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Abstract: It is estimated that almost 40% of the world’s energy is consumed by buildings’ heating,
ventilation, and air conditioning systems. This consumption increases by 3% every year and will
reach 70% by 2050 due to rapid urbanisation and population growth. In Darwin, building energy
consumption is even higher and accounts for up to 55% due to the hot and humid weather conditions.
Singapore has the same weather conditions but less energy consumption, with only 38% compared
to Darwin. Solar radiation can be defined as electromagnetic radiation emitted by the Sun and the
Darwin area receives a large amount of solar radiation; building energy consumption can be reduced
hugely if this radiation is blocked effectively by analysing appropriate shading devices. This study
investigated the influence of different types of shading devices on the cooling load of a town hall
building located in Darwin, Australia, and proposed the optimal shading device. The results showed
that the horizontal fins led to a 5% reduction in the cooling load of the building. In contrast, adding a
variation to the device angles and length increased the savings to 8%. The results demonstrated that
the overhangs were more efficient than the fins, contributing 9.2% energy savings, and the cooling
reduction savings were increased to 15.5% with design and length variations.

Keywords: building energy modeling (Revit); building energy efficiency; cooling load; solar shading
devices

1. Introduction

In today’s world, around 40% to 50% of electricity is consumed by buildings [1,2],
with 30% consumed by HVAC systems [3]. The World Health Organization (WHO) indi-
cated that “cities will house 50% of the world’s population by 2050, rising to 70% by 2050.
This urbanization and population growth will result in an increase in building energy
consumption” [4,5]. Many elements can influence a building’s performance or energy
demand, and if managed properly, energy demand can be significantly lowered. Building
components and envelopes are to blame for the high cooling energy demand. Occupant
behavior, operating hours, and the number of appliances inside the structure can all raise
the amount of energy consumed [6].

Windows that are capable of blocking excessive radiation can improve the cooling
load of a building. In contrast, windows and other façades with high transmission values
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can increase the cooling load [7]. However, these are not the only factors when it comes
to heat gained from solar radiation. The Sun angle, time, and location also play a crucial
role in emitting radiation [8]. The cooling load of a building air-conditioned space can be
divided into two main categories: internal heat gain and external heat gain. Internal heat
gain originates from the occupants, electric lighting, computers, and other equipment [9].
In a climate zone such as Victoria, with a hot summer and cold winter [10], the summer
sun is high and lower in winter. However, these windows also present the opportunity
to utilise the natural light indoors, precisely eliminating the artificial source of light and
saving building energy loads. Many authors suggest that natural light inside buildings
during the day improves residents’ health and visual comfort [11].

Allowing the required amount of light into buildings and eliminating excessive light-
ing is tricky and requires a plan to install shading or tinting windows to a certain amount.
The extra glare of sunlight can be controlled by applying internal, external shading, or
electrochromic technology. Studies were done to measure the glare index and daylight
factor in a simulation program design-builder and suggested the optimal level of light in
a building [12,13].

In reality, lighting quality is not directly measurable but is an emergent state created
by the interplay of the lit environment and the person in that environment. Veitch et al. [14],
who investigated the determinants of lighting quality, mentioned that “one cannot measure
quality in the same sense as one measures length, mass, or lumen output, and lighting
quality can only be assessed using behavioral measures.” Consequently, it cannot be
measured directly, as indicated by [14]; however, as mentioned, it was estimated using
behavioral measures. It is emphasised that this method is a simple, practical method since
no real person was involved in the study.

Depending on the panel setup, neighboring panels can cast shadows over lower panels
in the same system. This issue typically only arises for in-ground installations. Panels can
actually be shaded by the roof they are on. Depending on the sun’s angle and the time of
day, different parts of a roof (such as a chimney or dormer) can block sunlight to certain
panels. Therefore, we cannot discuss shade without mentioning clouds. Despite the fact
that clouds do technically block out the sun and cast shade, the clouds still let some sunlight
through, which means solar panels still can produce energy, albeit at a lower efficiency.
The shaded solar panels produce less power than those in direct sunlight. Exposure to
less powerful sunlight is the obvious contributor to lowered efficiency, but the design of a
solar installation, specifically, the panels and their inverter(s), also matters. This research
constitutes a relatively new area that has emerged from this solar energy system that can be
used at any time when the sun is shining; however, more electrical power can be expected
when the sun is very bright and shines directly on the PV module. Shading is one of the
aspects that can have an impact on PV systems. Many academics have studied the usage
of bypass diodes in shading scenarios, but the fact is that shading must be thoroughly
analysed and avoided since it can lead to a breakdown of the shaded module.

This research aimed to assess different technologies used in commercial buildings in
hot and humid climate conditions to reduce the cooling loads and keep the comfort level at
an optimal level. Additionally, this study focused on passive cooling strategies via different
shading devices by considering the state of the building to help reduce the heat gain of
the building due to solar radiation. Furthermore, this study investigated and compared
various shading devices that are available and compared the depth effect of these shading
devices using building energy modeling software (Revit). The results were then compared
with the simulation model to suggest the best design shading device.

2. Literature Review

Shading devices are part of the solar control façade systems defined in the same
standards, and their installation has become mandatory for some public buildings as a
result of the 2015 revisions to the regulations. A common shading device is one that
generates a pleasant indoor environment by appropriately regulating or blocking incoming
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solar radiation, thereby reducing the cooling or heating load of the room and selectively
allowing natural lighting and vistas. Although sunshine through window glass helps to
reduce heating demands in the winter, it can create a large rise in cooling loads in the
summer due to indoor heat gain from solar radiation. As a result, by using shade devices
and supplementing the weak parts of windows in the summer, it is feasible to cut energy
consumption while still creating a comfortable indoor environment [15].

Several studies on shading devices have previously been undertaken, and the existing
literature can be summarised as follows: Al-Tamimi and Fadzil [16] investigated the
feasibility of using shade devices to reduce the temperature of tropical high-rise residential
structures. They used simulations to examine ideal external shading devices that can
minimise incoming heat and hence improve energy usage, with a focus on Malaysia’s hot
and humid climate and the internal temperature control effect for high-rise residential
structures. Kim et al. [17] conducted an energy simulation utilising a computer model
designed for Korean residential structures based on practicality in order to introduce
ideal external shading devices via comparative research on the thermal performances of
residential building external shading devices. Palmero-Marrero and Oliveira [18] studied
the effect of a louvred sunshade system, evaluated the performance of shading devices
based on orientations and conditions, and analysed the effects of the louvred sunshade
system that change depending on a variety of parameters. Kim et al. [19] investigated
the cooling and heating energy consumption of Korean office buildings when horizontal
shading devices or Venetian blinds were utilised, as well as optimal shading devices based
on areas and orientations. Lee et al. [20] conducted a climate index development study
utilising local weather data in order to understand the features of the local climate in the
early design stage and confirm the validity of shading devices that can be judged by the
user. Kim et al. [21] investigated cooling load reductions by analysing the reduction of
cooling loads in office buildings with a high cooling load in order to confirm the effect of
an effective shading device design on office buildings.

A. Gagliano et al. [22] investigated the cooling load of a lecture hall in the hot, humid
climate of Malaysia. They used insulation materials PASB (polyethylene aluminum single
bubble) on the external wall and simulated the insulation material with CFD software using
collected data for a one-year duration. A reduction of 3 ◦C was achieved using the insulation
materials, resulting in a lower cooling load requirement. A. Gustavsen et al. [23] also
installed polyurethane on the outer side of a house wall and achieved a 28% reduction in the
house’s cooling load. Another study was undertaken in Hong Kong by J.-W. Lee et al. [24],
which involved applying polystyrene on the external and internal walls of the building;
they achieved a 38% reduction in cooling load.

These experiments support the idea that installing low-U-value materials on the
wall helps to minimise the cooling load of buildings. The contribution from windows
is considered to be one of the most effective factors of heat gain/loss in buildings.
Z. Yang et al. [25] claimed that up to 60% of building energy loss is due to windows
with a 30% window to wall ratio (WWR) of a two-story building. Moreover, by decreasing
the WWR to 20%, the energy loss was 45%. Other factors of window heat loss are the
thermal conductance of window material; a better insulating window with a minimum
U-value can significantly reduce these losses [26].

Subsequently, it was found that double-glazed windows are 50% more efficient than
single-pane windows and have a very long life [27]. Though this technology is getting
more common daily, many modern versions are being designed and evaluated for their
performances. Among the current versions is aerogel fitted, vacuum, and PCMs fitted
glazing. Aerogel is a world-class insulating material that is employed in the space industry
due to its extreme insulation properties and delicate nature. It is a costly material, but
scientists are trying to reduce its manufacturing costs. Aerogel is placed between two
layers of glass; with it being very lightweight, the increase in mass of the window structure
is a minor concern. According to C. Buratti and E. Moretti [28], aerogels are available
in various transparencies, ranging from fully transparent to translucent to opaque, with
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variations in their costs. The aerogels were tested; it was found that their heat transfer
coefficient is extremely low, having a value of 0.013 W/m2K [29]. Since aerogels are
available in two types, known as monolithic and granular, an investigation was done
by J. L. Aguilar-Santana et al. [30] and C. Buratti and E. Moretti [28] to compare both types.
It was concluded that monolithic is much better in terms of its solar transmittance in the
form of light and insulation ability, with an overall U-value of 0.60 W/m2K.

The purpose of this study was to confirm that shading devices can be implemented to
improve the visual comfort of indoor building occupants by filtering excessive sunshine while
allowing appropriate daylight to enter through windows. Tzempelikos and Athienitis [31]
investigated the control of shading devices for building cooling and illumination control and
offered advice on shading device performance and window glass ratio design. They conducted
investigations in order to provide instructions on thermal properties, shading control, and how
to choose the glass ratio of the façade. Choi et al. [32] conducted research on a parametric
louvre design system for optimising the shape of the louvre and established a parameter
design methodology that integrates heat and the design pyramid by doing a thermal study
and investigating a parameter design methodology. Karlsen et al. [33] created a sun-shading
control approach for Venetian blinds used in cold climate office buildings to ensure acceptable
energy use and indoor environmental performance.

Khoroshiltseva et al. [34] developed a multiobjective evolutionary design technique
for optimising shading devices included in refurbishment kits for an existing residential
structure in Madrid. Singh et al. [35] evaluated the effect of increased shadow transmittance
values on the energy and visual performance of an office building. The research was carried
out at Shillong, which is characteristic of chilly climates in India. A variety of glass and
internal roller shade combinations were simulated for south-, west-, north-, and east-facing
offices with varied window sizes, glazing qualities, and shading methods. Eom et al. [36]
discriminated between periods when shade devices are required and periods when they
are not required by calculating the balance point temperature using simulations, and they
constructed shading devices based on the periods split in this way. As a result, they offered
a specification for ideal shading devices within the size range of shading devices specified
by solar altitude, as well as a quantitative basis for projection length based on annual
heating and cooling demands. Kim et al. [37] used IES 5.5.1 to analyse annual cooling
and heating loads, as well as the amount of sunlight on the living room floor surface, and
assessed the effects of movable horizontal shading devices to assess the impact of a new
type of movable horizontal shading device on the indoor thermal environment and solar
access performance.

Kim et al. [38] used the e-Quest program to evaluate the shading coefficient applied
to energy-saving building envelope technology of office buildings and the loads of dif-
ferent types of horizontal shading devices according to orientations, and analysed the
envelope elements according to orientations. Kim and Yoon [39] conducted a quantita-
tive assessment of the various façades by taking into account the physical properties of
the envelope components that can be selected in the envelope design, calculating annual
loads through simulation, particularly with respect to the combination of windows and
fixed external shading devices, and analysing the design suitability. Using a building
energy analysis tool, Song et al. [40] investigated the complete solar irradiation of the
vertical glass surface dependent on the length of the horizontal shading device according
to the orientations affecting the perimeter boundary in office buildings in Seoul. Kim [41]
conducted a study to derive improvement methods of solar radiation control standards
of windows and shading devices based on an analysis of our countries and other coun-
tries’ related standards by analysing the current status of major countries’ energy-saving
design standards of buildings and performing a comparative analysis of them with the
national standards and investigating complementary elements for the national standards
and necessary amendments.

Shading systems are created as part of the building to prevent unwanted daylight that
would cause high internal temperatures and unwanted lighting, as well as to reduce the



Sustainability 2022, 14, 3775 5 of 20

additional operating expenses of the building system. Such as shading system strengthens
the shading system of the building and establishes the design capabilities in order to adapt
to the user [42].

Shading devices are classed as interior or outdoor shading devices based on where
they are installed. Venetian blinds and roll screens are examples of interior shading devices,
while louvres, light shelves, and awnings are examples of external shading devices [43].
Furthermore, shading devices can be characterised as fixed, manual, or movable based on
how they operate [44]. Shade devices come in a variety of materials, sizes, and shapes, and
can be installed in a variety of locations within a building, such as windows or as part of
the architecture [45].

Because they move in line with the direction of the sun, movable awnings perform
better in terms of daylight control in different seasons [46]. Fixed shading devices, on the
other hand, are more suitable for implementation, particularly in Iran, where there are
economic concerns and the employer accepts a more economical plan, and it also costs less
to implement, in addition to being easier to design and implement.

The height of the sun and the azimuth when the shadow is required decide the fixed
shading design [47]. On the one hand, horizontal shadows have the largest effect on the
south side, and the length of the ridge is determined by taking into account the sun’s
altitude angle. Azimuth, on the other hand, is a significant consideration for vertical
shading that is utilised on the east or west side of a building where the solar height is low.
It is effective to insert vertical fins at small distances to boost the protection speed while
shortening the protrusion length. Regardless of the orientation, eggcrate-shaped shadows
merge vertically and horizontally, taking into consideration both solar and azimuthal
heights. However, one downside is that the function of natural light is lost as a result
of overprotection [48].

However, in the current literature, most studies on façade optimisation only focus
on a single façade orientation, which is the equator-facing side, because the observed
buildings are typically located in high-latitude regions, e.g., [49,50]. Meanwhile, in tropical
regions, optimisation of all façade orientations is required due to the relatively high solar
radiation and long sunshine duration. Although some attempts have been made in the
prior work to address this issue, most of these studies focus on particular case studies,
such as the design of shading devices in tropical office buildings according to recent
studies conducted in [51,52], and ignore other tropical regions with specific case studies,
for instance, Casuarina Darwin, which might provide different results, as expected by the
authors of this study. Moreover, this study provides a review of recent techniques and
presents a comparison against earlier methods; it was found that some studies focused
on fixed (or static) shading devices [53,54], while some focused on adaptive (or any of
the alternative adjectives) shading devices [55,56]. It was concluded that there is still a
lack of studies on adaptive shading devices on business buildings façades in the tropical
context [57]. In addition to the main conclusion of the review [25], it is also mentioned that
fixed shading devices have been a popular choice for application in the tropics, particularly
to optimise thermal and daylight performance, despite the limitation in responding to
varying weather conditions. Meanwhile, adaptive shading devices are less popular than
fixed devices, mainly due to the complexity and the attributed operational costs [58]. Based
on the above critical review, it was strongly recommended to adopt the optimised shading
devices among other possibilities as a compromise.

3. Materials and Methods

The primary purpose of this study was to investigate the influence of different types
of shading devices on the cooling load of a town hall building located in Darwin, Australia,
and propose the optimal shading device. For this reason, the research method involved
simulation modeling as shown in Figure 1. In this way, at first, the selected building was
modeled in the Revit software and the energy was analysed in terms of daylight and
heat. The tool has the capabilities to model and performs simulations for different types
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of buildings. Besides that, it can also improve the existing building technologies with
emissions and energy use by buildings. It describes the different cooling load factors in
components and external heat gain by the building. Additionally, it gives an overview
of solar shading devices and explains how the sun path can affect the performance of
a shading device. Visual comfort, thermal comfort, building energy rating system in
Australia and Darwin weather conditions are explained. Based on an extensively conducted
critical review, a systematic methodology was developed to analyse the performance of the
different types of shading devices.
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Figure 1. Methodology adopted for reducing the cooling loads in the building.

The authors selected Casuarina Darwin because this building is considered to be in
the middle of the city, which will give more reasonable data for our study. Besides that,
the effect of different shading types applied to the exterior of the building was analysed
and their impact on the cooling load requirements of the building was studied. Casuarina
Darwin is a multipurpose town hall that is used for public events in Darwin, Australia.
Furthermore, this building is located in a tropical region that features high temperatures,
which serves the primary purpose of this study. The real-time sun path of this building
was also generated through Suncalc, as shown in Figure 2.
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ina Darwin with the sun path.

The altitude angle is the angle of the sun above the horizon, achieving its maximum
on a given day at solar noon. The azimuth angle, also known as the bearing angle, is the
angle of the sun’s projection onto the ground plane relative to the south.

Shading devices can have a dramatic impact on building appearance. This impact can
be for better or worse. The earlier in the design process that shading devices are considered,
the more likely they are to be attractive and well-integrated in the overall architecture of
a project.

The highest sun angle measured from the ground was 72.66◦ at 12:44 p.m. in December 2021
for the summer azimuth on Darwin. The lowest sun angle measured was recorded as 22.420◦

at 12:48 on 21 June 2021 for the winter azimuth from the four different directions of the building.
These are important because they play a vital role in determining the cooling loads, as shown
in Figure 2.

Revit is used to design, document, visualise, and deliver architecture, engineering, and
construction projects. Revit is software that uses BIM technology encompassing a complete
life-cycle of a project, including planning, designing, building, estimating, operating, and
maintaining the facility. Revit is aimed at more complex projects of whole infrastructures,
where Revit will recognise elements. As design software, it leaves much to be desired.
However, its strengths lie in its handling of services. It has a very robust error-detection
system that can quickly identify potential conflicts in the services plan of a project. It is
possible to coordinate very easily with the services consultants if they are also working
in Revit. Revit has changed architecture design, drafting, and modelling processes by
accomplishing substantial improvements in precision and efficiency. With Revit software,
architectural designers can now rapidly sketch out rough layouts of a floor plan or make
changes to the standard set of building designs and instantly let their customers preview
their future homes [59,60].

The changes in components are in terms of windows and shading devices because they
are responsible for most of the cooling load in Darwin. Another software can be utilised
to conduct these load calculations called HAP (Hourly Analysis Program). This software
generates a more accurate result and is based on the ASHRAE standards [61].

The Hourly Analysis Program (HAP) is a component of the program libraries, which
is one of the major research companies in the market. HAP licenses and reports outputs
that are used internationally in the field, as well as calculates the hourly energy analysis
by using 365 × 24 h of airflow information by predicting the heating and cooling loads of
the building, the number of days per year, and 100% working condition to simulate the
hourly airflow design and the operation of the selected mechanical system devices. The
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HAP interface contains the meteorological information of specific centres in order to obtain
the correct information according to the country of the building [62].

ASHRAE standards are entered into the program to calculate heating and cooling loads.
Steps involved in calculations when using HAP are as follows: location information—where
the location information is entered in the program; room description—the area and height of
the spaces should be entered; the amount of airflow conditioned in the area is entered; the
lighting, electrical equipment, and the heat gain loads from the room are entered; window and
door areas in the same direction are entered; the roof area is entered; the floor features of the
room are entered; infiltration information is entered; system selection—room or zone system
selection; defining building components—profiles, wall properties, roof properties, window
features, door features, and shadow properties are defined [63,64].

We selected shading because Darwin experiences an adequate amount of sunny and
partly sunny days. Direct sunlight can be blocked or reduced before getting to the window,
which is the weakest link for thermal losses occurring in a building.

To implement passive cooling technologies in buildings and reduce the cooling load,
research on several passive cooling designs was undertaken around the globe. Furthermore,
a study based on building information modelling software was undertaken. This approach
of software-based research focused on the information available about shading devices,
windows, and other building materials in published papers and experiments. Many studies
were undertaken with the Revit and were considered the primary source of data. It is an
intelligent 3D modelling process that provides integrated, comprehensive engineering and
architectural tools to help architects, engineers, and designers enhance their understanding
of the energy performance of the buildings at particular locations and parameters. In
our case, we modelled the building design and conducted a basic load calculation for
the building. These load calculations were undertaken for the essential materials used
in building components and considered the baseload calculation for other installed or
improved features [65].

3.1. Simulation Process

The simulation for the cooling load using Revit software was conducted in several
steps (Figure 3) to ensure that reliable results could be achieved. This simulation was
conducted for the basic original building design at the Casuarina Darwin, shown in Figure 4.

First step: This first step included modelling the building consisting of the floor and
elevation. In this step, the total building air-conditioned area was identified as a single-zone
system, and the variable air volume duct system was assumed during this phase.

Second step: The building orientation, location, weather data, and date were considered.
Third step: The building materials, such as window and doors types, were added from

the library. These materials were set as constant for all the simulations done throughout
the experiment to avoid material change on the load calculations.

Fourth step: In this step, the building’s cooling load simulation was obtained without
any shading device as a basic load calculation.

Fifth step: After designing the building, we designed different types of shading devices
that varied in lengths and angles and applied them to the designed building separately.

Sixth step (final): The different shading effects were applied to the building. The
cooling load simulation was conducted again to observe any variation in the cooling loads.
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3.2. Assumptions

Some initial assumptions were made to help us with simplifying our problem state-
ment. The assumptions are listed below:

• Internal loads, such as occupancy and electric appliances, stayed the same.
• The shades had uniform material properties irrespective of their orientation.
• All the shadings applied were of the same material and colour.
• No extra coatings were applied to the shadings.
• Uniform airflow was assumed under the applied shade.
• The building material properties remained the same in all calculations.
• The entire building was divided into two zones.
• The properties of the VAV duct system were assumed to perform the simulations.
• Any internal shades present were neglected.
• Orientation of the building was the same for all simulations.

3.3. Load Calculations for the Modelled Site

Modelling the building using Revit divided the building space into different spaces
and zones. A total of two zones were created to allocate a selected area to a sensor, with
one zone on each of the ground and first floor of the building. The space calculation was
obtained after the building was divided into several zones. The load calculation was made
based on the Darwin region. The following building parameters were obtained from the
simulation, with a total floor area for both floors being 784 m2 and a volume of 3077.51 m3.
Other factors are shown in Table 1.

Table 1. Details of Casuarina Darwin’s project specification parameters.

Building/Project Specification

Building type Town hall
Area (m2) 784
Volume (m3) 3077.51
Height (m) 6
Location Casuarina Darwin, NT, AU
Latitude −12.46◦

Longitude 130.84◦

Summer dry bulb 30 ◦C
Summer wet bulb 27 ◦C
Winter dry bulb 20 ◦C
Mean daily average 4 ◦C
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The building was designed using a selected heat transfer coefficient for the exterior
components. These selected essential components stayed the same throughout the simula-
tion experiment, except for window types and shading devices; the data were collected
for the study location (Casuarina Darwin). The thermal properties of the exterior building
materials are shown in Table 2.

Table 2. Thermal properties of the exterior building materials.

Thermal Properties of Exterior Building Materials
Parameter U-Value (W/m2 K)

Roof 1.275
Exterior wall 0.810
Ceiling 1.361
Doors 6.870
Windows 5.692
Floors 2.958

3.4. Cooling Load Calculation Basic

The first simulation was taken from the site and the following results were obtained,
as shown in Table 3. These results were based on the basic component coefficient with no
shading effect.

Table 3. Basic cooling load calculation results and checksums.

Basic Cooling Load Calculations

Inputs
Building Type Town hall
Area (m2) 784
Volume (m3) 3077.51
Calculated Results
Peak Cooling Total Load (W) 175,151
Peak Cooling Month and Hour January 4:00 p.m.
Peak Cooling Sensible Load (W) 130,012
Peak Cooling Latent Load (W) 45,140
Maximum Cooling Capacity (W) 169,621
Peak Cooling Airflow (L/s) 9466.4
Peak Heating Load (W) 2474
Peak Heating Airflow (L/s) 858.8
Checksums
Cooling Load Density (W/m2) 223.38
Cooling Flow Density (L/(s m2)) 12.07
Cooling Flow/Load (L/(s kW)) 54.05
Cooling Area/Load (m2/kW) 4.48
Heating Load Density (W/m2) 3.16
Heating Flow Density (L/(s m2)) 1.10

3.5. Cooling Load Calculation Basic

The method we chose for this research was based on software simulation because it
was suggested by many research studies that this software can predict results with very
high accuracy. Additionally, there is no setup available at the CDU laboratory to conduct
on-site heat gain and cooling load experiments. Furthermore, investigations of shading
devices, building materials, and windows are expensive and hard to maintain within
a workshop. This kind of experimental setup will need an extensive form to calculate
anything for a day or time of the year. However, fortunately, the university has provided
the premium version of the simulation software Revit, where most simulation experiments
can be undertaken.
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3.6. Cooling Load with Shading Effect

The different shading types that were simulated were as follows:

a. Eight horizontal fins 0◦ (250 mm);
b. Eight horizontal fins 0◦ (150 mm);
c. Eight horizontal fins 30◦ (150 mm);
d. Horizontal louvres overhang (1100 mm);
e. Horizontal louvres overhang (1800 mm);
f. Tilted horizontal louvres 180◦ to 360◦ (1800 mm);
g. Horizontal overhanging louvres inclined 45◦ (2200 mm).

The shading of eight horizontal fins was applied to each window and the cooling
load was calculated. The width of the fin was 250 mm while it was at an angle of 0◦ to the
horizontal. The sun path and shading are shown in Figures 4 and 5.
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Then, the shading of eight horizontal fins was applied to each window and the cooling
load was calculated, where the width of the fin was 150 mm while it was at an angle of 0◦

to the horizontal. Figures 6 and 7 show the shading type applied to the building.
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Then, the shading of eight horizontal fins was applied to each window and the cooling
load was calculated, where the width of the fin was 150 mm at an angle of 30◦ to the
horizontal. The shading applied is shown in Figures 8 and 9.
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Then, we observed the effect of an overhang on the shading of the window, where the
overhang had a length of 1100 mm from the edge of the wall; the overhang shading can be
seen in Figure 10.
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We then changed the length of the overhang to 1500 mm. The frontal view of the
overhang can be seen in Figure 11, and we can see it in the form of the line as it is the
front view.
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Figure 11. Frontal view simulation of the applied 1800 mm overhang shading.

In the next shading type, similar to a simple overhang louvre twisted along its hor-
izontal axis, the shade provided different shading at different times of the day. One end
provided more shade than the other. It also helped to add aesthetic value to the structure of
the building and attracted more attention due to its unique design. Figures 12 and 13 show
different views of the shading design applied to the building.
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The next type of shading was a modified version of the overhang with an inclination
of 45◦. The inclined overhang provided more shade to the window and for an extended
period during the day, as shown in Figure 14. The length of the overhang was 1500 mm.
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The cooling loads obtained for each type of shading applied are listed in Table 4.
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Table 4. Cooling loads for various types of shadings.

Shading Cooling Load in kW

Without shading 175.15
8 horizontal fins 0◦ (250 mm) 162.35
8 horizontal fins 0◦ (150 mm) 165.58
8 horizontal fins 30◦ (150 mm) 161.28
Horizontal louvres overhang (1000 mm) 158.89
Horizontal louvres overhang (1500 mm) 153.45
Twisted horizontal louvres 180◦ to 360◦ (1500 mm) 155.96
Horizontal louvres overhang inclined 45◦ (1500 mm) 147.92

4. Results and Discussion

All simulations were carried out and a cooling load value was obtained for every
shading type applied. The peak cooling load of the building resulted when no external
shading was used on the building, giving a total requirement of 175.15 kW. When different
shading types were added at the windows’ level, other values were recorded, as shown
in Table 4. These cooling loads were then compared with the building’s original value of
the cooling load, and energy savings were calculated, as shown in Table 5. A graphical
representation of the cooling loads calculated can be seen in Figure 15.

Table 5. Energy savings achieved by different shading types.

Shading Energy Saving (%)

1. Without shading 0
2. 8 horizontal fins 0◦ (250 mm) 7.308
3. 8 horizontal fins 0◦ (150 mm) 5.464
4. 8 horizontal fins 30◦ (150 mm) 7.919
5. Horizontal louvres overhang (1000 mm) 9.283
6. Horizontal louvres overhang (1500 mm) 12.389
7. Twisted horizontal louvres 180◦ to 360◦ (1500 mm) 10.956
8. Horizontal louvres overhang inclined 45◦ (1500 mm) 15.547

Note: It is essential to mention that the energy savings as a percentage of energy saved by applying the shading
were calculated separately and individually due to the core differences of shading types that were simulated. There-
fore, the total energy/consumptions of the building were not investigated because of the abovementioned reason.
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One of the major concerns is the installation and material costs of the shading type
when selecting the style that best fits the building. From the first three types, observation
showed that the horizontal fins of 250 mm would use more materials than those with
150 mm fins. Apart from that, horizontal fins with 0◦ angles acted very similar to the
overhang on top of the window. Still, apart from that, horizontal fins with a 0◦ angle
worked identically to the overhang on top of the window, except that the overhangs were
applied throughout the window height; therefore, a greater area of the window was shaded
to provided a good amount of shade to the window. Moreover, the lighting quality in
the building was also good and did not impact the visual comfort levels of the occupants.
More savings were observed when longer louvres were used, but the results were similar
to the smaller louvres, except they were tilted at the angle of 30◦ to the window. Therefore,
instead of using longer louvres, shorter louvres can be used with a slightly tilted angle to
cause the same effect as the longer louvres

The percentage of energy saved by applying each shading type was also calculated.
This comparison was made with reference to the scenario of no shading used. Table 5 shows
the energy savings as a percentage relative to the original building.

When the overhang shades with lengths of 1000 mm and 1500 mm were applied to
the building, the calculated cooling loads observed showed that the longer the overhang
length, the lower the cooling load. It helped to reduce the unwanted radiation reaching
the window. The longer overhang provided shade most of the time during summer. It
confirmed the basics of the overhang shade design. The shadows provided overall energy
savings of 9 and 12% for shorter and longer overhangs, respectively.

Twisted single louvre was used, and the cooling loads calculated provided an energy
saving of almost 11%. This high energy saving was also due to the immense size of the
shading, which was 1500 mm. The last shading type applied was a single overhang inclined
at 45◦, providing the maximum energy saving of 15.54%. Inclining by 45◦ provided shade
throughout the day for an extended period and blocked rays from reaching directly to the
window at a much higher rate. The energy savings trend as a percentage relative to no
shading used to the building for all the shading types applied.

5. Conclusions

In conclusion, different shadings can be applied to buildings to reduce the cooling
loads. Revit software was successfully used to better understand the additional analyses
needed to be done before a building is approved. It was shown that changing the geometry
and size of the shading can impact the overall performance of the building.

It was found that a single overhang provided the best results at an angle of 45◦

with a length of 1500 mm. The straight overhang was less beneficial than the inclined
one. Inclination helped with blocking more rays for an extended time of the day, thus
impacting the overall performance of the building. However, the increased length of the
shade demanded a more robust structure of the building, especially when considering very
high-rise buildings and windy areas.

Consequently, external shading devices minimise the cooling required of a building,
resulting in energy savings. The shade’s efficiency is determined by the building’s form,
the shading design, and the amount and inclination of glazing. Furthermore, heat is
obtained and wasted from existing dwellings as a result of air leakage or draughts. To
avoid draughts at home, seal gaps around doors and windows in the houses, as this will
significantly reduce the energy and lower costs.

Furthermore, shading devices will reduce the cost of cleaning the external façade,
as the maintenance costs will be lower compared to the traditional methods that are
currently used. In addition, the shading devices will contribute to reducing the electricity
consumption, which will also lead to a decrease in the cost of electricity in general and the
cooling system equipment specifically. From the above discussion, it can be concluded that
this overall cost-effective saving of the shading devices will create a new economic valuation
based on these technological tools that were examined. Additionally, it is very essential
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to mention that the percentages of energy saved by applying the shading were calculated
separately and individually due to the core differences of shading types that were simulated.
Therefore, the total energy/consumptions of the building were not investigated because of
the abovementioned reason; this could be done in further investigation. Moreover, since
the peak loads were only calculated, this presents a limitation of this study; future work
should calculate both the peak loads and energy consumptions and identify the relationship
between them.

In the final analysis, this study contributed to the development of knowledge re-
garding the optimisation of shading devices in buildings by considering the daylight
admission, particularly in the Darwin Casuarina town hall building, regarding the context
of a tropical region.
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