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ABSTRACT
The use of improved generalized Riccati equation mapping method has been demonstrated
to find some new exact travelling wave solutions to space-time fractional non-liner double
dispersive equation (DDE). The equation is used for modelling wave propagation in elastic
inhomogeneous Murnaghan’s rod. We have used Caputo’s fractional derivative to achieve the
fractional version ofMurnaghan’s rod equation. Improvedgeneralized Riccati equationmapping
method proves to be very effective tool to find a variety of soliton solutions. As a result, we found
many new and general solutions including dark, combined dark-bright, singular periodic wave,
combined singular periodic wave solutions and rational solutions. We have simulated the soli-
tons, to check their types, with the help of graphs and all the solutions obtained in this article
have been verified by back substitution in original equation by using Maple 17.
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1. Introduction

The use of fractional calculus to model certain real-life
phenomena is getting agreat attentionnowadays.Non-
linear fractional differential equations (NLFDEs) appear
as a direct result of this attention. Nonlinear fractional
partial differential equations (NLFPDEs) cover a major
share of those NLFDEs and they are used to model such
phenomena where the dependent variable is reliant
on more than one independent variable. NLFPDEs are
generalizationofnonlinearpartial differential equations
(NPDEs) in which the orders of derivatives involved
are fractional. These equations have numerous appli-
cations in different fields of engineering and physical
sciences such as in fluid mechanic, fractional dynam-
ics, wave propagation and so on [1]. It is very important
not only to formulate the governing nonlinear PDE of
a certain phenomenon but also to find out its exact
solutions. Solutions of an equation, governing a cer-
tain real-life phenomenon, give us very useful details
of the phenomenon itself and can be used to under-
stand and predict the variations in the depended vari-
able (and the quantities driven by it). Many scientist and
researchers have extensively studied nonlinear PDEs
and their methods to construct exact solutions. Some
of the important works are done in [2–13].

In this study, we are interested in a special type
of exact solutions of NLFPDEs known as solitary wave
solutions. Since solitons have been proved to be the
exact solutions of a large class of NLPDEs, their com-
plete understanding would lead us to a broad under-
standing of the real-life phenomena themselves. Some
of the methods that are already being used to find
solution of fractional order nonlinear partial differential
equations are Homotopy perturbation method (HPM)
[14], Lie algebra method [15,16], Variational iteration
method (VIM) [17,18], F-expansion method [19], Exp-
function method [20,21], Fan sub-equation method

[22],
(
G′
G

)
-expansion method [23], Improved tan (φ2 )-

expansion method [24], Exp (−φ(ξ)) method [25],
Kudryashov method [26], etc. Some of these methods
provide exact solutions to NLFPDEs (like Exp-function

method, Fan sub-equation method,
(
G′
G

)
-expansion

method, etc.) while the others provide series solution
(like VIM and HPM). Nowadays mathematicians are try-
ing to extend conventional methods to make them
capable of solving fractional order partial differential
equations. These extended methods would enable sci-
entist working on fractional models to deal with them
more effectively. Finding exact solutions of NLFPDEs
used to be a herculean task, however, with modern
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symbolic computation tools have make the task rela-
tively easier. In a result of these computational tools,
the efforts to extend the methods used to solve integer
order NLPDEs to their fractional counterparts, and apply
them to solve real-life fractional models, have gain a
tremendous popularity.

Improved generalized Riccati equation method is
oneof themethods to theget exact travelingwave solu-
tions to the PDEs having both steepening and spread-
ing effects. It is a straight-forward and easy-to-use
method that, by symbolic computation, can generate
many different types of exact travelling wave solutions.
Zhu [27] introduced this method with the extended
tanh-function method to solve (2+ 1) dimensional
Boiti–Leon–Pempinelle equation. Bekir and Cevikel
[28] used Riccati equation combined with tanh–coth
method to solve nonlinear coupled equation in math-
ematical physics. Li et al. [29] used this method to
find exact solutions of (3+ 1)-dimensional Jimbo–Miwa
equation. Tala-Tebue et al. [30] used this method to
solve discrete nonlinear electrical transmission lines
in (2+ 1) dimension. Salathiel et al. [31] utilized gen-
eralized Riccati equation mapping method to con-
struct soliton and travelling wave solutions for dis-
crete electrical lattice. Koonprasert et al. [32] imple-
mented this method to find more explicit solitary solu-
tions to the space–time fractional fifth-order nonlin-
ear Sawada–Kotera equation. Most recently, Bibi et al.
[33] have used thismethod on Caudrey–Dodd–Gibsson
equation. Their work shows that the improved general-
ized Riccati equation method has a great protentional
for solving fractional order partial differential equa-
tions. In this context, it seems appropriate to apply this
method to some other real-life fractional models and
obtain their unexplored exact travellingwave solutions.

The doubly dispersive equation (DDE) is an impor-
tant nonlinear physical model describing the nonlinear
wave propagation in the elastic inhomogeneous circu-
lar cylinderMurnaghan’s rod. It is an importantmodel to
study the wave propagation in nonlinear elastic solids.
Solitary strain waves have great importance in the
study of seismology, acoustics, introscopy, examination
of sudden destruction, long distance energy transfer,
vibro-impact treatments of hard materials also in stud-
ies for thedevelopment of non-destructive testing tech-
niques especially for pipelines, and to understand the
physical properties and internal structure of solids like
brass, steel, glass and polymers. This relatively new area
of study might increase interest in researchers to study
nonlinear physics of solids, nonlinear mechanics and
condensed matter physics [34]. The global existence
andblow-upof solutions for doubly dispersive equation
were discussed by Harby et al. [35]. Cattani et al.
[36] had used extended Sinh-Gordon equation expan-
sion method (ShGEEM) and the modified exp(−φ(ζ ))-
expansion function method, to find different types
of solitary wave solutions. Moreover, Baskonus et al.

[37] solved inhomogeneous Murnaghan’s rod by F-
expansionmethodandobtained Jacobi elliptic function
solutions including bright and dark solitons, topologi-
cal, non-topological, singular, periodic, their combina-
tions and compound solitons.

From the above references, it is clear that the solu-
tions to DD equation (even of integer order) are a very
recent topic and it still needs a lot exploration. Up
to the best of our knowledge, no one has ever stud-
ied the fractional model for DD equation. To fill this
gap, in this paper, we have used generalized Riccati
equationmethod and able to construct abundant exact
solutions (including solitary wave solutions, periodic
wave solutions and rational solutions) to nonlinear DD
equation (with space–time fractional derivatives) which
describes wave propagation in nonlinear elastic inho-
mogeneous Murnaghan’s rod.

This paper is organized as follows: Section 1 includes
introduction, Section 2 provides definition and prop-
erties of Caputo fractional derivative, in Section 3,
improved generalized Riccati equation mapping
method has been described briefly, Section 4 includes
application of method described in Section 3 to
obtain new solitary wave solutions of Murnaghan’s rod
equation, Section 5 consists results and discussion on
some of obtained results, Section 6 includes conclusion.

2. Definitions and properties of Caputo
fractional derivative

Let m be a smallest integer that is greater than α, the
Caputo time fractional derivative operator of order α >

0 of the function u(t, τ) is defined as follows [38]:

Dα
t f (t) = ∂αu(t, τ)

∂tα

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
�(m − α)∫ t

0 (t − s)m−α−1 ∂mf (s)
∂sm ds, m − 1<α≤m,

∂mu(t, τ)

∂tm
, α = m ∈ N,

(1)

Important characteristics of Caputo fractional derivative
canbe seen in [38] and keeping in view the length of the
manuscript we see fit not to rewrite them here.

3. Improved generalized Riccati equation
mappingmethod

Let us consider the fractional order differential equation
with independent variables x, t and some dependent
function u :

M(u,Dα
t u,D

α
x u,D

2α
x u,D3α

x u, . . .) = 0, 0 < α ≤ 1, (2)

whereDα
t andD

α
x are knownasCaputo fractional deriva-

tives of u and M is a polynomial in u with its various
orders of nonlinear partial fractional derivatives.
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Step 1. Let

u(x, t) = U(ξ ), (3)

where

ξ = xα

�(1 + α)
− λtα

�(1 + α)
(4)

is a fractional complex transformation which can con-
vert nonlinear fractional differential equation (2) into
nonlinear ordinary differential equation, where λ is a
constant which is to be determined, this fractional com-
plex transform is an easy transform to convert fractional
differential equation into ordinary differential equation.
As the classical chain rule does not hold for fractional
derivatives, [39] introduced new chain rule in terms of
σ index and suggested that

Dα
t u = σ ′

t
dU
dξ

Dα
t ξ ,

Dα
x u = σ ′

x
dU
dξ

Dα
x ξ , (5)

where σ ′
t , σ

′
x are called sigma indexes [40], without loss

of generality we can take σ ′
t = σ ′

x = c0. Where c0 is
constant. By using the definition of Caputo derivative
and applying the chain rule mentioned in Equation (5)
along with complex transformation (4) into Equation
(2) we get the following nonlinear ordinary differential
equation.

Q′ = Q′(U(ξ),U′(ξ),U′′(ξ), . . .) = 0, (6)

where U′(ξ) = dU(ξ)
dξ

indicates derivative in term of ξ .
We integrate Equation (6) as many times as we get at
least one term without derivative.

Step 2.We suppose that the following series expan-
sion is the solution of Equation (6).

U(ξ) =
N∑

i=−N

aiφ(ξ)i, (7)

where ai(i = 0,±1,±2, · · · ± N) being constants, which
are to be determined provided ai �= 0. The functionφ =
φ(ξ) satisfies the Riccati differential equation

φ′(ξ) = r + pφ(ξ)

+ qφ(ξ)2, where r, p, q are real constants.
(8)

Step 3. Positive integer N in Equation (7) can be
found by using homogeneous balance between the
derivatives of highest order and the nonlinear terms in
Equation (6).

Step 4. Substituting Equation (7) along with
Equation (8) into Equation (6) followed by collecting
all the same order terms φi together, we get the poly-
nomial equation in φi and φ−i, where (i = 0, 1, 2, . . .).
Equalizing coefficients of the resulting polynomial to

zero, we get over-determined systemof algebraic equa-
tions for ai where i = 0,±1,±2, . . . ± N.

Step 5. With the help of Maple, we solve the
system described in step 4, and obtain ai, where
i = 0,±1,±2, . . . ± N. We substitute these values in
Equation (7) coupled with solutions of Equation (8) and
applying the transformation in Equation (6) we con-
struct several exact solutions of Equation (2), establish-
ing four families [32].

4. Implementation of proposedmethod to
Murnaghan’s rod

In this section, we apply improved generalized Riccati
equation mapping method on space–time fractional
double dispersive equation which is given as

D2α
t u(x, t) − E

θ
D2α
x u(x, t) = ε

2

(1
θ
(lβD2α

x u2(x, t)

+ θν2D4α
tx u(x, t) − bδν2D4α

x u(x, t))
)
, (9)

where u(x, t) is the strain wave function, b = M
E < 1, l =

B
E are combinations of the constant scale factors, ε is the
small parameter, β is the nonlinearity, θ is the density,
δ = E

(2(1+ν))
, ν is the Poisson coefficient, for details see

[34–37]. Parameter 0 < α ≤ 1 is the order of fractional
time and space derivatives. Where Dα

t u and Dα
x u are the

Caputo fractional derivative of u with respect to t and
x respectively. Now, consider the following nonlinear
fractional order wave transformation:

u(x, t) = U(ξ), withξ = xα

�(1 + α)
− λtα

�(1 + α)
,

where λ is constant. Substituting the above-mentioned
transformation (incorporating Caputo’s fractional
derivative of power function) and Equation (5) into
Equation (9) we get the following nonlinear ODE:

ευ2(−λ2θ + bδ)

θ

×
(

− lβ(U(ξ))2

2υ2(−λ2θ + bδ)
+ λ2θU(ξ)

ευ2(−λ2θ + bδ)

− EU(ξ)

ευ2(−λ2θ + bδ)

)

+ 1
2

ευ2(−λ2θ + bδ)U′′(ξ)

θ

×
(

− λ2θ

−λ2θ + bδ
+ bδ

−λ2θ + bδ

)
= 0, (10)

by integrating Equation (10) and using homogeneous
balance principle between the highest order derivative
and nonlinearity yields N = 2. Therefore, Equation (10)
has a solution

U(ξ ) = a−2

(φ(ξ))2
+ a−1

φ(ξ)
+ a0 + a1φ(ξ) + a2(φ(ξ))2,

(11)



100 M. RANI ET AL.

now substituting Equation (11) along with Equation (8)
into Equation (10) after collecting all terms with the
same order in φi and φ−i, where (i = 0, 1, 2, . . .). and
equating each coefficient to zero, we obtain a system
of nonlinear algebraic equations. Solving these equa-
tions by using Maple 17, we get following non-trivial
solutions:

Case 1:

a1 = 0, a2 = 0, a0 = −2
υ2(p2 + 2rq)

β l(2 + ε(p2 − 4rq)υ2)
,

a−1 = − (12E − 12bδ)prυ2

β l(2 + ε(p2 − 4rq)υ2)
,

a−2 = − (12E − 12bδ)r2υ2

β l(2 + ε(p2 − 4rq)υ2)
,

λ =
√
bδεp2υ2 − 4bδεqrυ2 + 2E
θ(εp2υ2 − 4εqrυ2 + 2)

, (12)

U1(ξ) = a0 + a−2

(φ(ξ))2
+ a−1

φ(ξ)
(13)

Case 2:

a1 = 0, a2 = 0, a0 = 12
qrυ2(E − bδ)

β(ε(p2 − 4rq)υ2 − 2)l
,

a−1 = (12E − 12bδ)prυ2

β(ε(p2 − 4rq)υ2 − 2)l
,

a−2 = 12
(E − bδ)r2υ2

β(ε(p2 − 4rq)υ2 − 2)l
,

λ =
√

−2E − bδεp2υ2 + 4bδεqrυ2

θ(εp2υ2 − 4εqrυ2 − 2)
, (14)

U2(ξ) = a0 + a−2

(φ(ξ))2
+ a−1

φ(ξ)
(15)

Case 3:

a−1 = 0, a−2 = 0, a0 = −2
υ2(p2 + 2rq)(E − bδ)

β l(2 + ε(p2 − 4rq)υ2)
,

a1 = − (12E − 12bδ)pqυ2

β l(2 + ε(p2 − 4rq)υ2)
,

a2 = − (12E − 12bδ)q2υ2

β l(2 + ε(p2 − 4rq)υ2)
,

λ =
√
bδεp2υ2 − 4bδεqrυ2 + 2E
θ(εp2υ2 − 4εqrυ2 + 2)

, (16)

U3(ξ) = a0 + a1φ(ξ) + a2(φ(ξ))2 (17)

Case 4:

a−1 = 0, a−2 = 0, a0 = 12
qrυ2(−bδ + E)

β(−2 + ε(p2 − 4rq)υ2)l
,

a1 = (12E − 12bδ)pqυ2

β(−2 + ε(p2 − 4rq)υ2)l
,

a2 = (12E − 12bδ)q2υ2

β(−2 + ε(p2 − 4rq)υ2)l
,

λ =
√

−2E − bδεp2υ2 + 4bδεqrυ2

θ(εp2υ2 − 4εqrυ2 − 2)
, (18)

U4(ξ) = a0 + a1φ(ξ) + a2(φ(ξ))2 (19)

According to the method the improved generalized
Riccati equation mapping technique yield 27 solutions
of the Riccati equation in Equation (8) incorporating
four different families [32]. For the case 1, substituting
the values from Equation (12) into Equation (13) along
with the Riccati equations solutions, we can get fol-
lowing different types of solutions. Please note, in all
the following solutions, these substitutions have been
made to make the results more elegant:

D =
√
p2 − 4qr, K =

√
4qr − p2,

Ḃ1 = (−6bδ + 6E)pυ2

l(2 + ε(p2 − 4qr)υ2)β
,

Ḃ2 = (−3bδ + 3E)υ2

l(2 + ε(p2 − 4qr)υ2)β
,

Ḃ′
1 = (−6bδ + 6E)pυ2

l(−2 + ε(p2 − 4qr)υ2)β
,

Ḃ′
2 = (−3bδ + 3E)υ2

l(−2 + ε(p2 − 4qr)υ2)β

Family 1:
When p2 − 4qr > 0 and pq �= 0 or qr �= 0, the hyper-

bolic function solutions of Equation (9) are as follows:

U1,1 = 4Ḃ1rq
(

(p + D) tanh
(

1
2Dξ

))−1

− 16Ḃ2r2q2
(

(p + D) tanh
(

1
2Dξ

))−2

+ a0,

(20)

U1,2 = 4Ḃ1rq
(

(p + D) coth
(

1
2Dξ

))−1

− 16Ḃ2r2q2
(

(p + D) coth
(

1
2Dξ

))−2

+ a0,

(21)

U1,3 = 4Ḃ1rq((p + D)(tanh(Dξ) ± isech(Dξ)))−1

− 16Ḃ2r2q2((p + D)(tanh(Dξ)

± isech(Dξ)))−2 + a0, (22)

U1,4 = 4Ḃ1rq((p + D)(coth(Dξ) ± csch(Dξ)))−1

− 16Ḃ2r2q2((p + D)(coth(Dξ)

± csch(Dξ)))−2 + a0, (23)

U1,5 = 4Ḃ1rq
(

(2p + D)

(
2coth

(
Dξ

2

)))−1

− 16Ḃ2r2q2
(

(2p + D)

(
2coth

(
Dξ

2

)))−2

+a0,

(24)

U1,6 = −16Ḃ2r2q2
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×

⎛
⎜⎜⎜⎝−p +

√
(A2 + B2)D

−AD cosh(Dξ)

Asinh(Dξ) + B

⎞
⎟⎟⎟⎠

−2

− 4Ḃ1rq

⎛
⎜⎜⎜⎝−p +

√
(A2 + B2)D

−AD cosh(Dξ)

Asinh(Dξ) + B

⎞
⎟⎟⎟⎠

−1

+ a0, (25)

U1,7 = −16Ḃ2r2q2

×

⎛
⎜⎜⎜⎝−p −

√
(−A2 + B2)D

+AD sinh(Dξ)

Acosh(Dξ) + B

⎞
⎟⎟⎟⎠

−2

− 4Ḃ1rq

⎛
⎜⎜⎜⎝−p −

√
(−A2 + B2)D

+AD sinh(Dξ)

Acosh(Dξ) + B

⎞
⎟⎟⎟⎠

−1

+ a0, (26)

where two non-zero real constants A and B satisfies
A2 − B2 > 0.

U1,8 = −
Ḃ2
(
D sinh

(
Dξ
2

)
− pcosh

(
Dξ
2

))2
cosh

(
Dξ
2

)2

−
Ḃ1
(
D sinh

(
Dξ
2

)
− pcosh

(
Dξ
2

))
cosh

(
Dξ
2

) + a0, (27)

U1,9 =
Ḃ1
(
−D cosh

(
Dξ
2

)
+ psinh

(
Dξ
2

))
sinh

(
Dξ
2

)

−
Ḃ2
(
−D cosh

(
Dξ
2

)
+ psinh

(
Dξ
2

))2
(
sinh

(
Dξ
2

))2 + a0,

(28)

U1,10 = − Ḃ2((Dsinh(Dξ) − p(cosh(Dξ) ± iD))2(
cosh

(
Dξ
2

))2
− Ḃ1((Dsinh(Dξ) − p(cosh(Dξ) ± iD))

cosh
(
Dξ
2

) + a0,

(29)

U1,11 = − Ḃ2((D cosh(Dξ)) − psinh((Dξ) ± D))2(
sinh Dξ

2

)2
− Ḃ1((D cosh(Dξ)) − psinh(Dξ) ± D)))(

sinh Dξ
2

) + a0,

(30)

U1,12 = −
Ḃ2

(
−p sinh

(
Dξ
2

)
+ 2D cosh

(
Dξ
4

)2 − D

)2

sinh
(
Dξ
2

)2

−

Ḃ1
(

− psinh
(
Dξ
2

)
+2D cosh

(
Dξ
4

)2 − D
)

sinh
(
Dξ
2

) + a0 (31)

Family 2:
If p2 − 4qr < 0 and pq �= 0(orqr �= 0), we have the

following trigonometric solutions:

U1,13 = −16Ḃ2r2q2
(

−p + K tan
(
Kξ

2

))−2

− 4Ḃ1rq
(

−p + K tan
(
Kξ

2

))−1

+ a0, (32)

U1,14 = 4Ḃ1rq
(
p + K cot

(
Kξ

2

))−1

− 16Ḃ2r2q2
(
p + K cot

(
Kξ

2

))−2

+ a0, (33)

U1,15 = −16Ḃ2r2q2((−p + K)(tan(Kξ) ± sec(Kξ)))−2

− 4Ḃ1rq((−p + K)(tan(Kξ) ± sec(Kξ)))−1+a0,
(34)

U1,16 = 4Ḃ1rq((p + K) cot(Kξ) ± csc(Kξ))−1

− 16Ḃ2r2q2((p + K) cot(Kξ) ± csc(Kξ))−2+a0,
(35)

U1,17 = −64Ḃ2r2q2
(

(−2p + K)

(
−2 cot

(
Kξ

2

)))−2

− 8Ḃ1rq
(

(−2p + K)

(
−2 cot

(
Kξ

2

)))−1

+a0,

(36)

U1,18 = −16Ḃ2r2q2

⎛
⎜⎜⎜⎝−p +

√
(A2 − B2)K

−AK cos(Kξ)

Asin(Kξ) + B

⎞
⎟⎟⎟⎠

−2

− 4Ḃ1rq

⎛
⎜⎜⎜⎝−p +

√
(A2 − B2)K

−AK cos(Kξ)

Asin(Kξ) + B

⎞
⎟⎟⎟⎠

−1

+ a0,

(37)

U1,19 = −16Ḃ2r2q2

⎛
⎜⎜⎜⎝−p +

√
(A2 − B2)K

+AD cos(Kξ)

Asin(Kξ) + B

⎞
⎟⎟⎟⎠

−2



102 M. RANI ET AL.

− 4Ḃ1rq

⎛
⎜⎜⎜⎝−p +

√
(A2 − B2)K

+AD cos(Kξ)

Asin(Kξ) + B

⎞
⎟⎟⎟⎠

−1

+ a0,

(38)

where twonon-zero real constantsA andB satisfiesA2 −
B2 > 0.

U1,20 =
Ḃ1
(
K
(
sin
(
Kξ
2

)
+ pcos

(
Kξ
2

)))
cos

(
Kξ
2

)

−
Ḃ2
(
K
(
sin
(
Kξ
2

)
+ pcos

(
Kξ
2

)))2
(
cos

(
Kξ
2

))2 + a0 (39)

U1,21 = −
Ḃ2
(
K
(
cos

(
Kξ
2

)
− psin

(
Kξ
2

)))2
(
sin
(
Kξ
2

))2

−
Ḃ1
(
K
(
cos

(
Kξ
2

)
− psin

(
Kξ
2

)))
sin
(
Kξ
2

) + a0, (40)

U1,22 = Ḃ1(K sin(Kξ) + p cos(Kξ) ± K)

cos
(
Kξ
2

)

− Ḃ2(K sin(Kξ) + p cos(Kξ) ± K)2(
cos

(
Kξ
2

))2 + a0, (41)

U1,23 = − Ḃ2((K cos(Kξ)) − psin(Kξ) ± K)2

(sin(Kξ))2

− Ḃ1((K cos(Kξ)) − psin(Kξ) ± K)

sin(Kξ)
+ a0, (42)

U1,24 = −
Ḃ2

((
−p sin

(
Kξ
2

))
+ 2K

(
cos

(
Kξ
4

))2 − K

)2

(
sin
(
Kξ
2

))2

−

Ḃ1
( (

−p sin
(
Kξ
2

))
+2K

(
cos

(
Kξ
4

))2 − K
)

sin
(
Kξ
2

) + a0, (43)

For case 2, we have following solutions.
Family 1:
The hyperbolic function solutions of Equation (9)

(when p2 − 4qr > 0 and pq �= 0 or qr �= 0) are:

U2,1 = 16Ḃ′
2r

2q2
(
p +

(
D tanh

(
Dξ

2

)))−2

− 4Ḃ′
1rq

(
p +

(
D tanh

(
Dξ

2

)))−1

+ a0, (44)

U2,2 = 16Ḃ′
2r

2q2
(
p +

(
D coth

(
Dξ

2

)))−2

− 4Ḃ′
1rq

(
p +

(
D coth

(
Dξ

2

)))−1

+ a0, (45)

U2,3 = 16Ḃ′
2r

2q2((p + D)(tanh(Dξ) ± isech(Dξ)))−2

− 4Ḃ′
1rq((p + D)(tanh(Dξ)

± isech(Dξ)))−1 + a0, (46)

U2,4 = 16Ḃ′
2r

2q2((p + D)(coth(Dξ) ± csch(Dξ)))−2

− 4Ḃ′
1rq((p + D)(coth(Dξ)

± csch(Dξ)))−1 + a0, (47)

U2,5 = 16Ḃ′
2r

2q2
(

(2p + D)

(
2 coth

(
Dξ

2

)))−2

− 4Ḃ′
1rq

(
(2p + D)

(
2 coth

(
Dξ

2

)))−1

+ a0,

(48)

U2,6 = 16Ḃ′
2r

2q2

⎛
⎜⎜⎜⎝−p +

√
(A2 + B2)D

−AD cosh(Dξ)

Asinh(Dξ) + B

⎞
⎟⎟⎟⎠

−2

+ 4Ḃ′
1rq

⎛
⎜⎜⎜⎝−p +

√
(A2 + B2)D

−AD cosh(Dξ)

Asinh(Dξ) + B

⎞
⎟⎟⎟⎠

−1

+ a0, (49)

U2,7 = 16Ḃ2r2q2

⎛
⎜⎜⎜⎝−p −

√
(−A2 + B2)D

+AD cosh(Dξ)

Acosh(Dξ) + B

⎞
⎟⎟⎟⎠

−2

+ 4Ḃ′
1rq

⎛
⎜⎜⎜⎝−p −

√
(−A2 + B2)D

+AD cosh(Dξ)

Acosh(Dξ) + B

⎞
⎟⎟⎟⎠

−1

+ a0, (50)

Where two non-zero real constants A and B satisfy
A2 − B2 > 0.

U2,8 =
Ḃ′
2

(
D sinh

(
Dξ
2

)
− pcosh

(
Dξ
2

))2
(
cosh

(
Dξ
2

))2

+
Ḃ′
1

(
D sinh

(
Dξ
2

)
− pcosh

(
Dξ
2

))
cosh

(
Dξ
2

) + a0, (51)

U2,9 =
Ḃ′
2

(
−D cosh

(
Dξ
2

)
+ psinh

(
Dξ
2

))2
(
sinh

(
Dξ
2

))2

−
Ḃ′

1

(
−D cosh

(
Dξ
2

)
+ psinh

(
Dξ
2

))
sinh

(
Dξ
2

) + a0,

(52)

U2,10 = Ḃ′
2(D sinh(Dξ) − p(cosh(Dξ) ± iD))2(

cosh
(

1
2Dξ

))2
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+ Ḃ′
1(D sinh(Dξ) − p(cosh(Dξ) ± iD))

cosh
(

1
2Dξ

) + a0,

(53)

U2,11 = Ḃ′
2(D cosh(Dξ) − p(sinh(Dξ) ± D))2(

sinh
(
Dξ
2

))2
+ Ḃ′

1(D cosh(Dξ) − p(sinh(Dξ) ± D))

sinh
(
Dξ
2

) + a0,

(54)

U2,12 =

Ḃ′
2

((
−p sinh

(
Dξ
2

))
+ 2D

(
cosh

(
1

4Dξ

))2
−D + 2D

(
cosh

(
1

4Dξ

))2 − D

)2

(
sinh

(
Dξ
2

))2

+

Ḃ′
1

((
−p sinh

(
Dξ
2

))
+2D

(
cosh

(
1

4Dξ

))2
−D + 2D

(
cosh

(
1

4Dξ

))2 − D

)

sinh
(
Dξ
2

) + a0 (55)

Family 2:
The trigonometric solutions of Equation (9) (if p2 −

4qr < 0 and pq �= 0(orqr �= 0)) are:

U2,13 = 16Ḃ′
2r

2q2
(

−p + K tan
(
Kξ

2

))−2

+ 4Ḃ′
1rq

(
−p + K tan

(
Kξ

2

))−1

+ a0, (56)

U2,14 = 16Ḃ′
2r

2q2
(
p + K cot

(
Kξ

2

))−2

− 4Ḃ′
1rq

(
p + K cot

(
Kξ

2

))−1

+ a0, (57)

U2,15 = 16Ḃ′
2r

2q2
(

(−p + K)×
(tan(Kξ) ± sec(Kξ))

)−2

+ 4Ḃ′
1rq

(
(−p + K)×

(tan(Kξ) ± sec(Kξ))

)−1

− a0,

(58)

U2,16 = 16Ḃ′
2r

2q2
(

(p + K)×
(cot(Kξ) ± csc(Kξ))

)−2

− 4Ḃ′
1rq

(
(p + K)×

(cot(Kξ) ± csc(Kξ))

)−1

+ a0,

(58a)

U2,17 = 64Ḃ′
2r

2q2
(

(−2p + K)

(
−2 cot

(
Kξ

2

)))−2

+ 8Ḃ′
1rq

(
(−2p + K)

(
−2 cot

(
Kξ

2

)))−1

+a0,

(59)

U2,18 = 16Ḃ′
2r

2q2

×
(

−p + ±i
√

(−A2 + B2)K − AK cos(Kξ)

Asin(Kξ) + B

)−2

+ 4Ḃ′
1rq

×
(

−p+±i
√

(−A2+B2)K−AK cos(Kξ)

Asin(Kξ)+B

)−1

+a0,

(60)

U2,19 = 16Ḃ′
2r

2q2(
−p + ±i

√
(−A2 + B2)K + AK cos(Kξ)

Asin(Kξ) + B

)−2

+ 4Ḃ′
1rq(

−p+±i
√

(−A2+B2)K+AK cos(Kξ)

Asin(Kξ)+B

)−1

+ a0,

(61)

where twonon-zero real constantsA andB satisfiesA2 −
B2 > 0.

U2,20 =
Ḃ′

2

(
K sin

(
Kξ
2

)
+ pcos

(
Kξ
2

))2
(
cos

(
Kξ
2

))2

−
Ḃ′

1

(
K sin

(
Kξ
2

)
+ pcos

(
Kξ
2

))
cos

(
Kξ
2

) + a0, (62)

U2,21 =
Ḃ′
2

(
K cos

(
Kξ
2

)
− psin

(
Kξ
2

))2
(
sin
(
Kξ
2

))2

+
Ḃ′

1

(
K cos

(
Kξ
2

)
− psin

(
Kξ
2

))
sin
(
Kξ
2

) + a0, (63)

U2,22 = Ḃ′
2(K sin(Kξ) + p cos(Kξ) ± K)2(

cos
(
Kξ
2

))2
− Ḃ′

1(K sin(Kξ) + p cos(Kξ) ± K)

cos
(
Kξ
2

) + a0, (64)

U2,23 = Ḃ′
2(K cos(Kξ) − p sin(Kξ) ± K)2

(sin(Kξ))2

+ Ḃ′
1(K cos(Kξ) − p sin(Kξ) ± K)

sin(Kξ)
+ a0, (65)

U2,24 = a0 + Ḃ′
2

(
−p sin

(
Kξ
2

)
+2K

(
cos

(
Kξ
4

))2−K)

)2

(
sin
(
Kξ
2

))2

+ Ḃ′
1

(
−p sin

(
Kξ
2

)
+ 2K

(
cos

(
Kξ
4

))2 − K)

)

sin
(
Kξ
2

) ,

(66)
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For case 3, we have
Family 1:
When p2 − 4qr > 0 and pq �= 0 or qr �= 0, we have

U3,1 = Ḃ1

(
p + D tanh

(
Dξ

2

))

− Ḃ2

(
p + D tanh

(
Dξ

2

))2

+ a0, (67)

U3,2 = Ḃ1

(
p + D coth

(
Dξ

2

))

− Ḃ2

(
p + D coth

(
Dξ

2

))2

+ a0, (68)

U3,3 = Ḃ1

(
(p + D)×

(tanh(Dξ) ± isech(Dξ))

)

− Ḃ2

(
(p + D)×

tanh(Dξ ± isech(Dξ))

)2

+ a0, (69)

U3,4 = Ḃ1

(
(p + D)×

(coth(Dξ) ± csch(Dξ))

)

− Ḃ2

(
(p + D)×

(coth(Dξ) ± csch(Dξ))

)2

+ a0, (70)

U3,5 = Ḃ1

(
2(2p + D) coth

(
Dξ

2

))

− Ḃ2

(
2(2p + D) coth

(
Dξ

2

))2

+ a0, (71)

U3,6 = −Ḃ1

(
−p +

√
(A2 + B2)D − AD cosh(D)

Asinh(D) + B

)

− Ḃ2

(
−p +

√
(A2 + B2)D − AD cosh(D)

Asinh(D) + B

)2

+a0,

(72)

U3,7 = −Ḃ1

(
−p −

√
(−A2 + B2)D + AD sinh(Dξ)

Acosh(Dξ) + B

)

− Ḃ2

(
−p−

√
(−A2+B2)D+AD sinh(Dξ)

Acosh(Dξ)+B

)2

+a0,

(73)

where twonon-zero real constantsA andB satisfiesA2 −
B2 > 0.

U3,8 = −
4Ḃ1qrcosh

(
Dξ
2

)
(
D sinh

(
Dξ
2

)
− pcosh

(
Dξ
2

))

−
16Ḃ2q2r2

(
cosh

(
Dξ
2

))2
(
D sinh

(
Dξ
2

)
− pcosh

(
Dξ
2

))2 + a0, (74)

U3,9 =
4Ḃ1qrsinh

(
Dξ
2

)
(
−D cosh

(
Dξ
2

)
+ psinh

(
Dξ
2

))

−
16Ḃ2q2r2

(
sinh

(
Dξ
2

))2
(
−D cosh

(
Dξ
2

)
+ psinh

(
Dξ
2

))2 + a0, (75)

U3,10 =
−4Ḃ1qrcosh

(
Dξ
2

)
(D sinh(ω) − p(cosh(Dξ) ± iD)

−
Ḃ2q2r2

(
cosh

(
Dξ
2

))2
(D sinh(ω) − p(cosh(Dξ) ± iD)2

+ a0, (76)

U3,11 =
−4Ḃ1qrsinh

(
Dξ
2

)
(D cosh(Dξ) − p(sinh(Dξ) ±D))

−
16Ḃ2q2r2

(
sinh

(
Dξ
2

))2
(D cosh(Dξ) − p(sinh(Dξ) ±D))2

+ a0,

(77)

U3,12 = −
4Ḃ1qrsinh

(
Dξ
2

)
(

−p sinh
(
Dξ
2

)
+ 2D

(
cosh

(
Dξ
4

))2 − D

)

−
16Ḃ2q2r2

(
sinh

(
Dξ
2

))2
((

−p sinh
(
Dξ
2

))

+2D
(
cosh

(
Dξ
4

))2 − D

)2

+ a0, (78)

Family 2:
If p2 − 4qr < 0 and pq �= 0(orqr �= 0), we have the

following solutions:

U3,13 = −Ḃ1

(
−p + K tan

(
Kξ

2

))

− Ḃ2

(
−p + K tan

(
Kξ

2

))2

+ a0, (79)

U3,14 = Ḃ1

(
p + K cot

(
Kξ

2

))

− Ḃ2

(
p + K cot

(
Kξ

2

))2

+ a0, (80)

U3,15 = −Ḃ1

(
(−p + K)×

(tan(Kξ) ± sec(Kξ))

)

− Ḃ2

(
(−p + K)×

(tan(Kξ) ± sec(Kξ))

)2

+ a0, (81)

U3,16 = Ḃ1

(
(p + K)×

(cot(Kξ) ± csc(Kξ))

)

− Ḃ2

(
(p + K)×

(cot(Kξ) ± csc(Kξ))

)2

+ a0, (82)

U3,17 = −Ḃ1

(
(−2p + K)

(
−2 cot

(
Kξ

2

)))

− Ḃ2

(
(−2p + K)

(
−2 cot

(
Kξ

2

)))2

+ a0,

(83)

U3,18 = −Ḃ1

(
−p + ±i

√
(−A2 + B2)K − AK cos(Kξ)

Asin(Kξ) + B

)
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− Ḃ2

(
−p + ±i

√
(−A2+B2)K−AK cos(Kξ)

Asin(Kξ)+B

)2

+a0,

(84)

U3,19 = −Ḃ1

(
−p + ±i

√
(−A2 + B2)K + AK cos(Kξ)

Asin(Kξ) + B

)

− Ḃ2

(
−p + ±i

√
(−A2+B2)K+AK cos(Kξ)

Asin(Kξ)+B

)2

+a0,

(85)

where twonon-zero real constantsA andB satisfiesA2 −
B2 > 0.

U3,20 =
4Ḃ1qrcos

(
Kξ
2

)
(
K sin

(
Kξ
2

)
+ pcos

(
Kξ
2

))

−
16Ḃ2q2r2

(
cos

(
Kξ
2

))2
(
K sin

(
Kξ
2

)
+ pcos

(
Kξ
2

))2 + a0, (86)

U3,21 = −
4Ḃ1qrsin

(
Kξ
2

)
(
K cos

(
Kξ
2

)
− psin

(
Kξ
2

))

−
16Ḃ2q2r2

(
sin
(
Kξ
2

))2
(
K cos

(
Kξ
2

)
− psin

(
Kξ
2

))2 + a0, (87)

U3,22 =
4Ḃ1qrcos

(
Kξ
2

)
(K sin(Kξ) + p cos(Kξ) ± K)

−
16Ḃ2q2r2

(
cos

(
Kξ
2

))2
(K sin(Kξ) + p cos(Kξ) ± ξ)2

+ a0, (88)

U3,23 = − 4Ḃ1qυ2rsin(Kξ)( √
4qr − p2 cos(Kξ)−p sin(Kξ) ± K

)

− 16Ḃ2q2r2(sin(Kξ))2(
K cos(Kξ)

−p sin(Kξ) ± K

)2 + a0, (89)

U3,24 = −
4Ḃ1qυ2rsin

(
Kξ
2

)
(

−p sin
(
Kξ
2

)
+ 2K

(
cos

(
Kξ
4

))2 − K

)

−
4Ḃ2q2r2

(
sin
(
Kξ
2

))2
(

−p sin
(
Kξ
2

)
+ 2K

(
cos

(
Kξ
4

))2 − K

)2 + a0,

(90)

Family 3:
When r = 0, and pq �= 0,weget soliton-like solutions

U3,25 = −2
υ2p2(−bδ + E)

(2 + εp2υ2)β l

+ (−12bδ + 12E)p2qυ2ℵ
(2 + εp2υ2)β lq(ℵ + cosh(pξ) − sinh(pξ))

− (−12bδ + 12E)q2υ2p2ℵ2

(2 + εp2υ2)β l(q(ℵ + cosh(pξ) − sinh(pξ)))2
,

(91)

U3,26 = −2
υ2p2(−bδ + E)

(εp2υ2 + 2)β l

+ (−12bδ + 12E)p2qυ2(cosh(pξ) + sinh(pξ))

(εp2υ2 + 2)β lq(ℵ + cosh(pξ) + sinh(pξ))

− (−12bδ + 12E)q2υ2p2(cosh(pξ) + sinh(pξ))2

(εp2υ2 + 2)β l(q(ℵ + cosh(pξ) + sinh(pξ)))2
,

(92)

where ℵ is constant.
Family 4:
When q �= 0, and r = p = 0, we have following ratio-

nal solution:

U3,27 = − (−6bδ + 6E)q2υ2

β l(qξ + C)2
, (93)

where C is an arbitrary constant.
In the case 4, we get
Family 1:
When p2 − 4qr > 0 and pq �= 0 or qr �= 0, the hyper-

bolic function solutions are as follows:

U4,1 = a0 − Ḃ′
1

(
p + D tanh

(
Dξ

2

))

+ Ḃ′
2

(
p + D tanh

(
Dξ

2

))2

, (94)

U4,2 = a0 − Ḃ′
1

(
p + D coth

(
Dξ

2

))

+ Ḃ′
2

(
p + D coth

(
Dξ

2

))2

, (95)

U4,3 = a0 − Ḃ′
1

(
(p + D)×

tanh(Dξ) ± isech(Dξ)

)

+ Ḃ′
2

(
(p + D)×

tanh(Dξ) ± isech(Dξ)

)2

, (96)

U4,4 = a0 − Ḃ′
1

(
(p + D)×

coth(Dξ) ± csch(Dξ)

)

+ Ḃ′
2

(
(p + D)×

coth(Dξ) ± csch(Dξ)

)2

, (97)

U4,5 = a0 − Ḃ′
1

(
2(2p + D) coth

(
Dξ

2

))

+ Ḃ′
2

(
2(2p + D) coth

(
Dξ

2

))2

, (98)

U4,6 = a0 + Ḃ′
1

(
−p +

√
(A2 + B2)D − AD cosh(Dξ)

Asinh(Dξ) + B

)

+ Ḃ′
2

(
−p +

√
(A2 + B2)D − AD cosh(Dξ)

Asinh(Dξ) + B

)2

,

(99)
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U4,7 = a0 + Ḃ′
1

(
−p −

√
(−A2+B2)D+AD sinh(Dξ)

Acosh(Dξ) + B

)

+ Ḃ′
2

(
−p −

√
(−A2 + B2)D + AD sinh(Dξ)

Acosh(Dξ) + B

)2

,

(100)

where two non-zero real constants A and B satisfies
A2 − B2 > 0.

U4,8 =
4Ḃ′

1qrcosh
(
Dξ
2

)
(
D sinh

(
Dξ
2

)
− pcosh

(
Dξ
2

))

+
16Ḃ′

2q2r2
(
cosh

(
Dξ
2

))2
(
D sinh

(
Dξ
2

)
− p cosh

(
Dξ
2

))2 + a0, (101)

U4,9 = −
4Ḃ′

1rsinh
(
Dξ
2

)
(
−D cosh

(
Dξ
2

)
+ psinh

(
Dξ
2

))

+
16Ḃ′

2q2r2
(
sinh

(
Dξ
2

))2
(
−D cosh

(
Dξ
2

)
+ psinh

(
Dξ
2

))2 + a0,

(102)

U4,10 = a0 +
4Ḃ′

1rcosh
(
Dξ
2

)
(D sinh(Dξ) − pcosh(Dξ) ± iD)

+
16Ḃ′

2q
2r2
(
cosh

(
Dξ
2

))2
(D sinh(Dξ) − pcosh(Dξ) ± iD)2

, (103)

U4,11 = a0 +
4Ḃ′

1rsinh
(
Dξ
2

)
(

D cosh(Dξ)−
p(sinh(Dξ) ± D)

)

+
16Ḃ′

2q
2r2
(
sinh

(
Dξ
2

))2
(

D cosh(Dξ)−
p(sinh(Dξ) ± D)

)2 , (104)

U4,12 = a0 +
4Ḃ′

1qrsinh
(
Dξ
2

)
(

−p sinh
(
Dξ
2

)
+ 2D

(
cosh

(
Dξ
4

))2 − D

)

+
16Ḃ′

2q2r2
(
sinh

(
Dξ
2

))2
(

−p sinh
(
Dξ
2

)
+ 2D

(
cosh

(
Dξ
4

))2 − D

)2

(105)

Family 2:
When p2 − 4qr < 0 and pq �= 0 or qr �= 0, the

trigonometric solutions of Equation (9) are

U4,13 = a0 + Ḃ′
1

(
−p + K tan

(
Kξ

2

))

+ Ḃ′
2

(
−p + K tan

(
Kξ

2

))
, (106)

U4,14 = a0 − Ḃ′
1

(
p + K cot

(
Kξ

2

))

+ Ḃ′
2

(
p + K cot

(
Kξ

2

))2

, (107)

U4,15 = a0 + Ḃ′
1

(
(−p + K)×

(tan(Kξ) ± sec(Kξ))

)

+ Ḃ′
2

(
(−p + K)×

(tan(Kξ) ± sec(Kξ))

)2

, (108)

U4,16 = a0 − Ḃ′
1

(
(p + K)×

(cot(Kξ) ± csc(Kξ))

)

+ Ḃ′
2

(
(p + K)×

(cot(Kξ) ± csc(Kξ))

)2

, (109)

U4,17 = a0 + Ḃ′
1

(
−2(−2p + K) cot

(
Kξ

2

))

+ Ḃ′
2

(
−2(−2p + K) cot

(
Kξ

2

))2

, (110)

U4,18 = a0 + Ḃ′
1

(
−p+±i

√
(−A2+B2)K−AK cos(Kξ)

Asin(Kξ) + B

)

+ Ḃ′
2

(
−p + ±i

√
(−A2 + B2)K − AK cos(Kξ)

Asin(Kξ) + B

)2

,

(111)

U4,19 = a0 + Ḃ′
1

(
−p+±i

√
(−A2+B2)K+AK cos(Kξ)

Asin(Kξ) + B

)

+ Ḃ′
2

(
−p + ±i

√
(−A2+B2)K+AK cos(Kξ)

Asin(Kξ) + B

)2

,

(112)

where twonon-zero real constantsA andB satisfiesA2 −
B2 > 0.

U4,20 = a0 −
4Ḃ′

1qrcos
(
Kξ
2

)
(
K sin

(
Kξ
2

)
+ pcos

(
Kξ
2

))

+
16Ḃ′

2q2r2
(
cos

(
Kξ
2

))2
(
K sin

(
Kξ
2

)
+ pcos

(
Kξ
2

))2 , (113)

U4,21 = a0 +
4Ḃ′

1qrsin
(
Kξ
2

)
(
K cos

(
Kξ
2

)
− psin

(
Kξ
2

))

+
16Ḃ′

2q
2r2
(
sin
(
Kξ
2

))2
(
K cos

(
Kξ
2

)
− psin

(
Kξ
2

))2 , (114)

U4,22 = a0 +
4Ḃ′

1qrcos
(
Kξ
2

)
(K sin(Kξ) + p cos(Kξ) ± K)

+
16Ḃ′

2q2r2
(
cos

(
Kξ
2

))2
(K sin(Kξ) + p cos(Kξ) ± K)2

, (115)
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U4,23 = a0 + 4Ḃ′
1qrsin(Kξ)

(K cos(Kξ) − p sin(Kξ) ± K)

+ 16Ḃ′
2q2r2(sin(Kξ))2

(K cos(Kξ) − p sin(Kξ) ± K)2
, (116)

U4,24 = a0 +
4Ḃ′

1qrsin
(
Kξ
2

)
(

−p sin
(
Kξ
2

)
+ 2K

(
cos

(
Kξ
4

))2 − K

)

+
16Ḃ′

2q2r2
(
sin
(
Kξ
2

))2
(

−p sin
(
Kξ
2

)
+ 2K

(
cos

(
Kξ
4

))2 − K

)2 ,

(117)

Family 3:
When r = 0, and pq �= 0, the hyperbolic function

solutions are

U4,25 = − (−12bδ+12E)p2qυ2ℵ
(εp2υ2 − 2)β lq(ℵ+ cosh(pξ) − sinh(pξ))

+ (−12bδ+12E)q2υ2p2ℵ2

(εp2υ2 − 2)β l(q(ℵ+cosh(pξ) − sinh(pξ)))2
,

(118)

U4,26 = − (−12bδ+12E)p2qυ2(cosh(pξ)+ sinh(pξ))

(εp2υ2 − 2)β lq(ℵ+ cosh(pξ)+ sinh(pξ))

+ (−12bδ+12E)q2υ2p2(cosh(pξ)+sinh(pξ))2

(εp2υ2 − 2)β l(q(ℵ+cosh(pξ)+sinh(pξ)))2
,

(119)

where ℵ is constant.

5. Results and discussion

In this section, we compare our results with already
present results in the literature, obtained by different
mathematical techniques. Herewehave used improved
generalized Riccati equation mapping method on
Equation (9) and constructed different types of exact

solutions including dark, combined dark-bright, singu-
lar periodic wave, combined singular periodic wave
solutions and one rational solution. In [36], authors
construct topological, non-topological, singular, com-
pound topological-non-topological bell-type and com-
pound singular, soliton-like, singular periodic wave and
exponential function solution and in [37] authors calcu-
lated singular, periodic, bright, dark, their combinations
and compound solitons. We have compared these and
found out that our results are different and new from
the results obtained by the authors in [36,37].

It is worth mentioning that the solutions obtained
in this study represent certain real-life situations. For
example, the tan-hyperbolic solutions are useful in cal-
culating the magnetic moment and rapidity of special
relativity, cos-hyperbolic solutions represent the shape
of hanging cable, cot-hyperbolic solutions appear in
the Langevin function which arise in magnetic polar-
ization, sec-hyperbolic solutions represent the laminar
jet profile [41]. Similarly, exact solutions with the peri-
odic functions exhibit periodic wave phenomena. It is
significant to mention here that a lot of new solutions
have been produced for Murnaghan’s rod, and for the
first time this equation has been solved for space–time
fractional order. The reason of using fractional differ-
ential equation is that it is naturally related to physi-
cal phenomena with memory. Many well-known equa-
tions can be solved by space–time fractional differential
equations to get variety of new solutions. For the bet-
ter understanding of the solitary wave phenomenon
graphs of some obtained solutions has been discussed
here with the aid of mathematical software Maple 17.
Figure 1 represents 3D graphs of U1,1 which is dark
soliton generated by taking fractional order α = 0.7, 1,
with some given parameters p = 3, q = 1, r = 2, b =
0.5,β = 1, E = 4, ε = 0.1, l = 2,υ = 2, δ = 6. Figure 2
represents 3D graphs of solutions U1,20 with fractional
order α = 0.6, 1, exhibits combined singular periodic
wave solution by taking parameters p = 5, q = 2, r =

Figure 1. 3D graphs of solitary wave solution U1,1 with fractional order α = 0.7, 1.
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Figure 2. 3D graphs of periodic wave solution U1,20 with fractional order α = 0.6, 1.

Figure 3. 3D graphs of solitary wave solution U2,5 with fractional order α = 0.6, 1.

Figure 4. 3D graphs of solitary wave solution U3,3 with fractional order α = 0.4, 1.

1, b = 0.3,β = 1.5, E = 10, ε = 0.5, l = 2, υ = 3.5, δ =
22.5. Figure 3 represents 3D graphs dark singular
solitons of U2,5 with fractional order α = 0.6, 1 by
choosing parameters p = 5, q = 2, r = 1, b = 0.3,β =
1.5, E = 10, ε = 0.5, l = 2,υ = 3.5, δ = 22.5. Figure 4

represents 3D graphs of combined dark-bright soliton
generated by U3,3 with fractional order α = 0.4 , 1, by
taking p = 3, q = 2, r = 1, b = 0.3,β = 1.5, E = 10, ε =
0.5, l = 2,υ = 3.5, δ = 22.5. Figure 5 represents 3D
graphs of solitary wave solution U4,6 with fractional
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Figure 5. 3D graphs of solitary wave solution U4,6 with fractional order α = 0.5, 1.

order α = 0.5, 1 with parameters p = 5, q = 3, r = 1,
b = 0.9, β = 5, E = 11, ε = 0.05, l = 2, υ = 5, δ = 33,
A = 2, B = 3.

6. Conclusion

In this paper, improved generalized Riccati equation
mapping method has been successfully applied to
secure new and more general solutions to the space–
time fractional Murnaghan’s rod equation. As a result,
some totally new solutions have been obtained includ-
ing several solitary wave solutions: dark, combined
dark-bright, singular periodic wave, combined singu-
lar periodic wave solutions and one rational solution.
These new solutions might be very useful in the study
of seismology, physical properties of brass, steel and
newelasticmaterials likepolymers. Theobtained results
show that this mathematical technique is very effective
and to find more general solutions of many NPDEs aris-
ing in plasma physics, mathematical physics, chemistry,
many engineering disciplines and in natural sciences.
The physical interpretation of these solutions has been
highlighted with the help of 3D graphs and all the solu-
tions obtained in this article have been verified by back
substitution in original equation by using Maple 17.
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