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Some BBP-type series for polylog integrals

Anthony Sofo

Abstract. An investigation into a family of definite integrals contain-
ing log-polylog functions will be undertaken in this paper. It will be
shown that Euler sums play an important part in the solution of these
integrals and may be represented as a BBP-type formula. In a special
case we prove that the corresponding log integral can be represented as
a linear combination of the product of zeta functions and the Dirichlet
beta function.

1. Introduction, preliminaries and notation

In a 1997 paper [2], Bailey, Borwein and Plouffe evaluated various math-
ematical constants in the form of, for example,

π =

∞∑
n=0

1

24n

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)
.

These types of representations are known as BBP-type series and many other
papers have recently been published [1], [20], [22], [23] extending and gen-
eralizing various aspects of BBP type series. In general, for a mathematical
constant K a BBP-type formula has the form

K =

∞∑
n=0

1

αn

k∑
j=0

βj
(nk + j)p

,

where α, k, p are integers, the base, length and degree of the BBP-type for-
mula, and βj are rational numbers. In [5], Coffey gives the representation

4G+
3

4
ζ(2)−π

2
ln 2 =

∞∑
n=0

1

24n

(
4

(8n+ 1)2
− 2

(8n+ 4)2
− 1

(8n+ 5)2
− 1

(8n+ 6)2

)
,
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and Adegoke [1] gives the nice representation

140

9
ζ (3)− 16

3
ζ (2) ln 2

=
∞∑
n=0

1

25n

(
16

(6n+ 1)3
− 24

(6n+ 2)3
− 8

(6n+ 3)3
− 6

(6n+ 4)3
+

1

(6n+ 5)3

)
.

On the example of massless QED, Kim et al. [10] study a skewed Sudokov
regime, that is, an asymptotic of the vertex when only one of the two vir-
tualities of the external fermions is sent to zero. In solving an evolution
equation for the form factor Sk (z), Kim et al derive the BBP type equation

k!Sk (z) = Lik(z) +
∞∑
n=2

zn
k−1∑
j=1

1

nk−j

(
k
j

)
(Hn−1)

j

with harmonic numbers (Hn−1)
j . In this paper we investigate a family of

integrals with polylogarithmic integrand containing some parameters. It will
be shown that the solution of these families of integrals may be expressed
as a BBP-type representation containing harmonic numbers and including
some classical constants such as the Riemann zeta function and the Dirichlet
beta function. In particular we investigate a family of integrals of the type

I (a, p, q, t) =

∫
x

xa lnp (x)

1 + x2
Lit(x

4q)dx, (1)

where a ≥ −2, p ∈ N0, q ∈ N, t ∈ N0, for the domain of x ∈ (0, 1) . We also
study the integral

J (p, q, t) = I (0, p, q, t) =

∫
x

lnp (x)

1 + x2
Lit(x

4q)dx (2)

in the positive half line x ≥ 0. Some other related papers dealing with
Euler sums are [3], [12], [18], [13] and the excellent books [19] and [21]. The
following special functions will be used in the analysis of the integral (1).
The polylogarithm function Lit(z) is, for |z| ≤ 1

Lit(z) =
∞∑

m=1

zm

mt
. (3)

The classical Hurwitz zeta function

ζ (p, a) =
∑
n≥0

1

(n+ a)p

for Re (p) > 1 and by analytic continuation to other values of p 6= 1, where
any term of the form (n+ a) = 0 is excluded. The well known result

ζ (z) + η (z) = 2λ (z)
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connects the zeta function ζ (z) =
∑∞

n=1
1
nz with the alternating zeta func-

tion η (z) and the odd zeta function λ (z) . The zeta function has a simple
pole at z = 1. The Dirichlet beta function β (z) or the Dirichlet L function
is given by (see Finch [8])

β (z) =

∞∑
n=0

(−1)n

(2n+ 1)z
; z > 0, (4)

where β (2) = G is the Catalan’s constant. The Dirichlet beta function can
be represented in powers of π at positive odd integer values of z, such that

β (2m+ 1) =
(−1)mE (2m)

22m+2 (2m)!
π2m+1,

where E (·) are the Euler numbers generated by

sech (z) =
2ez

e2z + 1
=
∞∑
n=0

E (n) zn

n!
.

The Dirichlet beta function which can be extended analytically to the whole
complex plane has no singularities in the complex plane and is given by the
functional equation

β (1− z) =

(
2

π

)z
sin
(πz

2

)
Γ (z)β (z) .

For complex values of z, z ∈ C\ {0,−1,−2,−3, ...} , ψ(z) is the digamma
(or psi) function defined by

ψ(z) :=
d

dz
{log Γ(z)} =

Γ′(z)

Γ(z)
.

We know that for n ≥ 1, ψ(n + 1) − ψ(1) = Hn with ψ(1) = −γ, where γ
is the Euler–Mascheroni constant and ψ(n) is the digamma function. The
polygamma function

ψ(k)(z) =
dk

dzk
{ψ(z)} = (−1)k+1 k!

∞∑
r=0

1

(r + z)k+1

and has the recurrence

ψ(k)(z + 1) = ψ(k)(z) +
(−1)k k!

zk+1
.

The connection of the polygamma function with harmonic numbers is,

H(m+1)
z = ζ (m+ 1) +

(−1)m

m!
ψ(m) (z + 1) , z 6= {−1,−2,−3, ...} .

=
(−1)m

m!

1∫
0

(1− tz)
1− t

lnm t dz. (5)
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The multiplication formula for the polygamma function is

ψ(p) (mz) = δm,0 ln (m) +
1

mp+1

p−1∑
j=0

ψ(p)

(
z +

j

m

)
, (6)

where m ∈ N and δm,0 is the Kronecker delta. We expect that integrals of
type (1) may be represented by Euler sums and therefore in terms of special
functions such as the Riemann zeta function. In a search of the current
literature we found some examples for the representation BBP and Euler
type sums, see [23]. The papers [16], [14], and [15] also examined some
integrals in terms of Euler sums. Some examples will be given highlighting
specific cases of the integrals, some of which are not amenable to a computer
mathematical package.

2. Analysis of integrals

Theorem 1. Let p, q, t ∈ N0 and a ≥ −2. Then

I (a, p, q, t) =

1∫
0

xa lnp (x)

1 + x2
Lit(x

4q)dx =

π
4∫

0

(tan θ)a lnp (tan θ) Lit(tan4q θ)dθ

(7)

= (−1)p p!
∑
n≥1

H(t)
n

2q∑
j=1

(−1)j+1

(4qn+ 2j + a− 1)p+1 , (8)

where H
(t)
n are harmonic numbers of order t.

Proof. For x ∈ (0, 1) , from (3) and a Taylor series expansion

Lit(x
4q) =

∑
n≥1

x4qn

nt
,

1

1 + x2
=
∑
n≥0

(−1)n x2n.

It is known that the Cauchy product of two convergent series, see Bromwich
and Watson [4], is ∑

n≥0
anx

n

∑
n≥0

bnx
n

 =
∑
n≥0

cnx
n,

where cn =
∑n

j=0 ajbn−j . It follows that

xaLit(x
4q)

1 + x2
=
∑
n≥1

H(t)
n

2q∑
j=1

(−1)j+1 x4qn+2j+a−2
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and therefore

xa lnp (x) Lit(x
4q)

1 + x2
=
∑
n≥1

H(t)
n

2q∑
j=1

(−1)j+1 x4qn+2j+a−2 lnp (x) .

Integrating both sides for x ∈ (0, 1), we have

1∫
0

xa lnp (x) Lit(x
4q)

1 + x2
dx =

∑
n≥1

H(t)
n

2q∑
j=0

(−1)j+1

1∫
0

x4qn+2j+a−2 lnp (x) dx

= (−1)p p!
∑
n≥1

H(t)
n

2q∑
j=1

(−1)j+1

(4qn+ 2j + a− 1)p+1

and this is a BBP-type representation for the integral (7) containing har-
monic numbers of order t. The second integral in (7) is obtained by the
substitution x = tan θ. �

The next corollary deals with an alternative representation for the integral
(7).

Corollary 1. If p, t ∈ N0, a ≥ −2, q > 0 and a, q ∈ R then

I (a, p, q, t) =

1∫
0

xa lnp (x)

1 + x2
Lit(x

4q)dx

=
(−1)p p!

22p+2

∑
n≥1

1

nt

(
H

(p+1)

nq+a−1
4

−H(p+1)

nq+a−3
4

)
, (9)

where H
(p+1)

nq+a−1
4

are shifted harmonic numbers of order p+ 1.

Proof. A Taylor series expansion of

Lit(x
4q) =

∑
n≥1

x4qn

nt
and

1

1 + x2
=
∑
j≥0

(−1)j x2j

allows us to write

I (a, p, q, t) =
∑
n≥1

1

nt

∑
j≥0

(−1)j
1∫

0

x4qn+2j+a lnp (x) dx

= (−1)p p!
∑
n≥1

1

nt

∑
j≥0

(−1)j

(4qn+ 2j + a+ 1)p+1

=
(−1)p p!

22p+2

∑
n≥1

1

nt

(
ζ

(
p+ 1,

1

4
(4qn+ a+ 1)

)
− ζ
(
p+ 1,

1

4
(4qn+ a+ 3)

))
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=
(−1)p p!

22p+2

∑
n≥1

(−1)p

p!nt

(
ψ(p)

(
qn+

a+ 3

4

)
− ψ(p)

(
qn+

a+ 1

4

))
.

From the relation (5) we obtain the required identity

I (a, p, q, t) =
(−1)p p!

22p+2

∑
n≥1

1

nt

(
H

(p+1)

nq+a−1
4

−H(p+1)

nq+a−3
4

)
.

�

Remark 1. For p, q ∈ N0, we see from (8) and (9) the remarkable Euler
sum identity ∑

n≥1
H(t)
n

2q∑
j=1

(−1)j+1

(4qn+ 2j + a− 1)p+1

=
1

22p+2

∑
n≥1

1

nt

(
H

(p+1)

nq+a−1
4

−H(p+1)

nq+a−3
4

)
. (10)

The next corollary deals with some significant special cases of the integral
(7).

Remark 2. For the special case q = 1 we have

I (a, p, 1, t) =

1∫
0

xa lnp (x)

1 + x2
Lit(x

4)dx=
(−1)p p!

22p+2

∑
n≥1

1

nt

(
H

(p+1)

n+a−1
4

−H(p+1)

n+a−3
4

)

= (−1)p p!
∑
n≥1

H(t)
n

(
1

(4n+ a+ 1)p+1−
1

(4n+ a+ 3)p+1

)
(11)

and if we choose a as an odd integer, say a = 1, we can obtain the represen-
tation

I (1, p, 1, t) =
(−1)p p!

22p+2

∑
n≥1

1

nt

(
H(p+1)
n −H(p+1)

n− 1
2

)
and using the multiplication formula (6) we have the simplification

I (1, p, 1, t) =
(−1)p p!

22p+1

∑
n≥1

1

nt

(
H(p+1)
n − 2pH

(p+1)
2n

)
+

(−1)p p!

2p+1
ζ (t) η (p+ 1) .

(12)
From (11), with a = 1 and (12) we have for t ∈ N, t ≥ 2, p ∈ N0,

ζ (t) η (p+ 1) =
∑
n≥1

H(t)
n

(
1

(2n+ 1)p+1 −
1

(2n+ 2)p+1

)
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− 1

2p

∑
n≥1

1

nt

(
H(p+1)
n − 2pH

(p+1)
2n

)
,

when t = 3, p = 2 we obtain a new representation for the square of Apery’s
constant

ζ2 (3) =
4

3

∑
n≥1

H(3)
n

(
1

(2n+ 1)3
− 1

(2n+ 2)3

)
− 1

3

∑
n≥1

1

n3

(
H(3)
n − 4H

(3)
2n

)
,

and rearranging we obtain the BBP-type representation

5ζ (6) + 3ζ2 (3) =
8

3

∑
n≥1

H(3)
n

(
1

(2n+ 2)3
− 1

(2n+ 1)3
+

32 (−1)n+1

(2n)3

)
.

If we choose t = 5, p = 4 we obtain

ζ (10) + 63ζ2 (5) = 64
∑
n≥1

H
(5)
n

(2n+ 1)5
+ 64

∑
n≥1

H
(5)
2n

n5
.

Similarly for the case a = 1, q = 1
2 we have

I

(
1, p,

1

2
, t

)
=

(−1)p p!

2p+1
ζ (t) η (p+ 1)+

(−1)p p!

22p+1

∑
n≥1

1

nt

(
H

(p+1)
n
2

− 2pH(p+1)
n

)
.

In the case p + 1 = t, t ∈ N, t ≥ 2, a = 1, q = 1, from (10) we have, after
simplification, the new results∑

n≥1

(
H

(t)
n

(2n+ 1)t
+
H

(t)
2n

nt

)
=

1

2t+1
ζ (2t) +

3

2t+1
ζ2 (t) + η (t) ζ (t)

and∑
n≥1

(
H

(t)
n

(2n+ 1)t
− 2t−1

(−1)n+1H
(t)
n

nt

)
=

(
1− 22t−1

2t+1

)
ζ (2t)

+

(
3− 22t−1

2t+1

)
ζ2 (t) + η (t) ζ (t) .

In the next corollary we give two more special cases.

Corollary 2. If p ∈ N, t = 1, a ≥ −2 and q ∈ N then

I (a, p, q, 1) =

1∫
0

xa lnp (x)

1 + x2
ln(1− x4q)dx

= (−1)p+1 p!
∑
n≥1

Hn

2q∑
j=1

(−1)j+1

(4qn+ 2j + a− 1)p+1 (13)



322 ANTHONY SOFO

If p ∈ N, t = 0, a ≥ −2 and q ∈ N then

I (a, p, q, 0) =

1∫
0

xa+4q lnp (x)

(1 + x2) (1− x4q)
dx

=

2q∑
j=1

(−1)j+1

pψ(p−1)
(
2j+a−1

4q + 1
)

qp+122p+2
+

(2j + a− 1)ψ(p)
(
2j+a−1

4q + 1
)

qp+222p+4

 .

(14)

Proof. For the case t = 1, we notice that Li1(x
4q) = −ln(1−x4q) and (13)

follows from (8). For the case t = 0, we notice that Li0(x
4q) = x4q

(1−x4q) . A

Taylor series expansion produces

1

(1 + x2) (1− x4q)
=
∑
n≥1

n

2q∑
j=1

(−1)j+1 x4q(n−1)+2(j−1)

in which case

I (a, p, q, 0) = (−1)p p!

2q∑
j=1

(−1)j+1
∑
n≥1

n

(4qn+ 2j + a− 1)p+1 .

A partial fraction decomposition and simplification leads to (14). �

Some examples will follow.

Example 1. We have

I (1, 5, 2, 0) =
59505

65536
ζ (6)− 15

32
β (6)− 225

512
ζ (5) ,

I (1, 4, 3, 0) =
7

64
ζ (4) +

65

46656
√

3
π5 − 7289

20736
ζ (5) ,

I (1, 0, 1, 3) = 2L (3)− 15

8
ζ (4) +

1

2
ζ (3) ln 2,

and

I (1, 4, 2, 1) =
29763

8192
ζ (6)− 3

2
β (4)G− 2277

4096
ζ2 (3)− 4371

2048
ζ (5) ln 2

= 24
∑
n≥1

Hn

(
1

(8n+ 2)5
− 1

(8n+ 4)5
+

1

(8n+ 6)5
− 1

(8n+ 8)5

)
,

where G =
∑
n≥0

(−1)n+1

(2n+1)2
is Catalan’s constant, β (·) is the Dirichlet beta func-

tion and where, from the work of Flajolet and Salvy [9],

L (3)=
∑
n≥1

(−1)n+1Hn

n3
=

11

4
ζ (4)−7

4
ζ (3) ln 2+

1

2
ζ (2) ln2 2− 1

12
ln4 2−2Li4

(
1

2

)
,
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I (1, 2, 1, 4) =
3

16
ζ (3) ζ (4) +

137

8
ζ (2) ζ (5)− 1869

64
ζ (7)

=

π
4∫

0

(tan θ) ln2 (tan θ) Li4(tan4 θ)dθ,

I

(
1, 2,

1

2
, 4

)
=

3

16
ζ (3) ζ (4) +

75

32
ζ (2) ζ (5)− 2141

512
ζ (7) ,

I (0, 0, 1, 2) =

1∫
0

Li2(x
4)

1 + x2
dx = 2

∑
n≥1

H
(2)
n

(4n+ 1) (4n+ 3)

=
1

4

∑
n≥1

1

n2

(
Hn− 1

4
−Hn− 3

4

)

= 12G ln 2−31π3

48
−3π

4
ln2 2−i

(
24Li3(

1 + i

2
) +

5π2

8
ln 2− 1

2
ln3 2− 105

8
ζ (3)

)
.

From Lewin ([11], pp. 164, 296) we have that

Re

(
Li3(

1 + i

2
)

)
=

1

48
ln3 2 +

35

64
ζ (3)− 5π2

192
ln 2

and therefore

I (0, 0, 1, 2) = 24Im

(
Li3(

1 + i

2
)

)
+ 12G ln 2− 31π3

48
− 3π

4
ln2 2.

Sofo and Nimbran [17] have shown that the imaginary part of the triloga-
rithm is

W (3) : = Im

(
Li3(

1± i
2

)

)
=
∑
n≥1

sin
(
nπ
4

)
2
n
2 n3

=
∑
n≥1

(−1)n+1

22n

(
2

(4n− 3)3
+

2

(4n− 2)3
+

1

(4n− 1)3

)
,

and finally we have

I (0, 0, 1, 2) = 24W (3) + 12G ln 2− 31π3

48
− 3π

4
ln2 2,

I (1, 2, 2, 1) =

1∫
0

x ln (x) Li1(x
8)

1 + x2
dx =

337

512
ζ (4)− 1

4
G2 − 77

128
ζ (3) ln 2

= 2
∑
n≥1

Hn

(
1

(8n+ 2)3
− 1

(8n+ 4)3
+

1

(8n+ 6)3
− 1

(8n+ 8)3

)
,
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I (1, 4, 3, 0) =

1∫
0

x ln4 (x) Li0(x
12)

1 + x2
dx =

7

64
ζ (4) +

65

46656
√

3
π5 − 7289

20736
ζ (5) .

In the next theorem we consider the integral (7) on the positive half line
x ≥ 0.

Theorem 2. For p, t ∈ N and q > 0,

J (p, q, t) =

∞∫
0

lnp (x) Lit(x
4q)

1 + x2
dx =

∞∫
0

f (x; p, q, t) dx (15)

=

π
2∫

0

lnp (tan θ) Lit(tan4q θ)dθ

=
(

1 + (−1)p+t+1
)
I (0, p, q, t) (16)

+ (−1)p+t+1 (2πi)t

t!

1∫
0

lnp (x)

1 + x2
B

(
t,

ln
(
x4q
)

2πi

)
dx,

where

f (x; p, q, t) =
lnp (x)

1 + x2
Lit(x

4q), (17)

I (0, p, q, t) is given by (8) or (9) and B

(
t,

ln(x4q)
2πi

)
is the Bernoulli polyno-

mial.

Proof. We begin with

J (p, q, t) =

∞∫
0

lnp (x) Lit(x
4q)

1 + x2
dx =

∞∫
0

f (x; p, q, t) dx

and put

J (p, q, t) =

∞∫
0

f (x; p, q, t) dx =

1∫
0

f (x; p, q, t) dx+

∞∫
1

f (x; p, q, t) dx.

We notice that f (x; p, q, t) is continuous, bounded and differentiable on the
interval x ∈ (0, 1] , with lim

x→0+
f (x; p, q, t) = lim

x→1
f (x; p, q, t) = 0. Now we

make the transformation xy = 1 in the third integral so that

∞∫
0

f (x; p, q, t) dx =

1∫
0

f (x; p, q, t) dx+ (−1)p
1∫

0

lnp (y)

1 + y2
Lit(y

−4q)dy. (18)
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From Erdélyi et. al. [7], Jonquiěre’s relation states

Lis(z) + eiπsLis(
1

z
) =

(
2πeiπ

)s
Γ (s)

ζ

(
1− s, ln z

2πi

)
, (19)

where Lis(z) is a polylogarithm, Γ (s) is the Gamma function, s ∈ C,
ζ
(
1− s, ln z2πi

)
is the Hurwitz zeta function and z is not a member of the

real interval [0, 1] . A modified version of (19) is given by Crandall [6] as
follows. For an integer t and z ∈ C,

Lit(z) + (−1)t Lit(
1

z
) = −(2πi)t

t!
B

(
t,

ln (z)

2πi

)
− 2πiΘ (z)

lnt−1 (z)

(t− 1)!
, (20)

where B
(
t, ln(z)2πi

)
is the Bernoulli polynomial and Θ (z) is a time dependent

step function

Θ (z) =

{
1, if Im (z) < 0 or z ∈ [1,∞) ,
0, otherwise.

The function Θ (z) is intended to provide the conventional behavior in the
branch when and only when z is in the lower half plane union with the real
cut [1,∞) . For convenience we list

B

(
2,

ln (z)

2πi

)
=

1

6
+

i

2π
ln z − 1

4π2
ln2 z,

B

(
3,

ln (z)

2πi

)
= − i

4π
ln z +

3

8π2
ln2 z +

i

8π3
ln3 z.

Now we can substitute (20) into (18), so that

∞∫
0

f (x; p, q, t) dx =
(

1 + (−1)p+t+1
) 1∫

0

f (x; p, q, t) dx

+ (−1)p+t+1 (2πi)t

t!

1∫
0

lnp (x)

1 + x2
B

(
t,

ln
(
x4q
)

2πi

)
dx.

The integral

I (0, p, q, t) =

1∫
0

lnp (x) Lit(x
4q)

1 + x2
dx

has been evaluated in Theorem 1 and therefore

J (p, q, t) =
(

1 + (−1)p+t+1
)
I (0, p, q, t)

+ (−1)p+t+1 (2πi)t

t!

1∫
0

lnp (x)

1 + x2
B

(
t,

ln
(
x4q
)

2πi

)
dx
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and the proof is finished. Note that the integral I (0, p, q, t) does not con-
tribute to J (p, q, t) in the case when p+ t+ 1 is an odd integer. The third
integral in (15) is obtained by the substitution x = tan θ. �

Remark 3. It can be noted, from Jonquiěre’s relation (20) that we are
able to determine the value of the integral

1∫
0

lnp (x) Lit(x
−4q)

1 + x2
dx = (−1)t+1 I (0, p, q, t) (21)

+ (−1)t+1 (2πi)t

t!

1∫
0

lnp (x)

1 + x2
B

(
t,

ln
(
x4q
)

2πi

)
dx.

Some examples will follow.

Example 2. If (p, q, t) = (1, 3, 3) then

J (1, 3, 3) =

∞∫
0

ln (x) Li3(x
12)

1 + x2
dx =

π
2∫

0

ln (tan θ) Li3(tan12 θ)dθ

= −(2πi)3

3!

1∫
0

ln (x)

1 + x2
B

(
t,

ln
(
x4q
)

2πi

)
dx

= −(2πi)3

3!

1∫
0

ln (x)

1 + x2

(
−
i ln
(
x12
)

4π
+

3 ln2
(
x12
)

8π2
−
i ln3

(
x12
)

8π3

)
dx

= −89π5

4
− 432iπβ (4) .

If (p, q, t) = (3, 1, 5) then

J (3, 1, 5) =

∞∫
0

ln3 (x) Li5(x
4)

1 + x2
dx =

π
2∫

0

ln3 (tan θ) Li5(tan4 θ)dθ

= −171π9

16
− 53760iπβ (8) .
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If (p, q, t) =
(
5, 12 , 6

)
then

J

(
5,

1

2
, 6

)
=

∞∫
0

ln5 (x) Li6(x
2)

1 + x2
dx

= −50521iπ12

15360
− 16π6β (6)− 3360π4β (8)− 241920π2β (10) .

This allows us to also calculate, from (16), that

1∫
0

ln5 (x) Li6(x
2)

1 + x2
dx = 1774080β (12)− 161280π2β (10)

−1792π4β (8)− 512

63
π6β (6) ,

and, from (21), that

1∫
0

ln5 (x) Li6(x
−2)

1 + x2
dx =

50521iπ12

15360
+241920π2β (10)+3360π4β (8)+16π6β (6) .

If (p, q, t) = (1, 1, 6) then

J (1, 1, 6) =

∞∫
0

ln (x) Li6(x
4)

1 + x2
dx =

π
2∫

0

ln (tan θ) Li6(tan4 θ)dθ

= −61iπ8

30
− 6096πζ (7)− 512π2β (6)

and
1∫

0

ln (x) Li6(x
4)

1 + x2
dx = 14336β (8)− 1408

3
π2β (6)− 8

15
π4β (4)

− 1

945
π6G− 3048πζ (7)

=
∑
n≥1

H(6)
n

(
1

(4n+ 3)2
− 1

(4n+ 1)2

)
.

Finally we give the example for (p, q, t) = (1, 2, 2) :

J (1, 2, 2) =

∞∫
0

ln (x) Li2(x
8)

1 + x2
dx = −45iζ (4)

+
3

16
ζ (2)

((
2 +
√

2
)(

ψ′(
7

8
)− ψ′(1

8
)

)
+
(

2−
√

2
)(

ψ′(
3

8
)− ψ′(5

8
)

))
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+
π

64

((
1 +
√

2
)(

ψ′′(
1

8
) + ψ′′(

7

8
)

)
+
(

1−
√

2
)(

ψ′′(
3

8
) + ψ′′(

5

8
)

))
.

Now, using (16), we have

1∫
0

ln (x) Li2(x
8)

1 + x2
dx = 96β (4) +

135
√

2

4
ζ (4)− 13ζ (2)G− 7πζ (3)

+
π
√

2

64

(
ψ′′(

1

8
)− ψ′′(3

8
)

)
− 3
√

2

16
ζ (2)

(
ψ′(

1

8
) + ψ′(

3

8
)

)
=
∑
n≥1

H(2)
n

(
1

(8n+ 7)2
− 1

(8n+ 5)2
+

1

(8n+ 3)2
− 1

(8n+ 1)2

)
.

Concluding Remarks

We have carried out a systematic study of a family of integrals containing
log-polylog functions in terms of Euler sums. We believe that most of our
results are new in the literature and we have given many examples, some of
which are not amenable to a mathematical computer package.
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