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Abstract

The diagnosis of neurological diseases is one of the biggest challenges in modern medicine,

which is a major issue at the moment. Electroencephalography (EEG) recordings is usually

used to identify various neurological diseases. EEG produces a large volume of multi-chan-

nel time-series data that neurologists visually analyze to identify and understand abnormali-

ties within the brain and how they propagate. This is a time-consuming, error-prone,

subjective, and exhausting process. Moreover, recent advances in EEG classification have

mostly focused on classifying patients of a specific disease from healthy subjects using

EEG data, which is not cost effective as it requires multiple systems for checking a subject’s

EEG data for different neurological disorders. This forces researchers to advance their work

and create a single, unified classification framework for identifying various neurological dis-

eases from EEG signal data. Hence, this study aims to meet this requirement by developing

a machine learning (ML) based data mining technique for categorizing multiple abnormali-

ties from EEG data. Textural feature extractors and ML-based classifiers are used on time-

frequency spectrogram images to develop the classification system. Initially, noises and arti-

facts are removed from the signal using filtering techniques and then normalized to reduce

computational complexity. Afterwards, normalized signals are segmented into small time

segments and spectrogram images are generated from those segments using short-time

Fourier transform. Then two histogram based textural feature extractors are used to calcu-

late features separately and principal component analysis is used to select significant fea-

tures from the extracted features. Finally, four different ML based classifiers are used to

categorize those selected features into different disease classes. The developed method is

tested on four real-time EEG datasets. The obtained result has shown potential in classify-

ing various abnormality types, indicating that it can be utilized to identify various neurological

abnormalities from brain signal data.
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Introduction

Recent years have seen extensive research on brain signal data, notably employing electroen-

cephalogram (EEG) data because of its crucial role in applications for health and medicine.

[1–5]. Efficient and effective analysis of EEG signal is useful for various purposes like neuro-

logical diseases diagnosis and treatment [6–11], brain computer interface [12–15], emotion/

fatigue detection [16–18], sleep stage detection [19] etc. EEG captures the electrical activity of

the brain as a time-series data with dynamic, non-stationary and aperiodic in nature. It is a

large volume of data that contains patterns related to the subject’s mental health state [7, 20].

Currently, accurate and efficient analysis of these large-scale aperiodic and non-stationary

EEG signals is a challenging task [10]. Data mining system allows the extraction of important

biomarkers from the brain signal data and use those biomarkers for automatically classifying

brain states into different types of abnormalities by creating computer aided diagnosis (CAD)

system.

Artificial intelligence can help healthcare providers with a wide range of patient treatment

and intelligent healthcare systems [4]. In recent years, several frameworks have been developed

for analyzing and classifying large scale EEG signal data [10, 20–33]. Most of these studies

have considered identifying one neurological abnormality (two class classification) from EEG

data. Developing CAD system using those methods for multiple neurological disorders will

require multiple separate systems for each diseases. It will be costly and also time consuming

for checking multiple disorders. Few researchers have attempted classifying two neurological

abnormalities from healthy control (HC) participants (three classes) in the same method, as

the authors of [34–36] worked in detecting mild cognitive impairment (MCI) and Alzheimer’s

disease (AD) patients from HC subjects. Similarly, authors of [37, 38] have developed a system

to classify autism spectrum disorder (ASD) and epilepsy (EP) from HC subjects using EEG sig-

nal data. To the best of our knowledge, no research has looked into the detection of more than

two anomalies in a single data mining framework from HC subjects. This is due to the vast vol-

ume of EEG signal data and overlap between the biomarkers for various disorders in the signal

data.

As a result, specific data mining approaches are needed to execute classification on this type

of overlapping feature-based data into multiple classes. Additionally, a single mining frame-

work is required to execute the classification operation and find various types of abnormalities

from the EEG signal with related abnormality attributes. The motivation of this study is to fill

this knowledge gap by developing a brain signal data mining methodology for categorizing

into several anomaly classes based on the biomarkers displayed in the visual representations of

the signal data.

Broadly, the data mining process of the existing studies can be divided into two steps: fea-

ture extraction from the signal data and classification of the extracted features using different

classifiers. Majority of the researches used various statistical information as signal features and

then classified those features using different classifiers. When the data volume is high, these

conventional methods cannot be used frequently to extract substantial and differentiating fea-

tures from EEG data [39]. Additionally, when statistical features for larger recording (long-

term) data are extracted, it is possible to overlook the short-term changes in signal characteris-

tics that are crucial for anomalies identification [39]. Visual representation of small signal seg-

ments can solve this issue as it uses the raw signal data for producing visual representation and

works on small segments of the data [10, 39].

To accomplish the above mentioned aim, in our recent work [40], we have introduced a

time-frequency (T-F) spectrogram image based data mining technique for brain signal data

specially EEG to identify four different neurological abnormalities named: ASD, EP,

PLOS ONE Textural feature based intelligent approach for abnormality detection from brain signal data

PLOS ONE | https://doi.org/10.1371/journal.pone.0277555 November 14, 2022 2 / 20

authors confirm that they did not receive any

special privileges in accessing these third party

datasets that other researchers would not have.

Funding: This study is supported by the Australian

Research Council Linkage Project (Project ID:

LP170100934). Prof. Hua Wang is the recipient of

the fund. The funder or the commercial affiliation

does not have any additional role in the study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0277555


Parkinson’s disease (PD), and schizophrenia (SZ) from HC subjects (five class). Spectrogram

images are used for 2D visualization of EEG signals in time-frequency (T-F) domain and

describes the nonstationary characteristics of the signal data [10]. The frequency spectrum of

the spectrogram image changes over time, and the colors on the image reflect various energy

values [39]. When compared to other feature extraction techniques, spectrogram images con-

tain more unidentified EEG signal characteristics and may perform better in a classification

algorithm [39]. Spectrogram images have previously been utilized for identifying patients from

healthy controls (HC) for various neurological disorders such as epilepsy [41], epileptic sei-

zures [21], ASD [39] and schizophrenia [42], and achieved good classification performance,

which drives us to apply them in this study.

In this work, we have extended our recent work [40] using a different textural feature

extractor. At first, the brain signal data are filtered for removing noise and artifacts from the

signal data. Then the signals are segmented into small time frame window and spectrogram

plotting images are generated from those small chunks using short-time fourier transform

(STFT). In [40], histogram based textural features are extracted from those images using com-

pleted CENsus TRanform hISTogram (cCENTRIST), a histogram-based feature extraction

technique proposed by Dey et al. [43] and performed well on garments texture classification.

In this work, we have used another histogram-based feature extractor developed by Dey et al.
[43] named ternary CENsus TRanform hISTogram (tCENTRIST) that performed well on

spectrogram image classification [39]. After that, principal component analysis (PCA) is used

to reduce the dimension of the extracted features. Finally, four ML based classifiers namely:

support vector machine (SVM), k-nearest neighbor (kNN), random forest (RF) and Linear

Discriminant Analysis (LDA) are used to categorize the reduced extracted features.

Following are the significant contributions of this study:

1. A single unified ML based framework is designed to classify multiple neurological abnor-

mality from brain signal data

2. Two distinct feature extractors in combination with four different ML based classifiers are

examined.

3. Validate the proposed framework using four EEG signal datasets from four different neuro-

logical abnormalities.

4. Obtain improved performance for the multi-disease classification process compared to the

existing methods.

The remainder of the paper is laid out as follows: The proposed method’s workflow is

described in depth in Section. Section 7 provides a detailed description of the datasets used in

this study and evaluation parameters. The experimental results with visual and tabular repre-

sentations are given in Section 7. Finally, Section 7 closes the paper with concluding remarks.

Workflow of the proposed framework

In this study, we have used T-F based spectrogram image for classification of brain signal data

using cCENTRIST and tCENTRIST based feature extraction techniques with four different

machine learning based classification approaches namely: kNN, SVM, RF and LDA. The pro-

posed process consists of several steps: firstly, the raw brain signal data are pre-processed for

artifact removal. Then the signals are segmented into small time frame and generated spectro-

gram images from those segments using STFT. After that, features are extracted from those

images using cCENTRIST and tCENTRIST based technique and the dimensions of the

extracted features are reduced using PCA. Finally, four different classifiers namely: kNN,
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SVM, RF and LDA are used for classifying the spectrogram images into different classes. An

overview of the proposed method is given in Fig 1. Details of these steps are discussed in below

subsections.

Pre-processing the brain signal data

In this step, we have pre-processed the brain signal data for removing the noise and artifacts

introduced by the recording environment and the muscle movement of the subject during the

recording time. These filtering processes are done due to some noise and artifacts are very

much similar to some disease related signal patterns and may mislead the diagnosis process

[44]. To perform the filtering, at first, we used the common average referencing (CAR) tech-

nique to remove the common noise and signals from all channels by removing the average sig-

nal from all electrodes. After that, artifacts introduced by muscle activity, eye movement and

external noise are removed by passing the signal into a low pass infinite impulse response (IIR)

filter with a cutoff frequency of 40Hz. Finally, the signals are normalized to a distribution of

zero mean and a variance of one to reduce the individual signal differences and computational

complexity.

Spectrogram image generation

In this step, the pre-processed signal data are converted into spectrogram images. We have

done this in two steps: at first the brain signal data are segmented into small chunks of three

seconds (3s) to increase the dataset size and as well as extract maximum number of features

from the small signal segments [45]. In this segmentation process original signals are seg-

mented into small data chunks and given the level of original data, which makes an increase in

the sample size.

After that, spectrogram images are generated from those small chunks using STFT based

spectrogram plotting technique. Spectrogram is a popularly used technique for time-frequency

domain analysis of EEG signal data. STFT converts the the time varying EEG signal to a two-

dimensional matrix with time and frequency axes. In order to calculate the STFT, at first, the

signal is divided into a number of short-time overlapping windowed blocks [46]. Then, in

order to ensure continuity between the first and last points in the frames and avoid the leakage

Fig 1. Overview of the proposed framework.

https://doi.org/10.1371/journal.pone.0277555.g001

PLOS ONE Textural feature based intelligent approach for abnormality detection from brain signal data

PLOS ONE | https://doi.org/10.1371/journal.pone.0277555 November 14, 2022 4 / 20

https://doi.org/10.1371/journal.pone.0277555.g001
https://doi.org/10.1371/journal.pone.0277555


effect on the spectrum, a hamming window approach is used. Then, each segment’s fourier

transform (FT) is computed in order to obtain its own local frequency spectrum. The STFT of

a signal x(t) is calculated using the below Eq 1:

STFTfxðtÞg ¼ Xðt;oÞ ¼
Z 1

� 1

xðtÞwðt � tÞe� iotdt ð1Þ

Here, ω is the signal frequency, w(τ) is the nonzero window function and X(τ, ω) is the FT

of the product x(t)w(t − τ), reflecting the signal’s phase and amplitude with time and fre-

quency. STFT is frequently visualized by its spectrogram, which is an intensity representation

of STFT magnitude over time. These images are further used for feature extraction and classifi-

cation process for this study.

Feature extraction and dimension reduction

In this step, features from the spectrogram images are extracted and dimension of the

extracted features are reduced for classification process. We have used two texture based fea-

ture extractor named completed CENsus TRanform hISTogram (cCENTRIST) and ternary

CENsus TRanform hISTogram (tCENTRIST) proposed by Dey et al. [43]. cCENTRIST was

developed by replacing Linear Binary Pattern (LBP) of CENsus TRanform hISTogram (CEN-

TRIST) [47] with Completed Local Binary Pattern (CLBP) while tCENTRIST was developed

by replacing LBP with Local Ternary Pattern (LTP) and both of those feature extractor per-

formed well on classification of garments texture [43] and face image based gender identifica-

tion [48]. A brief description CENTRIST, cCENTRIST and tCENTRIST are given in below

sections:

CENsus TRanform hISTogram (CENTRIST). CENTRIST is a non-parametric local

transform approach built on the idea of Census Transform (CT) [49], which maps a pixel by

comparing intensity values with its eight neighboring pixels and generates an eight bit string

(CT values). This approach is similar to LBP except that LBP performs interpolation for corner

pixels but CENTRIST considers those pixels as is. A sample CT calculation process is given in

Fig 2.

In order to collect both the local and global information for an image, CENTRIST creates a

histogram from the CT values of image patches. They also employed spatial representation

based on the Spatial Pyramid Matching (SPM) technique, which divides a picture into smaller

parts and incorporates correspondence results in those regions to enhance recognition.

Finally, PCA is used to reduce the dimensions of the extracted features of CENTRIST.

Completed CENTRIST (cCENTRIST). In this texture extractor, the authors have used

CLBP for generating CT values in place of LBP in CENTRIST. When comparing a pixel to its

neighbors, CLBP considers both the magnitude (CLBP_M) and the signs (CLB_S) of the dif-

ferences. Additionally, it uses global thresholding to provide a binary code (CLBP_C) for the

center pixel. An uniform and rotation-invariant CT code is generated by CLBP using sign,

magnitude, and center-pixel information.

Fig 2. Census Transform (CT) calculation process used in CENTRIST. Here, a bit 1 is set in the relevant spot if the

central pixel is larger than (or equal to) one of its neighbors. If not, bit 0 is set.

https://doi.org/10.1371/journal.pone.0277555.g002
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For an image of size 3x3, differences (dp) have two different components calculated from

the differences between each neighboring pixel to the central pixel using Eq 2, where, sp and

mp are the sign and magnitude part of the differences dp.

dp ¼ SP �mp and
SP ¼ signðdpÞ; ½1 if dP � 0; else � 1�

mp ¼ jdpj

8
<

:
ð2Þ

If P and R are the neighbor number and radius of LBP code, respectively, then CLBP_SP,R,

CLBP_MP,R and CLBP_CP,R are calculated using the Eqs 3–5 as follows:

CLBP CP;R ¼ tðgc; cÞ; tðx; cÞ ¼
1; x � c

0; x < c

(

ð3Þ

CLBP SP;R ¼
XP� 1

p¼0

sðgp � gcÞ2
p; sðxÞ ¼

1; x � 0

0; x < 0

(

ð4Þ

CLBP MP;R ¼
XP� 1

p¼0

tðmp; cÞ2
p; tðx; cÞ ¼

1; x � c

0; x < c

(

ð5Þ

Here c is a threshold calculated as the average of the whole image, gc is the gray value of the

center pixel and gp(p = 0, 1, . . .., P − 1) is the neighboring pixel’s gray value on a circle with

radius R. Finally, a 3D histogram is generated as CT value using CLBP_SP,R, CLBP_MP,R and

CLBP_CP,R and PCA is applied to reduce the dimension of the feature vector. Algorithm 1

describes the process of cCENTRIST.

Algorithm 1: Feature extraction and dimension reduction using cCENTRIST and PCA
Input: Spectrogram image I
Output: Dimension reduced feature vector of I
1 Initialization;
2 Calculate level 2 Spatial Pyramid (SP) for the image I
3 for each block of SP do
4 (a) Calculate CLBP_CP,R, CLBP_SP,R and CLBP_MP,R using Eqs 3, 4 and

5, respectively
5 (b) Concatenate all histograms from each to form a single histogram

feature block
6 Apply PCA to extract M feature points from the extracted features

Ternary CENTRIST (tCENTRIST). It used LTP in place of LBP in CENTRIST that

introduces a new bit to handle the fluctuations intensity. For an image of size 3x3, LTP pro-

duces a ternary code for each central pixel c using the Eq 6:

LTPP;R ¼
XP� 1

p¼0

qðgp � gcÞ3
p; qðaÞ ¼

1 ifa � m

� 1 ifa < m

0 otherwise

8
>>><

>>>:

ð6Þ

where, μ is a threshold value of ±5 and gp, gc, P, R are defined in Eqs 3–5. After calculating the

LTP values, two histograms are generated using the upper and lower code of LTP and finally

concatenated to build a single histogram. Afterwards, PCA is applied to reduce the dimension

of the feature vector. Algorithm 2 describes the process of tCENTRIST.

Algorithm 2: Feature extraction and dimension reduction using tCENTRIST and PCA
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Input: Spectrogram image I
Output: Dimension reduced feature vector of I
1 Initialization;
2 Calculate level 2 Spatial Pyramid (SP) for the image I
3 for each block of SP do
4 (a) Calculate LTP value using Eq 6.
5 (b) Construct a histogram using the LTP value;
6 Concatenate all histograms from each to form a single histogram fea-
ture block

7 Apply PCA to extract M feature points from the extracted features

Both of those feature extractor uses a Spatial Pyramid (SP) structure that breaks the images

into pyramid structure blocks. Later, to reduce the computational complexity and to use signif-

icant features, PCA is used to reduce the dimension of the extracted features. Finally, four ML

based classifiers are used to classify those reduced features into different classes.

Classification of the extracted features

The extracted features of the previous step are classified in this step using different ML based

techniques. In this study, we have used two different histogram based textural feature extractor

named cCENTRIST and tCENTRIST along with four different ML based classifiers namely:

RF, kNN, LDA and SVM for classifying the spectrogram images. Finally, these classifiers per-

form a multi-class classification for different neurological disorders and their performance are

evaluated using different evaluation techniques.

• Support Vector Machine (SVM): Currently SVM is an efficient and effective classifier in the

field of detecting abnormalities from brain signal data. It excels at dealing with high-dimen-

sional and non-linear data. In this study, we used the same LibSVM [50] as the authors of

cCENTRIST and tCENTRIST [43] used, which is SVM with following linear kernel function,

K(x, y):

Kðx; yÞ ¼ xTy ð7Þ

Here, kernel function constructed from the dot product of two invariant x and y.

• k-Nearest Neighbor (kNN): The Second classifier we have tested is kNN, which is simple

and robust for large scale datasets. It carries out the classification operation based on the fre-

quent class of its closest neighbors in the feature space [51]. In kNN based classification, we

have tested for 10 different k values (1 to 10) with Euclidean distance metrics as defined fol-

lows:

Dðxy; sÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðsi � xyÞ
2

s

ð8Þ

Here, s denotes the training set and y is the unknown test data.

• Random Forest (RF): Next classifier we have tested is RF introduced by Leo Breiman [52],

which is an ensemble learning method with a collection of multiple decision trees. We have

used entropy as impurity metrics for building RF which is defined as follows:

Entropy; IE ¼ �
Xn

i¼1

pilog2
pi ð9Þ

Here, pi refers to the probability of class ci in the data sample.
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• Linear Discriminant Analysis (LDA): Fourth and final classifier we have used is LDA that

performed well in many classification tasks like emotional speech recognition, multimedia

information retrieval, face recognition, image identification, etc. [53]. For each class c with a

mean μc and covariance S, LDA is calculated as follows:

yc ¼ xTS� 1mc �
1

2
mT

c S
� 1mc þ log

nc

n
ð10Þ

where x is the test instance, nc and n are the number of instances in class c and in whole data-

set, respectively. x is classified with the highest yc values.

Performance evaluation materials and parameters

To validate the proposed model, we have used EEG brain signal data from four different neu-

rological disorders namely: ASD, EP, PD and SZ. We have used these four datasets to perform

a five class (ASD vs EP vs PD vs SZ vs HC) classification using the proposed method. Perfor-

mance of the proposed method is evaluated using different evaluation matrices that are popu-

lar in this field of study. Details of the datasets and evaluation matrices are discussed in below:

Datasets

In this study, we have used four publicly available datasets of four different neurological abnor-

malities (ASD, EP, PD, SZ) for validating the proposed brain signal data mining system. A

brief description of those datasets are given below:

• For ASD, we have used the King Abdulaziz University (KAU) Hospital in Jeddah, Saudi Ara-

bia [54]. The dataset contains sixteen subjects (twelve ASD and four HC subjects) with no

record of cognitive disorders. For EEG recording, they used 16 channels (FP1, FP2, F3, F4,

F7, F8, T3, T5, C4, Fz, Cz, Pz, C3, O1, Oz and O2) from standard 10-20 international system.

Resting state EEG data was recorded from each of the subjects and sampled at a frequency of

256Hz.

• Epilepsy dataset was collected in Universidade Federal do Para, Brazil [55]. This dataset con-

tains 14 subjects’ (7 patients and 7 HC) EEG signals. Resting state EEG data was recorded

from 20 channels (Fp1, Fp2, F3, F4, F7, F8, C3, C4, T3, T4, P3, P4, T5, T6, O1, O2, FZ, CZ,

PZ, OZ) at a sampling rate of 256Hz.

• The third dataset we have used is for parkinson’s disease collected from University of Iowa,

Iowa City, Iowa, United States [25]. It has 28 subjects from two groups (14 PD patients and

14 control subjects). Resting state EEG data with a sampling rate of 500Hz was collected

from 64 channels for PD patients.

• Finally, for schizophrenia, we used the dataset from Institute of Psychiatry and Neurology in

Warsaw, Poland [24]. This dataset also includes 28 subjects’ EEG data (14 SZ and 14 HC sub-

jects). This dataset was obtained from 19 channels (Fp1, Fp2, F3, F7, F4, F8, C3, C4, T3, T4,

T5, P3, Fz, Cz, Pz, P4, T6, O1, O2) at a sampling rate of 250Hz while the subjects were in

resting state.

Details data collection process and description of ASD, EP, PD and SZ datasets can be

found in [54], [55], [25] and [24], respectively. All of those datasets are available online and

informed consent of the subjects was taken during the data collection time for publishing the

data. Moreover, participants’ confidentiality is protected by not posting any personal identifi-

cation information about the respondents, which is why, no ethical approval was required for

our study.
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Classification performance measure

To reduce the bias of the model’s classification performance and predict the overall accuracy of

the model on the full dataset, a cross-validation scheme is recommended [6, 56–58]. In this

study, we have used five-fold cross-validation technique to validate the performance of the pro-

posed models. In this process, the dataset is arbitrarily divided into five equal or nearly equal

parts and among those parts, four parts are used for training the classifier and the rest part is

used for testing the trained system. This process is repeated five times so that each image of the

dataset belongs to the test set exactly once. This testing process is depicted in Fig 3.

Finally, the generated results from the five-folds are used to evaluate the performance of the

system using six parameters namely, sensitivity (Sen), specificity (Spec), precision (Prec), F1

score (F1), accuracy (Acc) and receiver operating characteristic (ROC) curve. These criteria

allow to predict the behavior of the classifiers on the test data [23, 59, 60]. Four parameters

namely True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN)

are used to calculate those six parameters using Eqs (11)–(15).

SensitivityðSenÞ ¼
TP

TP þ FN
� 100 ð11Þ

SpecificityðSpecÞ ¼
TN

TN þ FP
� 100 ð12Þ

PrecisionðPrecÞ ¼
TP

TP þ FP
� 100 ð13Þ

F1scoreðF1Þ ¼
2 TP

2 TP þ FP þ FN
ð14Þ

AccuracyðAccÞ ¼
Pn

i¼1
TPi

TP þ FPþ TN þ FN
� 100 ð15Þ

TP, TN, FP and FN can be defined for multi-class classification using the confusion matrix

given in Fig 4. The figure shows the TP, TN, FP and FN values for class C, where green colored

Fig 3. Five-fold cross validation technique used in this study.

https://doi.org/10.1371/journal.pone.0277555.g003
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cell gives the TP value, blue cells sums up for FN, yellow colored cell sums up for TN and

orange colored cells sums up for FP values. TP, TN, FP and FN values for other classes can be

calculated in similar way.

The ROC graph is a handy tool for visualizing the classifier’s reliability, that is made by plot-

ting sensitivity (true positive rate) on the Y-axis and 1-specificity (false positive rates) on the

X-axis. These parameter can be used to predict how classifiers will act when dealing with test

data [6, 23, 59, 61–63].

Experimental results and discussion

In this study, we have developed a brain signal data mining framework using spectrogram

images of the signal data and ML based approaches. The proposed framework was tested on

four (ASD, EP, PD and SZ) neurological diseases related EEG datasets and performed a five

class (ASD vs EP vs PD vs SZ vs HC) classification task. This section describes and visualizes

the obtained results in detail with experimental setups.

Experimental setup

From the EEG recording information, we found that the datasets have different sampling rates

and various number of recording channels. Therefore, to make the datasets comparable we

have to format the datasets into a common standard. To do so, we have selected minimum

number of available channels among the datasets as the base dataset and converted all other

datasets to that format. We kept the ASD dataset as base, as it has lowest number of recording

channel and converted other three datasets (PD, EP, SZ) into that format by keeping data from

standard 16 channels (Fp1, Fp2, F3, F4, F7, F8, C3, C4, P3, P4, T3, T4, T5, T6, O1 and O2) and

discarding other channel data and finally, resampled them into a sampling rate of 256Hz.

After formatting the datasets, all the EEG data signals are pre-processed to remove noises

and artifacts, and then segmented into 3 second time frame. After that, the signal segments are

used to generate spectrogram image using STFT based spectrogram plotting technique. This

produced a total of 19417 images from four datasets where ASD, EP, PD and SZ datasets con-

tributed 5437 (3825 ASD, 1612 HC), 2483 (1248 EP, 1235 HC), 1745 (864 PD, 881 HC) and

9752 (5312 SZ, 4440 HC) images respectively. We merged all the HC images and formed a

class of HC subjects with a total of 8168 images, producing a five class categorization problem

(ASD vs EP vs PD vs SZ vs HC). These images are then used for feature extraction and ML

based classification process.

Fig 4. Confusion matrix of five class classification.

https://doi.org/10.1371/journal.pone.0277555.g004
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Results

In this proposed brain signal data mining framework, we have used two different histogram

based techniques to extract textural features from the spectrogram images named cCENTRIST

and tCENTRIST. Then PCA is used to reduce the dimension of the extracted features and

finally, four ML based classification techniques SVM (LibSVM), RF, LDA and kNN (with k = 1

to 10) are used to perform classification of the reduced features for both extractors separately.

Five-fold cross validation technique is used to validate the performance of the classifiers.

Table 1 depicts the five round average results of the Eqs (11)–(15) for four classifiers. Here for

kNN, we have only mentioned the results of k = 9 as it produced the best result among the ten

different k settings we have tested.

From Table 1, we can see that, for cCENTRIST based feature extraction approach, kNN

produces the overall best accuracy of 86.28% and RF gives the lowest overall accuracy among

the four classifiers. SVM classifier produces nearly the same accuracy as the kNN while LDA

produces moderate accuracy among the four. For a single round, highest accuracy is achieved

86.69% in round 2 for kNN and lowest accuracy is 77.13% for RF in round 3. For tCENTRIST

based feature extraction process, SVM produces the highest overall accuracy of 88.78% and

LDA generates the lowest overall accuracy of 72.46%. For kNN and RF, those values are

87.96% and 76.21%, respectively. For a single round, highest and lowest accuracy values are

89.13% and 72.01% using SVM and LDA, respectively. Round wise accuracy comparison for

the different classifiers with two different feature extraction techniques are plotted in Fig 5.

We have also compared the classifiers average accuracy over five-fold with standard devia-

tion (SD) and plotted in Fig 6. Among the eight different classification (two different feature

extraction techniques with four different classifiers) experimental results, SVM with tCEN-

TRIST based feature extraction technique produces the highest average accuracy of 88.78%

with a SD value of 0.36. On the other hand, LDA with tCENTRIST has the lowest average

accuracy of 72.46% with SD value 0.39.

Table 1. Average Sensitivity, Specificity, Precision, F1 Score and Accuracy over five rounds for two different feature extractors with four different classifiers.

cCENTRIST based feature extraction

SVM k NN RF LDA

Disease Sen% Spec% Prec% F1 Sen% Spec% Prec% F1 Sen% Spec% Prec% F1 Sen% Spec% Prec% F1

ASD 90.72 96.80 87.45 0.89 87.59 97.59 90.03 0.89 75.77 97.40 87.69 0.81 79.67 96.92 86.40 0.83

EP 83.59 98.51 79.46 0.81 77.14 98.06 73.29 0.75 31.87 99.97 98.56 0.48 80.70 97.19 66.36 0.73

Normal 84.77 87.83 83.49 0.84 88.89 86.56 82.77 0.86 92.29 70.17 69.20 0.79 78.69 86.33 80.70 0.80

PD 83.99 99.61 91.01 0.87 69.11 99.95 98.37 0.81 24.26 100.00 100.00 0.39 83.47 98.25 69.06 0.76

SZ 84.91 96.22 89.43 0.87 86.27 97.06 91.72 0.89 76.35 96.09 88.02 0.82 81.95 92.84 81.19 0.82

Avg 85.59 95.79 86.17 0.86 81.80 95.85 87.23 0.84 60.11 92.72 88.69 0.66 80.90 94.31 76.74 0.78

Acc 85.87(± 0.45) 86.28(± 0.42) 77.76(± 0.53) 80.1(± 0.74)

tCENTRIST based feature extraction

ASD 92.26 97.44 89.88 0.91 91.96 96.64 87.16 0.89 71.88 97.77 88.82 0.79 75.96 93.93 75.39 0.76

EP 86.16 98.96 85.04 0.86 78.74 98.10 73.99 0.76 23.25 99.92 95.45 0.37 74.37 95.92 55.59 0.63

Normal 88.77 89.50 85.99 0.87 88.76 89.49 86.00 0.87 95.96 62.74 65.15 0.78 68.47 83.64 75.24 0.72

PD 87.95 99.73 93.85 0.91 88.94 99.96 99.10 0.94 39.77 99.97 98.35 0.57 80.91 98.36 69.82 0.75

SZ 87.06 97.45 92.78 0.90 85.86 98.02 94.25 0.90 67.36 99.57 98.35 0.80 74.26 89.26 72.26 0.73

Avg 88.44 96.61 89.51 0.89 86.85 96.44 88.10 0.87 59.64 91.99 89.23 0.66 74.79 92.22 69.66 0.72

Acc 88.78(± 0.36) 87.96(± 0.36) 76.21(± 0.45) 72.46(± 0.39)

https://doi.org/10.1371/journal.pone.0277555.t001
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To further assess the performance of the proposed classifiers, we have calculated and plot-

ted the sensitivity, specificity, precision and F1 score for all the classifiers using Eqs 11–15 and

have made some comparative visualization as shown in Figs 7–10.

From Fig 7, we can see that, tCENTRIST+SVM produces the highest single round sensitiv-

ity value of 89.58% and an overall 5-fold average value is 88.44% (SD 0.69). tCENTRIST+RF

has the lowest single round sensitivity of 58.95% with 5-fold average value of 59.64% (SD 0.72).

For cCENTRIST feature extractor, in case of 5-fold average value, SVM gives the highest sensi-

tivity of 85.59% (SD 0.49) and RF gives the lowest value of 60.11% (SD 0.89). This result indi-

cates that the tCENTRIST+SVM classifier is highly sensitive in detecting diseases than other

classifiers, which is desired.

Fig 8 plots round wise specificity of the used ML based classifiers where we can see that

both SVM and kNN have the similar specificity value over the rounds for both of the feature

extractors. tCENTRIST+SVM produces both single round and five round average highest

specificity values, which are 96.73% and 96.61% (±0.1), respectively. On the other hand, tCEN-

TRIST+RF has the single and five round average lowest specificity of 91.85% and 91.99%

(±0.12). Higher specificity value indicates the model’s ability to differentiate the healthy sub-

jects from patients.

Precision is an important measure in information retrieval and classification framework

evaluation which indicates the percentage of retrieved instances that are relevant. Fig 9 plots

the round wise precision value for the different classifiers. From the plot, we can see that,

although the RF classifier has very poor overall performance for both cCENTRIST and tCEN-

TRIST, but its precision is high compared to other classifiers in most of the cases. This is

because, even though its sensitivity is low but those images that it identified as patient’s image

are mostly correct compared to other classifiers. Overall, five round average highest precision

Fig 5. Round wise accuracy comparison for different classifiers.

https://doi.org/10.1371/journal.pone.0277555.g005
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is produced by tCENTRIST+SVM which is 89.51% (±0.67), followed by tCENTRIST+RF with

a value of 89.23% (±0.84). Lowest average precision value of 69.66% (±0.51) is produced by

tCENTRIST+LDA.

F1 score is the harmonic mean of precision and recall, and Fig 10 depicts the round wise F1

score for the tested classifiers. It is also an important measure to assess the performance of the

classifiers. From the plotting, we can see that SVM classifier outperforms other classifiers in all

round values. Overall tCENTRIST+SVM has an average F1 score of 0.89 (±0.009) while for

kNN, it is 0.84 (±0.005), and RF has the lowest average of 0.66 (±0.01).

Finally, we plotted sensitivity on the y-axis and 1-specificity on the x-axis to construct the

ROC curve for the classifiers. The ROC curve for the used classifiers are depicted in Fig 11. we

can see that, the curve of tCENTRIST+SVM classifier is on top as it has the highest sensitivity

among all the classifiers and tCENTRIST+RF has the lowest ROC curve as it has low sensitivity

value.

Discussion

In this study, we have used developed a framework for classifying multiple neurological disor-

der using spectrogram images of EEG data with textural feature extractor and ML based classi-

fiers. EEG recordings from four different neurological disorders are used to validate the

proposed system and have performed a five-class categorization task to validate it. Experimen-

tal results indicate that EEG biomarkers can be used to develop a single system for classifying

multiple neurological disorders instead of using multiple binary classification system for indi-

vidual diseases.

Fig 6. Average accuracy with standard deviation over 5-fold for different classifiers.

https://doi.org/10.1371/journal.pone.0277555.g006
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Fig 7. Round wise sensitivity comparison for different classifiers.

https://doi.org/10.1371/journal.pone.0277555.g007

Fig 8. Round wise specificity comparison for different classifiers.

https://doi.org/10.1371/journal.pone.0277555.g008
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In addition, this concept of developing this five-class classification system was first intro-

duced in our previous study [40], where we have used cCENTRIST with three ML based classi-

fier and achieved an accuracy of 86.25%. In this study, we have extended that work with new

textural classifier with additional one ML classifier and obtained an accuracy of 88.78%.

Fig 9. Round wise precision comparison for different classifiers.

https://doi.org/10.1371/journal.pone.0277555.g009

Fig 10. Round wise F1 score comparison for different classifiers.

https://doi.org/10.1371/journal.pone.0277555.g010
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Table 2 shows the comparison of this study with the existing studies that have done the same

five-class classification task.

Finally, the performance of this spectrogram image based classification framework indi-

cates that this system can be extended in future to incorporate more neurological disorders to

increase the number of classes in categorization process. Moreover, there is still scope in

improving the performance of the system which can be achieved by using deep learning based

classification techniques.

Conclusion

In this study, a single system is developed for multi-disease brain signal data classification

using time-frequency spectrogram image and machine learning based data mining techniques.

There is a lack of systems that can classify multiple diseases using a single framework. We have

used EEG brain signal data for classification of multiple neurological disorders to fill the gap.

At first, the EEG data are filtered for noise and artifacts removal and segmented into small

chunks. Then T-F based spectrogram images are generated from those segments using STFT.

Textural features from those images are extracted using two histogram based feature extractor

named: cCENTRIST and tCENTRIST and PCA is used for reducing the dimension of the

Fig 11. ROC graph comparison for different classifiers.

https://doi.org/10.1371/journal.pone.0277555.g011

Table 2. Comparison of the proposed method with existing five-class classification task done on the same

datasets.

Author Feature extractor Classifier Accuray

Tawhid et al. [40] cCENTRIST kNN, SVM and RF 86.28%

This study cCENTRIST and tCENTRIST kNN, SVM, RF and LDA 88.78%

https://doi.org/10.1371/journal.pone.0277555.t002
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extracted features. Finally, kNN (with k = 1 to 10), SVM, LDA and RF classifiers are used for

classifying those features into five classes (ASD vs EP vs PD vs SZ vs HC). Among the tested

classifiers, tCENTRIST with SVM achieved the highest accuracy of 88.78% followed by kNN

with 87.96%.

In future, deep learning-based models like convolutional neural networks (CNN) can be

used to classify the generated T-F based spectrogram images for mining brain signal data and

improve the classification performance. This is because deep learning models like CNN are

more powerful in image classification task and widely used. Moreover, different pre-trained

models can be used in future using transfer learning to perform classification as the size of the

dataset is not large enough. Additionally, more diseases can be incorporated in the system to

increase the number of classes in the classification task and scalability of the proposed

framework.
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