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Abstract
Diabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity 
in retinal fundus images because early diagnosis and treatment can eventually minimize the risk of visual impairment. The 
retinal fundus image plays a significant role in early DED classification and identification. An accurate diagnostic model’s 
development using a retinal fundus image depends highly on image quality and quantity. This paper presents a methodical 
study on the significance of image processing for DED classification. The proposed automated classification framework for 
DED was achieved in several steps: image quality enhancement, image segmentation (region of interest), image augmenta-
tion (geometric transformation), and classification. The optimal results were obtained using traditional image processing 
methods with a new build convolution neural network (CNN) architecture. The new built CNN combined with the traditional 
image processing approach presented the best performance with accuracy for DED classification problems. The results of 
the experiments conducted showed adequate accuracy, specificity, and sensitivity.

Keywords Diabetic eye disease · Image processing · Convolution neural network

1 Introduction

Diabetic eye disease is the most common complication in 
diabetes, in which retinal fundus imaging is the most com-
monly adopted procedure because of its sensitivity in the 
diagnosis of DED [21]. The analysis of the severity and 

intensity of DED correlated with a patient having diabe-
tes is typically attended by Ophthalmologists based on the 
lesion presents in retinal fundus images [50]. For instances, 
Fig. 1 presents the details on lesions that need to be identi-
fied from retinal images are; (i) Extra growth of blood ves-
sels and damage or rupture in the tiny blood vessels in the 
retina (microaneurysms), often known as an early stage of 
diabetic retinopathy (DR); (ii) Built-up fluid causing swell-
ing in the macular region or often form soft exedutes known 
as diabetic macular edema (DME). The common reason for 
blindness and vision loss, and (iii) Damage in the optic nerve 
and blood vessel rupture causes intraocular pressure that 
damages the optic nerve to inadequate, causing glaucoma 
(Gl). This eye condition is irreversible. While the number of 
diabetic patients is exponentially growing, there is also a rise 
in the number of retinal fundus images obtained by screen-
ing campaigns, which, in effect, causes a considerable labor-
intensive and time-consuming complexity on the medical 
experts. This complexity has driven the development of an 
automated retinal lesions detection system.

Deep learning (DL) in machine learning (ML) has shown 
a significant impact on different science fields over the last 
few years [18, 22]. Such as the advancements in image and 
speech recognition, the ability to train artificial data that beat 
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human players in games like ATARIS [30] and GO [42], 
and the development of new creative images using methods 
like Generative Adversarial Networks (GAN) [49], to learn 
the interaction between review texts and star ratings for pre-
diction [12, 37] and as well as music [7]. Several of these 
activities were considered onerous to be accomplished by 
algorithms before the development of deep learning. Deep 
learning (DL) system plays a significant role in healthcare 
[11, 39, 48].

In deep learning, a pre-trained CNN network can be used 
to transfer learning from source task to target task with a 
limited number of images or minimise training time [28, 
36]. The most popular transfer learning method is to fine-
tune the pre-trained network. Regardless of the nature of the 
training model (pre-trained model or a new model), image 
data sets are typically preprocessed prior to training CNN 
architectures in various ways, such as image resizing, image 
quantity, image standardisation, and image enhancement. 
Improving the classification performance of the CNN model 
is limitless research, and the image quality in the data set 
has a significant impact on the overall performance of the 
architecture.

1.1  Motivation

Spectacular developments in the fields of artificial intel-
ligence, computer vision and deep learning have led to 
remarkable results in image classification and vision tasks 
over the last several years, primarily through the use of DL 
[27]. However, in medical imaging (e.g., retinal fundus 
images), an early-stage identification of lesions and abnor-
malities is still the open issue reported in previous literature 
by Lam. et al. [27]. In their study they mentioned deep neu-
ral networks are struggling to learn enough in-depth fea-
tures to identify aspects of mild disease; 93 percent of mild 
cases are wrongly classified as a healthy eye. Therefore this 

research presents the system in which traditional image pro-
cessing techniques and the state-of-the-art CNN combined to 
analyze early-DED disease. This paper articulates a research 
study using a small volume of the open-source retinal image 
database for in-depth learning evaluation between normal 
and mild DED classification.

1.2  Contributions

Therefore, in this research article, the main objective is to 
achieve the highest accuracy, sensitivity, and specificity than 
the existing deep learning models. The technique we used 
in this paper is the combination of traditional image pro-
cessing methods for image enhancement and segmentation 
and then train in deep learning algorithms. We explore the 
significance of traditional image preprocessing in enhancing 
the early stage DED detection accuracy by using DL mod-
els. The advancement of this technology does not indicate 
the complete substitution of an ophthalmologist. Rather, it 
allows ophthalmologists more reliably diagnose DED. The 
contribution of this paper in the diagnosis of early DED can 
be classified into the following groups;

• Image enhancement: green channel extraction, contrast 
limited adaptive histogram equalization (CLAHE), and 
illumination correction was used to enhance the original 
image;

• Image segmentation: Region of Interest (ROI) such as 
blood vessels, macular region and optic nerve segmented 
from retinal fundus images;

• Pre-trained model: high-performance models were 
selected to classify the processed and segmented retinal 
fundus images;

• Build a new CNN model and training the model from 
scratch with processed and segmented retinal fundus 
images.

Fig. 1  Early DED complication 
in retina; a Anatomical structure 
of the retina; b Microaneu-
rysms- narrow buldges in blood 
vessels (diabetic retinopathy); 
c Soft exudates in macula (dia-
betic macular edema); (d) Optic 
nerve damage (glaucoma); and 
e cataract
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2  Related Works

Early detection of DED in retinal fundus images relies on a 
clinical technique to visualize a comprehensive set of fea-
tures and localization within the image [4, 40]. Detection 
is challenging for diabetic patients with early DED stages 
because it depends on the existence of microaneurysms 
(bulges in blood vessels), fluid leakage from blood vessels, 
soft exudates formation, and damage of the optic nerve on 
retinal fundus images. The stages of diabetic eye disease 
are shown in Fig.1.

In the past, automated DED diagnostics have been 
explored to ease the burden on ophthalmologists and 
minimise diagnostic inconsistencies [31]. There are 
studies, which used lesion-based detection, an author 
like; Gharaibeh et al. [16] presented a new approach to 
detect microaneurysms in retinal fundus images. Their 
work includes preprocessing methods like blood vessel 
segmentation, fovea localization, and elimination. Then 
they used a combination of neural networks and fuzzy 
logical models for feature extraction and classification. 
Their study addressed the binary classification of dia-
betic retinopathy into two categories (microaneurysms 
and non-microaneurysms).

Moreover, a range of several other features than microa-
neurysms are appropriate for the diagnosis of DED. Simi-
larly, Kaur et al. [25] proposed region-based segmentation 
and detection of the lesion and then classified using pixel-
based classification and determine the severity level of the 
retinal disease. Karegowda et al. [24] detected exudates 
in diabetic retinopathy using decision tree and GA-CFS 
techniques as input to backpropagation neural network. 
They classified the normal eye and eye with exudate. The 
results obtained were insufficient to provide reliable clas-
sification accuracy and do not result in efficient noise 
removal. Sopharak et al. [47] presented a fuzzy c-means 
and clustering-based exudate identification method. Their 
work mostly relies on the identification of optic disc and 
the elimination of blood vessels. According to the results 
obtained, the exudates are identified without their char-
acteristics. Jenuja et al. [23] present a method based on 
the optic disc and optic cup segmentation. The proposed 
method uses dual neural networks that operate in com-
bination with the optical cup and disc parts. The aim of 
this proposed method is to efficiently segment the optic 
cup and disc of a retinal fundus image. The results of 
the classification of various stages of glaucoma are not 
given. Earlier Gulshan et al. [17] and Gargeya et al [15] 
presented CNN for DR detection using fundus images. 
They achieved specificity and sensitivity in the range of 
90 percent for (normal/mild to moderate/severe) binary 
classification in private wider data sets comprising 80,000 
to 120,000 fundus images.

There are many traditional strategies for DED diagnosis 
and classification [8, 19, 51]. Most techniques use neural 
networks, mathematical morphology, region of interest tech-
niques, pattern recognition, clustering of fuzzy C-means, 
and Gabor filter techniques. For example, Chaudhuri et al. 
[8] uses 2D matched filters, to detect the blood vessels pre-
sent in the retina. Vallabha et al. [51] uses Gabor filter bank 
outputs to identify the mild, moderate, and extreme stages 
of retinopathy, the automated detection and classification 
of abnormalities present in the vascular network are carried 
out.

There are numerous methods suggested for optic disc 
detection. Principal component analysis (PCA) is one of 
the methods by which clustering of brighter pixels derives 
the candidate regions for the optical disc. Noronha et al. 
[32] used Hough Transform for Optic Disc detection. In the 
detection of exudates, a neural network-based approach is 
used by Gardner et al. [14], For the detection of exudates, 
a fuzzy C-means clustering method employed by bezdek 
et al. [5] and a computational intelligence-based approach 
are used by Osareh et al. [33]. The automatic classification 
of normal, mild, moderate, severe, and proliferative diabetic 
retinopathy is carried out by measuring the areas of several 
characteristics, such as haemorrhages, microaneurysms, 
exudates, and blood vessels classified by the support vector 
machine [2].

However, the accuracy metrics for the diagnosis of four 
categories of DR, i.e., no DR, mild, moderate, and severe, 
are significantly based on disease-grade selection ratios. 
Although the no DR and severe stages are likely to achieve 
high sensitivity, the mild and moderate recall levels are often 
deficient. Research studies using publicly available datasets 
reveal difficulties in detecting early-stage DEDs.

3  Methods

The research’s overarching objective is to improve the per-
formance of early detection of DED from fundus images 
through the empirical assessment of image preprocessing 
and classification improvement techniques. The related 
objectives can be described as follows:

• Implementing traditional image processing techniques 
such as (i) Image Enhancement, (ii) Image Augmenta-
tion, (iii) Image Segmentation;

• Implementing various hyperparameters and evaluate their 
effect on CNN models’ performance;

• Evaluate the accuracy obtained by pre-trained CNN mod-
els: ResNet50, VGG-16, and Xception with original and 
preprocessed fundus images;

• Developing a new CNN model to train preprocessed fun-
dus images for classification accuracy improvement;
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• Evaluate the results of pretrained and new CNN model 
by performance metrics.

To high-level process, a pipeline is shown in Fig. 2 which 
demonstrates the importance of this workflow. In which, we 
experimented with the raw retinal fundus dataset employ-
ing three pre-trained models such as, (ResNet50, VGG-16, 
Xception) and obtained the highest performing model. We 
used traditional image processing algorithms to our raw fun-
dus images and then trained this dataset with best perform-
ing model from the previous experiment. We also trained 
preprocessed images with CNN architecture from scratch. 
Finally, we compared the results to check preprocessed 
images improved the performance accuracy of the models 
or not.

3.1  Data Collection

Data was collected from publicly accessible sources, i.e., 
Messidor, Messidor-2, DRISHTI-GS, and Retinal Dataset 
from GitHub. This section explains the data sets used in 
these articles. The labeling of each image is generated by the 
ophthalmologist. Depending on the number of hemorrhages, 
microaneurysms, and the presence of neovascularisation, 
each image is classified as one of three lesion grades. Messi-
dor Dataset has been formed to promote computer-assisted 
DED studies. Messidor database collected 1200 retinal fun-
dus images of the posterior pole from three departments of 
ophthalmology using a 3CCD color video camera placed 
on a Topcon TRC NW6 non- retinograph with a 45◦ field of 
view (FOV). The medical experts offered two diagnostics 
for each image: Retinopathy grade and  Macular edema risk. 
Messidor-2 Dataset is a publicly accessible dataset used by 
other individuals to evaluate DED algorithms’ performance. 

Messidor-2 comprises 1,748 colour retina images of 874 
subjects. Messidor-2 varies from the actual Messidor data-
set of 1200 images and ensures that it has two images for 
each subject, one for each eye. Using the previously pub-
lished ICDR and DME gradings, Messidor-2 provided four 
disease rates for each subject. DRISHTI-GS Dataset [44] 
There are 101 retinal images in the Drishti-GS1 dataset with 
31 normal images and 70 glaucoma lesion images. Due to 
the limited images obtained from DRISHTI-GS, we con-
sidered the glaucoma dataset from GitHub 1 Retina Dataset 
which contained 100 retinal images indicating glaucoma 
lesions. Therefore, improvement in the imbalance dataset 
can cause the improvement of the predictive model [52]. 
Thus we performed undersampling of the dataset in this 
study and selected 100 images from each class to perform 
our experiment.

3.2  Image Pre‑processing

The preprocessing step is used to eliminate noise/variation 
in the retinal fundus image and improve the quality and 
contrast of the image. Apart from contrast enhancement 
and noise reduction, the preprocessing step can be used 
for image normalization and non-uniform intensity correc-
tion to eliminate artifacts and increase the accuracy of the 
process steps. Furthermore, DED features are localized, 
extracted, and segmented from fundus images for further 
classification in pre-trained models. The preprocessing 
techniques utilized in this article are briefly discussed in 
this section.

Fig. 2  The high-level process pipeline

1 https:// github. com/ yiwei chen04/ retina_ datas et/ tree/ master/ datas et.

https://github.com/yiweichen04/retina_dataset/tree/master/dataset
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3.2.1  Image Enhancement

To enhance the original images’ appearance and infor-
mation value before processing, we used image enhanc-
ing techniques, popular techniques such as contrast 
enhancement, illumination correction. Contrast enhance-
ment: Contrast limited adaptive histogram equalization 
(CLAHE) [56] is utilize to improve the visibility of 
images. CLAHE is an adapted part of the Adaptive His-
togram Equalization (AHE) process. In this method, the 
enhancing function is introduced to all neighborhood 
pixels, and the transformation function is derived. This 
is distinct from AHE for its limited contrast. In CLAHE, 
the contrast of the image is improved by implementing 
Contrast limited histogram equalization (CLHE) to small 
data areas called tiles rather than the entire image. The 
resulting adjacent tiles are then perfectly stitched back 
utilising bilinear interpolation. CLAHE applied to grey-
scale retinal images. The ’cliplimit’ function is applied 
to limit noise in an image. Create gray level mapping and 
clip the histogram. In the contextual area, pixel numbers 
are divided equally at each grey level so that the average 
number of pixels is grey as follows:

Where, navg = average number of pixels, ngray = number of 
gray level in contextual region

nCR−xp = number of pixels in x direction of contextual 
region

nCR−yp = number of pixels in y direction of contextual 
region After that calculate the actual cliplimit.

CLAHE [56] is an useful technique in biomedical image pro-
cessing because it is very effective at making the normally 
important salient sections more accessible.

Illumination correction This preprocessing method aims to 
reduce the scenario effect caused by uneven illumination of 
retinal images [13]. Every pixel intensity is calculated using 
the following equation:

Where p, p’is the initial and the latest pixel size values, 
respectively, � D is the desired average intensity, and � L is 
the local average intensity [54]. Microaneurysms forming at 
the surface of the retina are enhanced by this method.

(1)navg =
nCR−xp ∗ nCR−yp

ngray

(2)nCL = nCLIP ∗ navg

(3)p� = p + �D − �L

3.2.2  Image Segmentation

To build an effective deep learning-based classification 
system for detecting mild DED, we need to consider the 
importance of the architecture of the network as well as the 
importance of input data. To obtain an efficient results, input 
images plays significant role. In retinal fundus images, vari-
ability such as the number of images, luminosity, contrast, 
and anatomical features determines the forthcoming result 
of the automatic disease detection algorithm. Therefore, 
features segmentation enhances the value of the images for 
classification and contribute for better accuracy. The pro-
cess and the necessary theory is explained in the following 
sections.

Blood Vessels Extraction For detecting early stages of DR, 
the blood vessels are one of the most significant anatomical 
feature in retinal images. Thus retinal blood vessels segmen-
tation is performed with following steps: (1) image enhance-
ment; (2) Tyler Coye algorithm [10] and (3) morphological 
operation for further improvement in results.

We performed image enhancement techniques as mention 
above, green channel of the RGB color space presents bet-
ter contrast between vessels network and background. The 
variation of contrast and luminosity in a background of a 
fundus image, can be estimate using method introduced by 
Zuiderveld [56] and Youssif et al. [54]. After, contrast and 
luminosity adjustment, ISODATA used in Tyler Coye algo-
rithm is used for extracting threshold level. After tyler coye 
algorithm, morphological operation (erosion and dilation) 
used for further enhancement. Using these two essential 
fundamental operations we reduce noise or remove of gaps 
in the background and foreground. Erosion is a procedure 
used to eliminate or spike the edge of the area, which is 
represented in the following equation.

Dilation is a procedure employed to broaden the rim of the 
background or foreground image configuration. This proce-
dure is widely used to fill a gap, that can be defined in the 
following equation.

Closing is to perform the dilation, followed by erosion, to 
create a relation between each pixel of the image in order to 
bring it closer to one another. This procedure can be defined 
in the following equation,

(4)A⊖ B = {p|Bp ⊆ A}

(5)A⊕ B = {x|Bx ∩ X ≠ 0}

(6)A ⋅ B = (A⊕ B)⊖ B
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Where, ⊕ denote the dilation; ⊖ denote the erosion; A = 
Structuring element and B = the erosion of the dilation of 
that set. However, several gaps remain in Tyler Coye algo-
rithm. This morphological process is to fill these small gaps 
in order to cover some of the required regions of the blood 
vessels.

Optic Disc Detection and Extraction: Glaucoma occurs 
when optic nerve is damaged. So, the segmentation of the 
optic disc (OD) helps to view the clearer anatomical changes 
in optic nerve. Figure 1 shows an fundus image of an eye 
from our collected data set with anatomical parts showing 
OD. To segment the OD we applied following steps: (i)
image enhancement, (ii) Circular Hough Transform (CHT) 
to detect circular object, (iii) median filter to reduce noise, 
and (iv) optic disc segmentation using the threshold values. 
Image processing attempts to improve and increase the qual-
ity of the retinal fundus image in order to enable the identifi-
cation of clinical features for DED. Flowchart of the image 
processing and image segmentation approach is depicted in 
Fig. 3. CLAHE can not be employed in the entire image, but 
only on a specific area ’tile’ of the image.

Image enhancement calculation is adjusted on the basis 
of the user-specific maximum contrast-rate level by setting 

its rate to l,0 ≤ l ≤ l [46]. Further contrast enhancement 
is performed in those images which has low contrast esti-
mated by

Where, �(i, j) and �(i, j) are pixels after transformed and pix-
els before transformed in (i, j) coordinate, respectively; � is 
maximum pixel value; � is minimum pixel value of input 
image and �  is maximum value of gray scale.

The median filtering has a strong noise reduction effi-
ciency and it is very common in image processing for 
noise removal. Mean filtering replaces the pixel value in 
the middle of the sliding window with the median value of 
the pixels in the window. Mathematically median filtering 
is represented in,

Segmentation is a pixel classification method for extracting 
objects or segmenting regions with a similar attributes from 
the background [41]. Therefore, we used the Circular Hough 
Transform (i.e. CHT) method for optical disc detection. The 
CHT method is often used to identified circular shape in 

(7)�(i, j) =

(
�(i, j) − �

� − �

)

(� − 1)

(8)f (x, y) = median(s,t)∈Sxy{g(s, t)}

Fig. 3  The flow chart
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an image. The key benefit of the CHT approach is that it is 
sensitive of differences in feature specification descriptions 
as well as largely unaffected by image noise. The CHT is 
provided by given equation:

The procedure to detect circles involves the following 
steps:(i) we obtain a binary edge map of the image; (ii) val-
ues for a and b are set; (iii) obtain the value of c radius that 
satisfies Eq. 7; (iii) adjust the accumulator corresponding to 
(a,b,c); (iv) change the values for a and b within the scope 
of interest and return to Phase (iii).

Exudate localization and Detection: Exudate in two-dimen-
sional retinal images acquired via a digital fundus camera, 
usually appear as bright area with varying scale, brightness, 
position and form. Precise exudate segmentation is a difficult 
activity given the large variety of scale, intensity, contrast 
and shape. It comprises of three major processing stages: (1) 
image enhancement; (2) optic disc detection and removal; 
(3) blood vessel removal; and (4) exudate extraction. When 
exudate are acquired from the mild dataset, the classifica-
tion of the DME can be performed according to the grading 
criteria mention in the messidor dataset. Early DME can 
be diagnose early by detecting the presence of exudates in 
fundus images. Figure 1 shows the exudates formation in 
the macular region. After optic disc detection and removal 
performed, Otsu thresholding is applied to obtain candidate 
areas of exudates. Threshold value T relying on the input 
image is estimated by Ostu method, automatically. First, 
intensity value i of histogram is calculated using Eq. (11),

The number of pixel images N and the number of pixels 
ni with I intensity. Subject weight and background are 
described in (12) and (13).

Here, the number of the gray level is L. The mean of the 
object and the background is then determined using Eqs. 
(14) and (15)

(9)(x − a)2 + (y − b)2 = c2

(10)p(i) =
ni

N
, p(i) ≥ 0,

256∑

1

p(i) = 1

(11)w1(t) =

t∑

i=1

p(i)

(12)w2(t) =

L∑

i=t+1

p(i) = 1 − w1(t)

(13)m1(t) =

t∑

i=1

i.p(i)∕w1(t)

Hence, Variance is estimated by  Eqs. (16, 17), while total 
of variance is expressed in Eq. (18) as follows.

Here, �2w is called as within-class variance (WVC) that 
is expressed in Eq. (19), while �2B called between-class 
variance (BVC) that is expressed in Eq. (20). WVC is the 
amount of individually class variance that has been weighted 
with probability of each class. Average total is calculated 
using Eq. (21). Threshold value can be obtained from mini-
misation of WVC or maximisation of BVC, but BVC has 
less computation time.

Morphological is a set of discrete coordinates that related to 
pixel object of image that involves logical operation, such 
as “or” and “and”. Opening operation aims to refine object 
contour and repair object contour with eliminated pixel area 
that smaller than structure element. Opening operation is 
expressed in Eq. (22).

3.3  Image Augmentation

Deep learning models perform well with high-volume train-
ing data [26, 35]. Therefore, data augmentation comprises a 
collection of techniques that improve the quantity of train-
ing data without actively acquiring new data. Thus, image 
augmentation algorithms addressed in this paper include 
geometric transformations such as flipping, rotation, mir-
ror, and cropping. We used Keras ImageDataGenerator class 
for real-time image augmentation, which ensures that the 
selected model will obtain variations of the images at every 

(14)m2(t) =

t∑

i=1

i.p(i)∕w2(t)

(15)�2
1
(t) =

t∑

i=1

(1 − m1)
2.

p(i)

w1(t)

(16)�2
2
(t) =

t∑

i=t+1

(1 − m2)
2.

p(i)

w2(t)

(17)�2(t) =�2
w
(t) + �2

B
(t)

(18)sigma2
w
(t) =w1(t).�1(t)

2 + w2(t).�2(t)
2

(19)�2
B
(t) =w1. [m1(t) − mT ]

2 + w2. [m2(t) − mT ]
2

(20)mT =

N∑

i=1

i.p(i)

(21)AoB = (AΘB)⊕ B
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epoch. The advantage of using ImageDataGenerator class in 
our work is transformed images will not add to the range of 
original images, which avoid overfitting the selected model.

3.4  Transfer Learning

In this research, we are using CNNs-based transfer learning 
to implement the DED retinal fundus image classification. 
To accomplish the absolute best classification outcomes, we 
explore pre-trained CNN model transfer learning techniques. 
The precise details of the pre-trained models will be pre-
sented in this section.

According to Pan et al. [34] transfer learning is defined as; 
D = �,P(X) with X = x1, x2, ..., xn � �, where, D is domain, 
� is refer to a feature space and P(X) marginal probability 
distribution. Given, T = Y ,F(∗) where, T is given task, Y 
is refer to a label space and F(∗) is an objective predictive 
function that is learned from the feature vector and label 
pairs. Specifically, given a source domain Ds with learning 
task Ts and a target domain Dt with learning task Tt , then 
transfer learning is the process of improving the learning 
of the target predictive function Ft(∗) in Dt based on the 
knowledge learned from source domain Ds and learning task 
Ts , where Dt ≠ Dt , or Ts ≠ Tt . It should be noted that the sin-
gle source domain described above can be expanded across 
multiple source domains.

The concept behind the transfer learning for the classifi-
cation of images is that if a network is typically trained on 
a broad scale and enough data set (e.g., ImageNet), it can 
effectively train in the particular target task, which has fewer 

labeled examples than the pre-training dataset. One can ben-
efit from these learned feature maps without training a large 
model from scratch on a large dataset.

In this paper, we will customize pre-trained models in 
two ways: (1) Feature Extraction, features learned from the 
source task to extract useful features from the target task. 
We added a new classifier, which can be trained from scratch 
to the top of the pre-trained network to modify the features 
maps initially learned for the sample. (2) Fine-Tuning, 
unfreeze some of the last layers of the frozen base network 
and collectively train the last layers of the base network and 
the newly added classifier layers. This helps to “fine-tune” 
the higher-order character representations in the base net-
work to make them more appropriate to the target task. We 
fine-tune three pre-trained CNN networks(Xception, VGG-
16, and DenseNet21) to implement DED image classifica-
tion. Three CNN pre-trained network on ImageNet and their 
characteristics are described in Table 1.

3.5  Proposed CNN Model

CNN’s are the most popular deep learning algorithms which 
train the medical images for the classification of medical 
image abnormalities [29]. The explanation for this is while 
analyzing input images, CNN preserves distinctive fea-
tures. Spatial relationships, such as where the blood ves-
sels start rupturing or how yellow fluid starts accumulating 
near the macular region, are of primary importance in reti-
nal images, as we discussed above. The framework of the 
process is shown in Fig. 4 and Table 2 shows the selected 

Table 1  Three CNN models 
pre-trained on ImageNet and 
their characteristics. Source: 
https:// keras. io/ appli catio ns)

*The top-1 and top-5 accuracy refers to the model’s performance on the ImageNet validation dataset.
**Depth refers to the topological depth of the network. This includes activation layers, batch normalisation 
layers etc

Model Size Top-1 accuracy* Top-5 accuracy* Parameters Depth** Reference

Xception 88 MB 0.790 0.945 22,910,480 126 Chollet [9]
VGG16 528 MB 0.713 0.901 138,357,544 23 Simonyan and 

Zisserman [43]
DenseNet21 33 MB 0.750 0.923 8,062,504 – Huang et al. [20]

Fig. 4  The proposed CNN model

https://keras.io/applications
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hyperparameters. There are five convolution layers in this 
proposed CNN model, which take as its input a retinal fun-
dus image tensor of 244 × 244.

Subsequently, the first convolution layer uses 5 × 5 × 3 
kernel filters with stride 1 × 1 , and a total of 64 such fil-
ters are employed. The next layer, which receives the out-
put from the first layer, is a max-pooling layer with 2 × 2 
stride, reducing the input to half of its size 112 × 112 . For 
all layers, the output from the pooling layer passes through 
the ReLU activation feature. The nonlinear output obtained 
is now fed into the next convolution layer with 5 × 5 × 64 
with 128 filters, and the stride value is the same 1 × 1 . The 
obtained output pass through a max-pooling layer with the 
same 2 × 2 strides, which again reduced the input to half of 
its size 56 × 56 . After the output pass through ReLU activa-
tion, it is fed into the third convolution layer with 256 filters 
and the kernel size 5 × 5 × 128 with 1 × 1 stride. The output 
is passed to a max-pooling layer, which results in a tensor of 
shape 28 × 28 . Again the output pass through ReLU activa-
tion, fed into the fourth convolution layer with 512 filters 
and kernel size 5 × 5 × 256 and with the same stride 1 × 1 . 
The output from the fourth convolution is max-pooled to a 
size of 14 × 14 . After ReLU activated and it is pass to a fifth 
convolution layer with 512 filters and 14 × 14 × 512 kernel 
size to accommodate the output of all the filters from previ-
ously configured layers, and max-pooling of output from that 
layer with a stride of size 2 × 2 produces an output of size 
14 × 14 . Now the resulting tensor has the shape 7 × 7 × 512 . 
The obtained tensor is flattened with 25,088 neurons. The 
weighed values that emerge as neurons demonstrate the 
proximity to the symptoms of COVID-19. The dropout layer 
is applied here to drop values to handle network overfitting. 
In our work, we used a dropout rate of 0.5 during training. 
The fully connected layer converts the tensor with 25,088 
neurons to 64 neurons and adds ReLU activation to the out-
put. A tensor with 64 neurons is the product of the fully 
connected layers; these 64 neurons are translated into neuron 
counts equal to the number of categories to which the retinal 
image belongs, healthy, diabetic retinopathy, glaucoma, and 
diabetic macular edema.

3.6  Evaluation Criteria

Different metrics have been used to evaluate the efficiency 
of the highest performing DL model. To calculate the true 
or false classification of the DED diagnosed in the fundus 

images evaluated as follows. Initially, the cross-validation 
estimator [45] is adopted and plotted in a confusion matrix 
as shown in Fig. 5. The confusion matrix has the follow-
ing four predicted outcomes. True Positive (TP) has been 
identified with the right diagnosis and a variety of abnor-
malities. True Negative (TN) is an erroneously calculated 
number of periodic instances. False positives (FP) are a set 
of periodic instances. The following performance metrics 
are used to calculate the values of possible outcomes in 
the confusion matrix.

Accuracy Accuracy is an essential metric for the evaluation 
of the results of DL classifiers. It is a summary of the true 
positive and true negatives divided by the confusion of the 
matrix components’ total values. The most accurate model 
is an excellent one, but it is imperative to ensure that sym-
metric sets of data with almost equal false positive values 
and false negative values. Thus, the elements of the confu-
sion matrix mentioned above will be calculated to evaluate 
the effectiveness of our proposed classification model for 
the DED dataset.

Sensitivity (Recall): sensitivity is measured as the number 
of accurate positive predictions divided by the sum of posi-
tive. The best sensitivity is 1.0, whereas the worst is 0.0. We 
calculate sensitivity using following equation;

Specificity: specificity is measured as the number of correct 
negative predictions divided by the sum of negatives. The 

(22)Accuracy (%) =
TP + TN

TP + FN + TN + FP
100%.

(23)Sensitivity =
TP

TP + FN

Table 2  Hyper-parameters 
of the build CNN model and 
preferred weights in this study

R1—model, R2—image size, R3—optimizers, R4—mini batch size, R5—cross validation, R6—initial 
learning rate, R7—loss function, R8—Epoch, BCE—binary cross-entropy

R1 R2 R3 R4 R5 R6 R7 R8

CNN 224*224 RMSprop 32 10-fold 3e-4 BCE 50

Fig. 5  Confusion matrix: a positive = actual positive, a negative = 
actual negative, P positive = predicted positive, P negative = pre-
dicted negative, TP true positive, FN false negative, FP false positive, 
TN true negative, Se = TP + FP, Sp = FN + TN
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best specificity is 1.0, whereas the worst is 0.0. We calculate 
sensitivity using the following equation;

4  Experiments and Results

All the experiments are implemented using MatLab, Python, 
Keras library1, with TensorFlow2 as a back-end and Python 
3.8 programming language in jupyter notebook with a pro-
cessor 2.3 GHz Intel Core i9 and RAM of 16 GB 2400 MHz 
DDR4 with Intel UHD Graphics 630 1536 MB. The training/
testing data split was set at 80/20. The segregated generic 
selection was conducted to ensure an approximately equal 
distribution of the class. Mini-batch size was set to 32, and 
the cross-entropy loss function was chosen due to its suit-
ability for binary classification tasks. The Optimiser was set 
as default (Adam) and RMSprop for build CNN. The stand-
ard performance evaluation metric accuracy, sensitivity, and 
specificity of the test dataset were used to validate results.

We compared and analysed performance accuracy among 
three distinct pre-trained deep learning models with the new 
build CNN model in this study. The three pre-trained models, 
namely; Xception, VGG16, and DenseNet21 and five-layered 
convolutional model have been evaluated in terms of test data 
set accuracy (Table 1). The pre-trained models adopted for 
this research were trained and tested by large-scale ImageNet 
data, covering a wide range of categories such as cars, ani-
mals, flowers, etc. Models acquire excellent performance 
image classification for objects while demonstrating a limi-
tation in their application to narrow product areas, such as 
medical lesion (DED) detection. The prognosis of pathologi-
cal indications in the retinal fundus images depends upon 

(24)Specificity =
TN

TN + FP

various complex characteristics and lesion localization in the 
retinal fundus image. There is a new representation of the 
input image in each CNN layer by progressive extraction of 
the most distinctive features. For instance, the first layer is 
capable of learning edges, while the last layer can identify a 
lesion as a DED classification feature. As a result, the follow-
ing scenarios were considered in the experiments: Region of 
Interest such as blood vessels, macular regions, and the optic 
disc has been detected, localized, and segmented.

We have employed a combination of multiple traditional 
image segmentation algorithms for each phase in the pro-
posed system. All of these algorithms provided effective 
results in the segmentation of the region of interest. We per-
formed a series of procedures to build a high-performance 
system, such as image enhancement, blood vessel segmenta-
tion, identification and then extraction of optic discs, extrac-
tion of macular region, blood vessels removal, elimination 
of optic discs, extraction of features, and classification of 
features. After segmentation, the size of the images has been 
optimized to a suitable size following the input specifications 
of each network. To minimise the risk of model overfitting, 
the imbalance dataset was augmented using real-time aug-
mentation ImageDataGenerator class from Keras. The fine-
tuning was used for pre-trained models after eliminating and 
re-training n layers (n was CNN layer-dependent). The final 
output acquired for each model was used for comparison in 
terms of percentage accuracy are represented in Tables 3 
and 4. VGG16 classification surpassed the other two fully-
trained deep learning models Xception and DenseNet121. 
Similarly, among all pre-trained models, new build CNN 
model using preprocessed retinal images performed well. 
Tables 5 and 6 compare the accuracy of results. Build CNN 
accuracy surpasses all the model used for classifications.

To detect retinal anomalies, we developed more general 
screening classification models. The confusion matrix and 

Table 3  Average performance 
of the models on original 
images

Bold values indicate VGG16 classification surpassed the other two fully-trained deep learning models
DED diabetic eye disease, DR diabetic retinopathy, DME diabetic macular edema, Gl Glaucoma

DED Model Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

Normal /mild
DR

Xception 60.87 67 58 43

VGG16 80.43 76.92 85 74
DenseNet121 56.67 71.43 53.85 96

Normal /mild
DME

Xception 62.07 65 60 52

VGG16 85.79 90 81 78
DenseNet121 51.72 100 51 28

Normal /mild
GL

Xception 63.41 85.71 58.82 95

VGG16 87.80 94.12 83.33 95
DenseNet121 80.49 77 84 76
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Table 4  Average performance 
of the VGG16 model on pre-
processed images

DED diabetic eye disease, DR diabetic retinopathy, DME diabetic macular edema, Gl Glaucoma

DED Model Accuracy (%) Sensitivity 
(%)

Specificity (%) Precision (%)

Normal /mild
DR

VGG16 83.43 86 85.71 78

Normal /mild
DME

VGG16 89.13 85 95 96

Normal /mild
GL

VGG16 88 95 90 90

Table 5  Average performance 
of the new proposed model on 
original images

DED diabetic eye disease, DR diabetic retinopathy, DME diabetic macular edema, Gl Glaucoma

DED Model Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

Normal /mild
DR

CNN 63.33 53.33 73.33 61

Normal /mild
DME

CNN 82.86 83.33 82.35 82

Normal /mild
GL

CNN 96.77 100 93.75 100

Table 6  Average performance 
of the new proposed model on 
pre-processed Images

DED diabetic eye disease, DR diabetic retinopathy, DME diabetic macular edema, Gl Glaucoma

DED Model Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

Normal /mild
DR

CNN 93.33 100 86.67 100

Normal /mild
DME

CNN 91.43 94.44 88.24 94

Normal /mild
GL

CNN 100 100 100 100

Fig. 6  VGG16 model perfor-
mance in diabetic retinopathy
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ROC curves of each pre-trained deep learning model and a 
build CNN model for binary classification of healthy and 
other DED disease status are shown in Figs. 6, 7, 8, 9, 10 
and 11.

5  Discussions

This research is a study of binary classification deep learn-
ing algorithms to identify three mild diabetic eye diseases 
automatically. This research has shown that the complex-
ity of the deep learning algorithms arises from the quality 
and quantity of data (fundus images), not from the algo-
rithm. In this research, we used publicly available anno-
tated data (fundus images). For a computer-aided clinical 

application, more robust, practical, and realistic results can 
be obtained using labeled hospital fundus images. Indeed, 
this paper recommends that the automatic classifier strive 
to classify against the binary classification of at least aver-
age, DR, DME, and GL due to each disease’s significance. 
These three diseases are the major retinal diseases caused 
by diabetes; unless an initial evaluation is conducted, these 
diseases always cause severe damage to the visual acuity, 
and it is irreversible [6, 38].

Growing life expectancy, hustling lifestyles, and other 
factors suggest that the number of people with diabetes is 
expected to increase [38]. For example, many patients with 
DED in China often overlook their situation and lack timely 
treatments leading to serious state development of DR 
[55]. Early intervention of abnormal signs prevents further 

Fig. 7  VGG16 model perfor-
mance in diabetic macular 
edema

Fig. 8  VGG16 model perfor-
mance in Glaucoma
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deterioration of the condition and its effect on the impacted 
individuals and related medical costs. Therefore, the DED 
identification system enables either completely automate 
the eye-screening process or semi-automate eye-screening 
system. The first method requires a reasonable degree of 
accuracy, which is similar to that of the retinal experts. As 
per the British Diabetic Association (BDA) guidelines, a 
minimum level of 95% specificity and 80% sensitivity for 
sight-threatening DR detection must be obtained applied 
method [3]. Second option allows to downsize the large-
scale mass-screening outputs to the potential DED cases, 
followed by human examination. Both scenarios signifi-
cantly reduce the burden on skilled ophthalmologists and 
specialised facilities, making the process accessible to wider 
population, especially in low-resource settings.

After all, the application of deep learning to the clinical 
practice still has many challenges. An earlier paper dealt 
with ethical and political concerns in terms of database 
creation [1]. For this purpose, it has been difficult to obtain 
large-scale data on many diabetic eye diseases. Another 
challenge is that mild (early) classification problems con-
sist of real clinical problems. Binary classification for dia-
betic eye disease prediction was the subject of previous 
studies. Even if Google has built a deep learning model 
that works better than ophthalmologists, their ’Inception-
v3’ model was optimised for binary classification for DR 
identification based on the GoogLeNet structure Gulshan 
et al. [17]. This framework was evaluated after adding a 
wide image database gathered for only healthy and non-
healthy DR screening from diabetes patients. For binary 

Fig. 9  Build CNN model per-
formance in diabetic retinopathy

Fig. 10  Build CNN model 
performance in diabetic macular 
edema
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disease classification, Gulshan et al. stated a 93-96 percent 
recall but noted that recall is not enhanced while practicing 
with 60,000 image samples contrast with 120,000 image 
samples employing a private data.

Visual representations of the features acquired by CNNs 
demonstrate that the patterns being used for classifica-
tion are a part of the image fully visible to the observer 
[53]. Moderate and severe class of the diabetic retinal 
images include macroscopic features on a scale designed 
for classification by current CNN architectures, such as 
those accessible from the ImageNet visual database. On 
the other hand, less than 1 % of the overall pixel volume, a 
degree of slight that is often difficult for human interpret-
ers to identify, is the characteristics that differentiate mild 
from the normal disease.

This research indicates that mild-class DED classifica-
tion should be established through further studies on auto-
matic diagnosis using retinal fundus imaging. The first part 
of the experiment includes traditional image processing 
for enhancing mild DED features. Various conventional 
techniques for image processing have been implemented to 
extract DED lesions. Pre-trained CNN models using trans-
fer learning provides excellent performance with object-ori-
ented images such as flowers, cars, and animals but not effi-
cient with lesion based medical images. So in this research 
we aim to objectify mild DED lesion via segmenting region 
of interest and transfer it to transfer learning and build CNN 
for further feature extraction. Following the elimination of 
the top layer (existing approach). A detailed review of 3 
CNN architectures (including state-of-the-art architectures) 
was conducted. Secondly, the n layers were ’unfrozen’ and 
then re-trained to respond effectively to the details of the 
case-study of the application (proposed approach). Messi-
dor, Messidor-2, retinal dataset were provided for system 

training. Two training sets were prepared with available 
dataset (i) before, and (ii) after preprocessing to measure 
potential accuracy improvement for Normal/Mild DED 
image classification.

As Mild DED tends to be incredibly difficult to discern 
from a normal retina due to few subtle indication of the 
impairment, an increase in the quality data was supposed 
to improve the visibility of pathological features. The top 1 
CNN architectures with the top layer removed and re-trained 
were VGG16, yielding the accuracy of 83.43%, 89.13%, 88% 
for each (Table. 4). The lowest performance was obtained by 
Xception and DenseNet21 respectively. The impact of fine 
tuning varied across the models. The observed improvement 
in accuracy was only minor, indicating the relative appropri-
ateness of default pre-trained networks for DED classifica-
tion tasks. In other terms, the CNN networks were able to 
identify Mild DED from a healthy retina despite having been 
trained on different images from the ImageNet repository. If 
no improvement in accuracy is obtained, the unfreezing is 
not advised result in unnecessary computational costs and 
time accrued. For build CNN model yielded the accuracy of 
93.33%, 91.43%, 100% respectively.

For comparing the performance of the employed mod-
els, the 2 scenarios were considered, (1) before image pre-
processing, and (2) after image preprocessing. In before 
preprocessing scenario, we trained our models with a raw 
dataset with data augmentation (geometric transformation) 
were applied to Messidor, Messidor-2, DRISTI-GS dataset, 
to avoid overfitting. In after image preprocessing scenario, 
dataset were preprocessed using various traditional image 
processing techniques which has increased the classification 
performance to 100% (the maximum accuracy achieved for 
Gl).

Fig. 11  Build CNN model 
performance in Glaucoma
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After evaluation of our high performed approach on Mild 
DR, Mild DME and Mild GL detection task, the maximum 
sensitivity of 100%, 94.44%, 100% and the maximum 
specificity of 86.67%, 88.24%, 100% were obtained. Thus, 
the early DED detection proved sufficient given the BDA 
standards, but still falling 9% and 6% short in terms of its 
specificity.

5.1  Approach Limitations

Several deficiencies of the research have been established. 
First, Data set acquired for this experiment were obtained 
from publicly available which limits number of high quality 
mild DED images, only limited-to-moderate data set sizes 
were employed in the research. The approach also empha-
sises the value of an effective annotation process as having 
a direct effect on the output of the classifier. The Messidor, 
Messidor-2, retinal dataset has been validated and marked 
by professional ophthalmologists. Transfer Learning is used 
as a compensation procedure. Pre-trained CNN models in 
the wide-scale ImageNet database have been adopted in this 
study. To increase the size of the training sample set and to 
ease the data imbalance problem data were rotate, flipped, 
mirrored, etc. Second, the default model parameters were 
adopted for classification task (i.e. dropout, batch size, loss 
function, optimizer etc.). Finally, the ’black-box’ nature of 
Deep Learning-based solution is often criticized, causing 
resistance in the broader approach adopted by practition-
ers. However, with a build CNN using binary classifiers, we 
achieved state-of-the-art accuracy, the model performance 
degrades with the use of transfer learning. However, it is 
striving to ensure that more data might be more robust. 
Previous field research has confirmed that CNN’s ability to 
accommodate differences in size is limited and some have 
indicated that more data can not complement this inherent 
weakness in the case of retinal images [17].

6  Conclusion

This paper proposes an approach that focuses specifically 
on the identification of mild DED among Normal instances 
as not adequately discussed in previous literature. Accord-
ing to the analytical aspect of Deep Learning, a variety of 
performance optimization techniques have been employed 
(1) Image enhancement, (2) feature enhancement, (3) data 
balance, and (4) fine-tune. The additional advantage of Deep 
Learning involves automatic recognition capabilities that are 
most selective between categories. Such an approach makes 
it possible to avoid technological constraints with the analyt-
ical, and sometimes subjective, approach of manual extrac-
tion of features. In addition, the analysis used composite 
data sets from various sources to determine the robustness 

of the system and its capacity to respond to real-world sce-
narios. The developed system enables the standardisation 
of labour-intensive eye-screening processes and satisfies as 
an auxiliary diagnosing reference, while avoiding human 
subjectivity.
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