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Abstract
Prion diseases (PrD) or transmissible spongiform encephalopathies (TSE) are invariably fatal and pathogenic neurodegenera-
tive disorders caused by the self-propagated misfolding of cellular prion protein  (PrPC) to the neurotoxic pathogenic form 
 (PrPTSE) via a yet undefined but profoundly complex mechanism. Despite several decades of research on PrD, the basic 
understanding of where and how  PrPC is transformed to the misfolded, aggregation-prone and pathogenic  PrPTSE remains 
elusive. The primary clinical hallmarks of PrD include vacuolation-associated spongiform changes and  PrPTSE accumula-
tion in neural tissue together with astrogliosis. The difficulty in unravelling the disease mechanisms has been related to the 
rare occurrence and long incubation period (over decades) followed by a very short clinical phase (few months). Additional 
challenge in unravelling the disease is implicated to the unique nature of the agent, its complexity and strain diversity, 
resulting in the heterogeneity of the clinical manifestations and potentially diverse disease mechanisms. Recent advances in 
tissue isolation and processing techniques have identified novel means of intercellular communication through extracellular 
vesicles (EVs) that contribute to  PrPTSE transmission in PrD. This review will comprehensively discuss  PrPTSE transmission 
and neurotoxicity, focusing on the role of EVs in disease progression, biomarker discovery and potential therapeutic agents 
for the treatment of PrD.
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Introduction

Prion diseases (PrD) or transmissible spongiform encepha-
lopathies (TSE) are progressively rapid and fatal neurode-
generative diseases (NDs) with a defining hallmark of vacu-
olation in the brain tissue (Besnoit and Morel 1898). Similar 
to other NDs with specific protein misfolding–related neu-
rodegeneration, PrD consists of a pathogenic form  (PrPTSE) 
of normal cellular prion protein  (PrPC) (Prusiner 1998). 
However, unlike other NDs, the unique interspecies trans-
missibility and pathogenic nature of PrD make PrD more 
hazardous (Beck et al. 1969; Gajdusek et al. 1966; Gibbs 
et al. 1968). There are various forms of animal and human 

prion diseases, with one of the highly studied animal PrD 
being bovine spongiform encephalopathy (BSE; also known 
as ‘mad cow disease’) in cattle which was discovered in the 
UK for the first time in 1984–1985 (Wells et al. 1987). Soon 
after the UK BSE outbreak, a new form of human prion dis-
ease emerged with distinct pathophysiology termed variant 
CJD (vCJD) (Will et al. 1996). Thus, the spread of vCJD has 
been associated with the consumption of BSE-infected meat 
products. Other animal prion diseases include transmissible 
mink encephalopathy (TME) in mink, chronic wasting dis-
ease (CWD) in cervids, feline spongiform encephalopathy in 
domestic cats and exotic ungulate encephalopathy (EUE) in 
Nyala, greater kudu and oryx. A new animal prion disease in 
the dromedary camel of Algeria has been detected with dif-
ferent biochemical properties of PK-resistant prion protein 
to that of BSE and scrapie (Babelhadj et al. 2018).

Human PrD are differentiated into three types based 
on aetiologies which include genetic, sporadic and 
acquired. PrD, which fall under the genetic aetiolo-
gies due to point mutations or octapeptide repeat inser-
tions in the PRNP gene, includes familial CJD (fCJD), 
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Gerstmann–Stäussler–Scheinker (GSS) and fatal familial 
insomnia (FFI) while sporadic CJD (sCJD) presents with 
disease aetiology from unknown origins. PrD with acquired 
aetiologies from exposure to pathogenic prions includes 
iatrogenic CJD (iCJD), vCJD, and kuru. To date, vari-
ous human-to-human iCJD transmissions occurred due to 
incomplete decontamination of surgical equipment, corneal 
grafting, dura mater grafting, cadaveric pituitary-derived 
growth hormone or gonadotrophin, and blood transfusions 
(Brown et al. 2006). The approximate prevalence of human 
PrD equates to 85–90% for sCJD cases, 10% for fCJD cases 
and less than 2–5% for acquired CJD (Chen and Dong 2016). 
Although the acquired CJD cases are of lower prevalence, 
the experimental disease transmissibility rate from humans 
to primates was highest in acquired CJD compared to sCJD 
and fCJD (Brown et al. 1994).

Protein‑only hypothesis of prion replication

Extensive purification of the scrapie prion protein with 
subsequent sodium dodecyl sulphate (SDS) denaturation, 
proteinase K (PK) treatment and high-performance liq-
uid chromatography (HPLC) purification yielded the sig-
nificant component of a single protein ranging 27–30 kDa 
in size (PrP 27–30) (Prusiner et al. 1984). This purified 
PrP27–30 amino acid sequencing and the direct amino acid 
sequencing of the purified scrapie rods produced identical 
15 N-terminal amino acid residues indicating that scrapie 

rods are a polymer of identical proteins. Next, the same 
gene encoded the healthy and disease-associated forms of 
prion protein in both human and mouse (Basler et al. 1986, 
Oesch et al. 1985). Moreover, a single uninterrupted cod-
ing gene for the prion protein suggests that the difference 
in healthy and scrapie associated prion protein could arise 
from post-translational modifications, sequence variations 
or conformational changes, not due to an alternative splic-
ing mechanism (Basler et al. 1986). Subsequent experiments 
transferring mouse scrapie prions into mice devoid of prion 
protein demonstrated that these did not develop the disease 
and showed no behavioural changes (Bueler et al. 1993). All 
these attempts to determine the infectious nature of PrD led 
to the formation of the protein-only hypothesis, which con-
siders the  PrPTSE isoform of the normal  PrPC protein as the 
sole causative agent of disease transmission (Prusiner 1998) 
(Fig. 1). The generation of the  PrPTSE isoform is either due 
to a gene mutation or via exogenous  PrPTSE exposure, and 
 PrPTSE would subsequently seed propagating the conversion 
of  PrPC into  PrPTSE in an autocatalytic fashion.

PrPC structure, biogenesis and physiological 
function

PrPC has high endogenous expression in neurons and is 
encoded by only one exon out of three exons in the  PrPC 
gene at chromosome 20 (Basler et  al. 1986). The 253 
amino acid sequence of prion protein contains a signal 

Fig. 1  Schematic diagram illustrating the protein-only hypothesis. 
Here, the pathogenic form of prion protein  (PrPTSE) is the sole causa-
tive agent of the disease which acts as a seed in the cyclic conversion 
of normal cellular prion  (PrPC) into the misfolded pathogenic isoform 

 (PrPTSE) in an autocatalytic fashion. These newly formed  PrPTSE fur-
ther acts as a seed to this conversion mechanism to form  PrPTSE oli-
gomers and fibrils. This figure was generated using Biorender
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peptide in the first 22 amino acids, which is cleaved once it 
reaches the ER.  PrPC undergoes various post-translational 
modifications, which add a glycosylphosphatidylino-
sitol (GPI) anchor at the C terminus (residue 230) and 
two N-linked glycans at residues 181 and 197. Nuclear 
magnetic resonance (NMR) examination of  PrPC struc-
ture revealed an intrinsically disordered N-terminal tail 
(residues 23–128), three α-helical regions (two of them 
linked by a disulphide bridge) and a short anti-parallel 
β-sheet (Riek et al. 1997). The N-terminal region contains 
four identical, highly conserved octapeptide repeats (resi-
dues 51–91) (Kim et al. 2008). In the mature form,  PrPC is 
translocated to the outer leaflet of the plasma membrane in 
lipid raft regions and a significant portion to the non-raft 
regions (Sarnataro et al. 2004; Sunyach et al. 2003). The 
cell surface  PrPC is rapidly endocytosed and recycled back 
via coated pits (Shyng et al. 1994; Sunyach et al. 2003). In 
the cytosol, most  PrPC is found in the multivesicular bod-
ies (MVBs), where it is packaged in extracellular vesicles 
(EVs; endosomal derived exosomes) and released into the 
extracellular environment (Guo et al. 2015; Mironov et al. 
2003; Yim et al. 2015).

Although early experiments showed  PrPC knock-out mice 
exhibited no significant changes in behaviour and phenotype, 
a growing number of cell culture–based models attribute 
multimeric functions to  PrPC (Büeler et al. 1992). Using a 
mass spectrometry approach, Zafar and colleagues (2011) 
showed many  PrPC binding partners with primary predicted 
functions, including cell growth, signal transduction, cel-
lular metabolism and stress pathways (Zafar et al. 2011). In 
addition,  PrPC maintains neuronal development (Steele et al. 
2006), neurite outgrowth (Santuccione et al. 2005), syn-
apse health (Laurén et al. 2009; Šišková et al. 2013), myelin 
maintenance (Bremer et al. 2010; Küffer et al. 2016), cellular 
metal ion homeostasis (Pauly and Harris 1998; Thompsett 
et al. 2005; Watt et al. 2012), circadian rhythm regulation 
(Huber et al. 2002; Tobler et al. 1996), protection from stress 
(Rachidi et al. 2003; Zanata et al. 2002) and neural cell 
adhesion molecule 1 (NCAM 1) deregulations (Mehrabian 
et al. 2016; Schmitt-Ulms et al. 2001). Most recently, the N- 
terminal copper-binding site of  PrPC was demonstrated to be 
essential for neuronal protection and neuritogenesis (Nguyen 
et al. 2019). In addition, to overcome the issue with genetic 
artefacts associated to lack of proper  PrPC knockout mod-
els in several of the  PrPC functions indicated above, a more 
physiologically relevant co-isogenic Prnp0/0 mouse model 
(PrnpZH3/ZH3) was developed (Matamoros-Angles et  al. 
2022; Nuvolone et al. 2016). The co-isogenic  PrPC knockout 
model studies demonstrated a vital role in peripheral myelin 
maintenance, neural network formations, synaptic regula-
tions and cognitive abilities (Matamoros-Angles et al. 2022; 
Nuvolone et al. 2016). Thus, multiple functions of  PrPC sug-
gest that the abnormal conformation due to conversion into 

 PrPTSE generates potential disturbances in various biological 
processes leading to pathogenesis in PrD.

Structure of  PrPTSE

To elucidate the nature of  PrPTSE and its autocatalytic propa-
gation, it is essential to understand the structure of  PrPTSE. 
Unlike  PrPC, the aggregated, insoluble and variably post-
translationally modified nature of  PrPTSE has hampered high-
resolution structural identification. Early biophysical analy-
sis demonstrated that  PrPTSE possesses an increased β-sheet 
content and reduced α-helix content to  PrPC (Caughey et al. 
1991). Further advancement on the structural analysis of 
 PrPTSE includes electron microscopy of N-terminally trun-
cated isomorphous 2D scrapie prion crystals (Wille et al. 
2002) and the refinement in modelling of this structure 
(Govaerts et al. 2004). Together, these studies predicted 
that the amyloids contain the trimeric parallel left-handed 
β-sheet structure of  PrPTSE. The previously predicted model 
incorporated the α-helix from the  PrPC structure, which was 
ruled out with hydrogen–deuterium exchange-coupled mass 
spectrometry analysis of mammalian  PrPTSE (Smirnovas 
et al. 2011). Although consistent with the previous electron 
crystallography study, the  PrPTSE core consisted of β-sheet 
structure with short turns and/or loops.

Subsequent studies using transgenic mice expressing 
mammalian GPI-less  PrPTSE exhibiting limited proteolysis 
with proteinase K coupled mass spectrometry predicted 
the four-rung β-solenoid (4RβS) model (Silva et al. 2015; 
Vazquez-Fernandez et al. 2012). The 4RβS model consists 
of proteinase K–sensitive, flexible loops or stretches that 
connect the highly compact β-strand solenoid core. This 
4RβS core of  PrPTSE originally came from the X-ray fibre 
diffraction experiment of infectious prions (Wille et al. 2009). 
Recent support of the predicted 4RβS model of  PrPTSE came 
from the electron cryomicroscopy analysis of GPI-less amy-
loid fibril, demonstrating an average fibril repeating unit of 
19.1 Å (Vazquez-Fernandez et al. 2016). Next, a comprehen-
sive atomistic analysis using experimental and computational 
findings presented a more physically plausible model sup-
porting 4RβS and with the stability equivalent to a naturally 
occurring β-solenoid protein (Spagnolli et al. 2019). The 
simulations performed in this study constructed an underly-
ing mechanism of  PrPTSE autocatalysis, which proposed a 
sequential addition of rungs where the C-terminal rung of 
the β-solenoid acts as a template in the conversion of  PrPC to 
 PrPTSE. Strengthening the 4RβS model of  PrPTSE, isolation of 
infectious BSE prions for electron microscopy experiments 
and three-dimensional construction analysis showed rod-
shaped fibrillar morphology with configuration aligning to 
that of the compact 4RβS model (Kamali-Jamil et al. 2021). 
While most amyloid studies support the four-rung β-solenoid 
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model, other studies using solid-state NMR and side-directed 
spin labelling in recombinant amyloid fibrils demonstrated 
that  PrPTSE fibrils exhibit parallel-in-register intermolecular  
β-sheet (PIRIBS)–based structure (Cobb et al. 2007; Groveman  
et al. 2014; Tycko et al. 2010). A recent study supporting 
PIRIBS model with near atomic resolutions from electron 
cryomicroscopy was obtained from fully infectious scrapie 
prion isolates (Kraus et al. 2021). To better solve the structure 
of  PrPTSE, both models should be considered to incorporate 
 PrPTSE complexity regarding different conformations and 
infectivity levels.

Prion strain variation and species barriers

The numerous types of prion disease find their origins in dif-
ferent strains of the pathogenic prion protein that exhibit differ-
ent biochemical profiles, incubation times and distribution of 
brain  PrPTSE lesions. A new form of prion strain can be estab-
lished when the  PrPTSE from one animal species is transmitted 
and serially passaged to a different species (Kimberlin and 
Walker 1978). Primarily, strain tropism is shaped from the host 
 PrPC gene sequence and other possible host environmental fac-
tors such as lipids, RNA, chaperones and glycosaminoglycans 
(Baron and Caughey 2003; Geoghegan et al. 2007). Prion dis-
ease transmission from one animal species to another can have 
a varying degree of species barrier based on the efficiency of 
disease propagation and onset of clinical symptoms, which has 
been linked to the prion strain differences. A classic example 
of this is the successful infection of transgenic mice expressing 
human prions but not the wild-type mice when infected with 
human sCJD prion seeds (Collinge et al. 1995).

Conversely, vCJD prions successfully infected mice 
 PrPC more efficiently than transgenic mice expressing only 
human  PrPC (Collinge et al. 1996) (Fig. 2). Later, it was 
discovered that transgenic mice expressing human  PrPC 
with codon 129 methionine homozygosity were necessary 
for causing vCJD disease phenotype and circumventing 
the species barrier (Wadsworth et al. 2004). In vitro stud-
ies demonstrated that species barriers could be bypassed by 
single amino acid residue substitutions in a critical region of 
the  PrPC sequence that removes the variations between two 
species (Jones and Surewicz 2005; Vanik et al. 2004). More 
importantly, another in vitro study demonstrated that the 
differences in secondary structures of  PrPTSE fibrils result 
in a species barrier, with new strains bypassing the species 
barrier inheriting the secondary structure and morphology 
of the seed fibril (Jones and Surewicz 2005). This implies 
that the different conformations of  PrPTSE are transmitted 
as different quaternary structures to form the basis of the 
species barrier. A novel study utilising asymmetric-flow 
field-flow fractionation (AF4) isolation of infectious prions 
from different prions strains for dynamic and multi-angle 

light scattering (DLS/MALS) analysis showed quaternary 
structure difference resulting in  PrPTSE strain heterogeneity 
(Cortez et al. 2021).

Strain-specific tropism produces various clinicopatho-
logical features and regional specific  PrPTSE deposition in 
addition to variation in incubation time and disease dura-
tion. In terms of M1000 and MU02 prion strains, which are 
mouse adapted human prion strains of familial and sporadic 
origins, respectively, both the thalamus and hippocampus 
demonstrated spongiform changes. At the same time,  PrPTSE 
plaques were present only in thalamus for MU02 (Lawson 
et al. 2008). The molecular basis of strain tropism-related 
unique disease variables has been associated with the dif-
ferent conformations of  PrPTSE. Moreover, differences in the 
clinicopathological features between two familial forms of 
PrD, which included widespread spongiform degeneration 
in fCJD and selective thalamic nuclei atrophy FFI, resulted 
from different  PrPTSE isoforms determined by a codon 129 
methionine/valine (M/V) polymorphism (Goldfarb et al. 
1992). Similarly, in terms of distinct pathology of sCJD, 
the associated variables were demonstrated to be a M/V 
polymorphism at codon 129 of PRNP as well as different 
PK cleavage profiles of protease-resistant core fragments 
 (PrPres) (Hill et al. 2003; Kobayashi et al. 2007; Parchi et al. 
2009). Based on the migration of the unglycosylated PK 
resistant  (PrPres) fragment on SDS-PAGE gels, three dif-
ferent  PrPres subtypes have been identified, which include 
type 1 (21 kDa), type 2 (19 kDa) and type intermediate 
(i;20 kDa) (Parchi et al. 2009). Recently, a study demon-
strated the involvement of the  PrPC GPI anchor in deter-
mining the species barrier by detecting increased infectiv-
ity of GPI-deficient mouse scrapie  PrPTSE to the tg44 mice 
overexpressing human  PrPC (Race et al. 2015). Although 
structural differences of  PrPTSE have been proven to be the 
primary source of the species barrier, other host environ-
mental factors should be considered for having a crucial role 
in transferring infectivity.

Protein misfolding cyclic amplification (PMCA) is a tech-
nique that converts normal brain homogenate  PrPC substrate 
into pathogenic  PrPTSE form using multiple sonication/incu-
bations in the presence of a  PrPTSE seed. It is concerning that 
strain-specific interspecies barrier-crossover was detected 
with PMCA when stabilised or adapted cervid  PrPTSE 
seed successfully converted transgenic mice overexpress-
ing human  PrPC substrate (Barria et al. 2011). Successful 
adaptation of this natural source–extracted cervid  PrPTSE 
seed was performed with one or two passages in a PMCA 
experiment using mice overexpressing cervid  PrPC as a sub-
strate and in an in vivo experiment using mice overexpress-
ing cervid  PrPC. In addition, other studies involving strain 
adaptation using in vivo models and PMCA experiments 
demonstrated that the adapted strain had increased infectiv-
ity in subsequent passaging to the adaptation species (Barria 
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et al. 2011; Chianini et al. 2012). However, one recent study 
demonstrated the existence of a non-adaptive form of prion 
replication using in vivo models and PMCA, with trans-
genic mice expressing horse and deer  PrPC retaining strain 

properties of source  PrPTSE (Bian et al. 2017). Overall, it 
is essential to note that the interspecies barrier potentially 
depends both on the strain types and the degree of the strain 
adaptation.

Fig. 2  Schematic diagram illustrating the classical model of species 
barrier associated strain differences. Only mice expressing human 
cellular prion protein  (PrPC) succumb to disease, while wild-type 
mice remain resistant when injected with sporadic CJD (sCJD) prion 

strain. However, infection with a different prion strain of variant CJD 
(vCJD) is capable of bypassing the species barrier, and wild-type 
mice succumb to the disease. This figure was generated using Bioren-
der
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PrPTSE and neurotoxicity

Even though neuronal loss and  PrPTSE deposition are the 
characteristic features of prion-infected brains, the mecha-
nism of neurotoxicity has remained elusive. However, sev-
eral studies have investigated the synergistic effect gener-
ated by the interaction of  PrPC and  PrPTSE, providing some 
explanation on the neurotoxic effects of  PrPTSE. Grafting 
neural tissue overexpressing  PrPC into  PrPC null mice brains 
and intracerebrally injecting scrapie prions produced severe 
histopathological changes exclusively in the grafted tissue 
(Brandner et al. 1996). Significant amounts of  PrPTSE were 
further detected in the surrounding brain regions devoid of 
 PrPC which failed to elicit histopathological changes even 
after 16 months. The discovery that  PrPC expression in the 
host species was directly proportional to the clinical onset 
of the disease suggested that the  PrPC/PrPTSE interaction 
catalyses the production of neurotoxic species (Sandberg 
et al. 2011). Moreover, a growing body of evidence suggests 
cell membrane  PrPC elicits downstream neurotoxicity fol-
lowing its interaction with  PrPTSE (Altmeppen et al. 2015; 
Herrmann et al. 2015; Resenberger et al. 2011a).

It has been demonstrated that the small oligomeric unit 
of PrP with a mass equivalent to 14–28 PrP units exhib-
its more infectivity than higher fibrillar amyloids (Silveira 
et al. 2005). Further studies demonstrated that the small 
soluble  PrPTSE oligomers are also the agents of neurotoxic-
ity (Kazlauskaite et al. 2005; Minaki et al. 2009; Sandberg 
et al. 2011; Simoneau et al. 2007). Early neurotoxic molec-
ular disturbances have been implicated in the impairment 
of the ubiquitin/proteasome system (Deriziotis et al. 2011; 
Kristiansen et al. 2007; McKinnon et al. 2016; Thibaudeau 
et al. 2018) and persistent translational repression in global 
proteins by activating the unfolded protein response (UPR) 
through increased phosphorylated translation initiation fac-
tor 2α (eIF2α-P) (Halliday et al. 2015; Moreno et al. 2012). 
Moreover, several studies show impairment of autophagy as 
a mechanism of neurotoxicity in PrD, with the enhancement 
of autophagy promoting clearance of intracellular  PrPTSE 
deposits (Cortes et al. 2012; Thellung et al. 2018; Xu et al. 
2012). Abnormal autophagic activation and neuronal apop-
tosis were also observed following treatment with highly 
toxic misfolded prion protein, with the underlying mecha-
nisms including severe nicotinamide adenine dinucleotide 
 (NAD+) starvation followed by ATP depletion (Zhou et al. 
2015). In addition, p38 mitogen-activated protein kinase 
(MAPK) synaptic degeneration–associated neurotoxicity 
mechanisms were detected upon treating hippocampal neu-
rons with  PrPTSE. An inhibition of this pathway reversed the 
neurodegeneration process (Fang et al. 2018). A very recent 
study with an in vivo spontaneous model of TSE showed 
a pathogenic mechanism that accounted for endoplasmic 

reticulum and proteasomal stress with elevated levels of pro-
tein kinase RNA-like endoplasmic reticulum kinase (PERK), 
immunoglobulin heavy chain-binding protein (BiP), protein 
disulphide isomerase (PDI) and ubiquitin at both preclinical 
and clinical mice (Otero et al. 2021). Together, this indi-
cates that the neurodegenerative processes of  PrPTSE extend 
beyond misfolded protein aggregation and include dysregu-
lated cellular metabolism, signalling pathways and proteo-
stasis mechanisms, highlighting the multifaceted nature of 
PrD.

PrPTSE conversion and trafficking

The molecular mechanisms governing the autocatalytic 
conversion of  PrPC into  PrPTSE are still unclear. Hydrogen– 
deuterium exchange-coupled mass spectrometry demon-
strated the region spanning residues from 80 to 90 to the 
C-terminal end undergoing refolding during the conversion 
of  PrPC into  PrPTSE (Smirnovas et al. 2011). Early insights 
into this process suggested the conversion of  PrPC into an 
intermediate product (PrP*) (Cohen et al. 1994) or second 
product by redox reactions to cross the energy barrier for 
 PrPTSE formation (Lee and Eisenberg 2003). PMCA demon-
strated that co-factor molecules like RNA or phosphatidyle-
thanolamine (PE) play crucial roles in regulating the confor-
mation, infectivity and strain properties of  PrPTSE (Deleault 
et al. 2012; Supattapone 2014). A recent study using PMCA 
supported the critical role of cofactors in the conversion pro-
cess, which required glycosaminoglycans (GAGs), including 
heparan sulphate and the analogue, heparin (Imamura et al. 
2016). Altogether, these studies suggest that the refolding of 
 PrPC in the presence of seed  PrPTSE happens at the C-terminal  
region of  PrPC and requires environmental host factors or  
cofactors assisting the process.

Mechanisms of  PrPTSE uptake are poorly understood 
due to the difficulty in differentiating  PrPTSE from  PrPC. 
A growing body of in vitro studies examining major inter-
acting partners demonstrated that laminin receptor protein 
(LRP) (Gauczynski et al. 2006) and low-density lipoprotein 
receptor-related protein (LRP1) (Jen et al. 2010) may take 
part in  PrPTSE uptake, whereas  PrPC (Greil et al. 2008) and 
GAGs (Wolf et al. 2015) may not be crucial for this process. 
A recent study demonstrated that internalisation of  PrPTSE is 
followed by trafficking through the endo-lysosomal pathway 
and endocytic recycling complex (Yamasaki et al. 2014). 
Lysosomes have been designated as the significant disin-
tegration site of the internalised  PrPTSE (Choi et al. 2014; 
Krejciova et al. 2014). The detection of nascent formed 
 PrPTSE residing in the amyloidogenic fibrillar strings on the 
cell surface suggested a potential role of the plasma mem-
brane during  PrPTSE trafficking and conversion (Rouvinski 
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et al. 2014). Another study using immunofluorescence and 
electron microscopy supported the plasma membrane and 
endolysosomal compartments as potential conversion sites, 
with extracellular trafficking occurring via exosomes, a 
specific subclass of EVs (Veith et al. 2009). A subsequent 
study demonstrated the reduction and increase of  PrPTSE 
content when blocking MVB maturation and enhancing 
cargo recycling through the MVB, respectively (Yim et al. 
2015). Experiments involving inhibition of the neutral sphin-
gomyelinase pathway and stimulating exosome production 
demonstrated decreases in intercellular  PrPTSE infectivity 
and increased  PrPTSE content, respectively (Guo et al. 2016). 
Together, these studies indicate that the MVB could be a 
promising  PrPTSE conversion site, and exosomes could play 
a significant role in intercellular infectivity promoting the 
propagation of the disease.

PrPTSE spread throughout the body

The various aetiologies of PrD range from eating BSE-
infected meat products in vCJD to corneal grafting or blood 
transfusion in iCJD, indicating that  PrPTSE spreads from the 
periphery to the brain. Following intraperitoneal injection 
of mice with scrapie prion, infection was initially found 
in the lymphoreticular system. The spleen was the major 
accumulation site before reaching the brain (Dickinson and 
Fraser 1969a, 1969b). Moreover, in many cases,  PrPTSE has 
been found to accumulate in the follicular dendritic cells of 
lymphoid tissues (Jeffrey et al. 2000; Kitamoto et al. 1991). 
Subsequent experiments involving functional loss or inac-
tivation of follicular dendritic cells resulted in the delay of 
neuroinvasion as well as decreased susceptibility to scrapie 
(Mabbott et al. 2000, 2003). Recently, intracerebral inocula-
tion of interspecies  PrPTSE in ovine and human transgenic 
mice demonstrated preferential  PrPTSE replication in splenic 
versus neuronal tissues (Beringue et al. 2012).

However, the mechanisms facilitating  PrPTSE spread from 
different regions of the body to the brain remain largely 
unknown. One potential route supported by immunohisto-
chemical evidence suggests that  PrPTSE undergoes retrograde 
transmission in vagus and splanchnic nerves (McBride et al. 
2001). In addition, the molecular mechanism underlying the 
intercellular prion spread has been proposed to primarily 
involve (1) direct cell-to-cell contact (Kanu et al. 2002; 
Paquet et al. 2007), (2) tunnelling nanotubes (Gousset et al. 
2009; Langevin et al. 2010), (3) GPI painting (Baron et al. 
2002) and (4) extracellular vesicles (EVs) (Fevrier et al. 
2004; Guo et al. 2016; Mattei et al. 2009; Yim et al. 2015) 
(Fig. 3).

EVs and their association with  PrPC 
and  PrPTSE

EVs are small and non-synaptic, with significant bio-
logical and pathological functions. They carry biological 
macromolecules, including proteins and genomic material, 
from cells through the extracellular fluids. Both eukaryotic 
and prokaryotic cells produce EVs. These are secreted by 
all cell types in the nervous system, becoming increas-
ingly studied as a new method of intercellular communi-
cation and as a source of disease biomarkers. EVs include 
apoptotic bodies, microvesicles (also called ectosomes) 
and exosomes classified based on biogenetic pathway 
and size. Apoptotic bodies (500–5000 nm) arise from 
the cell fragmentation during apoptosis, microvesicles 
(200–1000 nm) from outward budding and shedding from 
the plasma membrane, and exosomes (40–200 nm) which 
are released intercellularly following production via the 
endosomal pathway and fusion of the MVB to the plasma 
membrane (Kalra et al. 2012; Thery et al. 2009) (Fig. 4).

As described above (see Structure of PrPTSE), the evi-
dence for packaging of prion protein in the EVs provides 
a novel mechanism of prion-induced intercellular com-
munication. In a recent study, EVs derived from the brain 
demonstrated the presence of enriched prion protein which 
was further increased after transient ischaemia (Brenna 
et al. 2020). Moreover, in the same study where brain EVs 
were isolated from wild-type and  PrPC knockout mice, EV 
uptake from the  PrPC knockout model by primary neurons, 
astrocytes and microglia was significantly faster and more 
efficient. This indicates that the association of  PrPC on the 
EVs plays a vital role in the physiological and pathophysi-
ological conditions that could be targeted for therapeutic 
roles. A new study targeting astroglial communication and 
the movement of EVs along the neuronal surface revealed 
that a hydrophilic interaction of EV prion protein and neu-
ronal prion protein is required for this movement in the 
majority of EVs (D'Arrigo et al. 2021). This association 
of EVs and prion protein for the neuron surface movement 
reveals the importance in intercellular communication 
where EVs can move across the axonal surface to reach 
the target sites. In addition,  PrPC-associated EVs isolated 
from human plasma promote anti-inflammatory effects 
on LPS-induced macrophages (Mantuano et al. 2022). 
These studies collectively reveal a multifunctional role of 
 PrPC-associated EVs in processes including EV uptake 
mechanisms, movements and the intercellular communi-
cations. Thus, the conversion of  PrPC into  PrPTSE would 
suggest a significant impact on EVs’ biophysical activities 
for intercellular communications.
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Initial studies demonstrating exosomes could carry 
 PrPTSE capable of infectivity transfer was shown in cell 
model isolated exosomes with immunogold labelling on 
guanidium-treated samples to specifically probe  PrPTSE 
(Fevrier et al. 2004; Leblanc et al. 2006). A subsequent 
study isolated exosomes from infected neuronal cells to 
demonstrate in vitro and in vivo  PrPTSE association with 
exosomes and the ability of these to transfer infectivity 
(Vella et al. 2007). The isolated exosomes containing  PrPTSE 
were shown to transfer infectivity to healthy neuronal cells 
and non-neuronal cells in culture, indicating that infectivity 
transfer is possible across different cell types. Moreover, the 
inoculation of mice with these exosomes containing  PrPTSE 
resulted in the development of clinical prion disease. While 
EVs are present in all kinds of biofluids, detection of prion 
infectivity in the blood (Concha-Marambio et al. 2016), milk 
(Gough et al. 2009; Maddison et al. 2009), urine (Gonzalez-
Romero et al. 2008), cerebrospinal fluid (Foutz et al. 2017; 
Murayama et  al. 2014), and EVs isolated from plasma  
(Cervenakova et al. 2016; Saá et al. 2014) suggests that EVs 
could be a significant route of disease spread, travelling great 
distances within the body. Very recently in cases of sCJD, 

 PrPTSE was found to accumulate through regions of the eye, 
suggesting that tear EVs in prion-infected patients could 
also potentially carry prion infectivity (Orrù et al. 2018). 
Using in vitro models, cellular prion infectivity and exoso-
mal release of prion infectivity were found to be associated 
with the endosomal sorting complexes required for transport 
(ESCRT)-dependent and -independent pathways of exosome 
release (Vilette et al. 2015). In addition, the transgenic RK13 
cell line expressing ovine, mouse and vole  PrPC was used 
to show different prion strains that exhibit specific differen-
tial release of  PrPTSE associated with exosomes (Arellano- 
Anaya et  al. 2015). This study demonstrated that most 
prion infectivity was associated with the exosomes from the 
prion-infected conditioned media, and ovine 127S infected 
RK13 secreted 20- to 40-fold more PrPTSE in exosomes 
than exosomes murine 22L and vole prions. Together, these 
studies indicate that EVs may be a significant source of prion 
infectivity and highlight how understanding the mechanisms 
of prion EVs’ cargo loading and cellular uptake could pro-
vide novel insight into the dysregulated biochemical func-
tions and downstream disease processes.

Fig. 3  Schematic diagram showing different mechanisms of prion 
spread. Possible mechanisms of pathogenic prion protein  (PrPTSE) 
spread to the brain from distal organs include extracellular vesicle 
(EV)–mediated transfer (1) or retrograde transfer across vagus and 

splanchnic nerves (2). The intercellular  PrPTSE transfer involves cell–
cell contact a, tunnelling nanotubules b and EVs c. This figure was 
generated using Biorender
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EVs as a source of biomarkers for prion 
disease

EVs are regarded as a source of biomarkers because of their 
superior properties as a storage unit for various biochemical 
markers like nucleic acids, proteins and lipids. Moreover, 
their accessibility from biofluids makes them an attrac-
tive candidate for minimally invasive diagnostic purposes. 
EVs extracted from the blood plasma and serum are highly 
enriched with microRNA (miRNA), and many have pre-
dicted targets in crucial neuronal signalling pathways. This 
suggests that EVs could carry brain-associated miRNAs 
and into the blood (Cheng et al. 2014), an idea supported 
by studies isolating neural-derived EVs in the blood using 
neural cell adhesion molecule L1 (L1CAM) which is highly 
expressed in the brain (Fiandaca et al. 2015; Kapogiannis 
et al. 2015). Further evidence of brain EVs detected in the 
blood includes EVs isolated from blood samples of mice that 
have received human glioma transplants (García-Romero 
et al. 2017). In addition, brain tissue–derived EV isolation 

can enhance the precision of diagnosis related to the affected 
region when correlated together with the blood-based differ-
ential miRNAs and proteins in EVs for biomarker discovery 
(Cheng et al. 2021).

Selective packaging of miRNAs in EVs

Small non-coding miRNA (20–22 nucleotides long) play key 
roles in gene regulation either by inducing mRNA degrada-
tion or repression of mRNA translation. A plethora of miR-
NAs are present in the brain, indicating that complex physi-
ological and neuronal development functions of miRNAs are 
more enriched in the brain regions, which shows the complex 
physiological functions of the brain (Sempere et al. 2004; Bak 
et al. 2008). miRNAs function with a dual nature consisting of 
divergent actions, meaning single miRNAs can target regula-
tion of multiple genes, and/or convergent actions, where two 
or more miRNAs target the same untranslated region (UTR) 
(Lukiw and Alexandrov 2012). Many experiments have 
shown the involvement of miRNA in cellular stress-induced 

Fig. 4  Schematic diagram showing extracellular vesicle (EV) genera-
tion and pathogenic prion protein  (PrPTSE) localisation in EVs. Small 
EVs (exosomes; < 200  nm) are generated via endosomal pathways 
when the multivesicular bodies (MVBs) fuse with the plasma mem-
brane. These carry several classes of marker protein including tetras-
panins, endosomal sorting complex required for transport (ESCRT) 
proteins, neutral sphingomyelinase 2 (nSMase2), heat shock pro-

teins (HSPs) and integrins as defined in the Minimal Information for 
Studies of Extracellular Vesicles (MISEV) guidelines (Théry et  al. 
2018). Microvesicles are generated via blebbing or shedding from 
the plasma membrane, and apoptotic bodies are generated via cellular 
fragmentation in cells undergoing apoptotic cell death. Studies have 
demonstrated  PrPTSE localisation in the plasma membrane, endolyso-
somal system including the endoplasmic reticulum (ER), and EVs
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neurodegeneration together with the presence of toxic sub-
stances like reactive oxygen species (ROS) and polyglu-
tamine (Bilen et al. 2006; Lukiw and Pogue 2007). Moreo-
ver, miRNA stability is essential for neuronal survival, with 
ablation of the miRNA generating enzyme Dicer in mouse 
Purkinje cells causing progressive loss of miRNA, resulting 
in slow cerebellar degeneration (Schaefer et al. 2007).

Potential mechanisms underlying miRNA packaging 
into EVs have been the subject of intense scrutiny in several 
recent studies. Knockdown of neutral sphingomyelinase 2 
(nSMase2), a regulator of ceramide biosynthesis, reduced 
exosomes as well as miRNA secretion, an effect that was 
reversed following overexpression (Kosaka et al. 2010). 
Furthermore, nSMase2-dependent regulation of exoso-
mal miRNAs from cancer cells was capable of promoting 
angiogenesis and metastasis (Kosaka et al. 2013). However, 
the mechanism of nSMase2 regulation of miRNA packag-
ing into exosomes has remained elusive. Specific sequence 
motifs in miRNA are now known to interact with RNA 
binding proteins, a mechanism that both prevents degra-
dation and acts as a vector for cellular sorting machinery. 
In its sumoylated form, the heterogeneous nuclear ribonu-
cleoprotein A2B1 (hnRNPA2B1) recognises and binds the 
3′ portion of miRNA containing the GGAG motif, which 
controls the loading of miRNA into exosomes (Villarroya-
Beltri et al. 2013). Similarly, knockout or knockdown of 
Argonaute2 (Ago2) in cell models reduced preferentially 
exported exosomal miRNAs such as miR-150, miR-100 and 
let-7a (Guduric-Fuchs et al. 2012). The sorting of Ago2 into 
exosomes was further shown to be regulated by Kirstan rat 
sarcoma-mitogen-activated protein kinase kinase (KRAS-
MEK) signalling, with inhibition of this signalling increas-
ing sorting of Ago2 into exosomes (McKenzie et al. 2016). 
The Y-box protein 1 is another candidate RNA binding pro-
tein that potentially contributes to the selective packaging 
of miRNA into exosomes (Shurtleff et al. 2016). Shurtleff 
and colleagues (2016) demonstrated that Y-box protein 1 
is co-packaged with synthetic miR-223-biotin in a cell-free 
reaction system captured using streptavidin-coated beads 
and detected using streptavidin tandem-mass spectrometry. 
Similarly, major vault protein (MVP) was captured from 
exosomal lysate with a bead-based streptavidin–biotin-
miR-193a system and detected with matrix-assisted laser 
desorption ionisation-time of flight (MALDI-TOF) mass 
spectrometry, suggesting that MVP binds exosomal miR-
193a and may be another candidate for RNA packaging 
(Teng et al. 2017). These studies highlight the importance 
of the subcellular distribution, localisation and transport of 
RNA-binding proteins in the process of miRNA binding and 
loading into EVs. While these studies have generally focused 
on RNA binding proteins, there is also evidence that RNA 
can undergo post-transcriptional modifications, ultimately 
altering its functional distribution and degradation patterns 

(Roundtree et al. 2017). Not surprisingly, RNA sequencing 
identified 3′ uridylated forms of miRNA that were found 
enriched in exosomes while 3′ adenylated miRNA forms 
were enriched in cells (Koppers-Lalic et al. 2014). Together, 
this highlights the diversity and complexity of mechanisms 
required to coordinate miRNA packaging and distribution 
into EVs (Fig. 5).

Potential miRNA biomarkers in prion disease

Initial attempts to determine the role of miRNA in neuro-
degeneration related to prion infection were performed in 
mouse brains infected with mouse-adapted scrapie. These 
experiments identified miRNAs including miR-342-3p, miR-
320, let-7b, miR-328, miR-128, miR-139-5p and miR-146a 
that were significantly upregulated while miR-338-3p and 
miR-337-3p were significantly downregulated. Moreover, 
bioinformatics and biochemical analysis showed that these 
miRNAs have functions in neuronal degradation and disease 
progression (Saba et al. 2008). A similar study to character-
ise deregulation of miRNA that potentiates the pathogenesis 
in human PrD was performed in BSE-infected Cynomolgus 
macaques. Microarray analysis demonstrated that hsa-miR-
342-3p and hsa-miR-494 were significantly upregulated 
in brain samples (Montag et al. 2009). More recently, a 
study using mice infected with 139A − , ME7 − and S15 
scrapie strains found two novel miRNAs, miR-2 and miR-
20, downregulated by all three prion strains in the infected 
brain samples (Gao et al. 2016). In the same study, 14 com-
monly decreased and 22 commonly increased miRNAs were 
detected in the brain samples of all three prion strain types. 
Such common deregulated miRNAs indicate similar disease 
pathogenesis mechanisms and highlight how miRNA could 
act as a potential biomarker candidate.

One of the first studies that showed the diagnostic 
potential of EVs miRNA was carried out in prion-infected 
mouse hypothalamic neuronal cell cultures (Bellingham 
et al. 2012). This study observed upregulation of let-7i, 
miR-21 and downregulation of miR-146a in both prion-
infected neuronal cells and exosomes secreted by these 
cells, whereas let-7b, miR-128a, miR-222, miR-29b, miR-
342-3p and miR-424 were significantly upregulated only 
in exosomes (Bellingham et  al. 2012). A recent prion 
EV miRNA biomarker study consisted of a longitudinal 
analysis of miRNA on M1000 prion–infected mice thala-
mus and serum EVs of pre-clinical and clinical samples 
(Cheng et al. 2021). Three potential miRNA biomarkers, 
miR-1a-3p, miR-181a-5p and miR-142-3p, were deregu-
lated in both thalamus and serum EVs. Furthermore, 17 
miRNAs that were differentially expressed in mice serum 
EVs were validated in a second independent cohort of 
sCJD patient serum samples. Bioinformatics predicted 
that the best combination of four miRNAs as a biomarker 
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consisted of miR-423-3p, miR-101-3p, miR-1306-5p and 
miR-142-3p, which predicted sCJD with an area under the 
curve (AUC) of 0.800 (85% sensitivity and 66.7% speci-
ficity). Another recent study of naturally infected sheep 
with scrapie demonstrated significant upregulation of miR-
21-5p in both plasma EVs and total CSF whereas other 
promising miRNAs significantly upregulated in the total 
CSF included miR-342-3p, miR-146a-5p and miR-128-3p 

(López-Pérez et al. 2021). Further work is required to test 
the consistency and role of these EV-associated miRNAs 
in PrD. However, the appearance of similar miRNA across 
different types/strains/species of PrD is highly encourag-
ing and the utilisation of these in combination for use as 
a biomarker has enormous potential as a diagnostic tool 
in PrD.

Fig. 5  Schematic diagram showing microRNA (miRNA) biogen-
esis and sorting into exosomes. The alphabetical numbering shows 
the miRNA biogenesis pathway; a primary miRNA (Pri-miRNA) 
is synthesised in the nucleus by RNA polymerase II; b RNase III 
enzyme (Drosha) and DiGeorge syndrome critical region 8 (DGCR8) 
cofactor cleave Pri-miRNA into precursor miRNA (pre-miRNA); 
c pre-miRNA is exported to the cytoplasm by Exportin-5; d mature 
miRNA duplex is produced after cleavage of pre-miRNA by RNase 
III enzyme (Dicer); e RNA-induced silencing complex (RISC) pro-
duces single-stranded miRNA and transports it to the upstream 

mRNA sequence for its functional repression. The selective sort-
ing of miRNA into exosomes has been demonstrated through many 
RNA binding proteins, including (1) neutral sphingomyelinase 2 
(nSMase2), (2) heterogeneous nuclear ribonucleoprotein A2B1 
(hnRNPA2B1), (3) Argonaute2 (Ago2), (4) Y-box protein 1 and (5) 
major vault protein (MVP). (6) The specific enrichment of 3′ uri-
dylated (3′ U) miRNAs has been found in exosomes and 3′ adenylated 
(3′ A) miRNAs have been found in cells. This figure was generated 
using Biorender
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Deregulated mitochondrial biomarkers 
in prion disease

After more than three decades of research following the 
discovery of the proteinaceous nature of PrD, several 
deregulated proteins have been identified. Despite dis-
covering several proteins involving various strains and 
models of prion disease, no early disease-associated pro-
tein biomarker has yet been identified. Proteins that have 
shown potential as prion biomarkers include 14–3-3 and 
tau from CSF (Hsich et al. 1996; Otto et al. 2002). More 
recent studies that utilise CSF biomarkers have established 
that increases in neurofilament light chain and α-synuclein 
can differentially diagnose sCJD among various neurode-
generative diseases (Llorens et al. 2017; Zerr et al. 2018).

Across different models of PrD, the vast majority of 
deregulated proteins have been found with the application 
of mass spectrometry. Global proteomic analysis discovered 
that PrD-associated deregulated proteins fall into various 
functional subgroups, including protein folding, cell death, 
synaptic dysfunction, ion transport, oxidative stress, immune 
regulation and energy metabolism. One such study on mouse-
adapted scrapie prion strain (22L)–infected N2a cells over-
expressing murine prion protein demonstrated upregulation 
in the redox chaperone, protein disulphide isomerase (PDI) 
(Provansal et al. 2010). The majority (41.5%) of differentially 
expressed proteins identified in this study were involved in 
energy metabolism, including upregulation of the oxidative 
phosphorylation protein, ATP synthase. Another proteomics 
study on sCJD patient CSF samples demonstrated that the 
highest percentage of deregulated proteins, accounting for 
22.10% of the differential expression, was involved in cellu-
lar metabolism (Wang et al. 2017). In addition, tricarboxylic 
acid (TCA) cycle proteins were also discovered, including 
succinate dehydrogenase subunit A (SDHA), aconitase 2 
(ACO2) and malate dehydrogenase 2 (MDH2). Proteomic 
profiling of brain homogenates from C57BL/10SnJ mice 
infected with mouse-adapted ovine scrapie strain (RML) 
revealed increased dysfunction of the mitochondrial pro-
teome, which was associated with neurodegeneration (Moore 
et al. 2014). This mitochondrial-associated apoptosis was 
related to elevated levels of Mitofilin, heat shock protein 
family A (Hsp70) member 9 (HSPA9), apoptosis-inducing 
factor 1 (AIF1) and various other calcium-regulated mito-
chondrial changes. One of the top pathways discovered in the 
first human PrD proteome analysis study identified fatty acid 
elongation in mitochondria, including deregulated enoyl-
CoA hydratase, short chain 1 (ECHS1) (Shi et al. 2015). This 
brain region–specific proteomic analysis in different human 
PrD demonstrated higher cerebellum pathogenesis compared 
to the cortex region. Moreover, a recent proteomics study 
on sCJD patients’ cerebellum discovered reactive oxygen 

species (ROS) scavenger protein deglycase DJ-1 upregula-
tion only in VV2 subtype, with upregulation at the mRNA 
level in both MM1 and VV2 subtypes (Tahir et al. 2018). 
Other mitochondrial associated proteins that were identified 
with this proteomic analysis included apoptosis-inducing fac-
tor mitochondria associated 1 (AIFM1), dihydrolipoamide 
S-succinyltransferase (DLST), translocase of outer mito-
chondrial membrane 70A (TOMM70A) and succinate-CoA 
ligase ADP-forming subunit beta (SUCLA2). Together, this 
suggests that mitochondrial dysfunction may be a primary 
driver of PrD pathophysiology, potentially underlying key 
metabolic differences contributing to neurodegeneration. 
The association of several key metabolic enzymes respon-
sible for the generation of ATP suggests PrD likely disrupts 
ATP production and cellular energy homeostasis. Moreover, 
mitochondrial stress, particularly through the oxidative phos-
phorylation chain, likely results in redox dyshomeostasis and 
cellular oxidative stress, a key player in the neurodegenera-
tive processes associated with PrD.

EV mitochondrial biomarkers

Neurodegeneration related to mitochondrial dysfunction has 
been extensively studied in several neurodegenerative dis-
eases, including PrD. However, investigating mitochondrial 
mechanisms of neuronal cell death or its biochemical and 
biological profiles is still lacking in PrD models compared 
to neurodegenerative diseases like Parkinson’s disease (PD) 
and Alzheimer’s disease (AD). An early study of scrapie-
infected hamster brain cerebral cortex transmission electron 
microscopy images depicted alterations in mitochondrial 
morphology and depletion of mitochondrial matrix and 
cristae (Choi et al. 1998). In addition, the same study dem-
onstrated a deficiency of various mitochondrial enzymes, 
including manganese superoxide dismutase (Mn-SOD), 
cytochrome c oxidase (complex IV) and ATPase (complex 
V). A more recent study validated mitochondrial respira-
tory chain deficiency in human sCJD brain temporal cor-
tex with immunohistochemistry, demonstrating a loss of all 
mitochondrial complexes (I–V) (Flønes et al. 2020). Several 
further studies have investigated neuronal death linked to 
mitochondrial dysfunction in an in vitro model system of 
PrD. Early co-culture experiments using primary cortical 
neurons together with scrapie-infected N2a cells demon-
strated mitochondrial clustering in the perinuclear region 
of the primary cells (Resenberger et al. 2011b). A recent 
study isolated mitochondrial fractions from the scrapie 
SMB-S15 cell model and scrapie 139A- and ME7-infected 
mouse brains and demonstrated increased expression of 
phosphatase and tensin homolog (PTEN)-induced kinase1 
(PINK1) and parkin in the infected cells and tissues (Gao 
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et al. 2020). In addition, immunohistochemical analysis of 
various brain sections in this study observed the activation 
of mitophagy by  PrPTSE through the colocalisation of PINK1 
and parkin with  PrPTSE. As noted above, this further illus-
trates the importance of mitochondrial dysfunction in the 
pathogenesis of PrD, with the activation of mitophagy high-
lighting that mitochondria play an active role in the patho-
genesis of PrD. Further study is required to investigate the 
mechanisms underlying the cellular localisation of  PrPTSE to 
the mitochondrial membrane prior to mitochondrial dysfunc-
tion and degradation.

Interestingly, a novel discovery suggests that EVs may act 
as potential mitochondrial carriers, including whole mito-
chondria or mitochondrial fragments. The first clear ultras-
tructure of highly purified small EVs utilised cryo-electron 
tomography and discovered EVs with multiple membrane 
structures (Coleman et al. 2012). Furthermore, the EVs 
isolated from prion-infected and non-infected GT1-7 cells 
had different ratios of single membrane to double and tri-
ple membrane subpopulations. The discovery of double and 
triple membrane EVs could suggest that EVs incorporate 
other membranous organelles during their biogenesis, includ-
ing mitochondria. In addition, PINK1/parkin are known 

regulators of intraluminal vesicle (ILV) formation, exosomes 
release, and the trafficking and association of mitochondria 
to the endosomal system (McLelland et al. 2016; Song et al. 
2016). As observed in PrD, mitochondrial depolarisation 
causes calcium ion influx in the cytosol, likely impacting 
EV biogenesis by promoting calcium ion-induced membrane 
blebbing or MVB fusion to the plasma membrane (Record 
et al. 2018) (Fig. 6). Cells undergoing mitophagy potentially 
shuttle the entire mitochondria to microvesicle-sized EVs, a 
phenomenon observed by several different studies with elec-
tron microscopy images (Leermakers et al. 2020; Phinney 
et al. 2015). Strikingly, one recent study imaged mitochon-
drial fragments inside small EVs isolated from astrocytes 
treated with Aβ aggregates (Kim et al. 2020). In the same 
study, several mitochondrial coding and non-coding RNA 
biomarkers, including ND1-6, were found elevated in EVs 
isolated from plasma of AD patients. Furthermore, brain-
derived EVs isolated from Down’s syndrome patients contain 
a different subpopulation of EVs, termed mitovesicles, con-
taining a vast array of mitochondrial constituents (D’Acunzo 
et al. 2021). Taken together, these observations of mitochon-
drial dysfunction in PrD and the implications of mitochon-
drial systems in EV biogenesis highlight a new avenue in the 

Fig. 6  Schematic diagram showing generation of extracellular vesi-
cles (EVs) containing mitochondria (mitovesicles). Dysfunctional 
or depolarised mitochondria in prion disease evoke an imbalance 
in calcium ion concentration in the cytosol, consequently inducing 
the biogenesis of multivesicular bodies and microvesicles. In addi-

tion, prion-induced mitophagy with phosphatase and tensin homolog 
(PTEN)–induced kinase1 (PINK1)/Parkin plays a role in the associa-
tion of mitochondria to the multivesicular body (MVB) to generate 
mitovesicles. This figure was generated using Biorender
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discovery of novel mitochondrial associated EV biomarkers 
and treatment strategies.

EVs as prion therapeutics

EVs are both a protective carrier of biological molecules 
produced by every tissue and a functional body that delivers 
a signal to the recipient cells. This functional aspect of EVs 
has become an intense area of research due to the prom-
ise of EVs as a potential disease therapeutic strategy. For 
example, the use of mesenchymal stem cell (MSC)–derived 
EVs from human placenta intravenously delivered to mul-
tiple sclerosis mice demonstrated increased motor abilities, 
reduced DNA damage and increased myelination (Clark 
et al. 2019). Another study utilised intra-arterial injection 
of MSC-derived EVs from human bone marrow to induce 
an immunomodulatory effect and reduce neuroinflamma-
tion in rats with induced focal brain injury (Dabrowska et al. 
2019). The ability of EVs injected into the blood to evoke 
functional effects in the brain across the blood–brain barrier 
(BBB) makes these an attractive therapeutic candidate for 
delivering pharmacological treatments capable of targeting 
 PrPC directly to ameliorate pathogenesis of PrD.

In support of this, human neural stem cell (hNSC)–derived 
EVs injected into the bloodstream ameliorated neuroinflam-
mation and increased cognitive function in immunocompetent 
mice (Leavitt et al. 2020). Further investigation of the protec-
tive effects of NSCs-EVs led to the discovery of the key player, 
miR-124, in NSCs-EVs cargo responsible for attenuating brain 
microglial activation. This study suggests that EVs can be engi-
neered for treatment by transfecting cells with miRNA of inter-
est to enrich EV cargo containing miRNA of therapeutic inter-
est. A recent study with this proof of concept demonstrated 
that astrocyte-derived EVs isolated from cells transfected with 
miR-29 mimic ameliorated brain ischaemia–reperfusion injury 
via nuclear factor kappa B/nucleotide-binding domain and 
leucine-rich repeat-containing family, pyrin domain contain-
ing 3 (NF-κB/NLRP3) downregulation in rat brain (Liu et al. 
2021). Using suitable candidate miRNA targeting  PrPC, this 
technique would be highly relevant in the treatment of PrD as it 
is both easily scalable and less invasive. A promising candidate 
recently shown to increase the life expectancy of PrD animal 
models is the newly developed prion protein reducing antisense 
oligonucleotides (ASOs) (Minikel et al. 2020). The ability of 
ASOs downregulating prion protein in this study reversed the 
disease phenotype and increased survival across various prion 
strains in a dose-dependent manner. Few challenges of the 
nucleic acid–based therapeutic intervention are their inefficient 
biodistribution and susceptibility to breakdown. Therefore, uti-
lising the innate nature of EVs with higher bioavailability and 
targeted engineering for the functional delivery makes them 
a highly promising candidate. Furthermore, ASOs are very 

small molecules of about 10 nucleotides in length which can be 
engineered in the EVs by electroporation, making the delivery 
to the brain efficient and less invasive.

Concluding remarks

EV research is a burgeoning field elucidating the dynamic 
nature of intercellular communication in the local and distal 
areas of the body, and has opened a new horizon to decipher 
the fundamental biological processes in health and disease. 
Studies exploiting EVs as the biomarker source and their 
subsequent role in pathogenic and neurotoxic processes aid 
a better understanding of the complexity of PrD. The gaps 
in the study of proteomics and lipidomic cargo from the 
infectious EVs of several prion strains would help to reveal 
common neurotoxicity-related pathways. Moreover, the func-
tional study of infectious prion EVs in communication with 
the glial cells can reveal these EVs’ immunomodulatory and 
inflammatory effects. While secondary lymphoid organs, 
including the spleen, are indicated as an early accumulation 
site for prion replication following peripheral prion infec-
tion, isolating EVs from these organs for infectivity and cargo 
assessment would result in better understanding of EVs’ asso-
ciated roles. Future studies utilising emerging technologies 
to examine the nanoscale world of EVs will shed more light 
on this growing field, promoting strain-specific biomarker 
discovery for disease diagnosis and enabling the engineering 
of EVs for disease treatment.
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