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All over the world, time series-based anomaly prediction plays a vital role in all walks of life such as medical monitoring in
hospitals and climate and environment risks. In the present study, a survey on the methods and techniques for time series data
mining and proposes is carried, in order to solve a brand-new problem, time series progressive anomaly prediction. In terms of
contents, the first part sketches out the methods that have captured most of the interest of researchers, which include an
overview of abnormal prediction problems, a summary of main characteristics of anomaly prediction, and an introduction of
anomaly prediction methodology in literature. The second part focuses on the future research trends on the phase/staged
abnormal prediction of time series, where a novel time series compression method and a corresponding similarity measure will
be designed, which can be explored subsequently. Finally, the related challenges to take this trend are mentioned. It is hoped
that this paper can provide a profound understanding of anomaly prediction for the time series-based data mining research field.

1. Introduction

Time series, a type of data widely existing in production and
life, is widely applied in the fields such as medical monitor-
ing [1–3], environmental monitoring [4, 5], and stock tickers
[6, 7]. In the intensive care environment, online automatic
abnormality analysis of multidimensional temporal data
streams assists medical staff in grasping the health risks
encountered by patients, which can benefit patients and save
their lives [1] and increase the survival rate of casualties in
accidents [2]. The mining of long-term electrocardiograms
(for several days) provides a new biomarker for predicting
the mortality risk of patients with heart disease patients
[3]. In environmental monitoring, water quality data
streams can be used for pollution monitoring [4], and
meteorological data stream can be used for extreme weather
predictions [5].

Anomaly monitoring based on time series is a typical
example of data stream applications, which can be divided
into two types, namely, anomaly detection of current or his-

torical data and prediction of potential anomalies. There are
practical limitations when only detecting current/historical
anomalies, and such limitations can be broken through by
the prediction of anomalies. For example, in the field of
medical and health care, early detection of certain diseases
is of great importance to improve therapeutic effects and
eradicate these diseases [8]; but under current medical con-
ditions, diseases are generally treated after symptoms are
detected.

Furthermore, treatment is ended upon the disappear-
ance of the symptoms that can be judged by online medical
data streams, without concerning the possible rehospitaliza-
tion. Studies have shown that approximately 20 percent of
patients are readmitted within 30 days after the discharge,
and 35 percent of patients are readmitted within 90 days
after the discharge. This leads to high expenditures, such as
US$17.4 billion per year [9], and better disease prediction
can help save costs. For another example, empirical research
[10] showed that approximately 0.9 percent of tornadoes
were not predicted, and the proportion of deaths in these
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tornadoes is up to 8.5 percent; however, another study [11]
showed that, the early warning in 6–10 minutes before a tor-
nado can comparatively reduce deaths by 41 percent.

As an important part of data mining, mining time series
data streams has been widely explored by researchers
[12–41]. Among the existing research results, a few studies
[3, 5, 27–30, 42, 43] are related to the problem of abnormal
prediction [3]. For instance, ECG mining is used to predict
the mortality risk of patients [27], optimization methods
are used to evaluate the aging degree of systems, and early
time series classification is performed. However, the charac-
teristics of anomaly prediction algorithms have not been dis-
cussed deeply.

Generally, anomaly detection using forecasting is viewed
as a technique to generate a forecast of an unusual point or a
single instance in a given set that is different from others
owing to its attributes. If the data is anomalous in some con-
text, it is called contextual anomaly.

In the current situation of COVID-19, the whole world is
experiencing unprecedented scenarios everywhere, from
medical supplies running short, healthcare systems getting
overwhelmed, to fears of an economic downfall. Often, the
unexpected outbreak is termed as the “new normal” of life
with COVID-19. Before becoming the “new normal”, it is
necessary to improve the ability for the accurate prediction
of future disease spread, and effective analysis of the death
and recovery rates, so as to better understand the current sit-
uation, discover insights on the future development of the
disease, and thus allowing humanity to make better
preparations.

This survey aims to solve a brand-new problem existing
in time series mining, namely, time series progressive anom-
aly prediction. With this regard, the various stages of the
anomaly evolution process shall be identified automatically,
and the type of anomaly and the time when the anomaly
occurs at each stage shall be predicated. On this basis, we
propose to design an effective time series progressive anom-
aly prediction algorithm. Each stage of the anomaly evolu-
tion route can be represented by a set of characteristic
subsequences. A dynamic segmentation scheme will be uti-
lized to segment training series [44, 45], which is iteratively
combined with the identification of characteristic subse-
quences, thus yielding optimal representation for each latent
stage on the evolution route. Then, a rule set will be con-
structed for online prediction. The research mainly involves
the design of an effective time series compression method, a
similarity measure upon the compressed sequences, and an
effective time series progressive anomaly prediction method.

In the present study, we intend to analyze the existing
research results and time sequence analysis methodology.
Meanwhile, we clearly describe that the time sequence
anomaly prediction should have some characteristics, and
describe the overall anomaly prediction algorithms. The
structure of this paper is as follows: Section 2 describes the
anomaly prediction methodology in literature. Section 3 out-
lines the main mathematical background using time series
mining methods to carry out anomaly prediction. Section 4
provides a general overview of the characteristics of anomaly
prediction. Section 5 shows significant suggestions on the

staged abnormal prediction of time series, which can be
explored subsequently. Section 6 represents technical chal-
lenges in multiple data streams analysis for anomaly predic-
tion. Section 7 is related to the design of compression and
similarity measurement frameworks to achieve efficient
phase anomaly prediction algorithm, thus laying a founda-
tion for future research in time series stream analysis.

2. Anomaly Prediction
Methodology in Literature

At present, most of the research on anomaly prediction [3,
27–30, 42, 43] focuses on solving early classification [5,
28–30, 42, 43] of time series. Namely, a complete (univariate
or multivariate) time series is classified only by the time
series prefix composed of the observation values of the first
several time stamps. This method satisfies our requirements
for early prediction of abnormalities (i.e., detecting abnor-
mal signs as soon as possible) but cannot meet the require-
ments for the phase abnormal prediction (phase division
and continuous monitoring of abnormal evolution paths);
other related research results [3, 27] also have similar prob-
lems. Illustratively, [3] ECG mining is applied to predict the
mortality risk of patients but does not continuously monitor
and stage patients’ disease evolution process; [27] solve the
system problem of evaluating the degree of aging, which
considers the stages of the aging process to a certain extent,
but for each stage, it fails to estimate the time interval from
the occurrence of the abnormality. How to effectively divide
and characterize the evolution stage of anomalous signs is a
problem demanding prompt solution. Without paying
enough attention to the above problems, the existing
research results still provide us with valuable solution refer-
ences. Considering anomaly prediction is deemed as a classi-
fication problem, the early classification of time series has
become research priority [5, 28–30, 42, 43]. The existing
early classification research can be divided into two catego-
ries: one is the classification method based on global features
[28, 42, 43], where each observation in the complete
sequence (or sequence prefix) is regarded as a part of the fea-
ture; the other is classification methods based on feature
subsequences [5, 28, 30], where some representative subse-
quences are selected from the complete sequence and are
used as features for classification. Since anomaly prediction
is regarded as a classification problem, early classification
of time series has been the focus of research [5, 28–30, 42,
43].

Compared with classification methods based on global
features, the classification method based on feature subse-
quences can effectively avoid irrelevant mode interference
[19] and strong interpretability [20–22, 30]. However, the
feature subsequence cannot be directly used for phase divi-
sion, although it can characterize phases/stages. In the con-
text of this paper, the feature-based subsequence method
can be uniquely used as a sign of the evolution stage of
anomalies.

In addition, recently developed deep learning (DL) for
anomaly detection has shown strong learning ability with
high classification accuracy [46], while the currently popular
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hybrid deep learning-based anomaly detection techniques
have proven to be effective in multiple tasks [47]. Since the
hybrid models send extracted features to different anomaly
detection methods, it is impossible to connect features
directly to the representational learning in the hidden layers.
An appropriate objective function and geometrical transfor-
mations have been proposed relatively by Ruff et al. [48] and
Golan and El-Yaniv [49] to combine the encoding and
detection steps for training a single neural model.

Moreover, existing anomaly detection techniques for
COVID-19 data focus only on outbreak detection [50–53]
in the COVID-19 tracking cases on the world wide. Many
of these techniques use supervised machine learning, by
assuming the existence of labeled training data. However,
in real-world it is unavailable for new forms of outbreaks
such as COVID-19.

To sum up, the existing anomaly prediction methods
whether it is machine learning based or deep learning based,
do not sufficiently emphasize the stages of abnormal predic-
tion. Actually, taking stage as one of main considerations
means that a new time series mining problem must be
defined. Although the existing methods are not absolutely
eligible for anomaly prediction, they are still of great refer-
ence value to the time series mining method based on fea-
ture subsequences and are more suitable for anomaly
prediction.

3. Main Mathematical Background of Anomaly
Prediction Using Time Series Mining

Definition 1 (univariate time series). A univariate time series
indicates a set of real numbers that is recorded sequentially
in ascending order of time stamp, such as (t1 ,x1 ,..., tnxn),
where n ≥ 1, xi is the observation value corresponding to
the time stamp ti (1 ≤ i ≤ n).

Definition 2 (multivariate time series). m (m ≥ 1) single-
variable time series sharing a set of time stamps constitutes
a multivariable time series, such as (t1, <x11,..., xm1>)(tn,
<x1n,..., xmn>), where n ≥ 1, (ti, <x1i,..., xmi>) are m observa-
tions corresponding to the timestamp ti (1 ≤ i ≤ n). m is
called the dimension of the multivariate time series.

In the above definitions, for the sake of simplicity, the length
of the time series is restricted to a finite value; actually, the
length of the time series can be infinite, for instance, a sensor
data stream in a long-term real-time update state can be
considered as infinite time series. Moreover, a segment in a
univariate time series is called a subsequence of the time
series, which is precisely defined as follows:

Definition 3 (subsequence). Given a univariate time series
TS = ðt1, x1Þ,⋯, ðtn, xnÞ,Ɐ ði, jÞ, 1 ≤ i ≤ j ≤ n. SS = ðti, xiÞ,
⋯ , ðtj, xjÞ is a subsequence of TS. Mostly, time intervals of
the time stamps in the time series are uniform. Under normal
circumstances, it is to hide the time stamps and only preserve
the sequence of observations.

4. Characteristics of Anomaly Prediction

Through the analysis of existing research results and the
investigation of application fields, we hold the opinion that
abnormal prediction should be characterized by:

4.1. Anomaly Detection/Prediction-Based Classification
Problems. Roughly, existing anomaly detection algorithms
are classified into two categories: “abnormal” refers to a pat-
tern that deviates from “normal” [15, 18], and the so-called
“normal” means that the data accords with the characteris-
tics of most data [15] or accords with a certain hypothesis
[18]; the other type regards anomaly detection as a classifica-
tion problem of normal and abnormal samples [13, 44–49].
For the former, there are two problems: Firstly, it can be eas-
ily affected by interference waveforms. For example, “abnor-
mal” changes will occur in certain monitoring indicators
when touching patients’ body in the intensive care unit,
and medical staff does not need to intervene such changes.
Secondly, it is impossible to specify the exact type of excep-
tion. As a result, users difficultly respond to anomalies prop-
erly. The above problems can be circumvented by the
classification-based anomaly prediction method for the
interference waveform; when just marking it as a normal
mode, the classifier can identify the difference between it
and the real abnormal waveform, thus avoiding mixing the
two as much as possible. For anomaly types, when just
assigning different types of anomalies to different class labels
in the labeling process, the detection algorithm can be
trained to automatically identify the type of anomalies.

4.2. Early Detection of Abnormal Signs with Continuous
Monitoring. In the anomaly prediction problem, anomaly
signs shall be captured. It is obvious that early detection of
anomalies [29, 30] can provide users with more reaction
time. However, only early detection of anomalies is not suf-
ficient to complete the task of anomaly prediction. Firstly,
for many anomalies, there is a phenomenon of “concept
drift” [31] from the appearance of anomalies to the actual
occurrence of anomalies, which is known as the evolution
of anomalies. The evolution process can be divided into sev-
eral stages, and there is different semantic information of
abnormal signs in each stage. Lacking in-depth knowledge
regarding the stage of the abnormal sign, users will difficultly
take proper countermeasures. Secondly, even if users can be
informed of the anomaly in a single warning, the domain
knowledge and experience of users over the evolution pro-
cess may not be sufficient to allow them to make effective
response decisions at different stages. It is necessary for
anomaly prediction algorithms to continually monitor the
evolution process of anomaly signs, to inform users in time
when the anomaly signs enter a new stage. Thirdly, if users
can make targeted decisions at the current stage, they still
need to evaluate whether their response measures are effec-
tive. This requires anomaly prediction algorithms to con-
tinue to monitor data. Based on the evolution process of
the flow, we can judge whether the monitored object is
recovered from the abnormal evolution state. Broadly, the
anomaly prediction algorithm shall have the functions to
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catch anomalies as early as possible, and stage and continu-
ously monitor the evolution of anomaly signs.

4.3. Prioritization and Comprehensive Analysis of Multiple
Data Streams for Anomaly Prediction.Most research on time
series anomaly detection (such as [13, 18, 44]) lays emphasis
on univariate time sequence. However, in a multifactors sys-
tem, it is obvious that only a single variable cannot fully and
accurately describe the behavior of the system. Now let us
consider an air quality prediction problem. In the absence
of consideration for other factors, the sudden increase in
wind can make the air pollutants spread to the downwind
area B from the heavily polluted area A at a higher speed,
which may dramatically improve the air quality of the area
B. Therefore, to accurately predict the air quality of place
B, at least four indicators are needed as follows: including
air quality of place A, (historical) air quality of place B,
and wind direction and speed of place A. Obviously, this is
a univariate time series mining problems that are unsolvable.
We need to comprehensively analyze and predicate based on
multiple data streams. Certainly, sometimes subject to con-
ditions (for example, there is only one available monitoring
indicator), we must make analysis based on a single data
stream. Hence, methods should prioritize the comprehen-
sive analysis of multiple data streams and support single data
stream analysis. It is concluded that time series anomaly pre-
diction shall be an early and staged classification process of
multivariate time series.

5. Staged Abnormal Prediction of Time Series

On this issue, we shall understand the evolution process of
anomalies based on the early capture of anomalies and con-
tinuous monitoring. To be more specific, we attempt to real-
ize the automatic identification of each stage during the
evolution process and predicate anomalies at each stage. In
view of the novelty of this problem, a precise definition of
this problem is mentioned herein. First of all, the concept
of anormal antecedents of evolution shall be introduced.

Definition 4 (abnormal antecedents). Given a time series TS,
its time span is t1,..., tn (n ≥ 1). Supposing that an abnormal-
ity occurs at time ta, given a minimum efficient response
time, Δtdcs (0 < Δtdcs < ta − t1) and the length of the prede-
cessor Δtpf x (0 < Δtpf x ≤ ta − Δtdcs − t1 + 1), we call all the
data in TS that fall within the time span ta − Δtdcs − Δtpf x
+ 1,⋯, ta − Δtdcs as Δtpf x-anomalous antecedents of TS.

The above definitions can be explained as follows.
Firstly, they are to distinguish between the anomalous ante-
cedents and the time series prefix. The latter is a sequence
fragment consisting of the first several observations in a
complete time series, while the former is a complete
sequence that occurs before the anomaly. Secondly, the
sequence TS in the above definitions can extend infinitely
forward and backward along the time axis, respectively. As
a matter of fact, in long-term online continuous monitoring,
it is arduous for us to find the starting and ending points for
the sequence; however, but considering the computational

and storage resources finiteness, the length of the antecedent
Δtpf x is used to “cut out” a finite section from the infinite
data stream to carry out analysis. Thirdly, there must be a
certain time interval between the last moment of abnormal
antecedent and the moment of abnormal occurrence. On
the one hand, the process of data sampling, transmission,
and analysis of anomaly prediction algorithms will result
in a certain delay; on the other hand, it is necessary to pro-
vide users with a certain response time to the warning, so
as to make preparations for the exception. The sum of the
above two delays is expressed as the minimum effective
response time Δtpf x . Fourthly, for the length of the anteced-
ent Δtpf x, it shall be sufficiently large. Specifically, it should
cover the whole process of the evolution of abnormal signs
in the data stream; meanwhile, we allow it to cover partial
data of the evolution process of nonabnormal signs during
the initial period. Furthermore, these parts will not cause sig-
nificant interference. The reason is that the method based on
feature subsequence can avoid interference from irrelevant
patterns [19]. Now, we give the definition of time series
phased anomaly prediction:

Definition 5 (time series phased abnormal prediction). The
phased anomaly prediction of time series is divided into
two parts, namely, offline training and online prediction.
In the offline training module, the training set includes sev-
eral m (m ≥ 1) dimensional time sequence, and each sample
has a class label c, cϵC = ðc0, c1,⋯, cqÞ. Among them, the
sample with the class label c0 is intercepted from the data
stream that does not contain any abnormalities. Addition-
ally, the samples with the class label ci ð1 ≤ i ≤ qÞ are, respec-
tively, abnormal antecedents, and different class labels
correspond to different types of anomalies. Given the mini-
mum effective response time Δtdcs, the training process aims
to establish a rule set RS, where each rule R is a four-tuple
ðR, εmtc; ;εdis, cpÞ. Among them R, is called rule subject,
εmtc is the matching condition for R, εdis is the matching
release condition for R, and cp is the class label correspond-
ing to this rule. The body of the rule is as follows:

o
1
, Δtmin

1 , Δtmax
1 , p

1

� �
⟶⋯⟶ o

v
, Δtmin

v , Δtmax
v , p

v

� �
: ð1Þ

Each four-tuple (o, Δtmin, Δtmax, and p)(1 ≤ j ≤ v) in the
body of the rule is called an evolution stage of rule R, where
o is an abnormal sign, Δtmin and Δtmax, respectively, indicate
the shortest and longest time interval (estimated value) from
the time when o is detected to the time of the anomaly
occurrence, and pj refers to the prediction confidence (esti-
mated value). The main body of the rule is acquired by sort-
ing out the evolution stages in chronological order.

In the online prediction module, given an m-dimen-
sional time series TS to be classified, at any time t, for each
rule in the rule set RS, R = ðR, εmtc, εdis, cpÞ, a binary indica-
tor variable z = f (TS, R, t) is used to indicate whether the

4 Wireless Communications and Mobile Computing



sequence TS matches the rule R at time t. The value of z can
be represented by the finite state automata as Figure 1:

Among them, z = 0 means that the matching state is not
established, and z = 1means that the matching state is estab-
lished. The above finite state automata are read as “When TS
does not match R, if the matching condition εmtc is estab-
lished, TS turns to match R; when TS matches R, if the
matching cancellation condition εdis is established, TS turns
to “Does not match R.” If TS and R are matched, and an
anomaly oj is detected in it, according to the rule R, there
is such prediction as “It is expected that an abnormality with
class label cp (cp= c0 means that there will be no abnormality
in the short-term)” will occur within ½Δtmin, Δtmax� and the
credibility of this prediction is pj.

In the above definitions, the main body of the rule indi-
cates the path of evolving anomalies, and each evolution
stage corresponds to a certain anomaly sign. Several charac-
teristic subsequences are used, which intensively appear in a
shorter period. As a sign (Figure 2), each stage corresponds
to a set of shortest and longest time intervals, which indicate
the approximate time needed for evolving from the current
stage to the occurrence of anomalies. For each stage, the
confidence of its prediction shall be estimated. When divid-
ing the rules in the training stage, the confidence threshold
shall be set for the confidence of the stage; for each stage,
the confidence threshold is unnecessarily same. Generally,
it is expected that the first stage of the rule subject is highly
credible. This is because the first observations of the abnor-
mal antecedents do not correspond to the abnormal evolu-
tion process, and a higher confidence threshold can help
ensure that the search of the first stage is really in the process
of abnormal evolution; simultaneously, it is also expected
that the various stages of the end of the evolution are highly
credible. The reason is that at this stage, users shall formu-
late and take effective countermeasures within a short time,
which relies on more reliable predictions; for other stages
of the evolution process, the requirements for confidence
can be less strict, but the lower bound of confidence shall
also be set to prevent the introduction of irrelevant models.

Additionally, for each rule R, a matching condition and a
matching cancellation condition are introduced. This is
because the abnormal antecedents that have been matched
may change the development path midway for some reasons
and deviate from the original evolution process. For exam-
ple, regarding critical patients, the condition that was gradu-
ally deteriorating may be relieved or even fully recovered due
to active treatment; accordingly, it also allows the samples
that originally deviated from the evolution process to return
to the evolution process again, such as repeated illnesses.
Certainly, this kind of regression to the evolution process
may not continue to evolve from the next stage after the last

match to the last stage but may “regress” to a certain stage
before, “jump” after the certain stages, etc., as the case.

6. Challenges in Multiple Data Streams
Analysis for Anomaly Prediction

6.1. Challenge 1: High Sampling Rate and Large Data
Volume of Time Series Data Streams Severally Affect the
Storage and Matching of Rules. In many cases, the sampling
rate of time series data streams is very high, and massive
data will be accumulated due to the long-term monitoring
under high sampling rate conditions, which causes the fol-
lowing two problems. Firstly, a large amount of data may
lead to an excessively large anomaly prediction rule set,
which indirectly threatens the success of anomaly predic-
tion. Although the length of a single feature subsequence
may be limited, in long-term historical data, we may find
many feature subsequences. Assuming these subsequences
are directly stored, the size of the rule set used for abnormal
prediction will be more than the size of the memory of stor-
age capacity. With a high sampling rate, if data needs to be
read from the disk during abnormal prediction, the rate of
rule matching may not keep up with the speed of data
update. As a result, abnormal prediction cannot be performed.
Secondly, it takes too much time to carry out data processing
using certain time-complex methods. For example, for two
time series of length n, the time complexity of calculating the
distance with the dynamic time warping measure is Oðn2Þ.
Under circumstances that the data is not processed, this simi-
larity measure with high time complexity may be hardly used
in online real-time monitoring scenarios.

6.2. Challenge 2: The Time Bending Phenomenon in the Time
Series Creates Obstacles to Similarity Matching. The value
space of each observation in a time series is an infinite field
of real number, which makes it almost impossible to have two
time series (no matter how semantically similar they are) the
same [23]. Unless the time series is discrete [18, 28], we can
only carry out similarity matching (not exact match) for time
series [24, 25, 32, 50]. However, there is a phenomenon called
distortion in the time series, which poses a challenge to the
similarity comparison between two time series [32]. Chen
et al. [32] divided the bending into four situations: time shift-
ing, time scaling, amplitude shifting, and amplitude scaling,
among which the first two phenomena are collectively called
time warp, and the latter two phenomena are collectively
called amplitude warp. Table 1 shows the explanation of the
above four bending phenomena, while Figure 3 shows the cor-
responding examples. Amplitude curvature can be handled by
Z-normalization [25] (Figure 3), while time curvature often
needs to be handled by a well-defined time series similarity
measure [24, 25, 32, 50] to design such similarity. Measuring
is not ordinary work.

6.3. Challenge 3: Dividing and Characterizing the Evolution
Process of Anomalies Face Multiple Challenges

6.3.1. Challenge 3.1: The Evolution Process is Difficultly
Segmented. The time series has no natural segmentation

0 1
𝜀mtc

𝜀dis

Figure 1: An illustration of a finite state automata.
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Figure 2: An example of phased anomaly prediction with feature subsequence set as a precursor. In this monitoring system based on a
three-dimensional time series, anomalous antecedents are divided into three phases, which are characterized by feature subsequence sets
{A1, B1},{A2}, and {A3, B2, C1}.

Table 1: Curving phenomena in time series.

Types Names Meaning

Flection time
space

Space-time dislocation
Similar waveforms in two sequences present different starting

moments

Different duration The duration of similar waveforms in the two sequences is different

Amplitude
bending

Amplitude misalignment
The balance positions of similar waveforms in the two sequences are

different

Different
amplitude

Fluctuations of similar waveforms in the two
series

Different amplitude

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
–40
–20

0
20
40
60
80

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
–3

–2

–1

0

1

2

3

C
D

d–cba

a
b c d

A B

C D

A B

Figure 3: Curved phenomena in time series. Both the two sequences in the above figure contain 20 observations and have similar semantics:
both of them consist of a crest (AB and ab) and a trough (AB and cd) that appear sometime after the crest appears. It should be noted that
the two peaks and two troughs appear at different moments, which is called a time dislocation; the time spans of the two peaks and two
troughs are different, which is a phenomenon of different duration; the balance positions of the two sequences are different, which is a
phenomenon of amplitude dislocation. The fluctuation amplitudes of the two peaks and two troughs are different, which is a
phenomenon of different amplitudes. The two sequences in Figure 1 are resulted from Z-standardization of the sequence in this figure,
in which amplitude curvature is effectively alleviated, while time curvature is on the contrary.
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[23], so it is possible to accurately match the changes in the
potential semantic information of time series (i.e., concept
drift [31]). The segmentation is difficult. In the context of
anomaly prediction, we attempt to segment the evolution
process of anomaly signs, and the latent semantic informa-
tion of this process is more profound. Limited by domain
knowledge, the evolution of anomalies may even be difficult
to describe in natural language at this stage, which probably
pose more challenges to segmentation.

6.3.2. Challenge 3.2: The Feature Subsequences for Each
Segment are Difficultly Found. We make efforts to character-
ize each stage with feature subsequences. However, it is not
easy to train the feature subsequences separately for the data
of each class label on a given segment. On the one hand, as
mentioned in Challenge 1, we can hardly match the time
series accurately. Therefore, for the (candidate) feature sub-
sequence, a threshold distance must be found for it [20–22,
32]. When the distance between a certain subsequence and
it is less than this threshold, we deem that the feature subse-
quence is matched, and setting this A threshold is not a triv-
ial task; on the other hand, an evaluation index shall be
designed to evaluate the feature significance of candidate
subsequences, and the many factors shall be taken into
account.

7. Outlook and Future Work

To solve the brand-new problem of time series anomaly pre-
diction, the proposed method is to achieve offline rule dis-
covery and online anomaly prediction. In the offline rule
discovery stage, the rules described in Definition 5 are dis-
covered from historical data, and the generated rules are
stored in the rule database; in the online anomaly prediction
stage, the monitored data stream is matched with the rules in
the rule database to predict anomalies; for anomalies that are
not successfully predicted, the corresponding data is entered
into the offline rule discovery process to update the rule
database for better prediction of abnormalities in the future.
This practice aims to roughly divide data stream of the orig-
inal time series using preprocessing module and design the
phased abnormal prediction model. The research objectives
of preprocessing module are to design an effective time
series compression method and to design an effective time
series similarity measure based on the compression method.

7.1. An Effective Time Series Compression Model. The anom-
aly prediction process shall be expanded on the compressed
data stream, which is largely resulted from the efficiency
considerations of storage and data processing. In our previ-
ous research work [12, 15, 16], we continued to focus on two
types of time series compression algorithms, DP [51] and
PLR [26, 52]. DP is a compression method based on key
points, following the principle of divide and conquer: Given
a time series, the process of DP compression is as follows:

(1) The first dimension and the last dimension of the
sequence is taken as anchor (positioning) and float-
ing points, respectively

(2) The maximum vertical distance between the anchor
point and floating point is found, and the point
where the distance is greater than a given threshold
is the cut point

(3) The tangent point is taken as the new floating point
of the front section and the positioning point of the
back section

(4) If the cut point is not found, stop the algorithm

(5) The algorithm runs iteratively on two cut-out
segments

PLR is a common piecewise linear compression method.
Given a segment, PLR uses the least square method to line-
arly fit the observations of each segment. Practically, the seg-
mentation and fitting process of PLR is usually carried out
iteratively to find the best segmentation.

The above two methods have their respective advantages
and disadvantages: specifically speaking, DP can effectively
identify the local key points of time series, while the effective
information contained in the points outside the key points is
not utilized; the effect of PLR generally relies on the segmen-
tation process, and finding effective segmentation is not
trivial work.

By combining DP’s ability to identify key points and
excellent fitting ability of PLR, this paper is to design a
new compression method. These key points identified by
DP method are regarded as the endpoints of each segment,
and then linear fitting on each segment is performed. This
method is called DP-PLR. To preliminarily verify the feasi-
bility of this idea, a segment of electrocardiogram data (a
segment of ECG pictures) that belongs to the first patient
in the MGH/MF waveform database [53–55] was inter-
cepted. After Z-normalization was used, it was compressed
with DP and DP-PLR, respectively. The results are shown
in Figure 4.

In order to quantitatively evaluate the degree of preser-
vation of the original semantic information by compression,
the reconstruction error of the sum of squares from the
compressed sequence to the original sequence is calculated:
given an original sequence �Y = ðy1,⋯, ynÞand compressed,
�Y = ð�y1,⋯, �ynÞ,the reconstruction error of the two is defined
as ErrðY, �YÞ = ðy1 − �y1Þ2 +⋯ + ðyn − �ynÞ2.

Note that DP is a sampling method, which means that
the above reconstruction error formula cannot be directly
used to evaluate DP. To this end, we connect each pair of
adjacent key points in DP with a straight line to complement
the missing values. After calculation, the reconstruction
error of DP is 28.4819, and the reconstruction error of DP-
PLR is 12.9157, which indicates that linear fitting can main-
tain the original semantic information.

Furthermore, the termination condition of DP can also
be adjusted. It should be noted that a vertical distance
threshold is used as the termination condition in the pre-
vious DP, and it is difficult to set this threshold. A greedy
algorithm is proposed to determine whether to continue
segmentation. Each segmentation is expected to reduce
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the reconstruction error. Thus, if the reconstruction error is
reduced after a certain segmentation, then the segmentation
is continued; otherwise, the segmentation stops.

7.2. How to Design Similarity Measures for Compressed Time
Series. One of the basic techniques of time series mining is
the similarity matching of time series [24, 25, 32, 37, 50,
56–72], while the advantages and disadvantages of similarity
measures directly affect the performance of similarity
matching. How to design similarity measures for com-
pressed time series is the second important problem to be
solved in the processing stage. Mostly, the existing similarity
measures [24, 25, 32, 50] focus on comparing the similarity
of time series in the original space, instead of the compressed
series. However, this does not affect our design ideas for
drawing on existing methods.

In Section 6, we suggest that time warping is one of the
important factors affecting the design of similarity measures.
As the best distance measure in time series mining problems,
the dynamic time warping (DTW) [25, 50] measure specifi-
cally addresses this problem [25].

DTW is based on such an inherent logic: time warping
means the correspondence between the timestamps of the
time series and the semantic correspondence are inconsis-
tent. DTW uses the idea of dynamic programming, aiming
to adjust the correspondence of the timestamps at the time
of ensuring the timing relationship. The relationship makes
it move along the direction of semantic correspondence, in
order that the global semantic gap between the two
sequences is narrowed sufficiently. This process is called
the “alignment” of the two sequences.

Specifically, given two time series X = x1,⋯, xm and Y
= y1,⋯, yn, DTW establishes a distance matrix of m × n.
The value of the position (i, j) in the matrix is dist ði, jÞ =
ðxi − yjÞ2. According to this distance matrix, the distance of
the subsequence composed of the first i values of X and
the first j values of Y can be calculated by the following
recursive formula: DTWði, jÞ = distði, jÞ +min ðDTWði, j
− 1Þ,DTWði − 1, jÞ,DTWði − 1, j − 1ÞÞ,

Figure 5 shows the correspondence between the data
points in the two sequences (after Z-standardization) in
Figure 2 under DTW, and the data points in the peaks and
troughs of the two basic correspondences correctly. It should
be noted that, in order to prevent overfitting, a “curved win-
dow”[67] (shown as in Figure 6) shall be generally added to
the DTW to limit the regular path.

Under DP-PLR compression, we intend to carry out
similarity comparison using logic similar to DTW. However,
in this case, it is not the correspondence between data points
that needs to be regularized, but the correspondence between
segments. Specifically, given two compressed sequences, we
establish the distance matrix between the segments, and then
find the mapping relationship between the segments by a
method similar to DTW.

7.3. An Efficient Anomaly Prediction Algorithm with Phase
Division. An efficient anomaly prediction algorithm mainly
includes the following two modules.

7.3.1. Design of Phase Division Model for Efficient Anomaly
Prediction. In online prediction, we use feature subsequences
to characterize each stage, and different stages are likely to
have different feature subsequences. We must first perform
a preliminary segmentation of the training data, look for
feature subsequences on each segment, further adjust the
segmentation according to the characterization ability of
the feature subsequences, and then iteratively carry out
the process of “segmentation-feature subsequence recogni-
tion” until enough good stage identification and character-
ization performance to be achieved. It is proposed to learn
from a dynamic segmentation method [63] in the time
series index [24, 63].

For simplicity, it is required that all sequences in the
training set have the same length. Specifically, we divide
the stages according to the following method:

(1) Firstly, each sample in the training set is evenly
divided into several segments, and the number of
segments of all samples is the same
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Figure 4: Example of time series compression. From top to bottom are the Z-standardized ECG sequence, the DP compressed sequence,
and the DP-PLR compressed sequence. The reconstruction errors of the latter two are 28.4819 and 12.9157, respectively.
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(2) Find a set of characteristic subsequences on each seg-
ment (As detailed in Section 7.2) as the characteriza-
tion of the current segment

(3) For each segment, score the characterization ability
of the segment in its feature subsequence set, assum-
ing that the score of a certain segment seg is Qseg (As
detailed in Section 7.2)

(4) For each segment, using its midpoint as the bound-
ary, perform feature subsequence identification and
scoring on the left and right segments, respectively,
assuming that the scores of the left and right seg-
ments of seg are Qseg

L and Qseg
R, respectively, when

Qseg
L +Qseg

R ≥ 2Qseg, replace seg with left and right
ends

(5) Repeat the three processes of (2), (3), and (4) and
stop until a certain termination condition (such as
the minimum distance between the feature subse-
quences of two adjacent segments is less than a
threshold) is satisfied

7.3.2. Efficient Construction of Feature Subsequence Set. Each
stage of the evolution process of abnormal signs includes a
feature subsequence set. Specifically, for the training set with
the number of class labels nc and the sequence dimension m,

Figure 5: DTW diagram. The left picture shows the distance matrix and the regularization path, and the right picture shows the
correspondence between the data points in the two sequences after regularization.
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in the iterative segmentation process described above, the
feature subsequence set FS satisfies the following conditions:
each class label is characterized by the ms ð1 ≤ms ≤mÞ sub-
sequence in FS, which is indispensable, and the above subse-
quences must come from different dimensions. In other
words, for each class label, we use subsequences from one
or more dimensions to characterize, and at most one subse-
quence is extracted from each dimension. For this reason,
the selection of feature subsequences needs to go through
two subprocesses: firstly, extract a few feature subsequences
that can characterize this dimension on each dimension to
construct a “subsequence pool”; and secondly, select several
subsequences from different dimensions in the pool, so as to
construct a set of characteristic subsequences.

The construction of the subsequence pool is considered
firstly. We regard abnormal prediction as a classification
problem, and a common feature subsequence in time series
classification is time series shapelet(s) [20–22, 30] (hereinaf-
ter referred to as shapelet(s)), which can effectively represent
and distinguish the sequence fragments of various character-
istics (Figure 6). Specifically, given a shapelet and a corre-
sponding distance threshold ẟ, we call a certain sequence
to include the shapelet, if and only if the distance between
at least one subsequence in the sequence and the shapelet
shall be less than ẟ [20–22].

Subsequently, it is necessary to screen the combination
of subsequences from the subsequence pool to obtain the
final set of characteristic subsequences. We use a scoring
function to score each candidate as follows:

(1) The confidence of the candidate. Namely, how can
the candidate represent its class label. The classic
definition of confidence [28] is adopted. For the
number of samples containing the candidate and
the class label corresponding to the candidate’s class
label, and the ratio of the number of samples con-
taining the candidate as the confidence score of the
candidate item, this score is set to Qconf

(2) The synchronization of each sequence in the candi-
dates. In a candidate item, the time may not be
entirely consistent, when the subsequences from dif-
ferent dimensions appear. It is expected that the time
interval between their appearances is short enough.
For this reason, we can use the first and last occur-
rences of the two subsequences in the candidate
item. The reciprocal of the time interval is used as
the synchronicity score, and this score is set to Qdiff
. The final score can be calculated using the equation:
Q =Qconf ×Qdiff

α. Among them, α is used to balance
the weight between the above two. We choose the
candidate with the highest final score as the feature
subsequence set

(3) In summary, the technical framework of the pro-
posed anomaly prediction algorithm has been illus-
trated in Figure 7, which can be roughly divided
into two stages, namely, discrete rule discovery and
online anomaly prediction. Both training and moni-
tored data are first compressed with the methods
based on DP [51] and PLR [26, 52]. In the discrete
rule discovery stage, the dynamic segmentation [63]
method is applied to divide the training data in
stages, and find the feature subsequence set on each
segment by the method described in Section 5. The
process of feature subsequence set construction is
organically integrated into the process of stage divi-
sion (Section 5), and iterative segmentation is
achieved until the desired segmentation result is
achieved. According to the final segmentation
results, the shortest and longest time for the occur-
rence of anomalies at each stage (characterized by
several feature subsequences) and the prediction
credibility are estimated. In addition, rules matching
and matching contact conditions need to be speci-
fied, thereby generating rules. The generated rules
are entered into the rules database. At the online
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Figure 7: Technical framework.
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anomaly monitoring stage, the monitored data is
matched with the rules in the rule database in real
time. Once it meets the matching conditions of a cer-
tain rule, the evolution process of anomaly warnings
will be monitored: each monitoring stage (namely,
the feature subsequence set corresponding to this
stage is matched), and the prediction result corre-
sponding to this stage are made pursuant to the
rules. While making phased predictions, whether
the data stream deviates from the matched rules shall
also be continuously monitored. Once the matching
cancellation condition is established, the data stream
will not be considered to be consistent with the pre-
viously matched rules anymore.

8. Conclusion

Data stream mining strategies has emerged as mass data can
hardly be produced and sorted. Even though there are many
techniques, this research area still lacks in approaches to
mine data streams composed of multiple time series, which
has applications in financial, medical, and environmental
monitoring.

Time-series comprise a large subset of most streaming
data, which pose a serious challenge to machine learning
applications. This is because there is generally a high order
of cardinality. Taking the industrial sensor as an example if
you want to predict machine failure or maintenance require-
ments, you might have to deal with thousands of sensors,
each of which (at each industrial facility) may have its own
set of time stamps. This means that many thousands of indi-
vidual time series require a machine learning model to be
trained and launched in production under normal circum-
stance. In terms of data streams mining, it is most difficult
to deal with concept drifts that toughen similarity matching
and measurement.

Time series anomaly prediction is schema adaptive,
which means that you can derive insights without any data
preparation. In this way, a variety of data sources can be
explored, compared, and correlated easily. Additionally,
such prediction provides SQL-like filters and aggregates,
which are used to construct, visualize, compare, and overlay
various time series patterns, and save and share queries.
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