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In December 2019, an outbreak emerged of severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) which leads to coronavirus disease 2019 (COVID-

19). The World Health Organisation announced the outbreak a global health

emergency on 30 January 2020 and by 11 March 2020 it was declared a

pandemic. The spread and severity of the outbreak took a heavy toll and

overburdening of the global health system, particularly since there were no

available drugs against SARS-CoV-2. With an immediate worldwide effort,

communication, and sharing of data, large amounts of funding, researchers

and pharmaceutical companies immediately fast-tracked vaccine

development in order to prevent severe disease, hospitalizations and death. A

number of vaccines were quickly approved for emergency use, and worldwide

vaccination rollouts were immediately put in place. However, due to several

individuals being hesitant to vaccinations and many poorer countries not

having access to vaccines, multiple SARS-CoV-2 variants quickly emerged

that were distinct from the original variant. Uncertainties related to the

effectiveness of the various vaccines against the new variants as well as

vaccine specific-side effects have remained a concern. Despite these

uncertainties, fast-track vaccine approval, manufacturing at large scale, and

the effective distribution of COVID-19 vaccines remain the topmost priorities

around the world. Unprecedented efforts made by vaccine developers/

researchers as well as healthcare staff, played a major role in distributing

vaccine shots that provided protection and/or reduced disease severity, and

deaths, even with the delta and omicron variants. Fortunately, even for those

who become infected, vaccination appears to protect against major disease,
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hospitalisation, and fatality from COVID-19. Herein, we analyse ongoing

vaccination studies and vaccine platforms that have saved many deaths from

the pandemic.
KEYWORDS

COVID-19 outbreak, SARS-CoV-2 variants, vaccine, variant of concern, omicron
variant, delta variant
Introduction

The COVID-19 pandemic had spread to 228 countries as of

September 15, 2022 (plus outbreaks in 2 cruise ships), with over

615.5 million laboratory-confirmed cases and 6.52 million

deaths causing considerable social and economic devastation.

The main strategy used against COVID-19 is to alleviate

symptoms, hospitalisations and deaths. As such, several

therapeutic approaches are being evaluated for their

effectiveness in reducing/eliminating SARS-CoV-2 viral load

and reducing symptoms (1–4). Initially, the strategy was to

repurpose existing therapeutics to allow for faster drug

development (2, 5, 6). Several clinical trials on existing drugs

have been completed, and others are in progress (4, 7–9).

Despite the numerous approaches, there have been repeated

cases where recovered patients are reinfected, highlighting the

need for herd immunity against SARS-CoV-2 (10). However,

drugs such as molnupiravir, bamlanivimab, bebtelovimab, and

tixagevimab with cilgavimab work well and are predominantly

used in elderly and high-risk patients (2, 3, 11). Patients with

comorbidities such as cardiovascular disease, chronic respiratory

disease, hypertension, type-2 diabetes, and cancer may be

affected with unfavorable outcomes (12). Furthermore, the

emergence of monkey pox, Langya virus and tomato flu a

manifestation of hand, foot and mouth diseases complicates

the COVID-19 management process (13–16). SARS-CoV-2

manifestations are more serious in the elderly and those with

chronic diseases, owing to the overactive and persistent innate

inflammatory processes and anatomical and functional

alterations in the physiological systems (17). This will impede

not only the capability to defend against respiratory infections

but also the ability to build efficient vaccination defense.

According to Elizabeth C Stahl (18), “The function of

lymphoid and nonlymphoid tissues involved in the host

immune response declines with age. The production of naive

T and B-lymphocytes is decreased when primary lymphoid

organs degenerate, resulting in diminished transition to

secondary lymphoid organs and antigen encounter sites. In

addition, proinflammatory cells and mediators may

accumulate in the lungs and extrapulmonary organs.

Protective immunity to vaccination is low or faulty in elderly
02
individuals, while autoimmunity rises. As a result, while

developing SARS-CoV-2 vaccines, it will be crucial to keep in

mind that older individuals may not react to vaccinations as well

as younger people (19).”

The viral structural proteins and genomic organization is

summarized in Figure 1. The immune system plays a critical role

in the pathogenesis of COVID-19 as well as vaccine effectiveness.

To design a safe and effective vaccine, preclinical and clinical

trials are conducted with caution to minimise adverse reactions

(20). Herein, we discuss different targets and platforms that are

currently being used as COVID-19 vaccine candidates, the

effects of variants on vaccine efficacy, as well as the issues

connected with fast-tracking of vaccines and vaccination

ethics (21).
SARS-CoV-2 mutations and impact

Viral mutations arise when the genetic sequences of the

genome that make up a virus change. This virus survival instinct

of generating thousands of copies of themselves over time leads

to errors in the genetic fingerprint as a part of the natural

process. These random genetic drifts may lead to no change or

may increase or decrease the virulent capability to spread or

cause diseases (22, 23). While maximum viral mutations in the

viral genome are mostly point mutations with a deleted arm or

neutral mutations, a small percentage will alter functional viral

parts and may modify contagiousness or infection severity. The

viral genomic evolution or SARS-CoV-2 remained largely

unchanged for approximately 11 months after its emergence in

late 2019. Later, in 2020 and thereafter, genomic evolution was

pigeonholed by the advent mutation series, and what emerged

was what is commonly known as ‘variants of concern (VOC)’

(Figure 2). These mutations affect some virus attributes, as well

as antigenicity and transmissibility. There is unfavorable

evidence of the lowered neutralization capability of some

coronavirus variants against the vaccine, which may lead to

many uncertainties in effective vaccine development. A possible

solution to this is by updating the vaccine sequences considering

major mutations of the emerging variants and their

interrelationships (24).
frontiersin.org
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The World Health Organization (WHO) demonstrated

three types of SARS-CoV-2 variants in collaboration with a

SARS-CoV-2 interagency group as (i) variant of interest (VOI),

(ii) variant of concern (VOC), and (iii) variant of high

consequence (VOHC). VOIs include zeta (P.2), theta (P.3),

epsilon (B.1.427, B.1.429), kappa (B.1.617.1), iota (B.1.526), eta

(B.1.525), lambda (C.37) and the mu variant (B.1621) (25). The

WHO changed the designation of the following VOCs to,

‘previously circulating VOCs’ - the alpha variant (B.1.1.7), beta

(B.1.351), gamma variant (P.1), and delta variant (B.1.617.2)

(26). The omicron is the current VOC and some sub-variants are

classified as, ‘under monitoring’ (B.1.1.529, BA.1, BA.1.1, BA.2,

BA.2.12.1, BA.2.75, BA.3, BA.4, and BA.5) (Table 1). No SARS-

CoV-2 variants have been classified as VOHC (22, 39).

Most variations in the structure of viruses occurs due to

mutation in the genetic material, but recently, due to

recombination of two different variants or sub variants, the

generation of recombinant variants have been detected.

Recombinant variants, also known as hybrid variants, surfaced

due to the transfer of genetic material between two viral variants.

Recently, in some countries, such as France and Europe, very few

cases of recombinant variants have been observed. The WHO

designated these variants as XE and XF (Figure 3). Early 2022, a

new recombinant variant referred to as “deltacron”, also known

as XD was identified which is the combination of omicron and

delta variants. An infection of both variants in a single patient

was observed in France in January 2022 (40). The delta variant is

the most dangerous variant among all variants of COVID-19.

The delta variant is responsible for most deaths across the world,
Frontiers in Immunology 03
and omicron is the most infectious variant among all variants.

Deltacron is known as BA.1 x AY.4, where BA.1 is an omicron

variant and AY.4 is a delta variant (41). In the United Kingdom,

a combination of two subvariants named BA.1 and BA.2 (also

known as stealth omicron) of the omicron variant was noted in

one patient (XE variant). In the case of the XE variant, most of its

structure, including the spike protein, is of the BA.2 sub variant,

but the 5′ part of its structure is made up of the BA.1 sub variant

(42). In addition, XF, is the result of the combination of BA.1

subvariant of omicron and delta variants (43). Currently, five

main sublineages of omicron variants have been detected (BA.1

to BA.5). The BA.4 and BA.5 lineages managed to dominate the

planet between April-July 2022 since their emergence, whereas

BA.2 began to dwindle at almost the same period (44).

Compared to other RNA viruses, the activation and

variability of the SARS-CoV-2 3’-5’ exonuclease during viral

genome transcription can lead to changes in non-structural

protein (nsp)14 (45). Even a single point mutation may impact

viral proteins and their physicochemical nature, which could

consequently modify the binding affinity of the virus with host

cells (46, 47). Importantly, the emergence of these amino acid

mutations may result in an antigenic drift that reduces the

neutralization ability of the immune serum from vaccines,

causing a new wave of mutations of the SARS-CoV-2 spike

protein. Despite the fact that the cumulative mutation rates of

the SARS-CoV-2 genome are lower than those of influenza and

HIV-1 viruses, the current advent of a spreading mutant strain

has raised concerns regarding the efficacy of COVID-19

vaccines (48).
FIGURE 1

SARS-CoV-2 structural proteins and genomic organization.
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Vaccine platforms against
SARS-CoV-2

The priority for vaccine development over anti-SARS-CoV-

2 drug development is due to the intention to generate herd

protection (49). With a worldwide effort, sharing of data,

availability of large funding schemes and collaboration with

industry, vaccines quickly became available and rolled out for

emergency use. Both classic and novel platforms have been

utilized (50, 51). Classic platforms used include virus-based

vaccines (dead virus or live-attenuated virus) and protein-

based vaccines; novel platforms include peptide, DNA, mRNA,

viral vector and virus-like particle-based vaccines (52). Except

for live-attenuated viral vaccines, all others require the presence

of an adjuvant to enhance the antigenicity of the antigen (49, 53).

The fact that most of the initial approved vaccines against SARS-

CoV-2 that were rolled out were developed using novel

platforms because these platforms are highly flexible and

require less time for production than traditional methods (49,

54). Despite the novelty of the platforms deployed, the basic goal

remains the same, i.e., the development of a safe and efficacious

vaccine (Figure 4).
Messenger ribonucleic acid-based
vaccines

Messenger ribonucleic acid (mRNA) vaccines contain

strands of desirable “transcripts of interest” inside a lipid
Frontiers in Immunology 04
nanoparticle (55). This coating protects mRNA against

enzymatic degradation and aids entry into antigen-presenting

cells in the lymph node near the site of injection. Once they enter

the cell, mRNA is translated into protein and expressed as

antigenic fragments on the surface to induce humoral

(antibody) and cellular immunity (55–57).

The latest studies and technology breakthroughs (e.g., codon

optimization, nucleotide alteration, and comprehending the

significance of the 5’-untranslated region; UTR) have

permitted mRNA to emerge as a viable therapeutic tool in the

field of vaccine production by mitigating downsides such as

instability and immunogenicity (55, 58). Currently, there are 45

mRNA vaccines in the clinical development phase, and 3 of these

vaccines are approved for emergency use by various countries

(59–61).

The use of mRNA has numerous beneficial features over

other vaccine platforms. First, mRNA is a safe platform. It is

non-infectious, as only part of the antigenic protein is produced.

Because it does not penetrate the nucleus, there is no danger of

insertional mutagenesis. In addition, it is destroyed using regular

cellular activities, and the in vivo half-life may be controlled (58,

62, 63). Furthermore, the inherent antigenicity of mRNAmay be

reduced to alleviate the safety risk (58, 64, 65). The second

distinguishing trait is its great effectiveness. During phase 3

studies, Spikevax (mRNA-1273) and Comirnaty (BNT162b2)

showed effectiveness of 94.1% and 94.6%, respectively (66, 67).

Extracellular RNases have a strong affinity for naked mRNA

(68). As a result, lipid nanoparticles and the creation of modified

nucleosides are required to enable mRNA entry into cells (57, 64,

65). Even though mRNA vaccines induce cellular as well as
FIGURE 2

SARS-CoV-2 mutations and viral variants. (A) Radial graph of emerging SARS-CoV-2 variants from December 2021 to August 2022 (built with
nextstrain/ncov). (B) Frequencies of clades from March 2022 to August 2022 (from nextstrain.org), and (C) classification of SARS-CoV-2 omicron
variant based on a clade tree (created with Biorender.com).
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humoral immunity, multidose administration is required for

effective protection. Importantly, no anti-vector immunity is

generated. The third favorable feature is the scope of rapid, low-

cost, and scalable manufacturing (56, 57, 69, 70). Last, it is easy

to design and develop a new mRNA vaccine from an existing

vaccine. Various antigens comprising the S1 subunit, the N-

terminal region of the S protein and the receptor binding
Frontiers in Immunology 05
domain (RBD) have been used (71, 72). Nevertheless, it

remains to be shown whether these antigen candidates are

appropriate for inclusion in an mRNA vaccine to prevent

COVID-19 in the long term.

mRNA-1273 was shown to stimulate T-helper (Th)-1

immune responses following the first dose, as 0.05% of

circulatory CD4+ T cells were shown to secrete tumor necrosis
TABLE 1 SARS-CoV-2 variants, mutations and their impact.

WHO
variant
name

Sub
variants

Date first
identified/
Country

Spike protein mutations Other mutations Impact Ref.

Alpha B.1.1.7 November 2020/
UK

HV69-70del, Y144del, N501Y, A570D, D614G, P681H,
T716I, S982A, D1118H

D3L, R203K, G204R, S235F • Increased
transmission
• Increase in
incidences of
hospitalisations

(27)

Beta B.1.351 May 2020/South
Africa

L18F, D80A, D215G, 242-244del, R246I, K417N,
E484K, N501Y, D614G, A701V

T205I • Increased
transmission

(28)

Gamma B.1.1.248
(P.1 and
P.2)

Nov-2020/Brazil K417T, E484K, and N501Y D138Y, R190S • Increase affinity to
ACE 2 receptor
• Reduces the
neutralizing activity

(29,
30)

Delta B.1.617.2
(Delta)

October 2020/
India

T19R, G142D, EF156-157del, R158G, L452R, T478K,
D614G, P681R, D950N

D63G, R203M, D377Y • Decreased ability of
immune system to
identify the virus.
• Increase affinity to
ACE 2 receptor

(31)

(Delta
plus)

03 March 2022/
India

K417N, T19R, G142D, EF156-157del, R158G, L452R,
T478K, D614G, P681R, D950N

D63G, R203M, D377Y • It has higher
tolerance to
monoclonal
antibodies compare
to delta variant
• Increase
transmissibility and
higher binding
affinity towards lung
epithelial cells
compare to all other
variants.

(32)

Omicron BA.1 08 November
2021/ Botswana,
South Africa

A67V, HV69-70del, T95I, G142D, VYY143-145del,
N211del, L212I, ins214EPE, G339D, S371L, S373P,

S375F, K417N, N440K, G446S, S477N, T478K, E484A,
Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G,

H655Y, N679K, P681H, N764K, D796Y, N856K,
Q954H, N969K, L981F

nsp3 (K38R, V1069I, D1265,
L1266I, A1892T), nsp4 (T492I),
nsp5 (P132H), nsp6 (D105-107,
A189 V), nsp12 (P323L), and nsp14
(I42V). Nsp3 (Plpro) and nsp5
(3Clpro, main protease)

• Changes in the
shape of protein to
which different class
of antibody binds.
• Compare to other
variants has the
highest transmission

(23,
33–
35)

BA.2 22 October
2021/Philippines

BA.2 shares 32 mutations with BA.1 but has 28 distinct
ones. RBD mutations: 371F, T376A, D405N, and
R408S, and BA.3 has S371F, D405N, and G446S

• All these variants
have higher
transmission and
stronger immune
invasion compare to
BA.1

(36–
38)

BA.3 23 November
2021/northwest
South Africa

N501Y, Q498R, H655Y, N679K, and P681H.
BA.3 shares ten mutations (A67V, H69del, V70del,

T95I, V143del, Y144del, Y145del, N211I, L212del, and
G446S) from BA.1 and two (S371F and D405N)
mutations from BA.2 to form its spike protein.

BA.4 12 May 2022/
South Africa,
Botswana,

Denmark, UK

S:del69/70, S:L452R, S:F486V, S:Q493R reversion

BA.5 25 May 2022/
Portugal

BA.2-like constellation in the spike protein + S:del69/
70, S:L452R, S:F486V, S:Q493R reversion
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factor (TNF)-alpha and/or interleukin (IL)-2 (73). After just one

dose, both mRNA-1273 and BNT162b2 vaccinations generated

levels of anti-RBD antibodies that were comparable to or higher

than those seen in patients receiving convalescent plasma

treatment However, CD8+ T-cell responses were induced only

at modest levels. These findings show that protection following a

single dose will have a very low neutralizing antibody (nAb) titre

to provide sufficient protection against infection (74). Vaccines

from Pfizer, Moderna, and AstraZeneca have all been shown to

activate type I interferon (IFN), which could lead to pathogen-

agnostic immunity (57, 75, 76).

Neutralizing antibody responses following one BNT162b2

immunization, in patients with cancer, was shown to be 67%

which was further increased after the second vaccine dose. Spike

protein-specific serum antibodies and T cells showed similar

patterns in healthy controls, however, the magnitude was lower

in cancer patients. Memory B-cell subsets were also noted to be

potential predictors of anamnestic reactions to further

immunizations in most cancer patients. Following these

findings, a phase 1 trial of a third BNT162b2 injection was

conducted in 20 participants with cancer (NCT04936997); the
Frontiers in Immunology 06
primary outcome was induction of immune responses. In sixteen

subjects, a threefold increase in nAb responses one week

following the third immunization were noted (77). However,

T-cell responses remained unchanged following a third dose. In

addition, sera of BNT162b2-vaccinated medical workers were

found to efficiently neutralize the SARS-CoV-2 variation with

the D614G substitution and the B.1.1.7 variant after the second

dosage; however, the neutralization of the B.1.351 variant was

decreased fivefold (78). Further, human breast milk contains

humoral and cellular immune responses following mRNA

injections. Antibodies to SARS-CoV-2 spike variants may be

neutralized by milk anti-RBD antibodies. Nursed babies are

given anti-RBD antibodies, in order to induce passive

immunity and protection against SARS-CoV-2 (79). A booster

dose with mRNA vaccine demonstrated better protection against

the omicron variant (80). Furthermore, SARS-CoV-2-specific

memory B-cell responses following the first dose of viral vector-

based vaccines (ChAdOx1 nCov-19) may be stimulated by a

booster with the mRNA-1273 vaccine (81). In a group of

hospital workers who were administered two doses of either

mRNA-1273 or BNT162b2 (82), vaccinations showed different
FIGURE 3

Hybrid variants of SARS-CoV-2 (Created with BioRender.com).
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effects on Fc-mediated effector functions and epitope-specific

antibody responses. Depletion of RBD-specific antibodies

emphasized these variations even further. These findings

implied that mRNA-1273 and BNT162b2 induce different

immune responses despite having identical chemical

compositions. The third (booster) dose of BNT162b2 has been

noted to reduce the number of confirmed infections, severity of

sickness, hospitalisations, and death against several VOCs.
Inactivated vaccines

A conventional technique of inactivating the whole

pathogen with physical (thermal stimuli, ultraviolet light) and/

or chemical treatment followed by a purification process is a

proven tool that has been deployed for decades for effective

protection against a wide range of diseases, such as, polio, rabies,

pertussis, influenza (83, 84) Inactivated viruses cannot produce

or replicate and thus, do not produce any pathological

complications but are still capable of producing an

immunogenic response. Inactivated vaccines show little or no

effect on cell-mediated immunity (84, 85). Thus, the effective
Frontiers in Immunology 07
immune response develops only after the second and/or booster

dose. Favorable features of this platform include a high level of

safety, reasonable efficacy, and ease of large-scale production

(86–88). Additionally, logistical challenges are less stringent for

such vaccines. However, inactivated pathogens are always

formulated with the addition of immune potentiators (e.g.,

aluminum preparations) (84, 89). Several precautions in

manufacturing (Bio-Safety Level 3) need to be followed.

Currently, there are 21 inactive vaccines in the clinical

development phase (59–61). CoronaVac and covaxin have

shown 50-81% efficacy in several studies (85, 90). Covaxin has

also been reported to induce nAbs against the alpha variant (90,

91). A prospective observational study among covaxin recipients

was carried out in a tertiary care facility in India between June 28

and September 6, 2021. The study reported at least one adverse

event following immunization (AEFI) in 29.8% of individuals.

There were no severe adverse events reported, and 1.6% suffered

moderate AEFI. The individuals frequently reported myalgia

(59%) and pain at the injection site (14.6%, 9.7%). When

compared with the second dose (26.4%), the incidence of

AEFI after the initial dose was higher (38.1%). Additionally,

the study concluded that female sex, history of an allergic
FIGURE 4

COVID-19 vaccine platforms used. (Some elements are created with BioRender.com).
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reaction, presence of comorbidities, acute infection in the past

three months, and use of chronic drugs were the main risk

factors for AEFI (92).
Live-attenuated vaccines

Live-attenuated vaccines contain a variety of living

pathogens that have been weakened under laboratory

conditions (93). Live-attenuated vaccines are developed by

techniques such as repeated subculturing and codon pair

deoptimisation (94). MMR (mumps, measles, and rubella),

polio, and chickenpox vaccines are some examples that have

been used for decades. The more resemblance to the original

pathogen, the better the immune response generated. Live-

attenuated viruses are capable of replicating themselves within

cells, but their virulence power is reduced (93, 95). Because of the

capability of replication within cells, live-attenuated vaccines

have the ability to generate strong cell-mediated immunity in

addition to humoral immunity, which is desirable in viral

infections (96). Continual antigenic stimuli produced by live

attenuated vaccines are sufficient to induce memory cells. They

are less safe than inactivated vaccines, as the weakened pathogen

can rarely revert to its original wild-type form and can lead to

serious adverse events or disease itself (95, 96). Care during cold

storage and reconstitution (in the case of lyophilised vaccines)

must be taken; otherwise, potential immunization errors can

occur (93). A series of live-attenuated vaccine candidates for

SARS_CoV-1 (known as SARS) and Middle Eastern respiratory

syndrome (MERS, MERS-CoV) were developed and showed

good immunogenic responses (97–102). Despite the huge

potential of live-attenuated vaccines in terms of generating

strong immunogenic responses, only 2 candidates are

currently in clinical trials (59). COVI-VAC is one such example.
Protein subunit vaccines

Protein subunit vaccines contain purified small antigenic

proteins instead of the whole pathogen. These fragments are

usually proteins but can also be polysaccharides (as in the case of

some bacterial vaccines). In order to generate strong immune

responses, polysaccharide fractions are usually conjugated with

proteins. Protein-based vaccines are considered safe and contain

purified fragments that are not capable of producing disease.

However, they are less capable of inducing long-lasting

immunogenic responses. Their limited ability to generate

optimal cellular responses can be enhanced by the addition of

immune potentiators and the use of novel delivery systems (103–

105). Some protein-based vaccines also require booster doses to

produce effective protection against the pathogen. Hepatitis B,

pneumococcal, and pertussis vaccines are some examples of

protein-based vaccines.
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The domains of the S protein (both S1 and S2 subunits) of

the SARS-CoV-2 virus are considered important for hACE2

receptor-mediated endocytosis for entry into human cells (104,

106). Therefore, the administration of purified S protein of

SARS-CoV-2 and its fractional RBD for the development of

nAbs and cellular immunity was thoroughly studied (107).

NVX-CoV2373, SCB-2019, and ZF2001 vaccines are some

examples being developed using this approach (108, 109).

Another potential target, the N protein, is expressed in a stable

and abundant amount during SARS-CoV-2 infection and is

highly immunogenic (110). Coexpression of the recombinant

spike, membrane, and envelope proteins have been explored

(111). There are sixty-nine candidate vaccines, of which thirty-

two are in phase 3 human clinical trials (59–61). One example is

NVX-CoV2373 (known as Novavax; sold under the name of

Nuvaxovid and Covovax), which showed 86.3% efficacy against

alpha variant and 96.4% against other non-alpha variants (112).

In another phase 3 study, NVX-CoV2373 showed some local

effects such as tenderness, pain, fatigue with low medically

attended adverse events and serious adverse events and no

episodes of anaphylaxis. When combined with flu vaccine, the

efficacy of the NVX-CoV2373 vaccine decreased from 89.8 in

NVX-CoV2373 alone group compared to 87.5% efficacy when

combined with flu vaccine (112). The NVX-CoV2373 vaccine,

displayed cross-reactive immune responses against omicron

(B.1.1.529) and other variants following a two-dose primary

regimen. After the third dose, immunological responses were

comparable to or beyond levels associated with protection in

phase 3 clinical trials, with a 9.3-fold increase in IgG and a 19.9-

fold increase in ACE2 inhibition. Immune responses in

adolescents were 2- to 4-fold stronger than those of adults

against a wide range of variants (113).
Viral vector-based vaccines

Vaccines generally use viral antigenic material either

naturally or synthetically to induce an immune response;

however, the process varies with different vaccine platforms

(114). Viral vector-based vaccines, on the other hand, use a

viral vector that encodes the gene for the viral-specific antigen,

and once injected, they use host cell machinery to produce such

viral antigen (114, 115). The vaccine simulates the pathology of

natural infection with some pathogens, specifically viruses, by

contaminating cells and imposing them to produce large

amounts of the antigen, following activation of an immune

response (both T-cell- and B-cell-mediated) (116). To produce

effective vaccines quickly against various infectious diseases, the

adenoviral vector has been favored. As of 2 June 2022, there were

29 viral vector vaccines under development, and 24 were

adenovirus-based vaccines (10 in phase 3, 5 in phase 2, and 9

in phase 1) (117). To date, 6 viral vector vaccines have been

approved under the emergency use authorization pathway in
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different countries and 3 vaccines, Ad26.COV2.S, Vaxzervria,

and Covishield™ (Oxford/AstraZeneca formulation) have been

granted emergency use listing by the WHO.

Efficacy data of all vaccine candidates currently in phase 3

and 4 are reported to be more than satisfactory. However, the

Oxford-AstraZeneca vaccines, sold under the brand names of

Vaxzervria and Covishield™ which uses a modified chimpanzee

adenovirus vector ChAdOx1 were noted to cause rare but life-

threatening thromboembolic adverse events in some patients.

These adverse events involve the generation of an antibodies

which cross react with platelet factor 4, thus initiating a clotting

cascade (118). Presently, the EMA and WHO have clarified that

the risk of developing thromboembolic events is not significantly

higher than that in the general population (119). One should

understand that as of now, the benefits outweigh the risk

associated with the use of such vaccines. Nevertheless, long-

term evaluation studies are required. A single dose of ChAdOx1

vaccine was demonstrated to evoke polyfunctional antibodies

capable of affecting neutralization as well as a variety of

additional antibody-dependent effector mechanisms, all of

which may aid in disease prevention. Antibodies generated by

ChAdOx1 were found to aid phagocytosis and were capable of

antibody-depended complement deposition after only one dose

which were further boosted after the second dose (120).

Furthermore, because of the stimulation of TNF and IFN by

CD4+ T cells in response to antigen stimulation in vitro, this

vaccine produced robust T-cell responses that peaked 14 days

after a single dose. Despite decreased T-cell responses and

greater antibody responses after the second dosage, the

vaccine’s effectiveness following one and two doses is identical,

suggesting that alternative protective mechanisms are active

after one versus two doses. Prolonging the interval between

doses also increased immunogenicity and efficacy (121).

The Janssen vaccine sold under the brand name Jcovden is

produced by Janssen vaccines in Netherlands and Belgium and by its

subsidiary USA company Johnson & Johnson. This vaccine is a viral

vector based human adenovirus vaccine (Ad26.COV2.S) which

contains the spike protein. The vaccine is currently approved for

emergency use in 111 countries, while the global phase 3 clinical trial

is ongoing (NCT04505722 and NCT04614948). In a research study

conducted during the delta variant pandemic in hospitalized

individuals, the vaccine was found to be 81% effective (122). This

cohort study in US clinical practice demonstrated consistent vaccine

efficacy of Ad26.COV2.S for at least six months prior to and

throughout the emergence and dominance of the delta variant.

Similarly, the Sisonke single-arm, open-label, phase 3B study

conducted in South Africa, demonstrated efficiency of a single-dose

of Ad26.COV2.S vaccine against severe COVID-19 illness and

COVID-19-related mortality; as well as against both beta and delta

variants, and provided empirical support for its widespread usage

(123). A single dose of Ad26.COV2.S offered 83% protection against

COVID-19-related deaths, 75% against hospitalisations requiring

critical or intensive care, and 67% protection against COVID-19-
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related hospitalisations (123). The effectiveness was also shown in

older health-care workers and participants with comorbid HIV

infection (123). Similar efficacy was noted against COVID-related

hospitalisations and deaths during the beta and delta waves.

Protection persisted for at least 6 months (NCT04505722). Despite

the efficacy of inducing immunity with only one injection and efficacy

in preventing hospitalisations and deaths, cases of thrombocytopenia

and Guillain Barre syndrome have been reported. In February 2022,

Johnson& Johnson announced that it halted production of

Ad26.COV2.S and would resume at some point in the future.
Virus-like particles

Virus-like particles are adaptable, safe, and are able to stimulate

strong humoral and cellular immune responses. They consist of

repeated viral surface proteins, are small (20-200 nm), do not

replicate and are alternatives to attenuated virus-based vaccines.

The currently approved hepatitis-B and human papillomavirus

vaccines use this technology. The CoVLP+AS03 (brand name

Covifenz) vaccine developed by Medicago in Canada and by

GalxoSmithKline comprises virus-like particles grown in

Nicotiana benthamiana weed. These virus-like particles are made

using a molecular farming technology and as such, it is low-cost,

safe and easy and quick to produce. CoVLP+AS03 adjuvant was

shown to be effective in preventing COVID-19 caused by a

spectrum of variants, with vaccine efficacy ranging from 69.5%

against symptomatic infection to 78.8% against moderate-to-severe

disease (124). In addition, CoVLP vaccine exhibited 100% efficacy

against the alpha variant, 75.3% against delta, and 88.6% against the

gamma variant.
Comparison of vaccinations

“SARS-CoV-2-spike-specific immune responses to Moderna

mRNA-1273 , Pfizer/BioNTech BNT162b2, Janssen

Ad26.COV2. S, and Novavax NVX-CoV2373 were studied

longitudinally for 6 months” by Zeli Zhang and colleagues.

After mRNA or NVX-CoV2373 immunization, 100% of

people developed memory CD4+ T cells, and CD4-CD8 was

overrepresented. Although memory CD8+ T cells were

identifiable in only 60-67% of subjects at 6 months, mRNA

vaccinations and Ad26.COV2. S generated equivalent CD8+ T-

cell frequencies. As per the study, although Ad26.COV2. S T cell,

B cell, and antibody responses were relatively constant over 6

months, it was not the strongest immunogen by any metric. A

high frequency of CXCR3+ memory B cells was a distinguishing

feature of Ad26.COV2 vaccination. Over 6 months, neutralizing

antibodies in mRNA vaccines decreased significantly, whereas

memory T cells and B cells remained rather steady (125).

In healthy adults who received the full dosage of inactivated

vaccine (CoronaVac, also known as Sinovac), the booster effect
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of multiple vaccination platforms, including inactivated vaccine

(BBIBP), viral vector vaccine (AZD122), and mRNA vaccine

(BNT162b2) were assessed. The outcome demonstrated that the

booster dose was safe and had no negative side effects.

Additionally, the immunogenicity demonstrated that the

booster dose of the viral vector and mRNA vaccine resulted in

a significant quantity of Ig anti-RBD, IgG anti-RBD, and IgA

anti-S1 booster responses. In contrast, the booster response for

inactivated vaccination was lower than for other vaccines.

Therefore, against wild-type SARS-CoV-2 and its variants

(B.1.1.7-alpha, B.1.351-beta, and B.1.617.2-delta), the

neutralizing activity of vaccine serum had a strong inhibition

of over 90%. Additionally, IgG anti-nucleocapsid was only

detected in the BBIBP booster group. After receiving the

additional viral vector or mRNA booster vaccine, the study

showed a marked rise in the levels of the IFN-secreting T-cell

response (126). Between January 1 and August 3, 2021, another

retrospective cohort study involving healthcare workers

(HCWs) was carried out in Brazil. A total of 13,813 HCWs

were included in the study: 46.2% of them received the

CoronaVac vaccine, 42.8% received the ChAdOx1 vaccine, and

11.0% were not immunized. In all, COVID-19 infection cases

occurred in 6% of HCWs who were not vaccinated, 3% of HCWs

who received two doses of the CoronaVac vaccine, and 0.7% of

HCWs who received two doses of the ChAdOx1 vaccine. The

estimated vaccination efficacy for ChAdOx1 and CoronaVac

was 88.1 and 51.3%, respectively, in the adjusted analyzes. The

need for mechanical breathing, hospitalisations, and length of

stay were all decreased by both immunizations. For mutations of

interest, SARS-CoV-2 samples from 19 HCWs were evaluated.

Eighteen of the samples contained the gamma SARS-CoV-2

mutation (127).

Considering the current emerging variants of SARS-CoV-2

and the efficacy of the currently available vaccines, it is clear that

one needs variant-specific vaccines rather than repeated booster

dosing with the existing vaccine, as each vaccine under an

emergency use approval license has some degree of adverse

events reported, and none provide complete protection against

the emerging variants. Figure 5 summarizes the immune

responses post vaccination.
Impact of variants on
vaccine efficacy

The twist created by the spread of mutant strains has put a

question mark on the efficacy of the current COVID-19 vaccines,

although some of these vaccine candidates have also proven their

efficacy against some of these mutant strains. The emergence of

postvaccine reinfections with SARS-CoV-2 lineages can have a

substantial influence on public health and the economy. The

possible use of regular vaccination shots at 6 months or 1 year
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for the control of variants cannot be ruled out. As of now, this

disease has been very unpredictable, and it is still too early for

such assumptions. Logistic challenges associated with nucleic

acid-based and vector-based vaccines, especially in poor and

developing countries, are still a concern. The SARS-CoV-2

pandemic has shown many unpredictable outcomes, but the

scientific community is optimistic in the fight against

all challenges.

Researchers are competing against time to build immunity

against this intriguing virus, whose capacity to change and

evolve appears to be exceeding our capability to attain herd

immunity. The long-term COVID-19 pandemic has been

dependent on balance by a dispersal of approved vaccines and

emerging viral variants (22, 128). Due to new variants, the race

to the finish line may be a sprint. The variants are worrisome for

several reasons. First, the VOCs transmit at least 20-50% faster

from person to person. This encourages them to infect more

individuals and spread more quickly and widely, eventually

becoming the prevailing paradigm. Second, there is a concern

that SARS-CoV-2 mutations can result in them being more

contagious, induce more severe sickness, as well as an increase in

hospitalisations and mortality (Table 1) (129). Although vaccine

effectiveness is necessary for vaccine licensure, it may not always

represent the impact of immunization in the actual world,

particularly when clinical trials for vaccines involve primarily

younger, healthy individuals rather than those most at risk of

extreme infection, and these studies took place before some of

the more recently reported SARS-CoV-2 variants were

discovered (130). As a consequence, it is crucial to determine

the degree and duration of defense against infection or illness

across all age groups and populations; in the case of COVID-19,

this is especially critical given the greater risk of severe disease in

older adults (131). The delta variant has the same high resistance

as other omicron sub-variants and no increased sensitivity to

serum acquired during the delta wave (132). Even though the

impact of delta-derived spike mutations in the N-terminal

region on viral proliferation and pathogenicity is unknown,

they do not seem to decrease neutralization resistance.

Recombination of viral variants and the possibility of the

formation of a far more virulent variety with significant

immune evasion is a major issue that must be closely monitored.

The waning of protection has been seen with time since

vaccination, particularly with the delta variant, which is able to

at least to some extent evade natural and vaccine-induced

immunity. However, booster doses provide a rapid and

significant boost in protection against both mild and severe

diseases (34, 133). The epidemiology of viral VOCs along with

the efficacy of EUA vaccines is vital for creating immunization

strategies and the advancement of novel vaccines (Table 2). In

contrast to similar BNT162b2 vaccination, heterologous

BNT162b2 boost following ChAdOx1 nCoV-19 reliably results

in greater neutralizing titres against the alpha, beta and gamma

variants. Surprisingly, homologous BNT162b2 prime boost
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appears to be more effective in producing delta variant-

neutralizing antibodies (150, 151). Furthermore, there is

presently a scarcity of data on the duration of protection

provided by mRNA vaccines. There are currently no effective

vaccination measures or conclusive empirical estimates of

vaccine longevity. Due to decreased nAbs, reinfection with

different variants of SARS-CoV-2 has been observed. The

COVID-19 vaccination booster dosage is critical for the

production of neutralizing immune reactions against omicron,

according to new findings, and improved therapeutic antibodies

are required for this and future versions (152). A recent study

revealed that natural infection significantly increases the

number, quality, and diversity of humoral immunity,

irrespective of whether it happens before or after vaccination

(153). Hybrid immunity, which is the result of prior COVID-19

and a subsequent vaccine, seems to provide the best protection

against SARS-CoV-2 infections; however, there are still

significant information limitations in this area.
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Vaccines: Did they save the world?

There is no doubt that mass vaccinations have

revolutionized global health. The single most innovative

medical outcome was the eradication of smallpox following

worldwide mass vaccinations, and more recently, on 28

August 2020, polio was declared eradicated in Africa following

a mass vaccination campaign that started in 1980. Likewise, a

huge decrease in the number of incidences and mortalities

against measles, mumps, rubella, chickenpox, whooping cough,

tuberculosis, etc., have been recorded in the last few decades with

childhood vaccination programs. Within the first year of

COVID-19 vaccine rollouts, it is estimated to have saved 19.8

million lives, and thus far, over 12 billion doses of COVID-19

vaccines have been administered in most countries around the

world. The aim of the current vaccines was to reduce severe

symptoms, illness, hospitalisations and death (154). Indeed,

COVID-19 vaccines have saved millions of lives thus far, even
FIGURE 5

Immune reaction after vaccination. After intramuscular (IM), intradermal (ID) or subcutaneous (SC) vaccine delivery, dermal dendritic cells (DCs)
take up antigens and migrate to draining lymph nodes to stimulate T cells (CD8+ T cells and CD4+ T cells). Plasma cells secrete antibodies and
memory B cells. CD8+ T cells can be stimulated by Th1 cytokines and in turn acquire the ability to attack the infected cells. However,
imbalanced immune responses have the potential to cause pulmonary immunopathology, partially due to an aberrant Th2 response or
antibody-dependent enhancement (ADE). Created with BioRender.com.
frontiersin.org

https://www.biorender.com
https://doi.org/10.3389/fimmu.2022.961198
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chavda et al. 10.3389/fimmu.2022.961198
though breakthroughs are common. COVID-19 continues to be

a pandemic, with thousands of daily cases and hundreds of daily

deaths, and as the virus continues to circulate, new variants

emerge, some of which are more transmissive and more

dangerous, including some variants that reduce the efficacy of

vaccines (154, 155). Further investments and the development of

new improved vaccines against the variants are required and

should be administered annually, similar to influenza virus

vaccines (155).
Risks associated with fast-track
vaccine evaluation

There is a race to develop a vaccine that is both safe and

effective against COVID-19. With a global effort and

collaboration and funding, one could be in the market within

12–18 months. One fully approved vaccine and 38 emergency

use approved (EUA) vaccines for COVID-19 in the market in

less than two years define the speed of the vaccine development

race. Because of the expedited pace of innovation, global health

researchers are warning that vaccines will be authorized with

insufficient data and analysis. For instance, at least one candidate

did not undergo animal testing. In the meantime, CanSino

Biologics’ exploratory COVID-19 vaccine was authorized for

use in the Chinese military before the completion of phase 3

trials (156). One of the deepest concerns is the possibility that a

fast-tracked vaccine will have unexpected effects. No vaccine is

completely safe, but if a billion people are vaccinated, one in

10,000 major negative incidents will impact 100,000 of those

people. In May 2021, it was demonstrated that four of the 45

participants in Moderna’s phase 1 vaccine trial had medically

significant adverse events (157). In identifying the severity of the

existing public health crisis and the idea of making a vaccine

accessible as quickly as possible, one assumes that a median 2-

month follow-up after completion of the vaccine regimen will

provide the necessary safety and efficacy data to endorse the

allocation of an experimental vaccine under emergency use

authorization (158).

Phase 3 randomized trials that investigate the incidence of

COVID-19 in large groups of immunised and nonimmunised

patients are the actual test of the vaccine’s efficacy. This type of

study will determine whether one, many, or none of the new

COVID-19 vaccines offer effective or limited immunity and

whether their usage is associated with serious side effects. Science-

based initiatives and significant funding have supported the

development of 38 vaccine candidates that will be licensed for

public use and contend head-to-head with each other (159).

The most important consideration is that vaccines against

SARS-CoV-2 need to be dosed multiple times in the world

population in a timely manner, at a level far beyond other types

of vaccinations in history. The global vaccine supply chain has
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played the most crucial role in delivering each vaccine shot to

end users (160). In the last two years, the government and

healthcare organizations worldwide have faced the complex task

of obtaining and distributing supplies to their populations and

administering the vaccine (Figure 6). While a handful of

countries and companies managed to receive approval for

vaccines with the required efficacy, acquiring sufficient doses

for all the countries is just the start. Vaccines must then be

transported securely to multiple locations and preserved at the

right temperature as well as be protected from tampering to

assure product integrity. While all types of vaccines must be

transported in cold conditions, creating secure cold chain

management of the global vaccine chain supply is vital (161).

This global pandemic shows how complex global supply chains

developed to deliver billions of vaccine doses. Global COVID-19

vaccine supply chains facilitated sustained production and

access. Even though obtaining enough vaccines remained

difficult for many countries last year, the worldwide trade of

vaccines was 26% higher during the first six months of 2021

compared with the full 12 months of 2020. The vaccine business

was also supplemented by increasing trade in associated or

intermediate inputs, strengthening their wider manufacturing

and distribution. Even through nationalistic policies from the

United States and European Union, internat ional

interdependence still emerged. This highlights the capacity of

global supply chains to ramp up and boost the distribution and

production of essential vaccines in record time. A global supply

chain is still important in immunizing all parts of the world to

lower the risk of new variants emerging.
Ethical issues

Ethical considerations to develop a vaccine and be tested in

humans must be met, and approvals must be in place. There are

standard procedures regarding clinical trials and testing of

vaccines in humans (Figure 7). From preclinical in vitro and

in vivo studies to larger animal immunological and toxicology

studies to human phase 1, 2, 4 clinical trials, strict ethical

guidelines and procedures must be met, and the obligation of

reporting human clinical outcomes follows a clear path (164).

However, several other ethical issues regarding vaccination

against SARS-CoV-2 attracted much controversy at every stage

of its development and use. Vaccines were developed in record

time and as such raised many issues with the population, and it

was difficult to persuade some reluctant populations to receive

the vaccine. In addition, government mandates were an issue

with some that raised much debate regarding their moral rights

vs a duty. However, the ethical debate was not only to those who

refused to be vaccinated but also to those who rushed or jumped

queues to be first. Several ethical issues have had to be overcome

regarding which population group should be the first to receive

the vaccine and what could be done with those who were
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TABLE 2 Coronavirus variants and effectiveness of the current vaccines.

Vaccine
candidate

% Efficacy
reported
during
Phase 3
trial

Specific Comments regarding
effectiveness

Effectiveness against variants Reference

Alpha Beta Gamma Delta Epsilon Omicron

Comirnaty
(BNT162b2)

94.6% • This vaccine’s efficacy against the Delta
infection peaked at 68% (95%CI: 64-71%)

and 62% (95%CI: 57-66%).
• After taking one dosage, neither age
group is protected against Omicron

infection.
• The vaccine proved efficient against
virus strains; however, vaccine potency

against severe and mild infection after two
doses is less for the Omicron variant than

for the Delta variant, and fading is
quicker.

Yes,
95%
(CI):

1.2–2.1)

Yes, (95%
CI: 6.4–
14.4)

Yes, (95%
CI: 1.6–3)

Yes, at 68%
(95%CI: 64-
71%) and

62% (95%CI:
57-66%).

Yes No, one
dosage,

neither age
group is
protected

(134–138)

Spikevax
(m-RNA-
1273)

94.1% • One dosage of mRNA-1273 had lesser
protection against all variants than several

doses, with protection against mu at
45.8% (0.0% to 88.9%) and alpha at 90.1%

(82.9% to 94.2%).
• Vaccine efficiency against delta variant
infection was best for 14-60 days (94.1%
(90.5% to 96.3%)) and fell substantially,

with vaccine effectiveness of 80.0% (70.2%
to 86.6%) at 151-180 days and with

nondelta variants similarly declined for
delta (from 98.6% (97.3% to 99.3%) at 14-
60 days to 88.7% (73.2% to 95.2%) at 121-

150 days).
• At 14–60 days, vaccine efficacy against
unknown variants was 83.6% (79.5%–

86.9%), and it decreased to 68.5% (51.3%–

79.6%) at 151–180 days.

Yes,
90.1%
(82.9%
to

94.2%)

Yes, leaser
effective

Yes, lesser
effective

Yes, 14-60
days (94.1%
(90.5% to
96.3%)

80.0% (70.2%
to 86.6%) at
151-180 days
88.7% (73.2%
to 95.2%) at
121-150
days).

No No (139, 140)

Vaxzevria and
Covishield

– • Vaxzevria was efficient but because data
was only provided after a single dosage
rather than the recommended two dose
schedule where potency is boosted.

• The vaccine was 50% protective against
the Beta/Gamma mutations and 70% and
72% effective against the Delta and Alpha

variants, respectively.

Yes,
72%

Yes, 50% Yes, 50% Yes, 70% No No (141, 142)

Sputnik V 91% • The studies show that Sputnik V
counteracts the Omicron variant by

producing a strong antibody response.
• Among the top quartile of those with

strong RBD-specific IgG antibodies, 100%
of those vaccinated with Sputnik V were
able to neutralize the Omicron variant,
compared to 83.3% of those immunised

with Pfizer.
• Comparatively, 56.9% of those who
received the Pfizer vaccine were able to

neutralize Omicron, compared to 74.2% of
those who received the Sputnik V vaccine.

Yes,
85.7%
(95%
CI

84.3–
86.9%)
and
97.5%
(95%
CI

95.6–
98.6%

Yes, 80% No Yes,
Effectiveness:
87.6% (60–
79-year-old),
75.28%(up to
60 year),

Yes Yes,
neutralize
with strong

RBD
-specific
IgG

antibodies,
83.3% more
efficacy

than Pfizer,

(143)

Sputnik light 79.4% • Using Sputnik Light as a booster
enhances the virus’s ability to neutralize

the Omicron variant.
• It has a 70% success rate against the

Delta variant.

Yes, less
effective

No Yes, 70% Yes,
effectiveness:
88.61%, (18-
29-year-old
group),
88.61%
(88.61%)

No Yes,
Neutralize
variants

(144, 145)

(Continued)
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reluctant. In addition, there were issues regarding which

countries and groups should benefit before others. As such,

some countries, i.e., the US, Europe and Australia mandated the

vaccine to reach over an 80-90% vaccination rate, while leaving

out other nations generally low-income nations. Vaccine

passports also raised issues to an unequally vaccinated world,

where those who were vaccinated were able to go to work, go to

shops and restaurants, engage in leisure activities and travel

(165). Overall, the inadequate immunization coverage, even

though the vaccines were shown to be safe and effective, at

least in the time frame tested, the uncontrolled number of

COVID-19 cases and hospitalisations, and the rapid upsurge

of more new variants tipped the scales towards some form of

mandatory vaccination policy (39, 166). Voluntary vaccination

compared to compulsory vaccination policies is at the center of

debate in the last 2 years.
Future outlook

COVID-19 shows that rising infectious diseases present a

substantial and growing danger to global health, the human and

economic costs are vast, and many other viruses could result in
Frontiers in Immunology 14
another pandemic. To minimize pathogenicity in humans, entire

pathogens were initially utilized as vaccine agents, either

inactivated or attenuated. Various mRNA- and DNA-based

vaccines were authorized for the first time in human history.

The development of vaccine formulations against COVID-19

within record time in this pandemic by following the same

protocols for previously emerging SARS-CoV and MERS-CoV

and as an emergency vaccination discovery approach to skip

over some preliminary preclinical steps of vaccine development

has allowed for the creation of the life-saving shots for the eight

billion global population in two years. Unexpected correlations

between parameters were discovered during the deconvolution

of patient features inside groups. By combining large datasets

using uniform manifold approximation and projection-assisted

clustering, patient groupings containing precise estimates may

be identified, as well as unanticipated relationships among

clinical factors. This use of machine learning to delineate

illness pathophysiology and possible treatment strategies is a

strong strategy (167).

Vaccine effectiveness, in contrast to vaccine efficacy, refers to

the reduced risk of illness or sickness among vaccinated people.

According to Zhang and colleagues (125), “head-to-head

comparisons of T cell, B cell, and antibody responses to
TABLE 2 Continued

Vaccine
candidate

% Efficacy
reported
during
Phase 3
trial

Specific Comments regarding
effectiveness

Effectiveness against variants Reference

Alpha Beta Gamma Delta Epsilon Omicron

COVID-19
Vaccine
Janssen (JNJ-
78436735;
Ad26.COV2.S)

85% • This vaccine was proven to be effective
in clinical trials against multiple variants,

especially B1.351 and P.2.
• Data on how well this vaccine works
against the Omicron version are yet

lacking.

No Yes, more
effective

Yes, more
effective

No No Yes, lesser
efficacy

(134–136,
146)

CoronaVac 51% against
symptomatic

cases
100% against
hospitalized
patients

• The estimated efficiency of Sinovac-
CoronaVac among health professionals in

Manaus, Brazil, was determined in a
survey study, although there is currently

inadequate data for Omicron.

Yes,
53–66%

No Yes, 51%
to 84%

Yes, 91%-
93%

No No (147)

BBIBP-CorV 78.1%
against

symptomatic
cases

100% against
severe cases

• The efficacy of the BBIBP-CorV vaccine
in severe cases was 80%, 92%, and 97%
against hospitalisation, critical care
admission, and death, respectively.

No Yes,
neutralizing
antibody
responses

No Yes,
neutralizing
antibody
responses

No No (148)

Covaxin
(BBV152)

77.8% • The effectiveness of the vaccine against
all variant-related COVID-19 diseases was

71%, with efficacy against Kappa and
Delta being 90% and 65%, respectively.
• If additional VOCs emerge that impact
vaccination performance, these guidelines

will be revised.
• There is currently no information

available for Omicron.

Yes,
71%

Yes, 71% Yes, 71% Yes, 65% Yes, 71% No (22, 149)
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FIGURE 6

Reasons for fast-track vaccines for COVID-19.
FIGURE 7

Ethical considerations for vaccine research for COVID-19 (162, 163).
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diverse vaccines in humans are likely to be informative for

understanding protective immunity against COVID-19, with

particular interest in immune memory. Here, SARS-CoV-2-

spike-specific immune responses to Moderna mRNA-1273,

Pfizer/BioNTech BNT162b2, Janssen Ad26.COV2. S, and

Novavax NVX-CoV2373 were examined longitudinally for 6

months. One hundred percent of individuals made memory

CD4+ T cells, with SARS-CoV-2 spike-specific circulating

follicular helper T cells (cTfhs) and CD4-CTLs highly

represented after mRNA or NVX-CoV2373 vaccination.

mRNA vaccines and Ad26.COV2. S induced comparable

CD8+ T-cell frequencies, although only detectable in 60-67%

of subjects at 6 months. A differentiating feature of Ad26.COV2.

S immunization resulted in a high frequency of CXCR3+

memory B cells. mRNA vaccines had substantial declines in

antibodies, while memory T and B cells were comparatively

stable. These results may also be relevant for insights against

other pathogens.” The vaccine’s population-dependent effects,

along with immunization schedules and vaccine processing, can

have an impact on this. Various large-scale research studies have

established why it is essential to have vaccinations, as they offer a

considerably greater level of protection against COVID-19,

including against new variants of concern, whether you have

been previously infected or not. However, the analysis also

evidently reveals that this protection from just two primary

doses vanishes significantly within months, which is why the

rollout of booster shots has been effective to avoid infection and

illness, particularly against new COVID-19 variants.

Socioeconomic COVID-19 risks of the pandemic and

sociomedical safety measures as a means of flattening the

pandemic curve and preserving vaccine supplies as well as

integrated vaccination therapeutic tactics to tackle the

COVID-19 pandemic. Spike amino acid replacements and

subtractions that affect neutralizing antibodies are common in

the worldwide virus demography, and research suggests that the

variants exhibit resistance to antibody-mediated immunity

induced by vaccines. Attempts are ongoing to stop the spread

of the virus from the local site by IgA-mediated protection with

the help of intranasal route of administration and DC-based

vaccines (168–170).
Conclusion

In the middle of the high death rate and the alarming fall of

the global healthcare system in the initial two years of the

COVID-19 pandemic, SARS-CoV-2 vaccines were approved

for the first time based on novel vaccine technologies (either

RNA or DNA). Fast-track vaccine approval by regulators,

manufacturing of vaccines at a large scale, and the effective

distribution of COVID-19 vaccines have played a significant role

in distributing vaccine shots that provide robust protection
Frontiers in Immunology 16
against infectious SARS-CoV-2 and its evolving variants.

Fortunately, even for those who become infected, vaccination

protects against major disease, hospitalisation, and fatality from

COVID-19. The key vaccine development processes and

vaccination programs are still ongoing because of the

devastating effects of the pandemic. Even the most industrially

developed and economically prosperous nations can succumb to

the pandemic. Therefore, new manufacturing facilities, steadfast

cold-chain supply chain networks, and continuous research

should be in place to streamline development and maintain

the safety and efficacy of future vaccines. Unparalleled as the

COVID-19 pandemic might have been, more variants of SARS-

CoV-2 will enter the circulation, and other zoonotic diseases will

occur. Overall, the fast-track rollout of vaccines has become the

“New Normal.”
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