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Abstract: Tarbela is the largest earth-filled dam in Pakistan, used for both irrigation and power
production. Tarbela has already lost around 41.2% of its water storage capacity through 2019, and
WAPDA predicts that it will continue to lose storage capacity. If this issue is ignored for an extended
period of time, which is not far away, a huge disaster will occur. Sedimentation is one of the significant
elements that impact the Tarbela reservoir’s storage capacity. Therefore, it is crucial to accurately
predict the sedimentation inside the Tarbela reservoir. In this paper, an Artificial Neural Network
(ANN) architecture and multivariate regression technique are proposed to validate and predict the
amount of sediment deposition inside the Tarbela reservoir. Four input parameters on yearly basis
including rainfall (Ra), water inflow (Iw), minimum water reservoir level (Lr), and storage capacity of
the reservoir (Cr) are used to evaluate the proposed machine learning models. Multivariate regression
analysis is performed to undertake a parametric study for various combinations of influencing
parameters. It was concluded that the proposed neural network model estimated the amount of
sediment deposited inside the Tarbela reservoir more accurately as compared to the multivariate
regression model because the maximum error in the case of the proposed neural network model
was observed to be 4.01% whereas in the case of the multivariate regression model was observed
to be 60.7%. Then, the validated neural network model was used for the prediction of the amount
of sediment deposition inside the Tarbela reservoir for the next 20 years based on the time series
univariate forecasting model ETS forecasted values of Ra, Iw, Lr, and Cr. It was also observed that the
storage capacity of the Tarbela reservoir is the most influencing parameter in predicting the amount
of sediment.

Keywords: Tarbela reservoir; sedimentation; artificial neural network; forecasting; multivariate regression

1. Introduction

Reservoir sedimentation is a primary concern in all reservoirs across the world. It is
one of the major drawbacks associated with storage reservoirs. The capacity of reservoirs
worldwide is decreased by 0.5–1% annually due to reservoir sedimentation [1]. The
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life of a reservoir is usually calculated at the point when it loses its storage capacity
by approximately 80 percent to the sediments [2]. Apart from impacting the reservoir’s
life, sedimentation also has environmental effects on the lands downstream of the reservoir.
Moreover, increasing sediment concentration impacts the life of structures downstream
of the reservoir like tunnels, turbines for hydropower generation, etc. Pakistan uses the
250 km2 catchment area of Tarbela Dam, one of the largest earth-filled dams in the world, for
irrigation and power generation. It is situated on the Indus River and is 96.6 km long [2,3].
Its initial storage capacity has dropped by 41.2%, according to the annual sedimentation
report of the Water and Power Development Authority (WAPDA) of Pakistan [4]. Since it
was first commissioned, several sedimentation estimation studies have been performed by
consultants using sediment rating curves (SRC) [5].

Reservoirs are usually filled by the water coming in rivers from snowmelt and rainfall
through the watershed. Rivers come through hilly areas and thus carry a huge amount of
sediment in the form of sand, silt, and clay usually with them. Some of these sediments
can be absorbed by the vegetation, in those hilly areas. The sediment that is not absorbed,
travels along the river over long distances. Water needs a particular velocity to carry the
sediments along with it. When water enters the reservoir, its speed decreases. Hence, its
sediment carrying capacity reduces. Thus, it deposits a large amount of sediment there, but
its deposition is not uniform. Heavier particles deposit in the upper reaches of the reservoir
(away from the reservoir) while the lighter particles deposit in the lower reaches of the
reservoir (near the reservoir), thus forming a sloped shape known as “Delta”. The reservoir
water level changes in the whole year from high head conditions when the reservoir is
filled to low head conditions when the reservoir level is decreasing. Every year when
the reservoir level reduces, water above this delta erodes the sediment there and carries
some quantity. It also deposits some of it near the reservoir, causing the delta to advance
towards the tunnel inlets while entraining some of the particles in flow and carrying the
remaining particles. Due to their high velocity, these particles cause the walls of the tunnel
and other mechanical structures like Turbines to erode. With the advancement of the delta,
the concentration of sediment in the outflow increases, which can shorten the life of tunnels
and turbines. Also, the storage capacity reduces every year due to the advancement of the
delta [6].

The sediment load is estimated to be 200 million tons per year, according to Roca [7].
These calculations overestimated the Tarbela reservoir’s predicted lifespan, which had
been previously estimated at 30 years. Sedimentation is influenced by the reservoir’s
storage capacity, operational level, and annual rainfall, further complicating the relationship.
Pakistan is an agricultural country and relies on water storage reservoirs for irrigation
and a major part of power production (approximately 24% of total power). Tarbela is
the largest earth-filled dam in Pakistan used for both power generation and irrigation
purposes. Tarbela is losing its water storage capacity like any other water storage reservoir
due to sedimentation. When it is difficult to construct new water storage reservoirs in
Pakistan due to the financial situation, it becomes very essential to keep all the existing
storage reservoirs in optimal operational condition, and for that, the accurate prediction of
sedimentation is necessary [7].

2. Literature Review

Abrahat and White [8] conducted experiments to determine whether a back-propagation
artificial neural network could develop a composite model of sediment transfer under
various farming and land management conservation regimes. It was found that a neural
network solution can overcome the constraints of conventional models. In order to forecast
and estimate sediment concentration values, Cigizoglu [9,10] employed artificial neural
networks. They discovered that the forecasted values were quite similar to the actual ones.
Hydrodynamic and ANN models were combined by Dibike et al. [11]. Navigation depth,
water level, flow velocity, flow direction, and flow rate were all predicted using the trained
ANN model, which had been trained using data samples from the hydrodynamic model.
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The relationship between the Three Gorges Reservoir’s (TGR) effectiveness at flushing
out sediment and its affecting variables, including inflow of water, inflow of sediment,
sediment discharge, and water head, was examined by Li et al. [12]. Tarar et al. [13]
used wavelet artificial neural networks and SRC to model sediment transport in Tarbela
Reservoir to determine the boundary conditions for the sediment load in a one-dimensional
Hydrologic Engineering Center River Analysis System. Rashid et al. [14] discovered that
the reservoir storage depletion can be decreased after using the above-mentioned model
to assess the impact of various management research works on the Tarbela reservoir’s
lifespan. The effect of reservoir operation on sediment deposition was also examined by
Petkovsek and Roca [15], who discovered that delta movement may be halted by increasing
the minimum reservoir level. The Tarbela reservoir’s storage losses due to sedimentation
were incorporated into a new model created by Khan and Tingsanchali [16]. Arfan et al. [17]
found that the mean, maximum, and minimum flows on an annual basis at the Tarbela Dam
on the Indus River fell deeply from 1986 to 2010 compared to 1961 to 1985. In the Upper
Indus Basin, Ul Hussan et al. [18] looked at trends in suspended sediment concentrations
and water discharge. For the purpose of predicting rainfall-runoff, Chiang et al. [19] have
presented a systematic comparison of two fundamental types of neural networks, static
and dynamic. For the static network, the real-time recurrent learning (RTRL) technique
was utilized, and for the dynamic-feedback network, two back-propagation (BP) learning
optimization strategies, the conventional BP and conjugate gradient (CG) approaches,
were used. By employing the Monte Carlo simulations using data exhibiting defined
mathematical correlations, it has been possible to compare the various approaches in a
more acceptable way [20,21].

The recent decades in the north of the East European Plain have been characterized by
Gusarov et al. [22] with notable shifts in climate and land cover in the Vyatka River basin.
Török et al. [23] used the most popular empirical model’s application range. However, it
was frequently constrained by hydraulic and sedimentological characteristics, making it
difficult to apply a numerical model to complex situations. Rodríguez-Blanco et al. [24] have
used the Soil and Water Assessment Tool (SWAT) model to evaluate the short-term and long-
term consequences of expected changes in temperature, rainfall, and CO2 concentration on
sediment yield in a small rural catchment located in NW Spain. The river basin has been
explored along with the key findings of the hydrological analysis. For the analysis of the
flood event using the suggested methodology, the photographic sampling technique and
assessment of the sediment size distribution have been presented by Di Francesco et al. [25].
Xiao et al. [26] used the location-weighted landscape contrast index (LCI), which is based
on the “source-sink” hypothesis, with this, it has been possible to determine how the
sediment yield in the Poyang Lake drainage basin responds to changes in plant cover. The
diurnal change of the suspended sediment content in the East China Sea, with an emphasis
on Hangzhou Bay, has been studied by Yang et al. [27] using a coupled hydrodynamic-
ecological model for regional and shelf seas (COHERENS).

In the Shiwen River in southern Taiwan, Tfwala et al. [28] investigated how artificial
neural networks (ANNs) might improve the accuracy of stream flow-suspended discharge
relationships during storm occurrences. Guerrero et al. [29] have taken care of the practical
necessity to assess the viability of various acoustic approaches in various sections of the
Parana River in Argentina and a river segment of the Danube River in Hungary. Data
from the observed stream flow, sediment concentration, and rain gauge readings during
rainfall events in the Goodwin Creek Experimental Watershed in Mississippi, USA, were
used by Yin et al. [30]. Nabi et al. [31] explained the primary hydrological and sediment
transport-related processes using SWAT watershed modeling to evaluate the efficacy of soil
and water conservation buildings to prevent soil erosion. The physically-based EROSION-
3D model (Jürgen Schmidt, Berlin, Germany) and sediments confined in a small reservoir
was contrasted by Németová et al. [32]. Through six years of high-resolution weekly
monitoring on an Appalachian hill slope, with a focus on the seasonal impact, the impact
of precipitation parameters on soil erosion has been studied by Luffman et al. [33]. In the
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presence of a time-dependent sedimentation/erosion process, a second-order semi-implicit
numerical technique based on the approach has been developed by Tavelli et al. [34]. The
total sediment transport rate formula of Yang’s arithmetic coefficients has been transformed
into fuzzy numbers by Kaffas et al. [35], resulting in a fuzzy relationship that has produced
a fuzzy band of in-stream sediment concentration. Xin et al. [36] observed simulated
rainfall experiments to observe the infiltration processes of black soil slopes under bare
and residue-covered situations. A study of the impact of ponds in limnologically rich
basins on soil erosion and sediment transport has been reported by Al Sayah et al. [37].
The construction of a debris-blocking dam has been studied by Wang et al. [38] under
various downstream riverbed slope conditions. Typhoons and torrential rains have caused
major landslides and debris flows in the Chenyulan watershed. The TUSLE and landslide
volume estimation were incorporated by Lu et al. [39] into the SWAT model as SWAT-
Twn. Song et al. [40] developed a method to evaluate conduit flow. The technology could
easily calculate complex features and estimate a conduit’s discharge capacity. According
to Aksoy et al. [41], as the number of dams in a watershed increases, a large portion of
the sediment fluxes are retained in the reservoirs and do not reach the sea in the same
quantity or quality, having an impact on the coastal geomorphodynamics. Hauer [42]
demonstrated many possibilities for integrating better process knowledge into tactical or
numerical tools for reservoir operations. The results of the study enabled a substantive
discussion about if and how hydrological thresholds may be included in management
practice for strategic management. In a laboratory microcosm experiment, Patil et al. [43]
investigated the effectiveness of Bacillus subtilis zeolite (BZ) as a capping material to
limit sediment contaminants. Reisenbüchler et al. [44] demonstrated that, under specific
circumstances, sediment might be more successfully re-mobilized and conveyed through
the HPP by testing various reservoir operation modes. According to Sotiri et al. [45], the
sediment yield model is primarily responsible for the most significant causes that lead to
inconsistencies in the Passana sediment budget case. Jothiprakash and Garg proposed the
typical neural network architecture for the predicted value of sediments accumulated inside
the Gobindsagar reservoir [46]. In the Changjiang River estuary and nearby coastal waters,
Chen et al. [47] discussed temporal fluctuations of fine suspended sediment concentration.
Effects of intermittent heavy rainstorm events on suspended sediments were addressed by
Wang et al. [48]. Tenget et al. [49] discovered Taiwan’s exposure to flood disasters over the
previous 25 years. The significance of tiny mountainous rivers for geomorphic/tectonic
control of sediment discharge to the ocean was examined by Milliman et al. [50]. In
order to estimate suspended sediment concentrations for upcoming flux calculations,
Horowitz [51] has conducted a number of evaluations of the sediment rating-curve method
for the estimation of suspended sediment fluxes using data from long-term, daily sediment-
measuring sites in large, medium, and small river basins in the USA and Europe. Using
probability sampling, Thomas et al. [52] calculated total suspended sediment yield. In a
typhoon-prone location, Wang et al. [53] used a time-lagged recurrent network to estimate
episodic event suspended sediment burden. For modeling the rainfall runoff caused
by a typhoon, Chen et al. [54] adopted an artificial neural network approach. For the
prediction of missing flow records, Tfwala et al. [55] used a multilayer perceptron and
a coactive neuro-fuzzy inference system. Melesse et al. [56] found suspended sediment
load prediction of river systems using an artificial neural network approach. For modeling
evapotranspiration, Kisi et al. [57] built generalized regression neural networks. Based
on climate information, Wang et al. [58] computed and modeled agricultural yields in
Burkina Faso. Support vector machines were utilized by Lin et al. [59] to forecast long-term
discharge. An artificial neural network’s structure optimization and input selection were
carried out by Leahy et al. [60] to predict river level.

Recurrent neural networks with hessian-free optimization were created by Martens
and Sutskever [61] for the estimation of sediment deposition. Using neural differential
evolution (NDE), multi-layer perceptron (MLP), and radial basis function (RBF) models,
Feyzolahpour et al. [62] evaluated the concentration of suspended sedimentation. To
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perform training and prediction on the monthly suspended sediment concentration data
from Huayuankou hydrological station from 1960 to 2014, Zhang and Yang [63] constructed
a coupling model based on CEEMDAN-GRU. The findings showed that the Huayuankou
hydrographic station’s monthly suspended sediment content was declining year over year,
and the period and trend were compatible with the measured data. Froehlich and Giri [64]
have developed a neural network model to calculate the expected amount of capacity loss
using data on storage loss caused by siltation in 220 reservoirs in India. The predictions
are based on the catchment area, reservoir surface area, initial storage volume, time since
the escheatment was first filled, and a stream flow indicator. The model offers a close
fit to the data and allows for an easy calculation of reservoir half-life, which provides a
measure of when sedimentation has a significant impact on a reservoir’s functioning. The
multiple linear regression (MLRg), Multilayer perceptrons (Levenberg-Marquardt (LM),
Scaled Conjugate Descent (SCG), and Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton
(BFGS)), and Radial Basis Function (RBF) have been used by Uca et al. [65] to predict daily
suspended sediment discharge in the Jenderam catchments of Selangor, Malaysia. Based on
the accuracy with which MLRg, LM, SCG, BFGS, and RBF model the non-linear complex
behavior of suspended sediment responses to rainfall, water depth, and discharge in small
catchment areas, a suitable ANN model architecture was developed by Nourani [66], and
the performance of ANN’s application to problems involving the estimation of sediment
load from runoff was compared to two conventional methods. When compared to the other
methods, an ANN model with three neurons in the input layer, representing the quantity of
discharge on the current day, one day, and two days before the date of observed suspended
sediment load data, and six neurons in the hidden layer, produced the most promising
results. It was suggested that using a wide range of well-established data may increase the
accuracy of the ANN results. Sokchhay and Tadashi [67] simulated the monthly average
suspended sediment load (SSLm) of four catchments using an artificial neural network
(ANN), and assessed the application of the calibrated ANN (Cal-ANN) models in three
ungauged catchment representatives before using them to predict SSLm of three actual
ungauged catchments (AUC) in the Tonle Sap River Basin; they also estimated annual SSL
(SSLA) of each AUC with and without dam-reservoirs. Qian et al. [68], hybrid ML models
have a long training time, especially when dealing with complex problems. In comparison
to standalone ML models, hybrid ML models require far more input parameters to be
considered during training. This frequently limits the development and application of
hybrid machine learning models. Furthermore, complex architecture and an unknown
optimal number of clusters have been identified by Fallah et al. [69] as drawbacks of using
hybrid ML models. The convolutional neural network is a type of ML algorithm that
has received little attention in the context of SSL prediction (CNN). The CNN has shown
a lot of promise in other fields. In Carlisle, United Kingdom, Kabir et al. [70] created a
CNN to predict flood depths. This study’s CNN model was trained using outputs from a
two-dimensional (2D) hydraulic model. The performance of the CNN model was compared
to that of a support vector regression (SVR) model. Haurum et al. [71], investigated the
use of CNN in estimating water levels in sewer pipes in Denmark. Models based on the
decision tree algorithm were also trained and tested for performance comparison with
the CNN model. In this study, the estimation problem is treated as a classification and
regression problem. In the context of estimating water levels, this study demonstrates that
CNN models outperform decision tree models. Ni and Ma [72] investigated the feasibility
of using a CNN-based model to predict power generation from a marine wave energy
converter (WEC) system using a double buoy oscillating device (OBD). The CNN was
trained and tested using a multi-input approach. According to the study, the proposed
CNN model outperforms the ANN and regression models in the prediction of marine wave
power generation.

Samantaray and Sahoo [73] assessed the sediment load at two gauging stations in the
Indian River basin of the Mahanadi. Here, a novel Support Vector Machine with Whale
optimization algorithm has been used to forecast suspended sediment concentration for
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the proposed study area and has been compared with a traditional Radial Basis Function
Network (RBFN), Support Vector Machine, and Support Vector Machine-Particle Swarm
Optimization (SVM-PSO) model. For the prediction of suspended sediments in the Johor
River in Malaysia, Nouar et al. [74] developed an LSTM model. Daily sediment and
discharge data were used to train the prediction model. The model was trained and
verified on 80% of the data, and on the remaining 20%, it was tested. The prediction of
suspended sediment was examined using four alternative models, including ElasticNet
Linear Regression, MLP neural network, Extreme Gradient Boosting, and Long Short-Term
Memory. The standalone machine learning approaches can accurately predict the amount
of sediment in the reservoirs compared to conventional multiple regression approaches.
However, despite being able to forecast the amount of sediment, standalone machine
learning approaches have a number of drawbacks that should be highlighted. In general,
it is clear that hybrid ML models have been developed to be more accurate and reliable
than independent ML models. However, in the present study, standalone machine learning
approaches have been implemented to predict the amount of sediment.

According to WAPDA, Tarbela has already lost approximately 41.2% of its water
storage capacity by 2019 and is continuously losing its storage capacity [3]. If this situation
is ignored for a long time, it will cause a serious crisis and that time is not very far.
Sedimentation is one of the important factors impacting the storage capacity of the Tarbela
reservoir. Therefore, it is a dire need to accurately predict the sedimentation inside the
Tarbela reservoir, which has not been done prior to this work. Till now, sedimentation inside
the Tarbela was estimated using linear techniques known as sediment rating curves, which
are the linear relationship between sedimentation and water discharge. However, with time,
it has been proven that these predictions were not accurate. Therefore, a need to find better
techniques to predict sedimentation inside the Tarbela reservoir is evident. Artificial Neural
Networks (ANN) have proven very useful for modeling complex phenomena without
modeling the underlying physics. So, ANN will be useful for accurately predicting the
sediments deposited inside the Tarbela reservoir.

Based on the previous studies, it is found that the accurate predictions of sedimentation
inside the Tarbela reservoir using ANN have not been done prior to this work. The ultimate
objectives of this study are:

1. To find the amount of sediment deposited inside the Tarbela reservoir using the
proposed artificial neural network model and the multivariate regression model con-
sidering four yearly influencing factors: Ra, Iw, Lr, and Cr.

2. To make future predictions of the sedimentation volume inside the Tarbela reservoir us-
ing trained ANN based on the time series univariate forecasting model ETS forecasted
values of Ra, Iw, Lr, and Cr.

The results for the Tarbela reservoir were compared with the multivariate regression
model’s results, which were obtained using the same inputs, and the actual amount of sedi-
ment deposited quoted by WAPDA. In comparison to the regression model, it was found
that the proposed neural network model can predict the sediments deposited inside the
Tarbela reservoir more accurately. The collection of data for sedimentation retained inside
both the reservoirs considered in this study, the model developed, model validation, and
the prediction of the amount of sediment are discussed in detail in the subsequent sections.

3. Materials and Methods

The Tarbela reservoir’s annual deposit of sediments was validated using the proposed
ANN model. To estimate the amount of sediment deposited, a multivariate regression
model was first used in conjunction with various combinations of the yearly basis values
input parameters including rainfall, water inflow, reservoir storage capacity, and the
minimum water level inside the reservoir. The results obtained by multivariate regression
and neural network model were compared with the actual amount of sediment quoted by
WAPDA. The effect of various combinations of influencing parameters in the prediction
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of the sediments deposited was studied. The flow of the validation and prediction of the
amount of sediment inside the Tarbela reservoir is given in Figure 1 below.
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3.1. Study Areas and Data Collection

The Indus River is one of the world’s greatest rivers, which carries sediments, and
supplies the majority of the water that fills Tarbela. The Right Bank tributary of Siran
feeds the Indus River upstream of Tarbela, draining an area with a monsoon effect of
approximately 6411 kilometers and accounting for only about 6% of the total catchment
area. This means that semi-arid to hyper-arid environments make up 94% of the catchment
area. At Tarbela, the Indus River drains a catchment area of ~169,644 square kilometers
mostly comprising highly denuded barren and glaciated landscapes [4].

The velocity of this water decreases when it enters the Tarbela reservoir, thus reducing
its sediment-carrying capacity. So, sediment is deposited there. The sediment coming into
Tarbela comprises sand, sediments, and clay. It has been observed that coarse sediments,
that is, larger particles, tend to deposit in the upper reaches of the reservoir because they
require more velocity of water to be carried with it while fine particles travel toward the
dam. So, a slopped shape “delta” is formed in the reservoir. This delta changes its location
and expands toward the tunnel intakes as the reservoir is operated over a period of time.
Since the reservoir is operated at different water levels for the whole year. The water level
varies from high head conditions, that is, July, August, and September when the reservoir
is filled, to low head conditions, that is, December, January, February, and March when the
reservoir level is decreasing. Every year when the reservoir level reduces, water above this
delta erodes the sediment there and carries some quantity along with it. It also deposits
some of it near the reservoir, causing the delta to advance toward the tunnel inlets while
entraining some of the particles in the flow and carrying the remaining. The sediment
carried with water after erosion from the delta can deposit inside the reservoir or can block
the tunnel too. In 1997, such an incident took place when suddenly one portal got blocked
due to sediments. The cause of that blockage is still not understood, but an event like this
may happen again [5]. The location map of the Tarbela Dam and the Reservoir confirmed
by the Indus River System Authority, along with the other rivers located near the distance
of 200 km, is shown in Figure 2.
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Figure 2. Location map of the Tarbela Dam and the Reservoir confirmed from Indus River System
Authority along with the other rivers located near the distance of 200 km.
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In addition to yearly rainfall, water inflow, and reservoir storage capacity, minimum
reservoir level is also considered an influencing parameter for the analysis performed in
this study using data for the years 1985 to 2012. The time series plot of these data in Figure 3
shows the relationship between the reservoir’s rainfall on a yearly basis (Ra), water inflow
(Iw), minimum reservoir level (Lr), and reservoir storage capacity (Cr) against the actual
sedimentation volume (Sv) deposited inside the Tarbela reservoir shown in blue on the
secondary y-axis. The straight lines show the linear trends along with the equations of
lines illustrating the relationship between influencing parameters and the actual volume of
sedimentation retained inside the Tarbela reservoir. It can be seen that the parameters are
correlated, and their regression analysis is performed in the subsequent section.
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Figure 3. Time series plot of yearly basis influencing parameters including rainfall, water inflow,
water level, and the storage capacity of the reservoir used for the estimation of sediments retained
inside the Tarbela reservoir from year 1985 to year 2012.

The intricate relationship between the Tarbela reservoir’s sedimentation volume and
its inputs was modeled using ANN and multivariate regression. The Tarbela reservoir’s
sediment management studies and the yearly sedimentation report of the WAPDA were
utilized to gather operational data for the models, which were then used to train the ANN
model [4,20].

3.2. Model Development

An ANN consists of small computational elements known as artificial neurons. When
arranged in a layered structure form, these neurons are known as multi-layered perceptron
artificial neural networks. In ANN, the outer layers are known as input and output layers
depending on where we provide our input variables and from where we get our output
variables, respectively. The number of neurons in these layers is fixed and dependent on
the number of input variables and output variables. Whereas, the layers between the input
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layer and the output layer are known as hidden layers and the artificial neurons in these
layers are known as hidden neurons. The amount of computation required by an ANN
depends on the total number of hidden layers and the number of neurons in each hidden
layer. The number of hidden layers and the number of neurons in each hidden layer are
used to designate the architecture of neural networks. For example, the N4-45-45-1 ANN
structure means that the network has four layers, including one input layer, one output
layer, and two hidden layers. It also indicates four neurons in the input layer, 45 neurons
in each hidden layer (first and second), and one neuron in the output layer. The typical
architecture of the N4-45-45-1 network proposed to predict the sedimentation amount
deposited inside the Tarbela reservoir is shown in Figure 4. The hyperparameters used for
the optimized neural network are shown in Table 1.
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Figure 4. Typical neural network architecture (N4-45-45-1) describing four layers including one input
layer, one output layer, and two hidden layers. Four neurons in the input layer, 45 neurons in the
first hidden layer, 45 neurons in the second hidden layer, and one neuron in the output layer are
also indicated.

Table 1. Hyperparameters of Artificial Neural Network (ANN).

Parameter Value

Batch size 100
Learning rate 0.001
The number of hidden layers 2
The number of neurons at kth hidden layer 45
The number of neurons at input layer 4
The number of neurons at output layer 1
Activation function Sigmoid
Training Function trainrp
Optimizer Adam
Epoch 20
Regularization L1 (Lasso regression)
Problem type Time Series (Sequential)
Ratio of training to test data (%) 82:18
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A trial and error method was used to employ the artificial neural network model
in MATLAB. The number of hidden layers and the number of neurons in each hidden
layer were varied and the most suitable structure that forecasted the results with the least
error was chosen. The data normalization between “−1” and “1” was performed using
Equation (1) [12].

Xnormalized =
X− Xmin

Xmax − Xmin
(1)

where X is the data value, Xmin is the minimum value in the data, and Xmax is the maximum
of the data. Equation (2) describes the tangent-sigmoid activation function employed in the
neural network models considered in this study. After the first layer, each neuron’s output
is estimated using Equation (3).

σ(x) = tanh(x) =
2

1 + e−2x − 1 (2)

a(i,L) = ∑ σ(w(i,L) × a(i,L−1) + b(i,L)) (3)

where w(i,L) is the weight of the ith neuron in the Lth layer of the network, b(i,L) represents
the bias of the corresponding neuron, and a(i,L−1) represents the signal of the previous
layer’s neuron. The activation function is represented by σ.

3.3. Experimental Protocols and Performance Evaluation Measures

The 23 years of data (82% of the total number of data points) were used for the training
of the proposed ANN model. For the validation of the proposed neural network model to
estimate the Tarbela reservoir sedimentation volume, the following three distinct data sets
(each 18% of the total number of data points), shown in Figure 5, were utilized.
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data set, and last five-year data set.
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Three different typical neural network architectures Nhi-h1-ho, Nhi-h1-h2-ho, and
Nhi-h1-h2-h3-ho were constructed for training purposes. Where N stands for the ANN
architecture, hi, h1, h2, h3, and ho represent the number of neurons in the input layer, in the
first hidden layer, in the second hidden layer, in the third hidden layer, and in the output
layer, respectively. Different training functions are utilized for the training of proposed
neural network architectures.

The training of the neural network was terminated after the MSE with respect to
weights and biases reached the respective threshold value, that is, 1 × 10−6. Based on the
prediction value, the exact value (y) supplied using Equation (4), the MSE was determined.
Regarding weights and biases, the mean squared error was reduced to a minimum. The
biases and weights that were improved were saved for use in later simulations.

MSE =
∑ (aL − y)2

n
(4)

Equations (5) and (6) were used to estimate other statistical metrics to check the
performance of the model, such as mean absolute error (MAE) and Nash–Sutcliffe effi-
ciency (NSE).

MAE =
∑
∣∣aL − y

∣∣
n

(5)

NSE = 1− ∑n
1 (aL − y)2

∑n
1 (y−

−
y)

2 (6)

where
−
y is the mean observed value and aL is the predicted value. The range of Nash-Sutcliffe

efficiency is between - and 1. A perfect match between the predicted and observed data is
represented by an NSE value of 1. Equation (7) was used to calculate the relative error.

Relative Error =
|Predicted Value−Actual Value|

Actual Value
× 100 (7)

4. Results and Discussion

A multivariate regression analysis was conducted to establish a linear relationship
between the output and various inputs. A multivariate regression model obtained the
slope-intercept form of the relationship between the inputs and the outputs. The regression
model, which relates the input with output in slope-intercept, was also used to model
sedimentation. The regression was performed using various yearly inputs like rainfall
only (Ra), water inflow only (Iw), minimum water level only (Lr), capacity of the reservoir
only (Cr), and different combinations of these variables and all variables in multivariate
regression. The equations obtained after this regression analysis are given in Table 2.

Figures 6A–D, 7A–D and 8A–D compare the sediment deposition of several multivari-
ate analyses using randomly selected data sets with neural network models employing the
same influencing factors. The error bars for the ANN results in these figures are set at a
10% level of uncertainty. Figures 6A–D and 7A–D show that the actual sediment deposi-
tion significantly exceeded the error bars for a single input and two inputs, respectively.
Figure 8A–C, which displays the results of combining three input parameters, reveals
that while ANN model predictions were close to WAPDA data, none of them completely
captured the actual data. It is evident that the estimates were most accurate when the
water inflow, reservoir storage capacity, and minimum water reservoir level were taken
into account. Figure 8D shows that all ANN model estimates fell inside the error bars when
rainfall was also considered in these forecasts. The regression model’s predictions were
still well outside the error bar even though the maximum error for these predictions was
3.01%. To obtain the specific Equation (8b) from the multiple regression analysis, these
constants were employed in Equation (8a). Regression analysis demonstrates that the
accuracy increases as the number of input parameters increases.
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Table 2. Constants evaluated from multivariate regression analysis performed using various yearly
basis inputs like rainfall only (Ra), water inflow only (Iw), minimum water level only (Lr), capac-
ity of the reservoir only (Cr), and different combinations of these variables and all variables in
multivariate regression.

Variables p q r s Intercept

Ra only 0.073212 0 0 0 84.17088
Iw only 0 0.00522 0 0 −218.58
LR only 0 0 −0.10758 0 224.7589
Cr only 0 0 0 −0.00339 217.077

Ra and Iw 0.00575 −0.04186 0 0 −199.299
Iw and Lr 0 0.005683 −1.32448 0 299.2509
Lr and Cr 0 0 −0.12451 −0.00345 270.0721
Iw and Cr 0 0.005295 0 −0.00513 −162.88

Ra, Iw, and Lr −0.04103 0.006149 1.3160 0 314.409
Ra, Lr, and Cr 0.0977 0 0.42128 0.01152 354.270
Iw, Lr, and Cr 0 0.005721 1.36206 0.00601 378.5874

All
Parameters −0.033 0.6 −1.34 −0.34 356.96

Sv = (p× Ra) + (q× Iw) + (r× Lr) + (s× Cr) + Intercept (8a)

Sv = −0.033Ra + 0.6Iw − 1.34Lr + 356.93 (8b)
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Figure 6. Comparing ANN model with multivariate regression model to calculate the sedimentation
amount deposited inside the Tarbela reservoir using only one yearly basis input parameter of
(A) rainfall, (B) inflow of water, (C) minimum reservoir level, and (D) storage capacity.
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Figure 7. Comparing ANN model with multivariate regression model to compute the amount of
sediment in the Tarbela reservoir using only two yearly basis input parameters: (A) rainfall and water
inflow; (B) water inflow and minimum reservoir level; (C) minimum reservoir level and storage
capacity; and (D) storage capacity and water inflow.
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Figure 8. Comparing ANN model with multivariate regression model to compute the Tarbela reser-
voir sediment deposition with the combination of yearly basis three and four two input parameters:
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(A) rainfall, reservoir minimum level, and storage capacity; (B) inflow of water, reservoir minimum
level, and reservoir storage capacity; (C) rainfall, inflow of water, and reservoir minimum level; and
(D) rainfall, inflow of water, minimum reservoir level, and storage capacity.

For influencing parameters of the data set used for validation, the trained network
was simulated. The outcomes of these simulations were compared with the measured
values. Based on minimum relative error, the optimal network was chosen. Relative error
from Equation (7) was used to evaluate the models’ performance.

The relative error of each network for the validation data set is shown in Figure 9. The
network N4-45-45-1, which has two hidden layers and 45 neurons in each hidden layer,
was shown to have the minimum error for predicting the amount of sediment deposited,
with a maximum error of 3.01% for the random data set. The N4-45-45-1 network also
tested various training functions. When compared to alternative training functions, it was
found that the resilient propagation (RP) accurately predicted the amount of sediment.
Figure 10 depicts each training function’s percentage inaccuracy. For the random data set,
the greatest error in the RP as the training function was observed to be 3.01%.
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Figure 9. Selection of typical neural network architecture (N4-45-45-1) on the basis of percentage
error computed for the validation data set using different ANN architectures.
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Figure 10. Selection of training function on the basis of percentage error computed for the validation
data set using different sets of training functions.
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The additional two data sets were then trained for the N4-45-45-1 architecture. It
was discovered that any 23 years of data given in this study could be used to train the
N4 45-45-1 architecture, and the trained network could successfully predict the data from
the remaining years. Table 3 lists the statistical performance indicators for the N4-45-45-1
network for all three data sets, using the resilient propagation as the training function and
the tangent sigmoid as the activation function. The proposed neural network architecture
accurately predicted the Tarbela reservoir sediment deposition, according to NSE values of
0.99435 for the random data set of 5 years, 0.98721 for the first five years, and 0.99965 for
the last five years data set.

Table 3. Performance metrics of the proposed neural network architecture for randomly selected data
for 5 years and data selected for first and last 5 years.

Performance
Metrics

Randomly Selected
5 Years Data Set

Initial 5 Years
Data Set

Last 5 Years
Data Set

MSE 0.000529 0.00539 0.000166
MAE 0.017604 0.019629 0.015607

R-Training 0.99928 0.997 1
R-Validation 0.99823 0.991 0.99902

NSE 0.99436 0.98271 0.99965
Minimum Gradient 9.79 × 10−7 9.18 × 10−7 9.97 × 10−7

The Tarbela reservoir’s annual sediment deposition is compared in Tables 4–6 using
ANN and multivariate regression approaches for the validation data set for the randomly
selected data set of 5 years, the initial 5 years, and the last 5 years, respectively. Regression
had a maximum inaccuracy of 60.7% when predicting the amount of sediment deposited
compared to ANN’s 4.41%. Figures 11A, 12A, and 13A show a comparison between
the amount of sediment retained inside the Tarbela reservoir obtained by multivariate
regression analysis with the proposed ANN model using randomly selected data for
the years 1987, 1997, 2002, 2007, and 2012, the initial 5-year data, and last 5-year data
respectively. While the bars in Figures 11B, 12B, and 13B show the yearly reduction in
relative error of the proposed ANN model in comparison to the reference multivariate
regression model for all three training data sets. It can be concluded that the proposed
ANN model performs better as compared to the multivariate regression model.

Table 4. Comparison of results obtained by proposed ANN model with the actual amount of sediment
quoted by WAPDA and obtained by multiple regression model using the randomly selected data set
of 5 years.

Year Randomly Selected
5 Years Data Set

Initial 5 Years
Data Set
[R.E. (%)]

Last 5 Years
Data Set
[R.E. (%)]

1987 111.25 155.45 [39.73] 113.58 [2.10]
1997 178.93 138.39 [22.66] 178.36 [0.32]
2002 176 133.84 [23.95] 174.74 [0.71]
2007 225 144.56 [35.74] 231.76 [3.01]
2012 114.01 121.29 [6.39] 111.98 [1.77]

Table 5. Comparison of results obtained by proposed ANN model with the actual amount of sediment
quoted by WAPDA and obtained by multiple regression model using the data set of initial 5 years.

Year Randomly Selected
5 Years Data Set

Initial 5 Years
Data Set
[R.E. (%)]

Last 5 Years
Data Set
[R.E. (%)]

1985 149.72 127.88 [14.59] 150.39 [0.44]
1986 163.21 157.49 [3.5] 159.43 [2.31]
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Table 5. Cont.

Year Randomly Selected
5 Years Data Set

Initial 5 Years
Data Set
[R.E. (%)]

Last 5 Years
Data Set
[R.E. (%)]

1987 111.25 155.45 [39.73] 116.16 [4.41]
1988 189.28 257.32 [35.94] 190 [0.38]
1989 136.93 143.55 [4.84] 132.56 [3.18]

Table 6. Comparison of results obtained by proposed ANN model with the actual amount of sediment
quoted by WAPDA and obtained by multiple regression model using the data set of last 5 years.

Year WAPDA Data (MST) Regression Model (MST)
[R.E. (%)]

ANN Model (MST)
[R.E. (%)]

2008 114.71 146.84 [36.04] 112.95 [1.54]
2009 69.52 163.93 [60.7] 69.71 [0.27]
2010 361.147 252.41 [20.34] 362.75 [0.44]
2011 173.8 157.29 [48.24] 174.6 [0.46]
2012 114.01 121.29 [17.44] 110.6 [2.99]

An approach to graphically summarizing how well a model (or set of patterns) matches
data is through the use of Taylor diagrams. The correlation, the centered root-mean-square
difference, and the magnitude of the variances between two patterns are used to measure how
similar they are (represented by their standard deviations). These diagrams are particularly
helpful when comparing the relative abilities of numerous models or when examining multiple
facets of complex models. A Taylor diagram is shown in Figure 14 to demonstrate the
correlation coefficient, root mean square difference (RMSD), and standard deviation. This
figure illustrates how well trends resemble one another and is built using the cosine rule
between those three-centered data [75]. On the bottom line, which serves as the reference, a
red circle indicates the observation location. Values that are closest to 1 are preferred since
the azimuthal axis displays the correlation. Black dashed lines with the standard deviation
are used to depict the radial distance from the origin; again, the closer to 1 the better. The
lowest distance to the observed location is regarded as the best since it is shown by green
dashed lines that depict the root mean square errors as the radial distance from the origin.
The proposed ANN model (depicted with a red circle) is shown to have one of the lowest
RMSD values and the highest correlation values in the provided Taylor diagram. In addition,
its standard deviation is one of the lowest relative to the reference point.

The validation revealed that the proposed neural network model performed better than
the regression model, therefore it was applied to forecast how much sedimentation will
accumulate inside the Tarbela reservoir during the course of the following 20 years, from
2013 to 2032. By predicting the future data that will be available using the ETS (error, trend,
seasonal), a time series univariate forecasting model, the input data for the next 20 years
were obtained. With the exception of reservoir storage capacity, there is no overall pattern
for the input values, and the ETS model is most appropriate for data without a discernible
trend. The four-yearly forecasted input parameters for the Tarbela reservoir including rainfall,
water inflow, reservoir minimum level, and storage capacity are shown in Figure 15A–D,
respectively. The prediction interval predicts a future individual observation’s range. The
figure illustrates the lower and upper boundaries of the prediction interval’s confidence
for the prediction of influencing parameters. The prediction interval is significantly larger,
indicating greater uncertainty. The prediction interval expresses the intrinsic uncertainty in
the specific data point in addition to the sampling uncertainty. The lower and upper bounds
of confidence are set to 95% for predicting all four influencing parameters. Figure 16 shows
the forecasts made about how much sediment will be deposited inside the reservoir over the
next 20 years. In Figure 16, the forecasts are compared with data from WAPDA for the actual
amount of sediment deposited between the years 2013 and 2019. The figure makes it evident
that forecasts for this year’s sediment deposition are rather close to being accurate.
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Figure 11. (A) Comparison of actual volume of sediments deposited inside the Tarbela quoted by
WAPDA (in green color), obtained by multiple regression model (in blue color) and the proposed
ANN model (in gold color) using randomly selected data for 5 years (B) Reduction in relative error
of proposed ANN model (in gold color) in comparison with the multiple regression model (in blue
color) using randomly selected data for 5 years.
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Figure 12. (A) Comparison of actual volume of sediments deposited inside the Tarbela quoted by
WAPDA (in green color), obtained by multiple regression model (in blue color) and the proposed
ANN model (in gold color) using data for initial 5 years (B) Reduction in relative error of proposed
ANN model (in gold color) in comparison with the multiple regression model (in blue color) using
data for initial 5 years.
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Figure 13. (A) Comparison of actual volume of sediments deposited inside the Tarbela quoted by
WAPDA (in green color), obtained by multiple regression model (in blue color) and the proposed
ANN model (in gold color) using data for last 5 years (B) Reduction in relative error of proposed
ANN model (in gold color) in comparison with the multiple regression model (in blue color) using
data for last 5 years.
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Figure 15. Forecasting of yearly basis influential factors for the Tarbela reservoir: (A) normalized
values of rainfall; (B) normalized inflow of water; (C) normalized minimum level of reservoir;
(D) normalized storage capacity.
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Figure 16. Sedimentation prediction for next 20 years using proposed ANN model based on the four
forecasted input parameters for the Tarbela reservoir.

The relative significance of each influencing factor in estimating the sediment deposition
inside the Tarbela reservoir was evaluated using the method proposed by Olden et al. [76]. The
connection weight strategy was shown to be the only approach that consistently determined
the correctly ranked importance of all predictor variables, according to a comparison by
Olden et al. and many other techniques for evaluating the relative importance of each
parameter in ANN. In Figure 17, the storage capacity of the reservoir was shown to be the
most important influencing factor in estimating the amount of sediment deposited, whilst
annual rainfall was found to be less important.
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Figure 17. The relative significance of influencing parameters in predicting the sedimentation amount
deposited inside the Tarbela reservoir assessed using Olden’s algorithm of connection weights.
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5. Conclusions

This study employed an artificial neural network and multivariate regression tech-
niques to predict the annual sediment deposition inside the Tarbela reservoir in Pakistan.
Firstly, multivariate regression analysis was performed using various combinations of
yearly basis four influencing parameters, including rainfall (Ra), water inflow (Iw), mini-
mum level of reservoir (Lr), and storage capacity of the reservoir (Cr). It was determined
that with the increase in the number of influencing parameters, the accuracy of the sediment
deposition prediction is increased. Secondly, different neural network architectures with
various training functions were employed. It was found that the typical N4-45-45-1 neural
network architecture with the resilient propagation training function performs better with
a minimum error of 3.01% compared to all other architectures and training functions. The
proposed neural network model was then applied for validation and future prediction
purposes. It was found that the four influencing parameters could be used to accurately
estimate the amount of sediment deposited inside the Tarbela reservoir. The maximum
error for the proposed neural network model was found to be 4.01%, whereas, in the case
of the multivariate regression model, it was found to be 60.7%, leading to the conclusion
that the proposed neural network model approximated the amount of sediment deposited
more accurately than the multivariate regression model. Finally, the Tarbela reservoir’s
sedimentation was predicted using forecasted data of 20 years for four input parameters
from the ETS model. It was found that the predictions are in good agreement with the
actual sediment deposition determined by WAPDA for the years 2013 to 2019. It was
also concluded using Olden’s technique that the Tarbela’s storage capacity is the most
important influencing parameter in determining the amount of sedimentation inside of
it, whilst annual rainfall was found to be less significant in influencing the amount of
sediment deposited.

Standalone machine learning approaches like ANN can accurately predict the amount
of sediment in reservoirs compared to traditional multiple regression approaches. How-
ever, some other conventional models (e.g., KNN, SVM, DT, RF, XGBoost) can also be
implemented for the same problem in future research and can be compared with the ANN
to demonstrate how different models are performing. Despite its ability to predict sediment
volume, standalone machine learning approaches have several limitations that should be
highlighted. In general, hybrid ML models should be developed as well, which are more
accurate and reliable than independent ML models.

Author Contributions: Conceptualization, N.S. and M.A.; methodology, S.H. and N.S.; software,
S.H., A.H., A.A.; validation, S.H., N.S. and M.A.U.R.T.; formal analysis, S.H. and Z.R.; investigation,
M.L.U.R.S. and M.A.U.R.T.; resources, M.A.U.R.T.; data curation, N.S. and Z.R.; writing—original
draft preparation, N.S. and S.H.; writing—review and editing, N.S., M.A.U.R.T., A.H., M.A.; visu-
alization, N.S., S.H.; supervision, N.S., M.A., M.L.U.R.S. and M.A.U.R.T.; project administration,
M.A.U.R.T.; funding acquisition, M.A.U.R.T. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors acknowledge the efforts of the Water and Power Development
Authority (WAPDA) of Pakistan for providing the necessary data required for this study.

Conflicts of Interest: The authors declare no conflict of interest.



Water 2022, 14, 3098 24 of 27

Nomenclature

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
ETS Error, Trend, Seasonal
MT Million Tonnes
MST Million Short Tons
MSE Mean Squared Error
MAE Mean Absolute Error
NSE Nash–Sutcliffe Efficiency
Ra Annual rainfall
Iw Water inflow annually
LR The minimum water level in the reservoir
Cr Capacity of reservoir
SR Amount of sediment deposited annually

Nhi-h1-ho

N stands for ANN architecture,
hi = number of neurons in the input layer
h1 = number of neurons in the hidden layer
ho = number of neurons in the output layer

Nhi-h1-h2-ho

N stands for ANN architecture,
hi = number of neurons in the input layer
h1 = number of neurons in the first hidden layer
h2 = number of neurons in the second hidden layer
ho = number of neurons in the output layer

Nhi-h1-h2-h3-ho

N stands for ANN architecture
hi = number of neurons in the input layer
h1 = number of neurons in the first hidden layer
h2 = number of neurons in the second hidden layer
h3 = number of neurons in the third hidden layer
ho = number of neurons in the output layer

R Correlation Coefficient
R.E. Relative Error
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