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INTRODUCTION

There are several situations that can cause an athlete’s regular training volume to be reduced, such as
injury, traveling overseas for competition, or highly relevant to the current world climate, inability
to attend a training venue due to infection risk (i.e., COVID-19). Subsequently, practitioners have
sought supplementary training methods that can complement or be added to physical training
to meet the needs of their athletes. One such training alternative is motor imagery (MI), defined
as a simulation state that involves covertly rehearsing a motor action mentally by incorporating
visual and kinesthetic aspects of movement, without actually executing movement (Frank et al.,
2014; Eaves et al., 2016). MI is most effective when combined with physical training, providing
an additive effective to performance (Lindsay et al., 2021). Considerable evidence exists attesting
to the beneficial effects of MI for performance and skill development (e.g., Simonsmeier et al.,
2020; Lindsay et al., 2021). Motor Simulation Theory (MST) proposes that the positive effects of
MI can in part be attributed to shared neural mechanisms with physical practice, termed functional
equivalence (Jeannerod, 1994, 1995; Debarnot et al., 2014; Moran and O’Shea, 2020). Consistent
with MST, Hétu et al. (2013) found that MI activated areas of the brain similar to that observed
during motor execution including premotor and parietal cortices, and fronto-parietal regions.
Further evidence indicates that MI may also be capable of producing similar training-related
adaptations in central neural structures as physical training. For example, Leung et al. (2013)
showed that increases in corticospinal excitability were equivalent following MI training relative
to physical training of a bicep-curl, suggesting similar changes in motor execution processes.

More recently, researchers have advocated for combining techniques such as action observation
(AO) with MI to facilitate greater improvements in performance relative to MI or AO delivered
as separate interventions (Eaves et al., 2016; Wright et al., 2021). AO involves observing actions
displayed via video or physical demonstration of another individual or self with the intention of
replicating the observed movement (Wright et al., 2021). The effectiveness of AO for improving
motor skill performance and learning has commonly been contextualized through the notion that
observation of motor actions activates an action observation network (AON), comprising of similar
motor areas of the brain (e.g., premotor cortex, inferior parietal lobule and supplementary motor
area) utilized during physical action (Cross et al., 2009).

COMBINING ACTION OBSERVATION AND MOTOR IMAGERY

Previous research has often treated MI and AO as separate interventions (Jeunet et al., 2020),
however, there is an emerging body of evidence to suggest that both techniques can be combined or
structured so that AO precedes MI to act as a visual primer of the movement being practiced (Kim
et al., 2017; Romano-Smith et al., 2018). Treated as a single technique, AOMI interventions have
been shown to bemore effective for enhancing learning and performance relative to AOorMI alone
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(Eaves et al., 2016). For example, Romano-Smith et al. (2018)
found that participants practicing a manual aiming task with
either simultaneous or alternate AOMI improved performance
significantly more than MI or AO alone. The success of
AOMI has largely been attributed increases in neural activity
in motor regions of the brain, which exceeds levels produced
in MI or AO alone (Romano-Smith et al., 2018). This is
supported by neurophysiological research suggesting that AOMI
produces more significant cortico-motor activity compared
to AO alone (Wright et al., 2014). Wright et al. (2018)
found that AOMI facilitated significantly greater corticospinal
excitability relative to AO or MI alone when practicing a
basketball free-throw. Overall, the emerging body of evidence
provides some encouraging findings to suggest that AOMI could
facilitate greater neurophysiological activity in motor-related
brain areas, potentially contributing to improved motor skill and
learning outcomes.

Though evidence indicates clear benefits of AOMI, one
element that deserves further consideration is the type of video
footage used during AOMI. Presently, AOMI interventions
have primarily utilized 2-D video footage from the first-person
perspective (Romano-Smith et al., 2018; Scott et al., 2018). An
issue related to the type of video footage is its influence on the
sense of agency (SoA) for the participant. SoA is described as
an individual’s experience of the level of control and initiation
they have over an action (Braun et al., 2018). Further, SoA and
the degree of immersion an individual experiences within virtual
environments have been proposed to be important factors in
the efficacy of virtual training (Rose et al., 2018). Immersion
is described as the degree of which simulated environments
produce experiences that accurately replicate the multimodal
sensory nature of the real-world (Rose et al., 2018). Recent
research suggests that the degree of immersion in virtual
environments can influence an individual’s perception of whether
they really have control over their own movements (i.e., SoA;
Kong et al., 2017). However, further research is needed to
understand the relationship between immersion and SoA.

Generally, researchers conducting an AOMI intervention will
ask participants to imagine themselves executing the motor skill;
whereas, the video is usually a recording of another person
performing the skill. According to the comparator model of
motor control (Frith, 2005; David et al., 2008), the level of
control of a movement is governed by an internal prediction
model within the brain (David et al., 2008). When a new motor
command is produced, this causes creation of an efference copy.
If the efference copy is the same as the actual sensory input
(e.g., AO video footage) the motor action is interpreted as
being self-caused, leading to SoA (Braun et al., 2018). Captured
this way, it is possible that using video footage during AO
of another individual may result in a mismatch between the
efference copy and the sensory input (AO of another individual),
culminating in a lack of perceived self-caused movement (Braun
et al., 2018). Previous MI research seems consistent with this
idea, suggesting that kinesthetic MI may be inhibited when
viewing another person (Callow and Hardy, 2004). In order
to create a representative AOMI experience for the individual
understanding how to create a SoA is an important consideration

for the practitioner to ensure that the simulated movement is
perceived as self-caused.

VIRTUAL REALITY FOR MOTOR IMAGERY

Alternative technologies, such as virtual reality (VR), present
a viable solution for improving SoA of AOMI interventions
by generating a more interactive and immersive practice
environment. Given the increased neurophysiological activity
reported during AOMI, authors support this combined approach
as being the optimal method for mental simulation interventions
in sport (McNeil et al., 2021; Wright et al., 2021). For example,
Im et al. (2016) reported that virtual-reality-guided MI of a
wrist extension task increased cortical excitability in both stroke
patients and healthy participants more than MI alone. Similarly,
Bedir and Erhan (2021) reported significant improvements in
shot accuracy in curling, bowling and archery athletes following
VR-based imagery relative to Visual Motor Behavior Rehearsal
and Video Modeling. In addition, it was noted that the VR
component may have contributed to participants adapting to
imagery training earlier due to the enhanced simulation of
kinesthetic, visual and auditory senses. VR can improve the level
of “presence,” which is defined as how much individuals feel
immersed within an environment (Slater, 2018; Bird, 2020). VR
typically presents virtual scenarios enabling the participant to
interact (Düking et al., 2018). These VR scenarios, however, may
limit ecological validity, which refers to similarity of perceptual
information in the simulation to the real-world (i.e., competitive
environment) (Araujo et al., 2007).

360◦VR AS AN ALTERNATIVE

360◦VR overcomes potential ecological validity limitations of
VR, by presenting real-world immersive video, while also using
a head-mounted display (HMD) similar to VR [see Kittel et al.
(2020a) for a SWOT analysis of this technology]. Harris et al.
(2020) explain that physical fidelity and realism are vital for the
“VR equivalent of mental imagery” (p. 4), however, this suggests
that VR and MI are always separate. We suggest that 360◦VR
deserves consideration as the AO component of combinedAOMI
training as it provides realistic simulations that can be created in
an easy cost-effective manner. Realism is a vital component of
presence (Schubert et al., 2001), suggesting the vision provided
through 360◦VR would lead to greater presence than virtual
environments (i.e., VR). 360◦VR presented using a HMD allows
participants to scan the environment using head movements,
which in turn increases the visual flow perceived (Craig, 2013;
Pagé et al., 2019). Participants have the ability to attune to
cues they perceive to be relevant, rather than flat-screen video
providing a limited number of cues, given the less interactive
nature of the presentation. This is pertinent when considering the
importance of SoA. Flat screen video does not allow participants
to scan, potentially diminishing the SoA in AOMI. Incorporating
360◦VR as the AO component is likely to increase the perception
of SoA. This would allow a more personalized and exploratory
approach, as research has indicated that personalized MI can
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FIGURE 1 | Example of how 360◦VR and MI can be implemented for practicing skills in Australian Rules Football. Adapted from recommendations provided by Wright

et al. (2021).

provide benefits over generic MI (Wilson et al., 2010). An
important consideration is that individuals may not be able to
generate and control MI as prescribed by the coach or sport
psychologist (Wright et al., 2021). Therefore, 360◦VR presents
a viable addition to facilitate MI generation that could be the
missing link for providing the initial vivid imagery required.
Wright et al. (2021) explain that when using flat-screen video
as the AO component, the practitioner can control the viewing
perspective. However, 360◦VR enables the performer to go one
step further by allowing them the opportunity to scan through the
environment, as they would in competition. Figure 1 provides
an example of how 360◦VR and MI could be implemented
for practicing skills in Australian Rules Football adapted from
recommendations provided by Wright et al. (2021).

When developing 360◦VR, there are several technical
considerations for presenting this innovative footage. For
example, there are several different 360◦VR cameras available at
different costs. These can range from several hundred dollars
(2022 retail price) such as the 360fly4k (single lens) used by

Kittel et al. (2019) and the Ricoh Theta S 360◦ camera (dual
lens) used by Pagé et al. (2019). There are options that are
more expensive available such as six Go-Pros in a cube (Panchuk
et al., 2018). There is a trade-off between better quality cameras
that use multiple lenses, but require significantly more post-
production stitching the footage together. Although HMDs
present stereoscopic vision that allows the viewer to perceive the
depth of objects and increase representativeness (Farley et al.,
2020), the headsets can differentiate the quality of the video. For
example, there are lower costing (and lower resolution) such as
the Utopia 360 HMD (Pagé et al., 2019) to tethered HMDs with
in-built screens that allows other individuals to see the 360◦VR
through an attached display (Oculus Rift; Panchuk et al., 2018).
The Oculus Go may be an appropriate middle ground, given it
is affordable and uses an in-built screen, but is lower in price
and not tethered to a display. While VR may cause issues with
latency between their perception and the virtual avatar (for a
more technical overview of 360◦VR, please see Farley et al.,
2020), this is not an issue with 360◦VR as the participant is not
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interacting with a virtual avatar. Future research is required to
understand these technical elements of 360◦VR, such as utilizing
monoscopic versus stereoscopic views.

As highlighted earlier, presence is vital for simulated
environments, whether that be MI or AO in a virtual
environment. To be immersed and present, there needs to be a
strong sense of plausibility, namely the feeling that the situation
is actually occurring (Slater and Sanchez-Vives, 2016; Harris
et al., 2020). Given the high levels of ecological validity that
360◦VR provides (Kittel et al., 2019), this can offer increased
plausibility for MI for the individual to feel the situation is
real. A reported limitation of using 360◦VR is the difficulty
in combining perception and action, given participants are
observing a real environment, rather than interacting within a
virtual environment (Kittel et al., 2020a). Incorporating MI with
360◦VR technology as the AO component could help mitigate
this, as MI can include the kinesthetic (i.e., moving component).
Theoretically, this may increase the perception-action coupling
that is not always present when using 360◦VR technology
(Fadde and Zaichkowsky, 2018). 360◦VR has demonstrated
positive long-term behavioral changes in perceptual-cognitive
skills such as decision-making (Kittel et al., 2020b), which
could be attributed to greater embodiment, allowing greater
sensorimotor engagement for behavioral adaptations (Bohil et al.,
2011; Kilteni et al., 2012). The implementation of this technology
as the AO component could enhance the optimized long-term
memory changes gained with the combination of AOMI (Kim
et al., 2017; Wright et al., 2021). From a practical standpoint,
360◦VR presents an affordable option for practitioners to present
AO in a more immersive way. 360◦VR is significantly financially
more affordable and accessible than VR (Düking et al., 2018;
Kittel et al., 2020a). 360 cameras are relatively comparable
in price to standard cameras, and when presented through a
HMD, this is significantly less expensive than the associated
costs of developing and presenting a virtual environment in VR.

Importantly, 360◦VR presents a more novel presentationmethod
for AO, with this technology rated asmore enjoyable and relevant
as a perceptual-cognitive tool than screen-based video (Kittel
et al., 2020b).

CONCLUSION

In conclusion, 360◦VR provides an innovative tool to be used
in conjunction with MI in sport. Given the current climate,
in which athletes may be spending long periods in quarantine
situations before competitions, simulated training techniques
such as AOMI may prove an invaluable technique in the
athletes’ toolbox. The enhanced realism of 360◦VR lends a greater
sense of presence and embodiment for the individual to be
immersed in the imagined environment. Furthermore, the SoA
is improved by the individual’s ability to scan within a real-world
environment. As a result, 360◦VR allowsMI to provide consistent
simulations for athletes, with AO and MI combined for greater
neurophysiological stimulation. With the long-term behavioral
changes afforded by AOMI and 360◦VR, the integration of this
technology as the AO component would theoretically enhance
SoA and should be investigated further from a theoretical and
applied perspective in the literature.
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