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Abstract
In the past few decades, partial differential equations have drawn considerable attention, owing to
their ability tomodel certain physical phenomena. The aimof this paper is to investigate a cubic
B-spline polynomial to obtain a numerical solution of a nonlinear dissipative wave equation. For the
numerical procedure, the time derivative is obtained by the usualfinite difference scheme. The
approximate solution and its principal derivatives over the subinterval is approximated by the
combination of the cubic B-spline and unknown element parameters. The accuracy of the proposed
methodwill be shownby computing L∞ error norms for different time levels. By applyingVon
Neumann stability analysis, the developedmethod is shown to be conditionally stable for given values
of specified parameters. A numerical example is given to illustrate the accuracy of the cubic B-spline
polynomialmethod. The obtained numerical results show that our proposedmethodmaintains good
accuracy.

1. Introduction

The nonlinear partial differential equations arise in awide variety of physical phenomena in several different
aspects of physics, such as waterwave theory, fluid dynamics, plasma physics, solidmechanics, and nonlinear
optics, etc. There aremanymethods for solving partial differential equations via numerical solutions. One of
these is numerically solving a nonlinear dissipative wave equation by using theAdomian decompositionmethod
[1, 2]. The cubic B-spline, used for solving nonlinear partial differential equations, has been employed bymany
researchers. Themost known andwell-focused results are those presented byDaǧ et al (2004)whopresented a
way to solve the Regularised LongWave (RLW) equation. The numerical results obtained in this paper
demonstrate that themethod is capable of solving the RLWequation accurately and reliably [3]. Daǧ et al
published a paper that described a numerical solution for the one-dimensional Burger’s equation in 2005. The
comparison of the calculations with the analytic solution shows that a cubic B-spline collocationmethod is
capable of solving Burgers’ equation accurately. The proposedmethod is easy to implement and does not require
any inner iteration or corrector to deal with the nonlinear termof Burgers’ equation [4]. Khalifa et al (2008)
discussed theModifiedRegularised LongWave (MRLW) equation. The collocationmethod using cubic
B-splines was applied to study the solitary waves of theMRLWequation, and it is shown that the scheme is
marginally stable.Moreover, despite the fact that thewave does not change, results show that the interaction
results in a tail of small amplitude in two, and clearly in three, soliton interactions, and the conservation laws
were reasonably satisfied. The appearance of such a tail can be beneficial in further study [5]. In 2008, ElDanaf
and E IAbdel Alaal constructed a non-polynomial spline-basedmethod to obtain numerical solutions of a
dissipative wave equation. The obtained numerical results show that their proposedmethodmaintains good
accuracy [6]. Later,Mittal and Jain (2012) argued that somenumericalmethod should be proposed to
approximate the solution of the nonlinear parabolic partial differential equationwithNeumann’s boundary
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conditions. The numerical results produced by the presentmethod are quite satisfactory and in good agreement
with the exact solutions. The computed results justify the advantage of thismethod. The proposedmethod can
be extended to solvemulti-dimensional parabolic equations [7]. In 2015, Zaki developed a newnumerical
method based on quadratic non-polynomial spline functions, which has three coefficients in each sub interval
for solving a dissipative wave equation. The results obtained by the proposed technique show that the approach
is easy to implement and computationally attractive. The proposedmethod is shown to be robust, efficient, and
easy to implement for linear and nonlinear problems arising in science and engineering [8]. A year later, El-
Danaf et al addressedmethods for solving theGeneralised Regularised LongWave (GRLW) equation. The cubic
B-splines used to study solitary waves of GRLWequation show that the scheme is unconditionally stable. Also,
the obtained approximate numerical solutionsmaintain good accuracywhen comparedwith the exact solutions
[9]. Hepson andDaǧ, in their 2017 research, implemented a numerical technique to obtain approximate
solutions of Fisher’s equation. Themethod is capable of producing solutions for Fisher’s equation fairly and can
be used as an alternative to themethod’s accompanied B-spline functions [10]. In 2017, Iqbal et al’s proposed
numerical techniquewas based on the cubic B-spline collocationmethod. Their version used a new
approximation for the second order derivative. The proposed scheme is based on the cubic B-spline collocation
method equippedwith a new approximation for second order derivative and produces fifth order accurate
results. The proposedmethod also generates a piecewise spline solution in the presence of the singularity, which
can be used to obtain a numerical solution at any point in the domain and is not restricted to the values at the
selected knots, unlike existingfinite differencemethods [11]. A year later, Başhan (2018) studied the numerical
solutions of the third-order nonlinear Korteweg–deVries (KdV) equation by usingmodified cubic B-splines in
five different test problems. The performance and accuracy of themodified cubic B-splinesmethodwas shown
by calculating and comparing the L2 and L∞ error normswith earlier works. The stability analysis has been
performed for all of the test problems, and all of the eigenvalues are in convenience with stability criteria. So,
MCBC-DQMmay be useful in obtaining the numerical solutions of other important nonlinear problems [12].
In research conducted in 2019 by Bashan, amodified cubic B-spline differential quadraturemethod has
successfully been implemented for the numerical solution of nonlinear Kawahara equation. To obtain the first,
third, andfifth-order derivative approximation, amodified cubic B-spline differential quadraturemethodwas
utilised. Four different test problems have then been investigated separately. These newly obtained results
obviously indicate that amodified cubic B-spline differential quadraturemethod can be used to produce
numerical solutions of theKawahara equationwith high accuracy [13].More recently, Iqbal et al studied the
Galerkinmethod, based on a cubic B-spline function, where the shape andweight functions are applied for the
numerical solution of the one-dimensional coupled nonlinear Schrödinger equation. The use of the cubic
B-splineGalerkinmethod produced smooth solutionswithout numerical smearing in 2020 [14]. In the same
year, by Ahmed et al (2020) aNon-polynomial spline functionwas used to get numerical solutions of a
DissipativeWave equation atmiddles points for lattice in space direction and at the same time, afinite difference
methodwas used in time direction. The presentedmethod is shown to be conditionally stable. The
approximating results showed to havewell agreement comparedwith the true solutions, hence it can be used to
set approximate solutions for such type of problems [15]. In the current work, we propose amathematical
treatment for the nonlinear dissipative wave equation, utilising the collocation techniquewith cubic B-spline
shape functions. For themathematicalmethodology, the time derivatives will be achieved through the typical
finite differencemethod. The techniquewill be shown to be conditionally stable by applying theVonNeumann
stability investigation procedure.Wewill test the precision of the proposed strategy by conducting an
examination of themathematical outcomes and the specific arrangement of the condition.

2. The governing equation and the derivation of the proposedmethod

This paper is worried about applying the cubic B-splinemethod to build up amathematical strategy for
approximating the specific arrangement of the nonlinear dissipative wave equation [1] of the structure:

h h- + = = -u u u u x t x t x t t2 , , , 2 sin sin cos . 2.1tt xx t
2( ) ( ) ( )

Under the boundary and initial conditions:

= = = =u a t u b t u x x u x, 0, , 0, , 0 sin , , 0 0. 2.2xx xx t( ) ( ) ( ) ( ) ( )

The interval [a, b] can be divided into equal subintervals -x x, ,i i1[ ] = ¼ +i N0, 1, , 1,where = +x a ih,i

and = -h .b a

n

2
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Let the cubic B-spline basis functionsÆ xi( ) given as:
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where {Æi} for = ¼ +i N0, 1, , 1are the basis for the function defined over the interval a b, ,[ ] this implies that
the estimations of the cubic B-splineÆ xi( ) and its derivatives vanish outside the interval

- +x x, ,i i2 2[ ] =i N0, 1, ........ .
Themathematical treatments for equation (2.1) by the collocationmethodwith cubic B-splines is to track

down an inexact arrangementU x t,N ( ) to the exact solution u x t, .( )
Set the approximate solutionU x t,N ( ) as follows:

å w= Æ
=-

+

U x t t x, , 2.3N
i

N

i i
1

1

( ) ( ) ( ) ( )

where w ti ( ) are the time dependent parameters which can be resolved utilizing the boundary conditions:

= =U a t U b t, 0, , 0, 2.4xx N xx N( ) ( ) ( ) ( ) ( )

and the collocation formof equation (2.1)

h- + =U x t U x t U x t U x t x t, , 2 , , , . 2.5tt N j xx N j N j t N j j( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

By subbing equations (2.3) into (2.5), we get:
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Applying thefinite differencemethod, we have:
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Substituting equations (2.7) into (2.6) and simplifying the results, we get:
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Equation (2.8) can be determined at =x j N, 0, 1, 2,..., ,j so that
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( ) for all =i N0, 1, 2, ...., .The nonlinear

logarithmic system (2.9) contains (N+1) equations of (N+3) unknowns. Tofind the solution for this system,
we need two additional conditionswhich are gotten from the conditions (2.4) as follows:

w w w w w w- + = - + =- - +
h h h h h h

6 12 6
0,

6 12 6
0. 2.11N N N2 1 2 0 2 1 2 1 2 2 1 ( )

3
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System (2.9) and the additional equation (2.11) has (N+3) equations with (N+3) unknowns, sowe can
determine the time dependent variables wi in thematrix form:

w w w h= - - ++ -A B C k x t, , 2.12n n n
i
n1 1 2 ( ) ( )
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3. The initial state

In this section, we apply the first initial condition:

=u x x, 0 sin 3.1( ) ( )

Table 1.The values ofÆ xi( ) and their derivative within the
interval - +x x, .i i2 2[ ]

x -xi 2 -xi 1 xi +xi 1 +xi 2

Æ xi( ) 0 1 4 1 0

Æ ¢ xi ( ) 0 3/h 0 −3/h 0

Æ ¢¢ xi ( ) 0 h6 2 - h12 2/ h6 2 0

Figure 1.The exact and numerical results when the time t=2.0with k=0.01.
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The initial conditions can be communicated as:

å w= = Æ =

=
=-
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U a u a U x x j N
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, 0 , 0 . 3.2
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i
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i j i

x N x

1

1
0( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

By using the values ofÆi and their derivatives in table 1, the system (3.2) takes the structure

w w w w w

w w
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x i i i j

N N x

1
0

1
0

1
0 0

1
0

1
0

1
0
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Figure 2.The exact and numerical results when the time t=2.5with k=0.01. In numerical computation, we take t=π/20,
k= 0.01, and the results are computed for different time levels. Comparisons of approximate and exact solutions at different graphs.
From graphs (figure 1–8), it is clearly seen that the presentmethod produces numerical results in good agreement with the exact
solutions. The results indicate that, the proposed algorithm is substantiallymore stable and efficient than that of [15].

Figure 3.The exact and numerical results when the time t=3.0with k=0.01.
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Rewrite the system (3.3) in amatrix form:

=Mv q 3.4( )

where
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Figure 4.The exact and numerical results when the time t=4.0with k=0.01.

Figure 5.The exact and numerical results when the time t=5.0with k=0.01.
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Tofind the second initial condition using Taylor expansion toU x t,N i( ) at =t t0
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Subbing equations (2.1) into (3.6)we get:
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After simplifying, equation (3.7) becomes:
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where h =x, 0 0.( )

Figure 6.The exact and numerical results when the time t=6.0with k=0.01.

Figure 7.The exact and numerical results when the time t=7.0with k=0.01.
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Substituting equation (3.1) and initial condition (2.2) into equation (3.8), we obtain:
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To complete this system, differentiate (3.9)with respect to x, and compute its value at the ends of the range,
which gives us the following system:

w w h w w w h w w h- + = ¢ + + = - + = ¢- - + - +h x h x h x3 3 , 4 , 3 3 . 3.10i i i j N N N1
1

1
1

0 1
1 1

1
1

1
1

1
1( ) ( ) ( ) ( )

The system (3.10) in amatrix equation form as follows: =My H
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4. Stability analysis

TheVonNeumann stability analysis for system (2.9) takes effect after linearizing the nonlinear term as:
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Figure 8.The exact and numerical results when the time t=10.0with k=0.01.
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Substituting equation (4.1) into the recurrence relation (4.2) and dividing both sides by e fjq hexp ,n ( ) we
obtain the equation:
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[( ) ( )] ( )

where =r k .
h1
6 2
2⎡⎣ ⎤⎦

Dividing equation (4.4) by f+ + +k m h k m2 2 cos 4 4 ,2 2[( ) ( )] we obtain the equation:

e e
f
f

+
- - + - +
+ + +

+ =
r h r

k m h k m

4 2 cos 8 2

2 2 cos 4 4
1 0. 4.52 1 1

2 2

[( ) ( )]
[( ) ( )]

( )

Equation (4.5)written as:

e be+ + =2 1 0, 4.62 ( )

where: b = f
f

- - + - +
+ + +

.r h r

k m h k m

2 cos 4

2 2 cos 4 4
1 1

2 2

[( ) ( )]
[( ) ( )]

Equation (4.9) is a quadratic in e and hencewill have two roots, that is e b b= -  - 1 .2

For stability, then e  1.∣ ∣ Now, from equation (4.6)we see that the result of the two estimations of ε should
rise to solidarity, which emerge three cases as follows:

Case 1.On the off chance that the two roots are equivalent to solidarity, which infers that the segregate of the
equation (4.6) is zero.

Case 2.One of the two roots ismore prominent than solidarity. At that point, the separate ismore noteworthy
than nothing. This implies that the steadiness condition, (|ε|�1), isn’t fulfilled.

Case 3.The discriminate is less than zero, that is b - <1 0.2

Thus for stability:

b-  1 1. 4.7( )

Using equation (4.7), the above inequality becomes

f
f

-
- - + - +
+ + +

 r h r

k m h k m
1

2 cos 4

2 2 cos 4 4
1. 4.81 1

2 2

[( ) ( )]
[( ) ( )]

( )

The right inequality (4.8) takes the form:

f
f

- - + - +
+ + +

r h r

k m h k m

2 cos 4

2 2 cos 4 4
1. 4.91 1

2 2

[( ) ( )]
[( ) ( )]

( )

After simplifying inequality (4.9), we obtain:

f

f

+ + + +

+ + + +





h
k

h
k k m h k m

h

k
h m h

h

k
h m

6 6
4 2 cos 8 4 ,

or

6 6 4 2 cos 8 4 . 4.10

2
2

2
2 2 2

2

2
2

2

2
2

⎜ ⎟ ⎜ ⎟

⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

⎡
⎣⎢

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥

( )

( )

And by using the relation f = - fhcos 1 2 sin ,h2
2

inequality (4.10) reduces to:

f
+ + - + + h

k
h m

h

k
h m

h
6 6 12 6 12 8 4 sin

2
. 4.11

2

2
2

2

2
2 2
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⎛
⎝

⎞
⎠

⎤
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After simplifying inequality (4.11), we get:

f
+ + +h

k
h m

h

k
h m

h
12 6 12 8 4 sin

2
.

2

2
2

2

2
2 2
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⎝

⎞
⎠
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Satisfied for k h, where h is small enough. But the left inequality (4.8) becomes:

f
f

-
- - + - +
+ + +

 r h r

k m h k m
1

2 cos 4

2 2 cos 4 4
. 4.121 1

2 2

[( ) ( )]
[( ) ( )]

( )

After simplifying inequality (4.12), we get:

f

f

- + +

-
+ +





k m
h

k h
h

k k m

mh
h

mh

2
6

cos
6

4 ,

or

3
1 cos 1

2

3
. 4.13

2
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2
2

2 2

2 2
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⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

Using the relation f = - fhcos 1 2 sin ,h2
2

inequality (4.13) becomes:

f-
+ + - +mh mh h mh

3
1

2

3
2 sin

2
1

2

3
, 4.14

2 2
2

2
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

if h is small enough, thus themethod is conditionally stable.

5.Numerical illustration

Weapply cubic B-splinemethod to obtain numerical solution of the dissipative equation for one standard issue.
The precision of our proposedmathematical technique estimated by registering the ¥L error norm. The exact
solution of the dissipative equation (2.1)which obtained in [1] given by:

p=   u x t t x x t, cos sin , 0 , 0.( )

Weuse the following conditions:

p= = =u x x u t u t, 0 sin , 0, 0, , 0.xx xx( ) ( ) ( )

Weput the acquiredmathematical outcomes in the accompanying tables 2–7.
From tables 3–7, we observe that the smaller theΔ =t k (than the value of h), the better the accuracy. The

numerical approximations is still acceptable within the large time.

Table 2.Comparison between the numerical and
exact solutions at = = = pt k h0.2, 0.002, .

20

x Numerical Solution Exact Solution

0.1p 0.302 857 0.303 116

0.2p 0.576 069 0.576 509

0.3p 0.792 891 0.793 442

0.4p 0.932 099 0.932 707

0.5p 0.980 067 0.980 692

0.6p 0.932 099 0.932 707

0.7p 0.792 891 0.793 442

0.8p 0.576 069 0.576 509

0.9p 0.302 857 0.303 116

Table 3.The ¥L error when = = pk h0.001,
20
from t=0.05 to t=0.2.

Time 0.05 0.1 0.15 0.20

¥L error Our[ ] 2.0097×10−5 3.1051×10−5 3.3695×10−5 2.8898×10−5

¥L error [15] 2.5236×10−4 9.8616×10−4 2.1532×10−3 3.7090×10−3

Table 4.The ¥L error for the numerical and exact solutions when = = pk h0.01,
20
from t=0.5

to t=2.0.

Time 0.5 1.0 1.5 2.0

¥L error Our[ ] 6.2131×10−4 6.2454×10−4 1.929 96×10−3 3.874 06×10−3

¥L error [15] 8.7356×10−4 2.5274×10−3 4.4852×10−3 7.5875×10−3
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6. Conclusion

In this paper, a numerical solution for the nonlinear dissipative wave equation, utilising a collocation strategy
with the cubic B-splines, is proposed. To illustrate ourmethod and to demonstrate its convergence and
applicability of our presentedmethods computationally, wewill apply theVonNeumann stabilitymethod. The
stability analysis investigationwill show that themethod is conditionally stable. The performance and accuracy
of the presentmethod have been shownby calculating and comparing the L∞ error normswith earlier works.
The obtained invariants are considered acceptable when comparedwith some earlier works. The numerical
results produced by the presentmethod are quite satisfactory and show good agreement with the exact solutions.
The computed results justify the advantage of thismethod. As seen in tables 3 and 4, the present results are better
than [15]. The estimatedmathematical arrangements that achieve great precisionwith the specific
arrangements, particularly whenΔt ismoremodest than the estimation of h.
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