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Simple Summary: Inflammatory bowel disease (IBD) affects the colon and is divided in two main
pathologies, ulcerative colitis and Crohn’s disease. It is characterised by inflammation, which is
managed by anti-inflammatory treatments, however, in the long term they lose effectiveness. Chronic
inflammation/chronic colitis pre-disposes the person to increased risk of colorectal cancer (CRC).
Checkpoint markers has revolutionised immunotherapeutic treatments especially in colorectal cancer.
Here, we present different checkpoint inhibitors and their role in IBD and CRC.

Abstract: Inflammatory Bowel Disease (IBD) is a group of diseases that cause intestinal inflammation
and lesions because of an abnormal immune response to host gut microflora. Corticosteroids, anti-
inflammatories, and antibiotics are often used to reduce non-specific inflammation and relapse rates;
however, such treatments are ineffective over time. Patients with chronic colitis are more susceptible
to developing colorectal cancer, especially those with a longer duration of colitis. There is often
a limit in using chemotherapy due to side effects, leading to reduced efficacy, leaving an urgent
need to improve treatments and identify new therapeutic targets. Cancer immunotherapy has made
significant advances in recent years and is mainly categorized as cancer vaccines, adoptive cellular
immunotherapy, or immune checkpoint blockade therapies. Checkpoint markers are expressed on
cancer cells to evade the immune system, and as a result checkpoint inhibitors have transformed
cancer treatment in the last 5–10 years. Immune checkpoint inhibitors have produced long-lasting
clinical responses in both single and combination therapies. Winnie mice are a viable model of
spontaneous chronic colitis with immune responses like human IBD. Determining the expression
levels of checkpoint markers in tissues from these mice will provide insights into disease initiation,
progression, and cancer. Such information will lead to identification of novel checkpoint markers and
the development of treatments with or without immune checkpoint inhibitors or vaccines to slow or
stop disease progression.

Keywords: checkpoint; checkpoint inhibitors; checkpoint markers; TIM-3; PD-1; PD-L1; CTLA-4;
LAG-3; IDO; Siglec; inflammatory bowel disease; colorectal cancer; inflammation

1. Introduction

Inflammatory bowel disease (IBD), also known as chronic colitis, is an idiopathic
disease that causes intestinal inflammation and lesions due to an altered immune response
to host gut microflora [1,2]. Approximately 80,000 individuals in Australia are living with
IBD, with 5500 new cases diagnosed annually; globally this number equates to 6.8 million
individuals with females being more affected than males. Available treatments for IBD in
surgery, corticosteroids, anti-inflammatories (aminosalicylates, balsalazide and olsalazine),
antibiotics and immune suppressors (azathioprine, methotrexate, mercaptopurine), all of
which aim to reduce non-specific inflammation to decrease relapse rates. Such treatments,
however, are ineffective in the long term [3]. Gradual development of inflammation causes
oedema in the intestinal wall, ulceration, and long term can lead to colorectal cancer
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(CRC) [4]. There is often a limit in using chemotherapy due to side-effects leading to
reduced efficacy, making evaluation of improved treatments, as well as new targets and
mechanisms critical.

Inflammation is a core feature of several diseases including IBD. Chronic inflammatory
diseases frequently result in the development of poorly regulated cellular processes that
may lead to cancer [5]. Colitis-associated cancer (CAC) is a type of CRC that develops
following a long period with IBD. The link between inflammation as a potential cause in
CRC is being studied. Crohn’s disease (CD) is associated with a greater risk of developing
CAC by up to 8.3% and ulcerative colitis (UC) by up to 33.2% when compared to the
non-IBD affected population’s risk of developing CRC.

Cancer immunotherapy dates back to 1891, when William Coley, the father of im-
munotherapy, attempted to use the immune system to treat cancer after discovering that
combinations of live and inactivated Streptococcus pyogenes and Serratia marcescens were
able to induce tumour regression in patients with sarcoma [6,7]. Since then, it has evolved
into a novel and effective method of treating cancer by enhancing the immune system
instead of directly targeting tumour cells with chemotherapeutics [8,9]. Immunotherapies
can be broadly classified into cancer vaccines [10–12], adoptive cellular immunotherapy,
or checkpoint inhibitor therapy [13,14]. Checkpoint markers are present on cancer cells to
evade the immune system, and immune checkpoint inhibitors (ICIs) operate by inhibiting
these checkpoint proteins/markers, allowing the immune system to destroy cancer cells. In
recent years, the use of ICIs has improved cancer treatment [15–21].

2. Inflammatory Bowel Disease

IBD is a chronic condition with 2 major pathologies, UC and CD [2]. The typical
clinical symptoms for IBD include gut hypersensitivity and abdominal pain which are
associated with chronic diarrhea and rectal bleeding [22]. CD is mainly characterised by
severe chronic inflammation expressed as trans-mural skip lesions across the intestinal
tract and UC exhibits continuous mucosal and submucosal inflammation extending from
the rectum to the colon [23]. IBD’s immune characteristics are a result of aberrant responses
of the innate and adaptive immune systems [24]. Approximately 95% of UC patients have
inflammation in the rectum, with 25% having inflammation restricted to the rectum [25].
Long-term management of IBD is challenging due to toxic long-term effects of therapies
or unresponsiveness in patients [26]. IBD is most common between the second and third
decades of life, with another high point between the ages of 60 and 70 [24]. There is a
significant increased risk of new mental illness postpartum among women with IBD,
specifically in the presence of CD [27], with the rate of depression and anxiety being
highest during active disease states [28]. Of relevance, it was recently shown that inflam-
mation in the intestines caused by an acute dose of methamphetamine causes leaky gut
syndrome, systemic inflammation, inflammation in the brain and mood disorders such as
anxiety [29–31]. Gut inflammation and changes in behaviour are closely related. In recent
years, a range of IBD therapeutic drugs have emerged that include sulfasalazine, azathio-
prine, corticosteroids, classical immunosuppressive agents, and anti-tumour necrosis factor
(TNF)-α antibodies [32].

Mouse Models

Mouse models of IBD and CRC are widely used to help in the understanding of
how living tissues function and the biology of underlying gut diseases [33]. Computer
models and intestinal cell cultures are also used to study gut disorders; however, such
models cannot replicate complicated interactions that exist in the whole digestive system,
especially in the gut where the extremely important interactions between the mucus and
the gut microbiome take place. Although cell lines are effective models for studies and are
commonly used to understand factors released by cancer cells and their receptors, they
cannot be used for studies on tumour growth and metastatic spread of cancer [34]. In mice
models, acute and chronic colitis are mediated intrarectally by administering 2,4,6-trinitro
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benzene sulfonic acid (TNBS), oxazolone, which induces a T-cells against hapten modified
autologous proteins [35]. In comparison to dinitrobenzene sulfonic acid (DNBS), TNBS
is considered toxic due to its highly oxidative properties, which can lead to an explosion
when in contact with bases like sodium and potassium hydroxide [36]. The most used
chemically induced model of intestinal inflammation is dextran sulphate sodium (DSS).
Mice are fed DSS-enriched water for several days, which appears to be especially harmful
to colonic epithelial cells of the basal crypts [35]. Colitis in these animal models result from
injury repair like UC, but it must be controlled to prevent differences in DSS concentration
and irregular water uptake by the animals; this would result in imbalanced exposure
and fluctuation in the level, extent, and distribution of tissue injury in the colon between
animals. These characteristics contribute to heterogeneity and restrict the ability to evaluate
outcomes across studies conducted by various researchers [36].

The inflammatory colitis inducing agents are diluted in different levels of ethanol
concentrations and administered via rectal instillation in the DNBS colitis models [37]. The
ethanol treatment is required to interrupt the colonic mucosal barrier, enabling DNBS or
TNBS to enter the lamina propria and haptenize the localised colonic and gut microbial
proteins, allowing them to become immunogenic and stimulate host immune responses [38].
DNBS leads to severe inflammation in the colon and rectum, eliciting a strong inflammatory
response associated with high levels of myeloperoxidase (MPO) [39], IL-1β and TNF-α [40].
Care must be taken during DNBS administration to ensure that the concentration of DNBS
does not exceed to avoid rapid death of animals due to bowel punctures and sepsis. Due
to the heterogeneity and inability to accurately monitor the degree of colitis in these
chemically induce animal models of IBD, other models are required to study colitis in a
more homogenous environment. As such the Winnie mouse model has been used to study
colitis in animal models.

Mucin 2 is highly expressed on epithelial cells especially that of the colon. A single
missense mutation in the Muc2 mucin gene causes endoplasmic reticulum stress in in-
testinal goblet cells, a depleted intestinal mucus barrier, and spontaneous distal colonic
inflammation by 6 weeks of age in the Winnie mouse model of spontaneous chronic coli-
tis. [41]. Winnie mice exhibit symptoms of diarrhea, ulcerations and rectal bleeding and
pain at different stages of colitis like human IBD [42]. Colitis in Winnie mice is initiated
predominantly by an IL-23 mediated cytokine storm which can be ameliorated by admin-
istering anti-IL-23 monoclonal antibodies and dexamethasone [43]. As Winnie mice are
created through a single nucleotide point mutation (which is not a gene deletion) causing
clinical features resembling human colitis with an intact functional immune system, these
mice are excellent pre-clinical models for studies in the pathophysiology of IBD. Colon
cultures from Winnie mice, secrete high levels of IL-1β. Extensive studies undertaken in
Winnie’s have rated them as the best murine model accessible for understanding human
chronic colitis and its pathogenesis [42].

3. Inflammatory Mediators in Inflammatory Bowel Disease

Inflammation is induced because of tissue damage following an infection, chemical
irritation, or shock [5]. In response to signals produced by resident macrophages, mast
cells, or epithelium, neutrophils migrate to the site of inflammation [44–46]. A network of
signalling molecules, including growth factors, cytokines, and chemokines, then recruits
other immune cells to the site of inflammation [47,48]. During chronic inflammation,
inflammatory infiltrates mainly consist of lymphocytes and macrophages [49]. Patients
with IBD exhibit specific miRNA expression profiles [50], which might be involved in the
initiation/development of inflammation [51–56]. Despite many miRNAs which contribute
to the pathogenesis of IBD, the exact role of most is still unclear [57].

3.1. Immune Cells in Inflammatory Bowel Disease

Macrophages are the intermediary cells between the innate and adaptive immune
systems, and are responsible for the secretion of growth factors, cytokines and reactive
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oxygen and nitrogen species [58–61]. Although these factors usually promote the inflam-
matory responses that lead to healing, prolonged inflammation may result in continuous
tissue damage and subsequent sustained cell proliferation, potentially leading to malig-
nant transformation [62–66]. Macrophages play a vital role in the pathogenesis of chronic
inflammation and contribute to disease advancement and/or maintenance by secreting
pro-inflammatory cytokines such as TNF-α [67], and are therefore, commonly linked with
inflammatory-related diseases, including IBD.

Eosinophils have also been associated with long-term intestinal inflammation and are
abundantly present in IBD [68]. Eosinophils are not only involved in inflammation but also
induce alterations to the enteric nervous system and are linked with disease severity [69].
The chemokine receptor, CCR3 which plays a role in the recruitment and activation of
eosinophils has been shown that its blockade via a CCR3 antagonist attenuates disease
severity and morphological damage to inflamed intestinal tissues in the spontaneous model
of chronic colitis (Winnie mice) [70]. Similarly, in guinea pigs, intestinal inflammation/colitis
caused following TNBS treatment results in increase of eosinophils at the site of inflamma-
tion. Using CCR3 antagonists alleviates enteric neuropathy and restores functional changes
of the intestines [71]. Other immune cells have also been described in IBD and include
dendritic cells, neutrophils, natural killer cells, T cells, B cells, Th1/Th17 cells, Th2 cells,
regulatory T cells, leading to a complicated interaction between the immune cells, epithelial
cells and the intestinal microbiota. Activation of the immune system highlights the role of
immune cells in the pathophysiology of IBD (Figure 1) [72].
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Figure 1. The immunological complexity of inflammatory bowel disease. CD, Crohn’s disease;
COX-2, cyclooxygenase 2; IL, interleukin; IFN-γ, interferon gamma; MAb, monoclonal antibody;
MMP9, matrix metallopeptidase 9; NF-κB, nuclear factor kappa-light-chain-enhancer of activated
B cells; NK, natural killer; Th, helper T cells; TLR, Toll-like receptor; TNF-α, tumour necrosis factor
alpha; UC, ulcerative colitis. Created using Biorender.com.
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3.2. Cytokines and Chemokines

Cytokines control host immune response in infection, inflammation, and trauma.
Proinflammatory cytokines, such as interleukin (IL)-1 which influences the tumour
microenvironment and promotes cancer initiation and progression [73] and TNF-α which
stimulates cancer cell growth, proliferation, invasion and metastasis, and tumour
angiogenesis [15,74–77]. Chemokines, cytokines, and their downstream targets have re-
ceived a lot of attention in the research on inflammation-induced cancer [5]. These in-
flammatory mediators promote tumour development, infiltration, metastasis and assist in
angiogenesis [78]. The inflammatory cells, and their associated chemokines and cytokines
affect the entire tumour organ and regulate the growth, migration and differentiation of all
cell types including neoplastic cells, fibroblasts and endothelial cells in the TME [62,79,80].
Toll-like receptors (TLR) and nucleotide oligomerization domain receptors are pathogen-
sensitive innate immune receptors that, when activated, cause the production of chemokines
and cytokines that recruit immune cells [24]. TLR signalling pathways also stimulate pro-
duction of other proinflammatory cytokines such as IL-12 and IL-6 [24]. Due to these effects,
the function of cytokines in IBD which may lead to cancer is important to identify novel
treatment of IBD.

TNF-α is one of the main pro-inflammatory cytokines, secreted by macrophages in IBD
and has become a significant target for IBD therapy due to dramatic reduction of inflamma-
tory markers and structural harm to the mucosa following its inhibition (Figure 1) [81,82].
The study of endogenous biochemical signals that attribute to chronic intestinal inflam-
mation might lead to the development of more successful treatment [83,84]. Since TNF-
functions have been found to be a major target for the development of treatments, the
TNF-inflammatory pathway in IBD has been extensively studied. Several anti-TNF mono-
clonal antibodies, including infliximab, adalimumab, certolizumab pegol, and golimumab
(Figure 1), have been developed because of this approach but these drugs are primarily
ineffective in many patients or lose effectiveness over time [85]. However, the monoclonal
antibody infliximab has been shown to effectively treat IBD [67].

3.3. Toll-Like Receptors

TLRs are transmembrane receptors, also known as pattern recognition receptors
and stimulate pro/anti-inflammatory gene functions and restrict adaptive immune re-
sponses [24,86,87]. In CD, the regulation of TLR2 and TLR4 receptors are higher compared
to healthy controls, which triggers faulty immune recognition [88,89], and is linked to
chronic inflammation in IBD [24].

3.4. The Nuclear Factor Kappa B

The nuclear factor kappa B (NF-κB) pathway has been widely studied as a model of
pro-inflammatory signalling pathway, due to its role in the expression of pro-inflammatory
cytokines, chemokines, and adhesion molecules [90]. NF-κB regulates the expression of a
variety of genes that are involved in the innate immune response, such as IL-1, IL-2, IL-6,
IL-12, IFN-γ and TNF-α [24,91] and play key roles in many physiological and pathophysio-
logical processes and mediating inflammatory signals [92]. In IBD these cytokines cause
colonic tissue damage and NF-κB has been found to be a key regulator in this immune
setting. NF-κB is over expressed in patients with IBD and influences mucosal inflamma-
tion [93]. Blockade of NF-κB activation has been used as a strategy to treat IBD. MG-341
an inhibitor of 26S proteasome, a target for NF-κB inhibition has been shown to attenuate
colonic inflammation [93].

3.5. Matrix Metalloproteinases

Matrix metalloproteinases (MMPs), also known as matrixins, are very minimal or
negligible in the usual tissues, however, their function is transcriptionally controlled by
inflammatory cytokines, growth factors, hormones, as well as cell–cell and cell–matrix
interactions [94]. MMPs are also regulated by precursor zymogen activation and prevented
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by endogenous inhibitors and tissue inhibitors of metalloproteinases (TIMPs) [95]. MMP-9
has been determined as a crucial pathogenic factor in IBD, being elevated in IBD patients
exhibiting a malfunctioning intestinal tight-junction barrier with increased intestinal per-
meability [96]. The loss of intestinal epithelial barrier function is a significant factor in the
onset and persistence of intestinal inflammation. (Figure 1). The specific role of MMP-9 in
intestinal barrier function is still uncertain [97]. The inflammatory component of a devel-
oping neoplasm often includes a diverse leukocyte population—for example, neutrophils,
dendritic cells, macrophages, eosinophils, mast cells, and lymphocytes - all of which secrete
a wide array of cytokines and cytotoxic mediators including reactive oxygen species, serine,
and cysteine proteases, MMPs, membrane-perforating agents, as well as soluble mediators
of cell killing, such as IFNs, TNF-α, and cytokines [98,99].

3.6. Cyclooxygenase-2

COX-2, a key enzyme in fatty acid metabolism, is activated during both inflammation
and cancer. It is stimulated by pro-inflammatory cytokines at the site of inflammation,
and increased COX-2-induced prostaglandin synthesis facilitates cancer cell proliferation,
angiogenesis, inhibits apoptosis, and enhances metastatic potential, making it a hot topic
in research [100]. In IBD, COX-2 is highly induced by intestinal epithelial cells and since
COX-2 plays a role in the development of CRC, inhibition of COX-2 may reduce the
incidence of CRC. In fact, non-steroidal anti-inflammatory drugs and COX-inhibitors used
in a double-blind placebo-controlled human clinical trial in patients with IBD was beneficial
in most IBD patients without any exacerbations of IBD [101]. In addition, double targeting
using an inhibitor of nitric oxide synthase as well as COX-2 inhibitor in IBD has the potential
for the treatment of inflammation and colitis [102].

3.7. Myeloid Differentiation Primary Response 88

Myeloid differentiation primary response 88 (MyD88) is the established adaptor
for inflammatory signalling pathways following activation of TLRs and IL-1 receptor
families [103]. MyD88 signalling is involved in the advancement of CAC in colonic myeloid
cells. Intestinal myeloid cells are important for maintaining local homeostasis and have
a major role in regulating the existence of colitis and CAC [104]. MyD88 deletion also
causes an increase in mucosal expression of COX-2, p-STAT3, β-catenin, and cyclinD1;
all of which are associated with further DNA damage and β-catenin mutation. MyD88
knockout mice develop severe colitis and macrophage and CD4+ T cell infiltration in
the intestinal mucosa, following the addition of dextran sulfate sodium in the drinking
water [105]. In addition, MyD88 knockout mice infected with Salmonella Typhimurium
endured enhanced intestinal tissue loss and showed barrier disruption, compared to wild-
type mice [106]. Thus, myeloid MyD88 signalling protects the intestine from inflammation
as well as tumourigenesis during the development of CAC [104].

4. Inflammation and Cancer

There is a firm link between chronic inflammation and cancer, mediated by several
inflammatory pathways including cytokines and mediators. In addition to exogenous
mutagens, immune cell infiltrates in the colon develop an environment rich in reactive
oxygen and nitrogen species, which can result in DNA damage, enabling the onset of
oncogenesis [107]. Dysplasia can be polypoid or plain, localised, distributed, or multifocal
in IBD patients. When dysplasia is observed in patients, it exposes the entire colon at risk
of neoplasia, requiring surgical removal of the entire colon and rectum. These morpho-
logical and biological differences pose major challenges in clinical cancer surveillance in
IBD patients more than in the general population, raising critical questions over chronic
inflammation’s contribution to the develop CRC.
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4.1. Colitis Associated Cancer/Colorectal Cancer

CAC is a subset of CRC that can be developed in patients with long-standing IBD.
The role of inflammation as a risk factor in CRC has been largely investigated, both in
CAC and sporadic tumours [108]. CRC is the third most common malignancy in the world,
with more than 1 million annual new cases worldwide [109]. CRC is linked to prolonged
period of colitis and anatomic significance, along with the presence of other inflammatory
symptoms such as primary sclerosing cholangitis [110]. Colitis-associated CRC and random
CRC are different in terms of presentation and molecular characteristics. These variations
are brought on by variations in DNA methylation, which induces changes in gene ex-
pression [111]. The use of drugs for treating inflammation, such as 5-aminosalicylates
and steroids, may inhibit the advancement of CRC in IBD [112]. CRC affects the caecum,
colon, and rectum; one of the most diagnosed and causes of cancer deaths worldwide.
Most CRC patients receive chemotherapy prior to or following surgery, however, diarrhea,
constipation, oral mucositis, nausea, and vomiting are frequent gastrointestinal side effects
occurring in up to 80–90% of patients. These side effects may also result in the development
of malnutrition and dehydration in patients leading to rapid weight loss (cachexia) [113].
Early death rates of up to 4.8% associated with chemotherapy are due to gastrointestinal
toxicity [114]. Due to these complications, the administration of chemotherapy is often
restricted, leading to reduction in efficacy. Although animal models of IBD have given
important insights into the underlying cause of CAC, the molecular processes by which
inflammation stimulates cancer remain poorly understood [115].

4.2. Cancer Microenvironment

The cancer microenvironment refers to cells present around the cancer cells which
include, fibroblasts, natural killer cells, macrophages, monocyte derived dendritic cells,
CD4+ T cells, CD8+ T cells, regulatory T cells, eosinophils, neutrophils, blood vessels and
proteins produced by all these cells and support the development of cancer cells [116]. The
cancer microenvironment is quite complex (Figure 2) [15,117]. The range of innate and
adaptive immune cells present in the cancer microenvironment secrete both pro- and anti-
tumourigenic mediators. Cancer cell interactions with its surrounding microenvironment
(stromal cells, extracellular matrix, immune cells), are important for cancer cells clonal
evolution, heterogeneity, as well as developing resistance against drugs, which all lead
to the proliferation, growth and metastasis of cancer cells [118]. In addition, the nervous
system interacts with cancer cells, adding to their regulation, growth, angiogenesis, and
metastasis [74–76]. Cancer immunotherapy involves boosting of immune CD4+, CD8+
T cells and B cells to kill or block cancer cells [119,120]. However, cancer cells have evolved,
and certain checkpoint makers are expressed which allows their escape from immune attack.
These include cytotoxic T-lymphocyte-associated antigen (CTLA-4) and programmed cell
death (PD-1) or programmed cell death ligand 1 (PD-L1). The PD-1/PD-L1 pathway is the
frontline of interactions between immune cells, stromal cells, and cancer cells [121].



Cancers 2022, 14, 6131 8 of 20Cancers 2022, 14, x FOR PEER REVIEW 8 of 21 
 

 

 
Figure 2. The immunological complexity of the cancer microenvironment. Created using Bioren-
der.com. ARG1, arginase 1; CCL2, C-C motif chemokine ligand 2; CD, cluster differentiation; COX-
2, cyclooxygenase 2; CXCL3, chemokine (C-X-C motif) ligand 3; CXCR2, C-X-C motif chemokine 
receptor 2; GM-CSF, granulocyte macrophage colony stimulating factor; IDO, indoleamine-2,3-di-
oxygenase 1; IL, interleukin; Lox, lysyl oxidase; M-CSF, macrophage colony stimulating factor; 
MMP2/9, matrix metallopeptidase 2/9; NK, natural killer; PD-1, programmed cell death protein 1; 
PDE2, phosphodiesterase 2; PDGF, platelet derived growth factor; PD-L1, programmed death lig-
and 1; ROS, reactive oxygen species; TGFb, tumour growth factor beta; VEGF, vascular endothelial 
growth factor. 

5. Checkpoint Markers 
The ability of the immune system to distinguish between self and non-self-antigens 

using “checkpoints” is one of its most important functions. Checkpoint markers are pre-
sent on cancer cells as a means of evading immune attack. Checkpoint inhibitors therapy 
differ from traditional chemotherapy by increasing the activation of immune cells, specif-
ically T cells. (Figure 3) [16]. In contrast to chemotherapy, tolerance to checkpoint inhibi-
tors appears to be higher, resulting in fewer side effects and a better outcome for cancer 
patients [122]. ICIs are monoclonal antibodies designated for an increasing number of ma-
lignant diseases . Checkpoint inhibitors include cytotoxic T-lymphocyte-associated anti-
gen (CTLA)-4 inhibitors (ipilimumab, tremelimumab) and programmed cell death protein 
1 pathway/programmed cell death protein 1 ligand inhibitors (PD1/PD-L1) (pembroli-
zumab, nivolumab, durvalumab, atezolizumab), are more frequently used in clinical trials 
for the treatment of several cancers  [123]. Determining the role of PD-1/PD-L1, PD-L2, 
indoleamine 2,3-dioxygenase (IDO), sialic acid-binding immunoglobulin-like lectins (Sig-
lecs), and CTLA-4 in animal models of IBD, patients with IBD, as well as in CRC can pro-
vide insights into disease initiation and progression that may assist in identification of 
novel targets. Furthermore, anti-PD-1/PD-L1 therapies are not relevant to all patients, im-
plying the need to identify additional targetable immune checkpoints [124]. 

Figure 2. The immunological complexity of the cancer microenvironment. Created using Bioren-
der.com. ARG1, arginase 1; CCL2, C-C motif chemokine ligand 2; CD, cluster differentiation; COX-2,
cyclooxygenase 2; CXCL3, chemokine (C-X-C motif) ligand 3; CXCR2, C-X-C motif chemokine
receptor 2; GM-CSF, granulocyte macrophage colony stimulating factor; IDO, indoleamine-2,3-
dioxygenase 1; IL, interleukin; Lox, lysyl oxidase; M-CSF, macrophage colony stimulating factor;
MMP2/9, matrix metallopeptidase 2/9; NK, natural killer; PD-1, programmed cell death protein 1;
PDE2, phosphodiesterase 2; PDGF, platelet derived growth factor; PD-L1, programmed death lig-
and 1; ROS, reactive oxygen species; TGFb, tumour growth factor beta; VEGF, vascular endothelial
growth factor.

5. Checkpoint Markers

The ability of the immune system to distinguish between self and non-self-antigens us-
ing “checkpoints” is one of its most important functions. Checkpoint markers are present on
cancer cells as a means of evading immune attack. Checkpoint inhibitors therapy differ from
traditional chemotherapy by increasing the activation of immune cells, specifically T cells.
(Figure 3) [16]. In contrast to chemotherapy, tolerance to checkpoint inhibitors appears to be
higher, resulting in fewer side effects and a better outcome for cancer patients [122]. ICIs are
monoclonal antibodies designated for an increasing number of malignant diseases. Check-
point inhibitors include cytotoxic T-lymphocyte-associated antigen (CTLA)-4 inhibitors
(ipilimumab, tremelimumab) and programmed cell death protein 1 pathway/programmed
cell death protein 1 ligand inhibitors (PD1/PD-L1) (pembrolizumab, nivolumab, durval-
umab, atezolizumab), are more frequently used in clinical trials for the treatment of several
cancers [123]. Determining the role of PD-1/PD-L1, PD-L2, indoleamine 2,3-dioxygenase
(IDO), sialic acid-binding immunoglobulin-like lectins (Siglecs), and CTLA-4 in animal
models of IBD, patients with IBD, as well as in CRC can provide insights into disease
initiation and progression that may assist in identification of novel targets. Furthermore,
anti-PD-1/PD-L1 therapies are not relevant to all patients, implying the need to identify
additional targetable immune checkpoints [124].
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5.1. Role of Checkpoint Inhibitors

The purpose of cancer immunotherapy is to stimulate cytotoxic T lymphocytes/CD8+
T cells against tumour associated proteins/receptors and, help the initiation of tumour
specific T cells in lymphoid organs to achieve efficient and long-lasting anti-tumour im-
munity [125]. However, the TME is complicated involving immune cells, cytokines, and
checkpoint markers [121]. Using ICIs as a single agent or in combination treatments with
chemotherapy, radiotherapy, or immunotherapeutic intervention, have produced efficient
and long-term clinical outcomes [19].

PD-1 (CD279) is a checkpoint molecule on T cells that prevent T cells from damaging
its own cells in the body. It is present on activated T cells and binds to PD-L1 or PD-L2
on tumour cells, causing deactivation and death of T cells. In mouse models, the loss of
PD-1 expression on T cells has been observed to substantially prolong tumour growth
and increase CD8+ T cells inside the TME (Figure 3). Nivolumab, is a PD-1 inhibitor,
approved by the FDA is in use for metastatic melanoma [126]. In mouse models of IBD
and IBD patients, PD-1 is upregulated on T cells, macrophages, dendritic cells, B cells
and in colon tissues that are inflamed. Some examples of drugs that target PD-1 include
Pembrolizumab (Keytruda) and Nivolumab [127]. In addition, ipilimumab (Yervoy) is a
monoclonal antibody that inhibits CTLA-4 activity, providing a similar effect. Drugs that
target the PD-1 and CTLA-4 pathways have specifically demonstrated considerable clinical
efficiency and gained approval as single-agent or combination therapy for regular use [128].
Advances in immuno-oncology have started to revolutionize the standard of care for many
types of cancer. Pembrolizumab and nivolumab are two PD1-blocking antibodies that have
shown effectiveness in individuals with metastatic CRC (mismatch-repair-deficient) and
microsatellite instability-high (dMMR-MSI-H) and have gained rapid FDA approval [129].

CTLA-4, also known as CD152, is an immune checkpoint receptor that inhibits CD8+
T-cell activation. It is present on regulatory T cells and facilitates their immunosuppres-
sive effect (Figure 4) [130]. Anti-CTLA-4 monoclonal antibodies—ipilimumab and treme-
limumab can prevent CTLA-4 ligand-driven immunosuppression [131]. CTLA-4 and
PD-1 are inhibitors of T-cell immune function [132]. CTLA-4 is a CD28 homolog has
a stronger bond with B7 [132]. CTLA4 is a candidate gene that has been linked to the
progression of CRC [133].
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domain 3; Treg, regulatory T cells.

Sialic acid-binding immunoglobulin-like lectins (Siglecs) are transmembrane sialic
acid-binding proteins of the immunoglobulin superfamily that contain an N-terminal V-set
Ig-like domain as well as a variable number of C2 set domains. (Table 1) [134]. Siglec-3
is also known as CD33 and has been determined as a myeloid lymphoma marker in clin-
ical studies much before any other Siglec was discovered [135]. Siglec-3 was mapped to
chromosome 19 and previous studies on cDNA isolation and cloning suggested CD33 asso-
ciation with MAG (Siglec-4) [136]. Siglec-8 is present on the surface of human eosinophils,
mast cells, and basophils, and its activation by specific glycan ligands or antibodies ini-
tiates loss of eosinophils and reduces mast cell degranulation [137]. Siglec-8 promotes
cytokine-dependent death [138]. Siglec-9 is upregulated on neutrophils and induces cell
death when associated with monoclonal antibodies [139]. Current research on Siglecs have
demonstrated major roles in tumour immunosurveillance including immunosuppression,
that are appealing anti-cancer molecular targets [124].

Table 1. Sialic acid-binding immunoglobulin-like lectins (Siglecs) and their function.

Siglecs Function References

Siglec-1 (CD169)/Sialoadhesin Cell adhesion, cancer progression [140,141]

Siglec-2 (CD22) Dampening B cell receptor activation [142]

Siglec-3 (CD33) Downstream signalling function [143]

Siglec-4 (Myelin Associated
Glycoprotein, MAG)

Interaction between MAG and
cancer-associated MUC1, stabilizes
myelin-axon interactions

[124,144]

Siglec-5 (CD170)

Associates with leukocyte counter-receptor
P-selectin glycoprotein ligand-1, prevent
leukocyte recruitment to sites of
inflammation and maintains a
pro-cancer environment.

[145]
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Table 1. Cont.

Siglecs Function References

Siglec-6 (CD327) Immune-inhibitory, inhibitory receptor on
mast cells in CRC [146]

Siglec-7 (p75/AIRM1, CD328)
Natural killer (NK) cell-inhibitory receptor
bearing immunoreceptor tyrosine-based
inhibition (ITIM) motifs

[147]

Siglec-8 A target in allergen-induced inflammation [148]

Siglec-9 (CD329) Binds to MUC1 with sialylated T-antigen
(MUC1 ST) [149]

Siglec-10 Repress DAMP-mediated innate
inflammatory responses [150]

Siglec-11 Inhibitory function, microglial activities [124,151]

Siglec-12 (Siglec-XII) Recruit SHP2-related oncogenic pathways [152]

Siglec-13 Deleted in humans [124]

Siglec-14 Suppresses myeloid inflammatory responses [153]

Siglec-15 Upregulated on cancer cells and
tumour-infiltrating myeloid cells [154]

Siglec-16 Expressed on cancer cells [155]

Siglec-17 Deleted in humans but pseudogene exists [124]

Indoleamine 2,3-dioxygenase (IDO) is an enzyme that reduces tryptophan, an essential
amino acid [156], and is overexpressed in the colon, intestines as well as the lung. The
mechanism by which IDO works is by catalysing the oxidative ring cleavage of pyrrole’s
in tryptophan, serotonin, melatonin, and other indoleamine derivatives [157]. In CRC,
the regulation of IDO by tumours is associated with metastases and inversely linked
with infiltration of T cells [158]. The expression of IDO1 could be generated by IFN-γ,
lipopolysaccharide, and tumour necrosis factor (TNF). Thus, in response to inflamma-
tory signals under pathophysiological conditions IDO1 is highly up regulated by the
immune system, and over-expression of IDO1 improves detection in different types of
cancers, including melanoma, pancreatic, ovarian, and colorectal [159]. The IDO1 paralog
IDO2, despite having received far less research, may be a possible alternative as a ther-
apeutic target in cancer immunotherapy. IDO2 is substantially less efficient than IDO1
at metabolising tryptophan, and its functions are instead the result of interactions with
other, as-yet-unidentified proteins that may change in various inflammatory and neoplastic
circumstances [160].

T cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) is a marker
selectively present on IFN-γ–producing CD4+ T helper 1 (Th1) and CD8+ T cytotoxic 1
(Tc1) T cells (Figure 4) [161]. Tim-3 is upregulated in CRC, compared to normal tissues [162].
The Tim-3 pathway is a target for anticancer immunotherapy due to its expression on both
non-functional CD8+ T cells and Tregs—two main immune cell groups that suppress the
immune activity in tumour tissue [163] and has exhibited remarkable results in preclinical
cancer models. Tim-3/PD-1 pathway co-blockade is more successful than either Tim-3 or
PD-1 pathway blockade only at rebuilding tumour antigen–specific IFN-γ production in
CD8+ T cells in mice carrying tumours [164].

Lymphocyte-activation gene 3 (LAG-3) is a critical immune checkpoint marker with
implications for a variety of diseases, including cancer. (Figure 4) [165]. LAG-3, along with
other ligands such as galectin-3 and LSEC-tin, binds to MHC class II. LAG3 (or CD223),
like PD-1, is expressed on a variety of cell types, such as tumor-infiltrating lymphocytes
(CD4, CD8) and regulatory T cells. LAG3 is essential for effective T cell expression and
homeostasis [166]. Suppression of LAG3 showed reduced tumour growth which was not
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very effective, however, suppression of LAG3 and PD-1 together, not only reduced tumour
growth but also increased survival rate in mice [167,168]. Tumour-infiltrating lymphocytes
expressing elevated levels of LAG3 have been found in solid tumours such as ovarian
cancer, melanoma, and colorectal cancer, as well as Hodgkin’s and diffuse large B-cell
lymphoma [169]. LAG3 inhibits cytokine and granzyme production and proliferation while
promoting regulatory T cell differentiation [165].

5.2. Stimulatory Checkpoint Molecules

The CD70-CD27 axis promotes T-lymphocyte expansion and differentiation by stimu-
lating the NF-B pathway [170]. CD28 is present on almost all human CD4+ T cells and most
ofCD8+ T cells. Binding with its two ligands -CD80 and CD86, present on dendritic cells,
initiates T cell expansion [171]. CD40 and its ligand CD40L may trigger antigen presenting
cells to permit CD8+ T cell priming [172]. CD40 is a key signalling pathway for the function
of B cells, monocytes, and dendritic cells, and plays an important role in the inflammatory
pathways of non-hemopoietic cells. CD40 is expressed by monocytes and dendritic cells,
and overexpressed when dendritic cells in response to microbial threat, cells move from the
periphery to depleting lymph nodes [173]. CD40 protein expression is significantly higher
in CRC compared with normal tissue [174]. The first proof-of-concept study that shows
how using CD122 alone or in conjunction with a vaccination or a Glucocorticoid-induced
TNFR-related protein (GITR) monoclonal antibody immunotherapy might boost and main-
tain anticancer responses. These findings support the use of CD122 as a monotherapy
target or in combination with other immune-targeted treatments for CRC [175]. CD137,
an inducible T-cell costimulatory receptor and a member of the TNF receptor superfamily.
CD137 and CD137L expression was upregulated in all investigated colon cancer tissues
compared to normal colon tissues. Targeted microenvironment imaging strategies may be
used to facilitate early detection of tumours, and isotope labelled anti-CD-11b could be
of further evaluated as a potential probe [176]. Inflammatory responses closely regulate
CD163 expression, with anti-inflammatory signals (e.g., IL-10, glucocorticoids) stimulating
CD163 expression while proinflammatory signals (e.g., lipopolysaccharide, TNF-α, IFN-γ)
suppressing CD163 synthesis [177].

The B7 ligand family comprises of 10 members -CD80 (B7-1), CD86 (B7-2), PD-L1
(B7-H1), PD-L2 (B7-DC or CD273), ICOSL (B7-H2), CD276 (B7-H3), B7S1 (B7-H4, B7x or
Vtcn1), VISTA (B7-H5, GI24, or PD-1H), B7-H6, and B7-H7 (HHLA2) [178]. B7-1 or CD80 is
upregulated in dysplastic colonic mucosa of UC patients, with CD80 signalling between
intestinal epithelial cells and T-cells representing a critical factor in the development of
inflammatory colonic carcinogenesis from low to advanced dysplasia [179]. Oncogenic
insults, such as oxidative DNA damage linked to long-term intestinal inflammation, can
induce CD80 expression. The stromal B7-2 or CD86/CD163 ratio could be used for per-
sonal risk assessment of relapse and mortality for stage II-III CRC [180]. Together with
tumour staging, this ratio may aid in personalized treatment. B7-H1, PD-L1, or CD274
are upregulated in colorectal carcinoma and have been linked to cell differentiation and
tumor-node-metastasis placement [181]. B7-H2 or Inducible costimulatory ligand (ICOS-L)
expressed on CD8+ T cells in the tumour micro-environment are closely associated with
progression of CRC [182]. B7-H3 or CD276 are potentially associated with CRC advance-
ment and evasion of cancer immune surveillance [183]. B7-H4 is associated with CD133
and CD44 regulation in CRC tissues, and B7-H4 knockout mice prevents growth of tu-
mour spheroids, cell migration, and infiltration in CRC cell lines which shows that it
could be a potential prognostic biomarker for CRC [184]. B7-H5 (also known as V-domain
immunoglobulin suppressor of T cell activation (VISTA), C10orf54, PD-1H, Gi24, and
Dies1) is expressed at higher levels in cancer sections compared to non-cancer tissues,
promotes tumour immune escape, associated with lymph node participation, cancer stage,
and survival [185]. As such, B7-H5 is an important marker for prognosis and a potential
target for the immunotherapy of CRC. B7-H6 is activated at the surface of CD14+CD16+

proinflammatory monocytes and neutrophils in response to TLR or pro-inflammatory
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cytokines such as IL-1β and TNFα [186]. The novel B7-H6/CD3 bispecific IgG-like T cell
retaining antibody for the treatment of CRC and haematologic malignant cells [187]. The
level of HHLA2 expression in CRC patients was discovered to be positively connected
with a high death rate and strongly associated with the complexity of invasion and CD8+ T
cell infiltration status, implying that it may operate as an independent prognostic factor
related with overall survival; however, the thorough regulation of HHLA2 in CRC remains
unclear. Human leukocyte antigen (HLA)-G, a member of the HLA family, serum sHLA-G
levels correspond with disease severity in paediatric CD patients and are higher in CD
patients than in UC patients. As a result, sHLA-G may be a biomarker for disease severity
in CD [188]. In both haematological and solid tumours, there is a high rate of HLA-G
surface activity and elevated sHLA-G serum levels. HLA-G and sHLA-G regulation is
associated with poor treatment results in cancer patients, implying a role in cancer cells’
immune escape mechanism [189].

6. Challenges and Gaps

Although the frequency of checkpoint inhibitors cause adverse events, it is much less
than chemotherapy treatments, their use may lead to emergency ward if severe immune-
related adverse events (irAEs). The occurrence of irAEs is also less frequent following
immunotherapy compared to chemotherapy, however, its best that intensivists are familiar
with the side effects of these medications, especially if in intensive care unit admission
is required [123]. The immunosuppressive features of tumour lesions play a big part
in the advancement of cancer and are a big challenge for effective immunotherapies.
Blocking the pathways of PD-1/PD-L1 has demonstrated excellent therapeutic efficacy for
cancer patients with a variety of diseases. However, the effectiveness of authorised ICIs in
treating CRC is poor, and only a small proportion of individuals benefit from them. The
current ICIs are not suitable for most CRC patients with microsatellite stable or mismatch
repair proficiency or reduced levels of microsatellite instability. This inadequate treatment
effectiveness highlights the critical need to identify more checkpoint markers in CRC.

7. Conclusions and Future Prospects

Though there has been significant research and information on checkpoint markers,
their roles in IBD and CRC development remain unclear and require further study. Studying
checkpoint markers in the Winnie mouse models that closely resemble human models may
lead to the discovery of biomarkers for screening IBD patients and for the advancement
of understanding inflammation and cancer that may lead to designing drugs that use
inhibitors of biomarker expression or use vaccines to prevent disease progression. However,
these treatments require significant improvement, one of the main aspectss is to identify the
“baseline (pre-treatment)” biomarkers to predict immune responses. In general, biomarkers
are mainly divided into two functional categories: “prognostic” and “predictive” [190]. A
prognostic biomarker can be defined based on the way patient’s body or tumour biology
influence the patient’s clinical outcome. This includes patients at high risk for disease
relapse who may benefit from earlier treatments. On the other hand, a predictive biomarker
is defined by the effects of treatment, including tumour response, and the improvements
in overall survival of patients, disease-free survival, and progression-free survival [191].
Further research into these animal models and studying the function and effects of ICIs in
these animal models will shed light on new targeted therapies for IBD as well as CRC.

Author Contributions: R.E., J.F., S.F., K.N. and V.A. contributed to the concept of the article, writing
of the article and critically revising the article. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors would like to thank the Immunology and Translational Research
Group and, the Enteric Neuropathy Research Group for helpful discussions. Figures were created
with Biorender.com.



Cancers 2022, 14, 6131 14 of 20

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Matricon, J.; Barnich, N.; Ardid, D. Immunopathogenesis of inflammatory bowel disease. Self/Nonself 2010, 1, 299–309.

[CrossRef] [PubMed]
2. Hendrickson, B.A.; Gokhale, R.; Cho, J.H. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin. Microbiol.

Rev. 2002, 15, 79–94. [CrossRef] [PubMed]
3. Triantafillidis, J.K.; Merikas, E.; Georgopoulos, F. Current and emerging drugs for the treatment of inflammatory bowel disease.

Drug Des. Dev. Ther. 2011, 5, 185–210. [CrossRef] [PubMed]
4. Axelrad, J.E.; Lichtiger, S.; Yajnik, V. Inflammatory bowel disease and cancer: The role of inflammation, immunosuppression, and

cancer treatment. World J. Gastroenterol. 2016, 22, 4794–4801. [CrossRef]
5. Chen, L.; Deng, H.; Cui, H.; Fang, J.; Zuo, Z.; Deng, J.; Li, Y.; Wang, X.; Zhao, L. Inflammatory responses and inflammation-

associated diseases in organs. Oncotarget 2017, 9, 7204–7218. [CrossRef]
6. McCarthy, E.F. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop. J. 2006, 26,

154–158.
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