that further insight

into the test accuracy. At first, a scenario I data was trained with three pre-trained models, and

the highest performance model is selected; after that proposed CNN model was trained with

the same data, and confusion matrices present the result in Fig 8. Similarly Fig 9 summarizes

the confusion matrices for scenario II. However, in pre-trained models, we additionally

Table 8. Average performance of the pre-trained CNN models.

Scenario Classes Model Results� Results��

I Normal/COVID-19 Xception Acc = 81.82%, Se = 72%, Sp = 100% Acc = 89.09%, Se = 81%, Sp = 100%

VGG16 Acc = 97.62%, Se = 95%, Sp = 100% Acc = 100%, Se = 100%, Sp = 100%

InceptionV3 Acc = 96.49%, Se = 100%, Sp = 93.33% Acc = 96.49%, Se = 100%, Sp = 93.33%

II Normal/COVID-19/PNEUMONIA Xception Acc = 68%, Se = 86.36%, Sp = 100% Acc = 73%, Se = 75%, Sp = 100%

VGG16 Acc = 83.50%, Se = 94.43%, Sp = 100% Acc = 87.50%, Se = 96.43%, Se = 100%

InceptionV3 Acc = 83%, Se = 100%, Sp = 100% Acc = 86%, Se = 100%, Sp = 100%

Results� = Results obtain before model fine-tune and contrast enhancement in x-ray images, Results�� = Results obtain after model fine-tune and contrast enhancement

in x-ray images, Acc = Accuracy, Se = Sensitivity, Sp = Specificity.

https://doi.org/10.1371/journal.pone.0262052.t008

Table 9. Average performance of the build CNN models.

Scenario Classes Model Results

I Normal/COVID-19 CNN Acc = 97.67%, Se = 100%, Sp = 95.45%

II Normal/COVID-19/PNEUMONIA CNN Acc = 93.75%, Se = 100%, Sp = 95.24%

Results = Results obtain after model fine-tune and contrast enhancement in x-ray images, Acc = Accuracy, Se = Sensitivity, Sp = Specificity.

https://doi.org/10.1371/journal.pone.0262052.t009
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applied fine-tuning as a complement to the default setting. The results obtained for each

model used for comparison purposes after the exclusion and retraining of n layers (depending

on the model layers number) as represented in Table 8. The fine-tuning impact is measured as

a percentage increase/decrease in accuracy. The best accuracy is selected for each model

(default or fine-tuning). Eventually, the VGG16 reported as a top 1 CNN architectures with

the highest classification efficiency on x-ray data in both the scenarios, as shown in Table 8.

The accuracy was further plotted after each epoch to examine the models’ convergence capa-

bilities in the fine-tuning scenarios.

Fig 8. Confusion matrices for scenario I obtained by (A) build CNN and (B) VGG16.

https://doi.org/10.1371/journal.pone.0262052.g008

Fig 9. Confusion matrices for scenario II obtained by (A) build CNN and (B) VGG16.

https://doi.org/10.1371/journal.pone.0262052.g009
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4.2 Explaining proposed model using Grad-CAM

To make deep learning more practical and explainable, a range of work was performed. It is

also essential to make the deep neural network more interpretative in various deep learning

applications linked to medical imaging. A technique of Gradient Weighted Class Activation

Mapping (Grad-CAM) is developed by Selvaraju et al. [56], which provides an illustrative view

of deep learning techniques. The technique of Grad-CAM offers a visual description for any

deeply related neural network. This helps to decide more about the model when conducting

identification or prediction tasks. The simple chest x-ray image is given as input and uses the

proposed model as a detection method. After calculating the predicted label using the full

model, Grad-CAM is applied to the last Convolution layer. Fig 10 shows the heatmap visuali-

zation on chest x-ray images by the proposed model.

4.3 Improvement techniques comparison

Three pre-trained models and proposed CNN frameworks are employed considering the data

limitation in current work. Another issue observed was data imbalance, causing over-fitting

and poor generalization to the test data on classification accuracy. Therefore, ImageDataGen-
erator is employed in pre-trained models to avoid such issues. Image data-enhanced using

contrast enhancement and removed underexposed and overexposed images. Thus, Table 8

Results� summarizes the results before fine-tune with contrast enhancement. Similarly, Table 8

Results�� summarizes the results after fine-tuning with contrast enhancement. In this work,

the pre-trained VGG16 model yielded high-performance accuracy in both scenarios. Fig 11

compares the highest accuracy obtained for both the scenarios and Fig 12 summarize the accu-

racy obtained for both the scenarios. It is observed that image enhancement and fine-tunes

contribute to performance improvement. Meanwhile, new build CNN employed a cross-vali-

dation (K = 10) re-sampling procedure along with ImageDataGenerator to evaluate the new

CNN model on a limited x-ray data sample. Table 9 represents the results obtained by the new

build CNN in both the scenarios.

Confusion Matrix for the scenario I is compared in Fig 8(A) using proposed CNN, and Fig

8(B) using proposed VGG16. For the scenario I Fig 8(A), all the cases classified correctly except

one COVID-19 image as healthy; otherwise, this model would have reach 100% accuracy. Sim-

ilarly, in Fig 8(B) all the cases classified correctly with 100% accuracy. Confusion Matrix for

scenario II compared in Fig 9(A) using proposed CNN and Fig 9(B) using VGG16. However,

interestingly proposed CNN in multi-class classification performance was better than the

multi-class classification of VGG16, although the classes were miss-classified in both scenarios.

Finally, the Receiver Operating Characteristics (ROC) Curves applied to check the classifica-

tion efficiency of the highest performing classifier by revealing the true positive rate (TPR)

against the false positive rate (FPR) to detect true positive of COVID-19 in the x-ray images

evaluated in Figs 13 and 14.

5 Discussion

5.1 Automated COVID-19 detection

Based on the research findings, we observed that proposed CNN and pre-trained CNN models

do have major impacts on the automatic identification and extraction of essential features

from chest x-ray images relevant to the detection of COVID-19. Cohen et al. [26] gathered

radiology COVID-19 images from multiple sources for study to establish a precise model for

the effective diagnosis of this viral infection. Several of the studies listed in this section of the

article used Cohen et al. [26] COVID-19 image data, and for other instances, such as Non-
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COVID-19, images collected from different sources that are publicly accessible Kermany et al.

[39]. Ozuturk et al. [10] proposed DarkCovidNet for identifying COVID-19 using chest x-ray

images and obtained the accuracy of 98.08% in the classification of Normal and COVID-19

and 87.0% accuracy in Normal, COVID-19 and Pneumonia classification. Similarly, COV-

IDX-Net was proposed by Hemdan et al. [57] for diagnosing COVID-19 using x-ray images.

Their work used 25 positive COVID-19 and 25 normal images and successfully acquired 90%

accuracy. On the other hand, Wang et al. [9] developed COVID-Net, a DL model, for the

detection of COVID-19. They obtained an accuracy of 92.4% using a sample of 16,756

Fig 10. Visualisation on chest x-ray of normal/COVID-19/pneumonia infected using Grad-CAM on the proposed model.

https://doi.org/10.1371/journal.pone.0262052.g010
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radiographic images from various open-source data. The concept of knowledge transfer

adopted by Ioannis et al. [58] for a similar objective as COVID-Net. They used 224 confirmed

COVID-19, 700 pneumonia, and 504 normal radiology images in their study and achieved a

98.75% performance for the binary class and 93.48% for the multi-class classification. We

Fig 11. Comparison of accuracy achieved in selected models after fine-tune: (A) scenario I and (B) scenario II.

https://doi.org/10.1371/journal.pone.0262052.g011
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noticed an increase in the number of classification categories, the performance accuracy of the

CNN based model decreased. Author Sethy et al. [59] combined DL and ML techniques to

develop a system. In their study, they used the ResNet50 model to retrieve image features and

SMV as a classifier. Using 50 images, they achieved 95.38% accuracy. Several researchers used

CT images to train their CNN based models and achieved less accuracy than the researcher

who used x-ray images. For instance, Ying et al. [60] obtained an accuracy of 86% utilizing CT

images with a ResNet50, called DRE-Net. Wang et al. [61] modified Inception deep model

developed a system using CT images; they successfully obtained a classification accuracy of

82.9%. Zheng et al. [62] introduced a 3D CNN model for detecting COVID-19 using CT

Fig 12. Comparison of accuracy achieved in new CNN: Scenario I and scenario II.

https://doi.org/10.1371/journal.pone.0262052.g012

Fig 13. ROC curve in scenario I for (A) build CNN and (B) VGG16.

https://doi.org/10.1371/journal.pone.0262052.g013
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images and obtained an accuracy of 90.8%. Xu et al. [18] employed ResNet using CT images

and achieved an accuracy of 86.7%. Several of the previous studies utilized little data to gener-

ate a COVID-19 detection system.

5.2 Performance improvement

The initial phase of the experiment involved the extraction of features initialized using the pre-

trained CNN models through transfer learning and subsequent removal of the top layer (exist-

ing approach). A detailed evaluation of 3 convolutional networks (state-of-the-art) conducted.

In the second phase, the n layers were unfreezing’ and progressively re-trained to adequately

conform to the details of the case study (adopted approach) method. The integration of [26,

39] data sets was performed to create classes for system training. The scale of the data used in

training significantly impacts the outcome of the method of neural networks [63]. The various

pre-processing measures were implemented in x-ray images to improve classification accu-

racy. Medical images prove extremely challenging to differentiate pathological lesions; there-

fore, image enhancement used to enhance lesions’ visibility (e.g., contrast enhancement). The

high accuracy achieved in the VGG16 model with, yielding 100% for binary classification and

87.50% for multi-class classification. The lowest performance was acquired by Xception

81.82% for binary and 68% for multi-class classification. The fine-tuning effect (un-freezing

layers) varied across the models. Improvement in accuracy was only slight but efficient enough

to make a difference. There are seven different optimizers for CNN architecture. In this experi-

ment, we used the ADAM optimizer as a default in which VGG16 + Adam produced outstand-

ing performance accuracy for COVID-19 detection. CNN based transfer learning has typically

produced promising results in computer vision, but still, as far as classification performance is

concerned, these architectures are less suitable for multi-class classification of medical images.

Study findings have shown that existing deep learning algorithms are unsuccessful in classify-

ing small data sets of multi-class images. As classes multiplied, the performance of pre-trained

deep learning techniques was dropped. This outcome, in reality, is very normal. It is relatively

common to have better results in two categories classification (100 percent) than three-cate-

gory classification (87.50 percent). As classes multiplied, the expected accuracy at normal sam-

ple dropped. This finding was consistent with previous research [64]. Therefore, our main goal

is to build a deep learning based model which not only perform binary classification efficiently

Fig 14. ROC curve in scenario II for (A) build CNN and (B) VGG16.

https://doi.org/10.1371/journal.pone.0262052.g014
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but also gives efficient performance in multi-class classification of chest infection diseases.

However, the application of pre-trained deep learning in medical practice still poses many

challenges. Thus, we trained CNN architecture that can be trained from scratch on x-ray

images, works as a standardized architecture, and subsequently generates better classification

accuracy for multi-class classification. Therefore, we build a new CNN which yielded accuracy

97.62% in binary classification and 93.75% in multi-class classification Table 9.

5.3 Approach limitation

Limitations of the study can be summarized as follows; Initially, due to the limited availability

of high quality COVID-19 public image, only a small-to-moderate data set size used in the

study. The literature review suggested for this research is at its initial stage, because most of the

existing AI systems introduced in the research literature have been closed-source and inacces-

sible for the scientific community to develop a better understanding and expansion of these

systems. DL models pre-trained on an ImageNet dataset used as a compensation procedure

due to the limited number of datasets. Several experiments performed with different parame-

ters to achieve high accuracy. However, the history of DL architectures is not well known in

many situations and is regarded as a black box. Thus, the proper structure and optimum values

for the number of layers and nodes in different layers are still challenging. The selection of val-

ues for the learning rate, number of epochs, and regularizer intensity often involve unique

domain knowledge. In this study, a pre-trained VGG16 network with defined hyperpara-

meters yielded the highest performance accuracy than other tested systems in binary classifica-

tion and achieved.

Similarly, a newly developed model with defined layers and hyperparameter yielded the

highest accuracy in multi-class classification. Although with certain limitations, we believe our

system can be advantageous to assist experts in identifying COVID-19 infection using x-ray

images. X-ray scans were recommended in this study because they are widely available for the

diagnosis of disease.

6 Conclusion and future work

The COVID-19 pandemic remains a serious threat that has caused chaos around the globe.

This epidemic continues to pose a threat to personal health in various ways around the world,

including mortality. Early detection of COVID-19 in a patient can reduce mortality and save

lives. In this research, we introduced a methodology focused on DL to classify and detect the

COVID-19 cases from x-ray images. Our model is entirely automated and is capable of catego-

rizing binary class with 100% accuracy using VGG16 and multi-class with 93.75% using a built

CNN. Accuracy obtained by existing models and models used in this study is shown in

Table 10. The study used the limited sets of data from diverse sources to analyze system robust-

ness through its ability to respond to real-world scenarios. This framework effectively operates

as an additional screening tool for COVID-19 detection. The proposed models can address a

shortage of radiologists in rural areas and used to classify chest-related diseases such as viral

pneumonia and COVID-19. The system implemented is fully prepared for testing with a con-

siderably larger directory. The added benefit of CNN includes the automatic detection of most

exclusionary features among the classes.

Furthermore, future work can be extended in two parts; the first part will cover develop-

ment of classification system which will classify similar infectious diseases, for instance, SARS,

MERS, ARDS, and bacterial Pneumonia using x-ray images, and the second part, will include

the training of DL models using generated dataset through the generative adversarial network.

More robust models can be developed using a dataset from several sources.
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