
The role of lipids in -synuclein misfolding and 
neurotoxicity

This is the Published version of the following publication

Ugalde, Cathryn L, Lawson, Victoria A, Finkelstein, David I and Hill, Andrew F 
(2019) The role of lipids in -synuclein misfolding and neurotoxicity. Journal of 
Biological Chemistry, 294 (23). pp. 9016-9028. ISSN 0021-9258  

The publisher’s official version can be found at 
https://www.sciencedirect.com/science/article/pii/S0021925820351528?via%3Dihub
Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/45762/ 



The role of lipids in �-synuclein misfolding and neurotoxicity
Published, Papers in Press, May 7, 2019, DOI 10.1074/jbc.REV119.007500

X Cathryn L. Ugalde‡§¶�1, X Victoria A. Lawson§, X David I. Finkelstein¶, and X Andrew F. Hill‡�2

From the ‡Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora,
Victoria 3086, Australia, the Departments of §Microbiology and Immunology and �Biochemistry and Molecular Biology,
University of Melbourne, Parkville, Victoria 3052, Australia, and the ¶Howard Florey Institute of Neuroscience and Mental Health,
Parkville, Victoria 3052, Australia

Edited by Paul E. Fraser

The misfolding and aggregation of �-synuclein (�syn) in the
central nervous system is associated with a group of neurode-
generative disorders referred to as the synucleinopathies. In
addition to being a pathological hallmark of disease, it is now
well-established that upon misfolding, �syn acquires patho-
genic properties, such as neurotoxicity, that can contribute to
disease development. The mechanisms that produce �syn mis-
folding and the molecular events underlying the neuronal dam-
age caused by these misfolded species are not well-defined. A
consistent observation that may be relevant to �syn’s pathoge-
nicity is its ability to associate with lipids. This appears impor-
tant not only to how �syn aggregates, but also to the mechanism
by which the misfolded protein causes intracellular damage.
This review discusses the current literature reporting a role of
lipids in �syn misfolding and neurotoxicity in various synucle-
inopathy disorders and provides an overview of current meth-
ods to assess protein misfolding and pathogenicity both in vitro
and in vivo.

The deposition of misfolded �-synuclein (�syn)3 in the cen-
tral nervous system occurs in a group of neurodegenerative
disorders referred to as the synucleinopathies. They include
Parkinson’s disease (PD), multiple-system atrophy (MSA), and
dementia with Lewy body (DLB), among others. Largely age-
related disorders that are overwhelmingly sporadic in origin,
little is known about the mechanisms that underlie disease
pathogenesis. It is clear, however, that �syn can directly con-
tribute to pathogenic mechanisms associated with disease. Evi-
dence to support this comes from the finding that several point
mutations in the protein’s encoding gene, SNCA, cause early

onset familial disease (1–7), and SNPs in SNCA increase sus-
ceptibility to sporadic disease (8, 9). Also, there is now substan-
tial evidence that the protein adopts pathogenic features upon
misfolding, including the ability to seed normal protein to mis-
fold and be neurotoxic (reviewed in Ref. 10). In this regard,
understanding how this protein misfolds and contributes to
disease pathogenesis is an important avenue of research that
requires further attention.

Underpinning our incomplete knowledge on the pathogene-
sis of these disorders is the complex nature of �syn. The protein
normally exists as an intrinsically disordered monomer (11–
16); however, it is reported to be capable of existing as a
dynamic or folded helical tetramer under certain native envi-
ronments (17–19). �syn can also undergo �-helical folding
upon associating with lipid membranes (19 –22), a feature that
is thought to be pertinent to the normal functioning of the
protein. This is particularly relevant for roles it may have at the
presynaptic terminal, where it is found highly enriched (23, 24).
Specifically, some of the strongest evidence reports that the
protein plays an important role in the regulation of synaptic
vesicles. These are lipid-rich membranous structures that con-
tain neurotransmitters, and their release at the synapse allows
the propagation of nerve impulses between neurons. �syn has
been shown to bind to synaptic vesicles (25) and is essential to
soluble N-ethylmaleimide–sensitive factor attachment recep-
tor (SNARE) complex assembly: a multimeric protein unit that
is involved in the docking and fusion of synaptic vesicles with
the presynaptic membrane in neurons (26 –29). However, there
is no consensus on the primary function of �syn, with numer-
ous other functions being proposed in various and diverse bio-
logical processes. These include roles in the following: regula-
tion of glucose levels (30 –33), antioxidant activity (34 –36),
neuronal differentiation (37, 38), suppression of apoptosis (39),
and regulation of dopamine synthesis (40, 41).

�syn contains three core regions, which span its entire 140-
amino acid length: an unstructured N terminus (amino acids
1– 60), a central non-amyloid component (NAC) region (amino
acids 61–95), and a C terminus (amino acids 96 –140) (Fig. 1).
Here, the amphipathic N terminus and NAC region contain
seven repeat regions composed of imperfect KTKEGV hexam-
eric motifs, whereas the C terminus contains 10 Glu and 5 Asp
residues and hence has a high net negative charge. The central
hydrophobic NAC region was appropriately named following
its identification within plaques of Alzheimer’s disease (AD)
patients. AD is a common neurodegenerative disorder notably
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associated with the abnormal accumulation of �-amyloid (A�)
in the brain; however, misfolded asyn can also be present. In
this regard, its name was coined to describe a component of
AD-associated plaques that was distinct from the previously
identified A� protein (42, 43). NAC peptides are capable of
self-aggregation as well as seeding A� aggregation (44 –46), and
these misfolded species are toxic to immortalized neuronal
cells (46). As such, the NAC region is considered to be the
highly pathogenic region of the protein. The N terminus of
�syn is the region that has been shown to strongly associate
with lipid vesicles (47–51); however, a recent study demon-
strates that the C terminus also exhibits a high affinity to lipid
vesicles in the presence of calcium (25).

The relationship between �syn and lipids has long been a
point of interest for the synucleinopathy field. A few years fol-
lowing �syn’s identification in 1988 (52), it was noted that the
hexameric motifs on SNCA share a high degree of sequence
homology with apolipoproteins, which bind and transport lipid
molecules (53). This observation suggested that lipids may be a
binding target of �syn, which was later confirmed by a study
showing that WT �syn undergoes structural rearrangement
upon interacting with synthetic lipid vesicles (20). Subsequent
work demonstrating that this association can be lost in prepa-
rations of protein-harboring disease-associated mutations (50)
gave evidence for lipids being relevant to the pathogenic mech-
anisms of the synucleinopathies. Today, many studies have
focused on understanding their association. However, despite
the now strong evidence reporting the ability of lipids and �syn
to interact together, a concern with these data is the somewhat
contradictory results relating to the mechanism of binding,
lipid class preference, and activation of downstream pathways
within a cell. Indeed, while it is generally accepted that their
interaction is relevant for the protein’s normal functioning,
numerous studies show that lipids can induce and/or accelerate
the disease-associated misfolding of �syn, producing species
that harbor neurotoxic properties. In this regard, lipids appear
able to influence both the normal functioning and pathogenic
features of �syn; however, the context in which either influence
occurs in a biological setting remains poorly defined.

An important factor governing the conflicting results seen is
the dynamic nature of lipids, which are complex proteins that
often exert their function in association with proteins and other
lipids. Given that their functional properties are strongly dic-
tated by their microenvironment, caveats exist in the ability of
in vitro studies to accurately model in vivo interactions. Cur-
rently, the field would benefit from planned processes to define
limits of experimental methodologies and establish the central-
ity of these interactions using well-defined system networks
and models. This review gives an overview on our current
understanding of the role �syn plays in the synucleinopathies
and how lipids may modulate the protein’s misfolding and
neurotoxicity. Furthermore, appropriate considerations when
extrapolating laboratory data to the human condition are
described, including suggestions on how the field can best work
toward elucidating the importance of �syn:lipid interactions to
the various synucleinopathy disorders.

�syn in the synucleinopathies

The synucleinopathies are distinguished by the cell type and
brain region sensitive to the deposition of misfolded �syn (54).
Here, intraneuronal deposits of �syn called Lewy bodies (LBs)
or Lewy neurites are features of PD and DLB (55–59), whereas
MSA-associated �syn is principally found aggregated in a type
of glial cell called oligodendroglia and are called glial cytoplas-
mic inclusions (60 –62). Concomitant neuronal loss is likewise
disease type–specific, where, although dopaminergic neurons
of the substantia nigra are particularly vulnerable in PD, the
profile of neuronal loss is more widespread in MSA and DLB.
Despite this, the generation of neuronal loss and its associated
clinical presentation is highly variable (54). While this diversi-
fication is most obvious between the categorical subtypes of
synucleinopathies (e.g. PD versus MSA), variation is also found
within a given disorder. Indeed, in the case of PD, the clinical
guidelines used to diagnose disease carry a high degree of error,
with a recent systematic review and meta-analysis reporting a
pooled diagnostic accuracy of 80.6% in specialized clinics (63).
This broad spectrum of clinical and pathological profiles asso-
ciated with synucleinopathies supports the idea that numerous
mechanisms may underlie �syn misfolding and neurotoxicity,
depending on its structure and/or locality.

While the detection of �syn-positive aggregates in the cen-
tral nervous system in disease indicates the presence of
�-sheet–rich mature fibrils, numerous smaller species are
known to present in the brain in disease. These include small
soluble oligomers and protofibrils (64, 65) (Fig. 1). Consistent
with the growth of fibrils from smaller misfolded units that
expand by recruiting monomeric protein into the growing
aggregate, these species exist in equilibrium with each other
and harbor the ability to both expand and contract into higher-
or lower-order conformations (66). Additionally, numerous
conformations of mature species have been reported to exist,
with the protein capable of forming cylindrical, elongated fibril
structures as well as ribbons that exhibit a flatter, shorter mor-
phology (67, 68). To date, ribbons have only been produced and
studied from inducing misfolding in recombinant protein, and
therefore their relevance in human disorders, including any
interspecies interactions, is unclear (Fig. 1).

Changes to the post-translational modifications of �syn are
another striking feature of the synucleinopathies. Under nor-
mal conditions, �syn may undergo various post-translational
modifications, such as serine/threonine and tyrosine phosphor-
ylation (69 –73), N-terminal acetylation (69), ubiquitination
(69, 74, 75), sumoylation (76), tyrosine nitration (77), transglu-
tamination (78 –80), and methionine oxidation (81). In disease,
the abundance of post-translational modifications is altered
with high levels of �syn phosphorylated at the serine residue at
position 129 (pSer-129) found in both LBs and glial cytoplasmic
inclusions (82). Under normal physiological conditions, pSer-
129 accounts for a low abundance in the overall pool of �syn;
however, within LBs, it accounts for over 90% of the total pro-
tein (69). The relevance of pSer-129 to �syn biology is still a
debated topic, and accordingly, the biochemical processes that
lead to elevated phosphorylation of �syn in disease and the
consequence of such an alteration are unknown. Recently, a
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study showed that, compared with WT �syn, the expression of
mutants that do not undergo phosphorylation (S129A and
S129G) is more toxic to cells and produces the formation of
�syn aggregates that are larger (83). Hence, although further
analysis is required, it is intriguing to speculate that the phos-
phorylation of �syn may be a protective mechanism to remove
protein aggregates from the cell.

As mentioned previously, the expression of �syn protein is
associated with disease as various point mutations cause early
onset familial PD. To date, five mutations in �syn have been
found associated with PD: A53T (1), A30P (2), E46K (3), H50Q
(4, 5), and G51D (6). The mutation A53E also causes disease but
is distinguished clinically with atypical PD and a mixed PD and
MSA pathological profile (7). Duplications (84) and triplica-
tions (85) in SNCA can cause familial PD; however, consistent
with a dose-dependent response of the translated protein,
duplications in SNCA are not completely penetrant (86).

Similar to the human condition, the expression of disease-
associated mutant �syn or the overexpression of WT protein in
experimental animals (such as Drosophila and mice) causes
protein aggregation and clinical disease associated with neuro-
logical dysfunction (87–90). This is one of the most well-used
models to study the pathogenicity of misfolded �syn. Depend-
ing on the research question being addressed, alternate trans-
genic systems are used to study other features of disease, such as
motor impairment and loss of dopaminergic neurons in PD
(91). Nontransgenic mice have also been used to model disease,
whereby the inoculation of misfolded �syn can cause endoge-
nous protein to misfold, causing the aggregation of protein in
association with neurological dysfunction (92, 93). While each
of these models has been useful to study certain features of
disease, to date no model system is capable of recapitulating all
relevant biochemical and neuropathological features consis-
tent with the development of a given synucleinopathy disorder
in the human condition.

The association of �syn with lipids

Lipids are a heterogeneous collection of molecules defined
generally as any group of organic compounds that is insoluble
in water but soluble in organic solvents. They play essential
roles in a diverse range of cellular processes. Most notably,
phospholipids are the main component of lipid bilayers that
form the membranes that compartmentalize organelles and
encase the cell from the extracellular space. Lipids are also
important sources of heat and energy, can act as signaling mol-
ecules, and can be protein recruitment platforms. Although
broadly classified by their structure, a large degree of diversity
can exist within lipid subclasses; for example, phospholipids
contain hydrocarbon chains that can vary in fatty acid chain
length, double bond number, and position. Composition diver-
sity in the ratio of lipids also presents within membranes
between organelles, an observation that in many circumstances
can reflect the unique functioning of the organelle (reviewed in
Ref. 94). Several lipids described in this review are shown in Fig.
2.

Many studies have demonstrated an interaction of �syn with
the polyunsaturated fatty acids (PUFAs) �-linolenic acid, doco-
sahexaenoic acid (DHA), and eicosapentaenoic acid. Recombi-
nant �syn harbors an increased propensity to aggregate when
exposed to both free forms of PUFA and those esterified with
phospholipids (95, 96). Treating cultured neurons with �-lino-
lenic acid or eicosapentaenoic acid causes an elevation in the
formation of �syn oligomers (97), which go on to form higher-
order aggregates. This finding is specific to the class of lipid,
given that a similar effect could not be achieved upon treatment
with either monounsaturated or saturated fatty acids (97). Crit-
ically, in this system, the formation of oligomers by �-linolenic
acid is also associated with cytotoxicity (98). These findings in
cultured cells are supported by studies using recombinant pro-
tein, where the chronic treatment of �syn with DHA induces

Figure 1. �-Synuclein (�syn) and the various conformations that can form upon misfolding. �syn is a 14-kDa protein that contains several core regions
and has seven imperfect KTKEGV repeats. In disease, monomeric protein aggregates, forming soluble misfolded oligomers. These oligomers can extend into
protofibrils and mature species, such as fibrils or ribbons. Whereas there are limited studies on the biophysical properties of ribbons and their formation, the
other misfolded structures exist in equilibrium with each other and can both expand and contract to higher- or lower-order conformations.
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�-helical folding in the protein prior to its conversion to fibril-
lar species (96, 99). PUFAs may also be regulated by �syn in
disease. Elevated levels of PUFAs are observed in soluble brain
fractions in PD and DLB brain (100). In �syn knockout mice,
the PUFAs DHA and �-linolenic acid are down-regulated (100).
Taken together, these studies suggest that an association of
�syn with PUFAs may contribute to both healthy normal func-
tion and disease pathogenesis.

PUFAs are also particularly sensitive to lipid peroxidation,
which is a feature of PD (101). A product of lipid peroxidation,
4-hydroxy-2-nonenal has been implicated in various detrimen-
tal processes in disease; it can generate protein adducts within
LBs in neurons (102) and alter dopamine transport, which con-
tributes to the PD-associated feature of reduced dopamine lev-
els (103). Hence, peroxidation of PUFAs may directly augment
disease pathogenesis. However, a recent study reveals a protec-
tive role of PUFAs by chemical modulation of �syn. In the pres-
ence of DHA, �syn is modified at position His-50, forming a
covalent adduct (104). This suggests a role of the protein in
sequestering free radicals, and hence an association of �syn
with PUFAs may be neuroprotective. While any connection
remains not well-defined, this finding aligns with other pub-

lished works that suggest a neuroprotective role of �syn (28, 39,
105).

In addition to PUFAs, several types of phospholipids have
been shown to associate with �syn. �syn has a greater affinity
for synthetic vesicles containing phosphatidylethanolamine
(PE) compared with those that are phosphatidylcholine (PC)-
rich (106), and several studies report no or weak binding of �syn
to preparations containing solely PC (21, 107–111). In prepara-
tions of recombinant �syn mixed with synthetic vesicles com-
posed of PE and phosphatidylserine (PS) (1:1, w/w), the concen-
tration of vesicles dose-dependently increased the abundance
of dimeric �syn species in the pelleted insoluble fraction com-
pared with the lipid-free supernatant (106), and hence this may
suggest that dimers are the relevant species that interacts with
these lipids. Numerous studies show that monomeric WT or
mutant �syn preferentially binds to vesicles made partially of
phosphatidic acid (PA) (107, 112, 113). Specifically, �syn has
higher affinity for PA than PS (20, 47, 107, 112), and the binding
of �syn to PA-rich membranes stabilizes the secondary struc-
ture and increases the �-helix content of the protein (20). The
reasons for these differential binding affinities of �syn to the
various lipid classes are likely multifaceted; however, lipid

Figure 2. Structures of the lipid molecules reported to influence �syn misfolding and/or toxicity. Lipid structures were generated using MarvinSketch
version 19.4.0.
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structure is considered to be important (Fig. 3A). In the case of
PS, its bulky headgroup is thought to sterically interfere with
�syn binding to other lipids, and hence mechanisms of binding
at the molecular level may be divergent among the lipid classes
or mixed populations of lipids. Competition binding may also
be a contributing factor in mixed lipid populations, a notion
that is supported by the finding that the binding of �syn to PA
may be augmented upon incubation with PE (113). Lipid charge
is also considered relevant, where generally �syn has a prefer-
ence to associate with acidic phospholipids (e.g. PS and PA)
compared with those with a neutral charge (e.g. PE and PC);
however, it is not the sole contributing factor, given that �syn
binding to acidic phospholipids cannot be totally abolished
under conditions of high ionic strength (20).

Cardiolipin (CA) is a diphosphatidylglycerol lipid that has
also been shown to bind to �syn, with several studies showing
that preparations of monomeric protein interact with synthetic
vesicles containing CA with higher affinity than those lacking
the lipid (114, 115). CA-only vesicles have the highest affinity
for oligomeric �syn (115), and hence these species may be the
most relevant to this interaction; however, investigations into
the ability of CA-containing synthetic lipid vesicles to modulate
�syn fibrillization have reported no effect (116). The sterol
lipid, cholesterol, may also associate with �syn given that a pep-
tide fragment of �syn (67–78) binds to cholesterol and is highly
toxic to cultured neurons (117). Recently, cholesterol has been
shown to facilitate the binding of oligomeric �syn with physio-
logically relevant membranes (109); however, its precise mech-
anism for this is unknown.

The monosialogangliosides (GMs) are another group of lip-
ids shown to associate with �syn (118 –121); however, discrep-

ancies exist in which subclass of GM �syn has the greatest affin-
ity for. Monomeric preparations of �syn strongly bind to GM1,
where it induces �-helical folding in the protein that inhibits its
fibrillization (118, 122). In cultured cells, the action of inhibi-
tors that impede the internalization of �syn may be reversed
upon exposure to GM1 (120), and this system could be pre-
vented upon disruption of lipid raft structures (120). Hence,
GM1 is considered to be a vehicle of �syn internalization within
lipid domains. Others show a stronger interaction of �syn with
GM3, demonstrated by its ability to modulate the pathogenicity
of disease-associated �syn. Misfolded forms of both WT and
mutant �syn can produce pores in model membranes (123,
124), which is a feature ascribed to aggregated �syn at mem-
branes that cause membrane permeability and toxicity. The
finding that GM3 inhibits channel pore formation caused by
WT misfolded �syn (119, 121) suggests a direct interaction
with this lipid class at the cell membrane.

It is clear that �syn has a high affinity toward various lipid
species. Upon binding, some lipids are able to accelerate folding
in �syn, which in some cases leads to increased pathogenicity of
the protein. Many studies investigating such interactions use
recombinant monomeric protein; however, it is important to
note that in the studies that do not fully characterize the struc-
ture of the protein, it is possible that the protein associating
with the lipid is actually small oligomers that have formed via
spontaneous aggregation in solution. This highlights an impor-
tant consideration in interpreting which species of �syn inter-
acts with lipids. Further investigations will be important to
define the structural properties of misfolded �syn that asso-
ciates with lipids within a biological environment and the
consequence this interaction has for �syn-related disorders.

Figure 3. Potential mechanisms that influence the association of �syn with membranes and neurotoxic pathways formed. Several factors are thought
to influence the ability of �syn to associate with membranes, including lipid class preference (A) and/or membrane curvature (B). Such interactions can cause
damage to membrane integrity via pore formation (C), membrane thinning (D), and membrane expansion (E).
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Furthermore, while many lipid classes have been implicated
to associate with �syn, variations exist between the ways these
interactions are studied. Most studies investigate protein:lipid
interactions using small unilamellar vesicles (SUVs) or planar
lipid bilayers. Membrane curvature is a major contributor to
the affinity �syn has to membranes, with enhanced membrane
binding being observed in membranes with increased curvature
(112, 125–127) (Fig. 3B). This is presumably due to the smaller
size creating an increase in the number of “packing defects”
(128 –130), random protein binding sites that arise on the
membrane due to the exposure of the hydrophobic acyl chain
interior. Because this is likely to induce a degree of artificial
error, SUVs may only be an appropriate tool to study potential
biological interactions that �syn has with highly curved mem-
branes. A potential candidate for this type of interaction is an
association of �syn with synaptic vesicles. Studies showing sup-
port of this interaction in vivo report the two in close proximity
in human brain (88, 131), and �syn associates with synaptic
vesicles isolated from rodent brain (25). However, it is likely
that this is not the only type of lipid structure �syn associates
with within a cell. In particular, aside from being packed within
lipid bilayers, free forms of lipids are found within a cell, and
hence systems modeling biological membranes may not appro-
priately reflect or identify all possible interactions �syn has with
lipids within a cellular environment. This is an important con-
sideration when interpreting experimental data reporting how
lipids contribute to �syn misfolding.

The preparation of lipids is also relevant to the mechanism of
�syn:lipid interaction at a molecular level. The association of
�syn with lipid membranes sees a proportion of the protein’s
first 98 residues undergo structural rearrangement, increasing
the �-helical content as either a pair of anti-parallel �-helices or
a single extended �-helix (21, 22, 132–135). The precise nature
of this interaction appears to depend on the lipid membrane
(architecture or composition), lipid/protein ratio, or �syn
sequence in modulating one or several of the distinct modes of
�syn:lipid binding that have been observed (25, 136 –140).
Nonetheless, in the case of SUVs composed of a mixed lipid
population (PE, PS, and PC) used in ratios that mimic the lipid
composition of synaptic vesicles, it has been shown that resi-
dues 1–12 are responsible for anchoring the protein onto the
lipid surface and partially insert into the hydrophobic acyl chain
region (139). Taken together, these studies demonstrate that
the precise molecular interactions that occur are highly specific
and are modulated by various �syn- and lipid-specific factors.

Neurotoxic mechanisms of �syn in association with
lipids

Aside from contributing to the misfolding of �syn, lipids may
also directly contribute to the neurotoxicity of the protein. This
may occur by favoring the production of a neurotoxic form
and/or by dictating the locality of misfolded protein within a
cell, which leads to damaging interactions with lipid-rich
organelles. The latter notion is supported by the observation
that �syn associates with lipid-rich organelles and, in many of
these contexts, results in dramatic consequences to the func-
tioning of the cell.

One of the most common intracellular targets reported for
�syn-induced damage is the mitochondrion. This is the organ-
elle responsible for producing the majority of the cell’s energy
in the form of ATP and deficits in mitochondrial functioning is
a central feature of PD. Many studies have implicated �syn in
directly modulating mitochondrial readouts in various animal
(141–146) and cell culture models of disease (147–149). Trans-
genic mice overexpressing WT �syn have reduced ATP pro-
duction and associated elevations in reactive oxygen species
(ROS) and oxidative mitochondrial damage (141, 142, 148),
while primary cultures derived from transgenic mice express-
ing human mutant A53T �syn have impaired mitochondrial
membrane potential and reduced maximum respiration (144).
The expression of A53T exclusively in dopaminergic neurons
shows reductions in substrate-specific respiration (146).

A major component to mitochondrial respiration is oxidative
phosphorylation, which involves five complexes (Complexes
I–IV and ATP synthase) that act to shuttle electrons between
Complexes I–IV within the inner mitochondrial membrane,
ultimately producing a proton gradient between the mitochon-
drial matrix and intermembrane space that drives the genera-
tion of ATP by ATP synthase. In addition to overall decreases in
mitochondrial respiration, �syn has been implicated in causing
functional deficits, particularly at the level of Complex I. Cells
expressing WT or mutant �syn have deficits in Complex I (146,
147), and comparing respiration in neuronal cells that harbor
deficits in specific complexes implicates Complex I in mis-
folded �syn-induced reductions to respiration (148). Reduc-
tions in Complex I activity are also observed in post-mortem
PD brain (150 –152). Critically, evidence that these mitochon-
drial deficits may be due to a direct interaction of �syn with the
organelle comes from the finding that both mutant and WT
�syn associate with isolated mitochondria (149, 153) and mito-
chondria in vivo (146, 147, 149, 154, 155). In addition, �syn has
been shown to bind to membranes mimicking mitochondrial
membranes, with a preference for those containing CA (114,
115), a lipid that is almost exclusively localized to the inner
mitochondrial membrane, where it is also biosynthesized. As
such, a direct interaction of �syn with mitochondria may be a
pathogenic mechanism relevant to synucleinopathies that pres-
ent with mitochondrial deficits.

There is also evidence that �syn is neurotoxic following an
association with the cell membrane. When expressed in yeast,
both WT and A53T �syn localize to the cell membrane, and in
this system, moderate expression of the proteins is toxic in con-
junction with 20S proteasome dysfunction (156). In human
neuronal cells, the expression of A53T or A30P exhibits eleva-
tions in intracellular calcium, depolarization of the membrane,
and elevated cell death compared with cells expressing WT
protein (157). Similar changes to membrane properties are
found following the application of exogenous misfolded �syn to
cultured cells in association with caspase-dependent cell death
(158). These observations are thought to be due to morpholog-
ical changes to the cell membrane. As described previously,
misfolded �syn may elicit these toxic signals by producing
pore-like structures on membranes (123, 124); however, it may
not be the only mechanism of �syn toxicity of membranes,
given that several studies also report membrane expansion, and
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increased membrane curvature and/or membrane thinning
occurs in association with perturbations in membrane integrity
(159 –162) (Fig. 3, C–E). Collectively, these studies support the
notion that pathogenic processes associated with �syn at the
cellular membrane likely contribute to the generation of neu-
rotoxic pathways; however, its precise mechanism of action
remains unclear. A relevant point to the ability of �syn to cause
damage at the cell membrane is whether this damage is driven
by interactions within the extracellular space or intracellularly
from the cytosol. This is important, given that certain lipids are
preferentially located on either the inner or outer leaflet of the
cell membrane; for example, in a normally functioning cell, PS
and PE are typically largely expressed on the inner membrane,
whereas the majority of PC is on the outer membrane (163).

Adverse effects may also arise from alterations of �syn at the
synapse. Although largely conjectural, support for this as a rel-
evant theory comes from studies showing that �syn plays an
important role at the synapse; �syn has been shown to directly
bind the essential SNARE protein, VAMP2, and enhance
SNARE complex assembly in vitro and in vivo (27), and ablation
of the protein causes age-dependent impairment of complex
assembly (164). The involvement of �syn at the SNARE com-
plex requires the presence of the PUFA arachidonic acid (164),
and interestingly, it has been shown that �syn may modulate
synaptic transmission by cross-bridging the lipid PS to VAMP2
to facilitate SNARE-dependent vesicle docking (165). Hence, it
could be expected that a loss of �syn in these areas would cause
drastic effects on neuronal transmission and health. In the con-
text of disease, this may be triggered by the presence of mis-
folded �syn in this area of the cell and/or localization of �syn
away from the synapse upon misfolding.

An important consideration to the studies reporting neuro-
toxic mechanisms associated with �syn:lipid interactions is
whether different conformations of �syn harbor different tox-
icities. Although outside the scope of this review, differential
toxicity has been reported among the various conformations of
misfolded �syn (reviewed in Ref. 10). Accordingly, it will be
interesting to determine whether lipids favor the production of
any given conformation that exhibits a certain neurotoxic prop-
erty or if a type of species favors an association with lipid-rich
organelles. A recent study has reported the ability of a certain
oligomer type to insert into the membrane of SUVs, causing a
loss of membrane integrity (166). This may represent a patho-
genic mechanism distinct from other misfolded conformations
that cause damage; however, further investigations into the
effect of different conformational species on various lipid-rich
organelles will be required to determine this.

The notion of misfolded structure dictating toxicity is also
particularly relevant to distinguish the pathogenic mechanisms
among the various synucleinopathy disorders. For example,
while mitochondrial dysfunction is a feature of PD, it does not
routinely present in the other synucleinopathy disorders.
Because PD is also distinguished by the selective loss of dop-
aminergic neurons of the substantia nigra and dopamine
enhances the production of �-sheet–negative, oligomeric �syn
(167–169), if this is the pathogenic conformation that modu-
lates mitochondrial respiration, it may generate a larger quan-
tity of the pathogenic species that target the mitochondrion in

this disorder. Likewise, MSA and DLB may be more susceptible
to synaptic dysfunction, given that dementia is a frequent
symptom of MSA and DLB (54). Various synaptic proteins pre-
dict cognitive decline in DLB (170), and the loss of VAMP2 and
monomeric �syn correlate with the duration of dementia in
DLB and a subset of PD that presents with dementia (171).
Hence, synapse loss is likely an important component to
synucleinopathies that present with this symptom. Although
interesting to speculate, these hypotheses should be examined
in controlled experiments using well-characterized misfolded
conformations.

Experimental considerations and future prospects for
studying �syn:lipid interactions

While it is well-established that �syn and lipids interact with
each other, the mechanisms by which this occurs are complex,
with features of both molecules being capable of drastically
influencing their association. The resulting effect this interac-
tion can have on �syn is multifaceted. As such, the intricate
balance that dictates the ability of lipids to contribute to its
normal functioning in an organism, versus driving pathogenic
mechanisms associated with disease, is not well-defined.

It is highly possible that the vast range of described mecha-
nisms of �syn:lipid interactions in vitro are relevant in some
capacity to the human condition. However, in the absence of
unified results, caveats to the relevance of protein:lipid interac-
tions observed in an artificial environment should be consid-
ered. Basic interaction studies are unable to reflect the diverse
range of cellular processes and biochemical changes that occur
within an organism. For example, whereas numerous in vitro
data report that the C terminus of �syn associates with various
lipid membranes only weakly or not at all (21, 48, 140, 172), it
has recently been observed to have a strong binding affinity to
synaptic vesicles in the presence of calcium (25). This is an
important observation given the large degree of calcium fluctu-
ations that occur at the synapse (which can reach concentra-
tions in the hundreds of �M range (173, 174)), and highly impli-
cates the C terminus as relevant to the ability of �syn to interact
with synaptic vesicles and potentially other lipid-rich struc-
tures within the presynapse. Such studies also demonstrate the
importance of using biologically derived vesicles that are
involved in normal cellular functioning and harbor lipid:
protein compositions in biologically relevant ratios. In addition
to phospholipids, lipid membranes are enriched with various
other lipids species, as well as peripheral and integral mem-
brane proteins, which are not represented in synthetic prepa-
rations. As in the case of cholesterol facilitating the binding of
oligomeric �syn to membranes (109), such molecules could
foreseeably be important drivers or cofactors in �syn:lipid
interactions. Recently, several studies have investigated the
association of recombinant �syn with isolated biological lipid
vesicles, including synaptic vesicles (25) and exosomes (116),
which are membranous extracellular vesicles of endosomal ori-
gin. The use of such samples is important to further our under-
standing of the importance of membrane composition to �syn
misfolding and/or neurotoxicity.

Additionally, to determine the biological relevance of �syn:
lipid interactions, experimental methodologies distinct from in
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vitro analyses should also be pursued. Here, the implementa-
tion of systems biology approaches to studying protein net-
works and systematic, unbiased biochemical screens to study
protein:lipid interactions could provide additional information.
This should include global analysis of the lipidome and pro-
teome using human tissue, where possible. Such findings could
then be integrated with in vitro studies using defined lipids and
solute conditions to enable artificial systems to act more as
complementary assays rather than experiments to uncover pri-
mary leads. While lipid research has previously been limited by
technical aspects of standard techniques, such as mass accuracy
and resolution in MS-based approaches (reviewed in Ref. 175),
new advancements in the field will no doubt reveal important
additional information. For instance, the use of a combination
of cutting-edge structural, biochemical, and computational
approaches has recently been shown as a powerful tool to study
previously challenging protein:lipid interactions (176), which
may be relevant in the context of �syn.

In addition to improvements in tools to study lipids, the field
would also greatly benefit from advanced tools to model the
synucleinopathy disorders. Many studies investigating the
pathogenicity of �syn use fibrillar species that have been pro-
duced from recombinant protein, which may be easily gener-
ated by exposing �syn in neutral buffer to continuous shaking
at an ambient temperature. This method produces large quan-
tities of homogeneous fibrillar protein after several days. Vari-
ations in the preparation of �syn, the buffer it is reconstituted
in, or the addition of compounds produces other defined spe-
cies (such as oligomers or ribbons), with several studies charac-
terizing the properties of well-defined �syn structural species
(67, 68). Although these studies are useful to attribute patho-
genic properties to specific conformations of misfolded �syn, a
caveat to these systems is that these techniques only produce
one type of misfolded species. These homogeneous populations
are unlikely to reflect the numerous conformations found in
human disease, and hence the ability to model in vivo disease,
including any interspecies interactions that occur, is insuffi-
cient. New methods of protein fibrillization may alleviate these
technical issues. The protein misfolding cyclic amplification
assay is a system used traditionally to study the misfolding of
PrPC into PrPSc, which is a misfolded protein that is associated
with the neurodegenerative prion disorders (177), and it has
also been shown to produce misfolded �syn species of various
sizes (178). An additional consideration in experiments using
recombinant protein is that often they do not exhibit disease-
associated post-translational modifications of the protein, such
as phosphorylation of �syn at position Ser-129. However, sev-
eral recent studies have produced phosphorylated recombinant
misfolded �syn and studied their pathogenicity in various dis-
ease systems (179 –181). Experimental findings from these
types of studies will be useful to provide further insight into the
misfolding and pathogenicity of �syn and identify tools that
best model human disease-associated �syn.

Ultimately, the greatest advancements in the field will
require collaborative efforts by researchers from a range of
backgrounds with specialist technical skills in areas such as
computational and structural biology, lipid characterization
and transport, and protein misfolding. In doing so, aspects rel-

evant to studying �syn:lipid interactions may be handled by
those with expertise in a given area to help piece together a
global picture of how they interact and the nuances pertinent to
�syn’s functioning in both health and disease.
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