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Abstract—By efficiently building and exploiting surrogates,
data-driven evolutionary algorithms (DDEAs) can be very help-
ful in solving expensive and computationally intensive problems.
However, they still often suffer from two difficulties. First, many
existing methods for building a single ad hoc surrogate are suit-
able for some special problems but may not work well on some
other problems. Second, the optimization accuracy of DDEAs
deteriorates if available data are not enough for building accurate
surrogates, which is common in expensive optimization problems.
To this end, this article proposes a novel DDEA with two effi-
cient components. First, a boosting strategy (BS) is proposed for
self-aware model managements, which can iteratively build and
combine surrogates to obtain suitable surrogate models for differ-
ent problems. Second, a localized data generation (LDG) method
is proposed to generate synthetic data to alleviate data shortage
and increase data quantity, which is achieved by approximat-
ing fitness through data positions. By integrating the BS and the
LDG, the BDDEA-LDG algorithm is able to improve model accu-
racy and data quantity at the same time automatically according
to the problems at hand. Besides, a tradeoff is empirically con-
sidered to strike a better balance between the effectiveness of
surrogates and the time cost for building them. The experimental
results show that the proposed BDDEA-LDG algorithm can gen-
erally outperform both traditional methods without surrogates
and other state-of-the-art DDEA son widely used benchmarks
and an arterial traffic signal timing real-world optimization
problem. Furthermore, the proposed BDDEA-LDG algorithm
can use only about 2% computational budgets of traditional
methods for producing competitive results.
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I. INTRODUCTION

S A BRANCH of evolutionary algorithms (EAs), data-

driven EAs (DDEAs) are effective and efficient in solving
real-world expensive optimization problems (EOPs) [1], [2].
As traditional EAs rely heavily on fitness evaluations (FEs)
to produce and select new populations, their performance
often deteriorates when the number of available FEs is not
enough [2]. This is usually the case in real-world applica-
tions, where the FEs may be too expensive or computational
intensive to access [3], [4]. Different from traditional EAs, by
using data (e.g., evaluated solutions) and surrogates to replace
the FEs and to drive the evolution, DDEAS are able to obtain
satisfactory solutions within a limited amount of available
FEs [5]-[8]. Furthermore, in some very difficult applica-
tion problems, such as blast furnace optimizations [8], [9],
trauma system optimizations [10], and fused magnesium fur-
naces optimizations [11], no real FEs can be conducted any
more during the evolutionary process due to their practical
conditions, such as deadline constraints or insufficient bud-
gets, making the traditional methods almost impossible for
solving these EOPs. In such application scenarios, offline
DDEAs are more useful and efficient, because they can build
surrogates only on the basis of historical evaluated data to
replace real FEs and drive the optimizations [8]. Based on the
above, DDEAs are more efficient and useful than traditional
EA methods in solving expensive and computationally inten-
sive application problems. However, how to efficiently utilize
the available data and surrogates is still the main challenge in
DDEAs.

Generally speaking, to enhance DDEAs, one should con-
sider both the surrogate model and the data, because they
are both essential to the performance of DDEAs [8], [10].
That is, researchers have tried to improve DDEAs by obtain-
ing better surrogate models and better data. For example,
selecting suitable and appropriate models and methods for
building surrogates can improve DDEAs, such as using poly-
nomial fitting methods [14], mathematical estimations [16],
and machine learning techniques [17]-[19]. Also, DDEAs can
be enhanced by managing and combining a set of surro-
gates [15], [20]-[22]. Moreover, as the data quality can also
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affect the surrogate performance, data processing methods like
local smooth [23] and data mining techniques [10] can be
helpful in further improving DDEAs. Furthermore, in the cases
that evaluated data are not enough for building an accurate sur-
rogate, data generation can be an effective approach to increase
data quantity [11], [24]-[25].

In this article, we focus on both the model management
and the data quantity to propose a boosting DDEA (BDDEA)
with localized data generation (LDG) method, name BDDEA-
LDG algorithm. The proposal of the BDDEA-LDG algorithm
is based on the following two motivations.

First, although many valuable surrogate guidelines and
experience have been provided for enhancing DDEAs, they are
empirically designed for some special problems but may not
work well on other problems [26]-[28]. For example, a surro-
gate with simplified models for the automated design problem
of dispatching rules [26] may not work well for the weld
sequence optimization problems [27]. Therefore, the users may
still need to test existing surrogate models one by one in order
to find a suitable model for solving new problems. This moti-
vates us to study whether the surrogates can obtain promising
performance by self-improvement or self-adaptation. That is,
a surrogate model may be able to boost its performance by
accommodating itself to the optimization problems at hand.
Following this and inspired by the idea of boosting in ensem-
ble learning [29]-[31], we propose a boosting strategy (BS) for
efficient and self-aware model management. The BS sequen-
tially builds a set of different surrogates and incorporates them
into a combination model to approximate the real FEs. During
this process, each new surrogate is built with an emphasis
on the approximation error made by earlier surrogates. In
this way, the combination model can be iteratively improved
by repeatedly incorporating newly built surrogates, because
each newly built surrogate can help to correct the prediction
mistakes made by existing (i.e., earlier) surrogates.

Second, the optimization accuracy of DDEAs will greatly
deteriorate if there are not enough data for building accurate
surrogates. Therefore, the LDG method is further proposed in
this article to increase data quantity and alleviate data short-
ages. There are two advantages of the LDG: 1)it approximates
the fitness of synthetic data through their positions, which is
computational efficiency and easy to implement and 2) it can
be employed to assist the BS to generate data in areas where
existing surrogates have large prediction errors, so that the new
surrogates built on the synthetic data will emphasize more on
the prediction accuracy of corresponding areas. This can help
achieve the goals of the BS, i.e., efficient and self-aware model
management.

As a result, by combining the BS and the LDG, the proposed
BDDEA-LDG can accommodate itself to different problems
and, at the same time, its optimization accuracy can be less
influenced by the shortage of data quantity. These advantages
can make BDDEA-LDG suitable for solving various EOPs
in different situations. Besides, a tradeoff is experimentally
considered to strike a balance between the effectiveness of sur-
rogate models and the time cost for building them. To validate
the performance of BDDEA-LDG, the experiments and com-
parisons are conducted on widely used benchmarks with 10 to

100 dimensions and also on a real-world application problem
of arterial traffic signal optimization. The comparison results
show that the proposed BDDEA-LDG algorithm can generally
outperform the state-of-the-art DDEAs when given the same
FEs, especially, on the problems where the available data are
not enough for building accurate surrogates. Furthermore, the
experiments show that the proposed BDDEA-LDG algorithm
only requires about 10% FEs for producing better results and
2% FEs for producing competitive results, when compared
with traditional optimization methods without surrogates.

The remainder of this article is organized as follows.
Section II briefly introduces the DDEAs and related work,
while Section III details the proposed BDDEA-LDG algo-
rithm. The experiments, including settings, comparisons, and
analyses, are provided in Section VI. Finally, Section V draws
the conclusion.

II. BACKGROUND AND RELATED WORK
A. Data-Driven Evolutionary Algorithms

Generally speaking, the key issue of DDEAs is to utilize
data to reduce the needed FEs and drive the evolution [8]. Such
data utilizations are often achieved through surrogates [14].
That is, by building suitable surrogates based on evaluated
data, the DDEAs are able to employ these surrogates to replace
the real FEs and then reduce the needs for accessing real FEs.
Therefore, DDEAs can have more advantages than traditional
EAs when solving expensive and computationally intensive
problems [10], [13].

As for the algorithm framework, a DDEA often has the
surrogate model management (SMM) part and the evolution-
ary optimization procedure (EOP) part [15], [16]. The SMM
will manage surrogate models for better approximations while
the EOP will employ surrogates into the EAs to perform
evolution [15]. Also, the SMM can adjust and update surro-
gates according to the feedback and data from the EOP [17].
Based on whether the EOP can obtain new data through real
FEs, DDEAs can be implemented in two versions: 1) online
DDEAs and 2) offline DDEAs [8]. In online DDEAs, the
EOP can evaluate several data through real FEs. These newly
evaluated data can be used by the SMM to further provide
landscape information and to help construct more accurate sur-
rogate models [18]. Therefore, online DDEAs are suitable for
the situation that a few FEs are still available from physi-
cal experiments or expensive calculations during the evolution
process [19]. By contrast, offline DDEAs are designed for the
situation that the real FEs are too expensive to perform or too
difficult to access [15]. In these cases, EOP cannot obtain any
new data through real FEs. Instead, it can only use historical
data to drive the evolution, which is different from the online
DDEAs. As mentioned above, although there are differences
between online and offline DDEAs, both of their main ideas
are to reduce the needed FEs and drive the evolution through
utilizing evaluated data.

B. Related Work

So far, many methods have been proposed to further
enhance DDEAs [8]. This section briefly reviews related work
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and discusses the differences between them and the BDDEA-
LDG. Generally speaking, as described in Section II-A,
DDEAs can be classified into two categories: 1) offline
DDEAs and 2) online DDEAs. As a number of DDEAs
are proposed for solving multiobjective [32], [33] or many-
objective problems [34], the following contents will also clar-
ify their multi-/many-objective characteristics when surveying
them among the offline and online DDEAs.

In offline DDEAs, algorithms need to build surrogate mod-
els only based on the given data to explore the search
space, because no new data can be evaluated during the
optimization process. For example, Wang et al. [15] proposed
a DDEA using selective ensemble surrogates (DDEA-SE),
which is a state-of-the-art algorithm with excellent efficiency
for offline data-driven optimizations. The DDEA-SE builds
a large number of surrogates based on data resampled from
offline data and then adaptively selects some of the prebuilt
surrogates for approximating FEs in different evolutionary
stages, so that the prediction error can be reduced. Moreover,
as no new data can be obtained during the optimization pro-
cess, the quality of the given data can heavily affect the
accuracy of DDEAs [8]. Therefore, many preprocessing meth-
ods have also been proposed for data with poor quality, such as
imbalanced [35], [36], incomplete [37], and noisy data [38].
For instance, in a many-objective blast furnace problem,
Chugh et al. [9] adopted a local regression method to reduce
the noise in the offline data set and then built Kriging models
to improve the reference vector guided EA. For big data and
redundant data, data redundancy and long computation time
can be reduced through data mining and related methods. For
example, in a trauma system design problem, Wang et al. [10]
proposed a novel multiobjective algorithm employing a clus-
tering method to recognize the useful data patterns for building
surrogates, where about 90% of running time was finally
saved. Furthermore, for the situations that the size of the given
data is not enough to build accurate surrogates, generating
additional data can be a potential way to solve this problem [8].
For example, in a multiobjective fused magnesium furnace
optimization problem, Guo et al. [11] used a low-order polyno-
mial model to generate synthetic data and predict their fitness.
Although the above algorithms and BDDEA-LDG are offline
DDEAs, BDDEA-LDG integrates the BS and LDG to improve
the surrogate models, and therefore is different from the above
algorithms.

In online DDEAs, additional data can be evaluated dur-
ing the optimization process. As a result, this provides more
space for algorithm improvements when compared with offline
DDEAs. As offline DDEAs can be considered as a special
case of online DDEAs, the aforementioned methods proposed
for offline DDEAs can also be employed in online DDEAs.
Besides, as new data can be evaluated by real FEs to test the
current surrogates, online DDEAs can adaptively select proper
models and perform model managements. In model selection,
different appropriate models and methods can be selected to
build surrogates, which can include traditional interpolation
methods [16] and machine learning techniques [17], such as
polynomial regression model [20], Kriging model [23], [41],
artificial neural networks [42]-[44], and radial basis function
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neural networks (RBFNNs) [45]-[47]. Furthermore, new
approximation methods have also been studied. For example,
Sun et al. [16] proposed a new fitness approximation strat-
egy for particle swarm optimization (PSO), which estimated
fitness based on the positional relationship between individ-
uals. For model management, there are two major branches.
One branch is to combine or integrate different surrogates,
because different surrogate models have different advantages.
For example, Wang et al. [21] integrated global and local sur-
rogates to balance global exploration and local exploitation.
Also, Sun et al. [47] proposed a surrogate-assisted cooperative
swarm optimization (SA-COSO), which employs a surrogate-
assisted PSO for local search and a surrogate-assisted social
learning PSO for explorations. Another branch of model man-
agement strategy considers how to update surrogate models.
In online DDEAs, better surrogate models can be obtained by
selecting more crucial individuals to be evaluated. Generally
speaking, these strategies will consider the way and the crite-
ria for individual selections. According to the way of selecting
individuals, there can be generation-based and individual-
based strategies [2]. Generation-based strategies perform FEs
according to the generation, where the frequency for per-
forming real FEs can be adaptive [42] or predefined [56].
In contrast, individual-based strategies evaluate some indi-
viduals in a population at each generation [50]. As for the
selection criteria, there are often two considerations: 1) the
promising individuals and 2) the uncertain individuals [2].
The promising individuals have better-predicted fitness and
may help figure out the exact optimum positions [42], [57],
while evaluating the uncertain individuals can increase surro-
gate reliability [2], [SO]. However, it is difficult to measure the
prediction uncertainty. Therefore, some methods, like Kriging
models [23], [51], are favored by many strategies because they
are able to provide measurements of prediction uncertainty.
However, Kriging models may not work well on high dimen-
sional problems due to their expensive time cost. Therefore,
some researches have tried to transform decision variables
from lots of dimensions to fewer dimensions, such as the
Gaussian process surrogate model assisted EA for medium-
scale problem (GPEME) [19]. Except for the Kriging models,
some researches employ the variance of surrogate outputs to
measure the uncertainty [18], [58]. In addition, as evaluating
promising and uncertain individuals have different advantages,
many strategies called infill criteria are proposed and studied
based on the combinations of them, such as expected lower
confidence bound [19], probability of improvement [59], and
expected improvement [52], [60]. Moreover, Tian et al. [13]
proposed a multiobjective infill criterion driven GP-assisted
social learning PSO (MGP-SLPSO), where the multiobjective
infill criteria are shown to be efficient when optimizing fit-
ness and minimizing uncertainty together in solving high
dimensional problems.

III. PROPOSED ALGORITHM
A. Localized Data Generation

The main idea of LDG is to generate data within the neigh-
borhood of evaluated data, so as to increase the data quantity
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and indirectly improve the quality of surrogates. To avoid con-
fusion in the following contents, the data evaluated by FEs and
the data generated by LDG are denoted as “original data” and
“synthetic data,” respectively.

The original data can be presented as input—output pairs to
form a training data set 7D = {(x;, F(x;)))|i = 1,2,..., N},
where N is the number of original data x (i.e., the data eval-
uated by real FEs). The task of LDG is to generate new
synthetic training data based on the data in 7D. Also, we
denote S as a subset of 7D that contains the selected data for
generating new data, and the generated synthetic data set K
generated by LDG is represented as

K = {(xXnews FOtnew)) [Xnew = x5 + Ax; |Ax| < [, x; € S} (1)

ZjD=1(Uj _Lj)2
D

where F(-) is the true fitness function, / controls the neighbor-
hood size of the original data, Ax is a random vector, and D is
the dimension, while U; and L; represent the upper bound and
lower bound of jth dimension, respectively. To avoid ambigu-
ity, we further define an augmented training data (ATD) set as
the union of 7D and K

[ = -107° )

ATD = TD U K. 3)

Note that if / in (1) is small enough, the fitness of xyey and
x5 can be very similar when the fitness function is a contin-
uous function. Based on this, we denote that the true fitness
value of xpey is the same as x;, namely, F(xpew) = F(xs).
In this way, we can obtain the fitness value of the additional
data xpey without consuming any FEs. Although the data gen-
eration may bring noises (especially, when the landscape of the
objective function is very sharp where two close individuals
may have significantly different fitness values), we can prop-
erly configure the parameter / so that the LDG is performed in
a safe region to avoid producing noises. The value of [ is set
according to (2), which will differ from problems to problems
according to their boundaries (i.e., U; and L;) and is scaled
by a small value 107 to further narrow down the size of the
safe region. To investigate its effectiveness and sensitiveness,
related experiments and analyses on benchmark functions with
different characteristics, such as multimodal and nonseparable,
are provided in Section IV-H.

As minimization problems can be converted to
maximization problems, Algorithm 1 simply presents
the pseudo code of LDG for minimum optimizations. The
inputs of LDG are the original data set 7D, a surrogate model
set (SMS) containing NS surrogates, and the value of NS,
while its output is the synthetic data set K. In the imple-
mentation of this article, all the NS surrogates are RBFNNSs,
which are efficient and easy-to-implement [16], [17]. In this
way, the LDG is able to simply store the network parameters
(i.e., weights and number of neurons) and rebuild the same
surrogates when needed. The LDG mainly has four steps. The
first is to re-evaluate all the data by employing NS surrogates
to obtain the average prediction of fitness, denoted as Ypre.
The second is to compute the difference, diff = Yje — F(x),
for the data in 7D. The third is to sort all the original

Algorithm 1 LDG

Input: TD-the original training data set,
SMS-the surrogate model set,
T-the the number of surrogates in the SMS.
Output: K-the synthetic data set.
Begin
1: //Compute diff of each data (for guiding data selections)
2: For each x; in TD Do
3:  Use the T surrogates in SMS to predict the fitness of x;;
4. Calculate the average of the above T predicted fitness as Yppe, i
5:  Calculate the difference diff; = Ypre,i — F(x;);
6
7
8

: End For
: Sort the data in 7D according to their diff with descending order;
: Set S as the first 50% samples of the sorted 7D;

9: Set K as empty set;

10: For each x; in S Do

11:  Generate xuey through x; and Eq. (1);

12: Set F(xpew) = F(x;);

13: K = K U (new, F(Xnew));

14: End For

End

data according to their diff in descending order and set the
first 50% of them as S. The fourth is to generate K with
Saccording to (1). In the third step, the selection criterion
of the large diff is based on the following consideration.
First, for a historical data x that has been evaluated, its real
fitness F(x) is known. Then, a large diff means that the error
between the prediction Yp and the real fitness F(x) is large.
Therefore, LDG should be performed on this data. Actually,
the value of [ for performing LDG is suggested to be small
enough so that the synthetic data generated by LDG can have
similar fitness with data x. Also, it should be noted that the
diff = Ype — F(x) is designed for minimization problems
here, and if for maximization problems, diff = F(x) — Ypre
is suggested. To wvalidate this selection criterion, related
experiments and analyses are performed and provided in
Section IV-H of this article. In addition, the reason for
using 50% data is that more data may obtain more accurate
surrogates while too much data can make learning step
time-consuming, and, therefore, a half makes the balance.
Further, the experiments on using different sizes of data are
provided in Section IV-H.

B. Model Management With Boosting Strategy

BS sequentially builds surrogates and iteratively updates the
SMS, as shown in Fig. 1. In Fig. 1, the LDG and related
model training are sequentially performed until enough surro-
gates are obtained. Every time a surrogate is built, it will be
stored in the SMS and, therefore, the SMS will be iteratively
changed. The pseudo code of the whole process is provided
in Algorithm 2. To better describe how Algorithm 2 works,
an example is given here. First, the initial surrogate M will
be built on the ATD;, where the ATD; is initialized as the
same as the original data set TD. Second, M is used to select
data for the next LDG. The result produced by LDG, namely,
the synthetic data set K (refer to Algorithm 1), will be added
into the ATD1, resulting in a larger data set, ATD». Third, the
second surrogate M, will be trained on the basis of the ATD;.
Fourth, the M| and M are employed together to select data in
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Algorithm 2 BS

Input: TD-the original training data set,

T-the number of surrogate models to be obtained.
Output: SMS-the surrogate model set containing 7 surrogates.
Begin
: Initialize augmented data set ATD; as TD;

: Build the first surrogate model, M, based on ATDy;

: Set SMS = {M};

:Forj=2t T Do

K; = LDG(TD, SMS, j — 1); //refer to Algorithm 1.
ATD; = ATD;_ U Kj;

Build new surrogate model, M;, based on ATDj;
SMS = SMS U {M;};

: End For

nd

=

LDG for obtaining K> and the third data set ATD3. Then the
third surrogate M3 is built based on the ATD3. The above pro-
cess will be performed repeatedly until T different surrogates
are obtained, where T is the total number of surrogates defined
by users.

To better illustrate the relationship between newly built sur-
rogates and existing surrogates, we provide a mathematical
analysis. Given data x and T existing surrogates My, ..., Mr,
we denote their prediction as Mj(x), ..., Mr(x), respectively.
Then, the combination model obtained in BS, denoted as
Mps, T, satisfies

1 T
Mps,7(x) = 7 ) Mix). )
i=1

Its generation error can be defined on the distribution p(x)
and real fitness F(x) of data x as

E(Mgs 1) = /L(F(X),MBS,T(X))P(X)dx ®)

where L is the loss function. Although there are many different
loss functions, we use the quadratic loss function here for
simplicity, namely, L(a, b) = (a — b)? where a and b are real
numbers. Like other researches in machine learning, our main
task is to obtain a model M that has a small E(M) [29], [62].

Now, we consider a newly built surrogate Mr;. With (4)
and (5), the empirical risk of Mps 71 satisfies (6). This equa-
tion shows that the aim of the newly built surrogate My is
not only to approximate the real fitness but also to eliminate
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the prediction error made by existing surrogates M1y, ..., Mr.
More specifically, F(x) in (6) is the real fitness on x and
F(x) — M;(x) is actually the prediction error made by model
M;. According to the last line in (6), to obtain a model
Mpgs r+1 with smaller E is to find an M7 that its prediction
Mr41(x) on data x is more similar to the sum of two value,
the prediction error made by existing surrogates and the real
fitness of x. In other words, the total generation error can be
reduced if newly built surrogates can approximate the sum of
real fitness from FEs and prediction error from existing surro-
gates. Therefore, it is suggested that the new surrogates should
be built with considerations on the prediction error made by
existing surrogates. This is consistent with the ideas of the
BS. In addition, the above analysis can be further extended
to other cases because that (6) holds as long as the L(a, b)
is a function of the difference between value a and b, like
absolute loss function L(a, b) = la — bl

T+1

E(Mgs,r41) = /L(F(X),MBS,T+1(X))P(X)dX
1
FO) = 70 ZM,-oo p(x)dx

2
/ =1

_/ ,~T=1(F(X) —M;(x)) + F(x;)) — M7y 1(x) ?
o T+1

X p(x)dx
_ / L(ZL(F(@ — Mi(@) + F(x)) Mry (x))
T+1 T T+1
x p(x)dx. 6)

C. Whole Proposed Algorithm

The diagram of the complete BDDEA-LDG is shown in
Fig. 2. Without loss of generality, Fig. 2 presents the ver-
sion of offline BDDEA-LDG and denotes all evaluated data as
offline data, because methods for offline DDEAs can also be
employed in online DDEAs [15].

Like other DDEAs, BDDEA-LDG can be mainly described
in two parts, the EOP, and the SMM part, as shown in
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TABLE I
BENCHMARK PROBLEMS

Problem Optimum | Characteristics Dimension
Ellipsoid 0 unimodal 10, 30, 50, 100
Rosenbrock 0 multimodal 10, 30, 50, 100
Ackley 0 multimodal 10, 30, 50, 100
Griewank 0 multimodal 10, 30, 50, 100
Rastrigin 0 multimodal 10, 30, 50, 100

Fig. 2. Its EOP is similar to traditional EAs, which includes
initialization, variation (i.e., crossover and mutation), FE,
and selection. Consequently, different kinds of EAs can be
adopted as the optimizer in the BDDEA-LDG, such as par-
ticle swarm optimization [63], differential evolution [64], ant
colony system [65], and genetic algorithm (GA) [66].

The SMM of the BDDEA-LDG focuses on building surro-
gate models. Based on the original data, the BS sequentially
builds a set of surrogates with the help of LDG, where the
surrogates will be stored in an SMS. When performing the
FE of an individual, the algorithm will use all the surrogates
in the model set to predict the fitness of this individual. The
average of these predicted values will then be calculated as the
final prediction result, which will be employed in the selec-
tion procedure in the EOP. In this way, the EOP can employ
these prediction results to drive the evolution. When the stop
criteria are met, the EOP will output the best individual based
on the predictions as the final solution, and then the algorithm
finishes.

IV. EXPERIMENTAL STUDIES
A. Experimental Setup

In the experiments, five commonly used benchmark
problems [15] are adopted to test the proposed algorithm, as
presented in Table I. To show the effectiveness of BDDEA-
LDG, not only random sample and traditional EA methods
but also some state-of-the-art DDEA algorithms are employed
for comparisons. The employed DDEAs are: DDEA-SE [15],
CAL-SAPSO [18], GPEME [19], MGP-SLPSO [13], and SA-
COSO [47]. Besides their promising performance, there are
other reasons for choosing these algorithms. First, CAL-
SAPSO can help observe the features of the combination
model in BDDEA-LDG because CAL-SAPSO also employs
ensemble surrogates to make committee-based decisions.
Second, GPEME is a representative algorithm that uses
Kriging models for online data-driven optimizations, which
can reflect the potential of BDDEA-LDG for being extended to
online optimization. Third, because CAL-SAPSO and GPEME
are proposed for small and medium scale problems, MGP-
SLPSO and SA-COSO can be used for the comparisons on
high-dimensional problems [13], [47]. Fourth, DDEA-SE is
a powerful offline DDEA, which is ideal for comparing of
offline data-driven optimizations.

In the experiments, all the compared algorithms are config-
ured according to their original papers. As for BDDEA-LDG,
the underlying optimization algorithm is the same as that used
in DDEA-SE [15], which is a variant of GA using a simulated
binary crossover (SBX), polynomial mutation, and tournament
selection [66]. Also, its parameters are configured the same as

those in DDEA-SE for fair comparisons [15]. That is, the pop-
ulation size is 100, the crossover and mutation probabilities are
1.0 and 1/D, respectively, where D is the problem dimension.

As for the surrogates, all the base models used in BDDEA-
LDG are RBFNNs. There are two main reasons for using
RBFNNs. First, RBFNN is a fast, computationally efficient,
and easy-to-implement method for approximation tasks [15],
[18], [67]. Second, RBFNNs have been widely used as sur-
rogates in [12], [15], and [17], which are the compared
algorithms in this article, and, therefore, using RBFNNs in
BDDEA-LDG can help achieve fair comparisons. The settings
of all RBFNNs in BDDEA-LDG are configured the same as
those in DDEA-SE [15], so that their comparisons can be fair.
Specifically, in the BDDEA-LDG, the employed activation
function of each RBFNNis the Gaussian radial basis function
and the number of neurons in its hidden layer equals to the
problem dimension, D. In the state-of-the-art offline algorithm,
DDEA-SE [15], the settings of its RBFNNs are set accord-
ing to its original paper, which are the same with those in
BDDEA-LDG. As for the state-of-the-art online DDEAs, the
settings of surrogates are also set according to their original
papers. In CAL-SAPSO, the RBFNNsare based on MATLAB
toolbox [18], which uses two neurons in the hidden layer and
employs the Gaussian radial basis function as the activation
function. In SA-COSO [47], the RBFNNs keep learning from
the data until the number of the hidden neurons reach 8, where
all the activation function of hidden neurons are Gaussian
radial basis functions.

To conduct fair numerical experiments, we also make the
following experiment settings.

First, the maximum number of available FEs for all
the algorithms is 11-D. Especially, for offline data-driven
algorithms, 11-D data are sampled by Latin hypercube
sampling (LHS) [68] before the optimizations and no more
FEs will be allowed during these arch procedures. As for the
online algorithms, their parameters are configured the same
as those in their original papers. According to the litera-
ture, CAL-SAPSO and GPEME begin with 5-D exact FEs
and terminates when 11-D FEs are exhausted, where the 5-
D FEs are needed to obtain offline data to initialize their
databases before the optimizations [15], [18], [19]. Differently,
SA-COSO and MGP-SLPSO start with 0 FEs and termi-
nates if 11-D FEs are exhausted, because they do not need
to construct databases using offline data in advance [13], [47].
Instead, these two algorithms obtain their initial databases by
evaluating their evolving populations during the optimization
processes.

Second, to reduce statistical errors, all algorithms are tested
25 times independently on each problem and the average
results are used. In addition, Wilcoxon’s rank-sum test with
a significant level ¢ = 0.05 is adopted as the hypothesis
testing to compare algorithms. Based on the Wilcoxon’s rank-
sum test, the symbols “+,” “~,” and “—" are, respectively,
employed to show that the proposed algorithm performs sig-
nificantly better than, similar to, and significantly worse than
the algorithm compared. As the Wilcoxon’s rank-sum test can
be only used for pairwise comparisons, the Friedman test
with the Bergmann—Hommel post-hoc test (significance level
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TABLE 11
AVERAGE OF TIME COST (UNIT: SECOND) OVER 25 INDEPENDENT RUNS
OF DIFFERENT OFFLINE ALGORITHMS ON ELLIPSOID
AND RASTRIGIN PROBLEMS

problem | p | BPPEA-LDG BDDEA-LDG DDEA-SE

(T=100, gen=100) | (T=50, gen=500) | (T=2000)

5 10 2.56E+01 2.08E+01 2.13E+01

2 30 1.02E+02 8.75E+01 7.68E+01

= 50 2.27E+02 1.61E+02 2.62E+02

= 100 1.20E+03 6.19E+02 1.38E+03

= 10 2.51E+01 2.05E+01 1.77E+01

2 30 9.63E+01 7.59E+01 7.24E+01

z 50 2.24E+02 1.61E+02 3.43E+02

A 100 1.22E+03 6.32E+02 1.36E+03
Average Ranking 2.38 1.69 1.94
Adjusted p-value 0.5074 0.6171 NA

= 0.05) is further employed to carry out multiple comparisons
of different algorithms.

B. Tradeoff Between Optimization Procedure and Model
Management

Before the comparisons with other algorithms, we con-
sider the tradeoff between the EOP and SMM for the better
performance of the BDDEA-LDG, because properly allocat-
ing the computational budgets and resources between EOP
and SMM can be crucial to the algorithm performance [2].
For example, an accurate surrogate model may be of little use
if the optimizer is configured with short runtime and fails to
converge before terminations, while a poorly trained surrogate
cannot help locate the true optimum no matter how long the
optimizer searches for.

To begin with, the time cost of BDDEA-LDGwith 100 sur-
rogates and 100 generations are tested on the benchmark
problems. For convenience, we denote the surrogate num-
ber as T and the generation number as gen. The results of
the time cost (in seconds) on representative unimodal and
multimodal problems, namely, Ellipsoid and Rastrigin, are
shown in Table II. In addition, the DDEA-SE is regarded as
the comparison baseline and the control method in Friedman
test with the Bergmann—-Hommel post-hoc test (significance
level = 0.05), because it is also an offline DDEA with efficient
managements of ensemble surrogates [15].

As shown in Table II, the BDDEA-LDG (T = 100,
gen = 100) seems to allocate too many budgets on its SMM so
that it needs longer running time than DDEA-SE on 10- and
30-D problems, even though it consumes shorter time on 50-
and 100-D problems. This may be due to the fact that, in
BDDEA-LDG, the data set for building surrogates is itera-
tively enlarged. Consequently, the corresponding training time
increases dramatically as the data set enlarges. In fact, accord-
ing to the LDG (Algorithm 1) and the BS (Algorithm 2),
BDDEA-LDG will add 0.5ITD| new data into the data set
before building a new surrogate, where |7D| means the number
of data in TD. That is, the first surrogate is built on I7DI data,
the second surrogate on 1.5 TDI data, and the ith surrogate on
(14 0.5i) - |TD| data, which are increasingly time consuming.
Therefore, it is better to decrease T for better efficiency.
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TABLE III
COMPARISONS ON OPTIMIZATION RESULTS BETWEEN VARIANTS OF THE
PROPOSED ALGORITHM WITH DIFFERENT SETTINGS

. T=50 and T=50 and T7=100 and
Problem | - D Metric gen=500 gen=100 gen=500
10 Mean | 1.01E+00 1.17E+00(+) 1.12E+00(+)
Std. 3.99E-01 4.38E-01 3.80E-01
30 Mean | 6.66E+00 7.11E+00(+) | 3.40E+00(-)
Ellipsoid Std. 2.09E+00 2.18E+00 7.46E+00
50 Mean | 1.31E+01 1.71E+01(+) | 1.28E+01(»)
Std. 3.19E+00 3.48E+00 3.67E+00
100 Mean | 5.55E+01 2.82E+02(+) | 4.79E+01(-)
Std. 1.12E+01 6.31E+01 8.14E+01
10 Mean | 6.51E+01 8.42E+01(+) | 6.79E+01(+)
Std. 2.96E+01 2.67E+01 2.23E+01
30 Mean | 1.46E+02 1.59E+02(+) 1.52E+02(»)
Rastrigin Std. 4.34E+01 2.76E+01 2.76E+01
50 Mean | 1.90E+02 2.18E+02(+) | 1.89E+02(=)
Std. 3.18E+01 4.04E+01 4.24E+01
100 Mean | 4.05E+02 7.45E+02(+) | 3.56E+02(-)
Std. 1.44E+02 6.72E+01 7.71E+01
+/~/- NA 8/0/0 2/3/3
Average Ranking 1.63 3 1.38
Adjusted p-value NA 0.0035 0.6171

As decreasing T may affect optimization accuracy while
increasing gen may improve accuracy [1], we cut the T from
100 to 50 and at the same time increase the gen from 100
to 500, so as to tradeoff the budget for SMM against the
EOP without losing too much optimization accuracy. This
time, the execution time of the BDDEA-LDG is more satis-
factory and it only consumes a longer time on three problems.
Furthermore, according to the Friedman test, BDDEA-LDG
(T = 50, gen=500) obtains better ranking than DDEA-
SE and its p-value (0.6171) indicates that they have similar
performance in terms of the time cost.

To further investigate how this tradeoff will influence the
optimization accuracy, Table III compares the optimization
results obtained by different settings. The results show that the
change of the optimization results due to the tradeoff seems
to be acceptable, when considering the overall performance.
First, if gen is 500, the results obtained by 50 surrogates have
similar overall accuracy with those obtained by 100 surrogates.
More specifically, the algorithm with 50 surrogates performs
better than, similar to, and worse than the 100 surrogates on
2, 3, and 3 of the eight problems, respectively. As building
50 surrogates requires a much shorter time than 100 surrogates,
it is reasonable to cut the 7 to 50. Second, when T is 50,
the results after 500 generations outperform 100 generations
on all the 8 problems, especially, on high dimensional prob-
lems. Although the algorithm with 500 generations requires
higher time cost than the variant with 100 generations does, its
improvements on optimization accuracy deserve. Concluding
from the above, the BDDEA-LDG is recommended to be con-
figured with 50 surrogates and 500 generations and, therefore,
the following experiments also employ these configurations.

C. Comparisons With Traditional Methods

In this part, the BDDEA-LDG is compared with traditional
methods, including GA with SBX (denoted as GA-SBX) and
a random sample method. The configurations of GA-SBX are
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TABLE IV

COMPARISONS ON OPTIMIZATION RESULTS BETWEEN THE PROPOSED ALGORITHM AND TRADITIONAL METHODS

Problems D BDDEA—LDG Random'sample GA—SBX GA—S.BX GA—S.BX
(11D offline data) (11D offline data) (11D online data) (110D online data) (550D online data)
10 | 1.01E+00+3.99E-01 1.46E+02+3.99E+01(+) | 1.17E+0242.58E+01(+) | 4.72E+01+1.34E+01(+) | 1.15E-+00£3.99E-01(+)
Ellipsoid 30 | 6.66E+00£2.09E+00 | 2.09E+03+1.91E+02(+) | 2.06E+03+2.45E+02(+) | 3.58E+0248.54E+01(+) | 8.55E+00+2.15E+00(+)
50 | 131E+0143.19E+00 | 6.34E+03%5.20E+02(+) | 6.09E+03+3.94E+02(+) | 6.56E+02+1.45E+02(+) | 1.31E+01+2.52E+00(=)
100 | 5.55E+01+1.12E+01 3.03E+0441.65E+03(+) | 2.67E+04+1.32E+03(+) | 9.86E+02+2.18E+02(+) | 2.28E+01+6.27E+00(-)
10 | 3.52E+01+8.58E+00 6.63E+0243.16E+02(+) | 5.14E+02+1.33E+02(+) | 1.51E+02+5.35E+01(+) | 1.93E+01+5.45E+00(-)
Rosenbrock |30 S-00E+01£7.35E+00 | 4.83E+03+9.70E+02(+) | 5.54E+03%7.71E+02(+) | 6.77E+02+1.69E+02(+) | 4.82E+01+6.89E+00(-)
50 | 9.81E+014+8.99E-+00 1.07E+04+1.34E+03(+) | 9.77E+03+1.38E+03(+) | 6.42E+0242.07E+02(+) | 6.13E+0124.08E+00(-)
100 | 1.93E+0242.26E+01 2.79E+04+1.58E+03(+) | 2.40E+04+1.59E+03(+) | 4.51E+02+7.75E+01(+) | 1.08E+02:+2.96E-+00(-)
10 | 6.39E+00£8.38E-01 1.91E+01+1.12E+00(+) | 1.88E+01%6.81E- 1(+) | 1.67E+01£1.08E+00(+) | 8.68E-+00£1.26E+00(+)
Ackley 30 | 5.57E+00+6.33E-01 2.04E+01+1.77E-01(+) | 2.05E+01£1.95E-01(+) | 1.66E+0147.90E-01(+) | 6.36E+00+7.70E-01(+)
50 | 4.81E+00+3.76E-01 2.06E+01+1.13E-01(+) | 2.06E+01+1.33E-01(+) | 1.47E+0149.76E-01(+) | 4.83E+00+3.48E-01(=)
100 | 4.71E+00+3.08E-01 2.08E+01+4.63E-02(+) | 2.07E+0145.64E-02(+) | 1.09E+01+5.92E-01(+) 4.36E+00£3.32E-01(-)
10 | 1.29E+00+1.34E-01 1.13E+02+1.61E+01(+) | 9.68E+01+2.48E+01(+) | 2.90E+01+8.59E+00(+) | 1.74E+00£3.00E-01(+)
Griewank |30 1.37TE+00+1.00E-01 5.06E+0243.16E+01(+) | 5.12E+0245.75E+01(+) | 9.52E+0142.28E+01(+) | 3.52E+00+8.87E-01(+)
50 |  1.42E+0048.23E-02 9.52E+02+4.80E+01(+) | 8.91E+02+7.20E+01(+) | 8.12E+01+1.57E+01(+) | 3.05E+00+5.30E-01(+)
100 | 1.80E-+00+2.34E-01 2.19E+03+6.76E+01(+) | 1.91E+03+7.85E+01(+) | 7.35E+01£1.52E+01(+) | 2.93E+00£5.32E-01(+)
10 | 6.51E+01+2.96E+01 1.04E+02+1.29E+01(+) | 9.35E+01%1.02E+01(+) | 7.45E+01£1.01E+01(+) | 4.73E+01+7.72E+00(-)
Rastrigin 30 | 1.46E+024.34E+01 3.93E+02+1.74E+01(+) | 3.95E+02+1.69E+01(+) | 2.80E+02+1.98E+01(+) | 2.19E+02+1.15E+01(+)
50 | 1.90E+0243.18E+01 | 7.05E+02+2.38E+01(+) | 6.67E+02+2.39E+01(+) | 4.62E+02+2.81E+01(+) | 3.83E+02+1.98E+01(+)
100 | 4.05E+02+1.44E+02 1.51E+0343.85E+01(+) | 1.41E+03+4.62E+01(+) | 9.16E+02+2.91E+01(+) | 8.10E+02+2.27E+01(+)
+/~/- NA 20/0/0 20/0/0 20/0/0 11/2/7
Average Ranking 1.38 4.78 4.23 3.00 1.63
Adjusted p-value NA 0.0000 0.0000 0.0046 0.6171
. . TABLE V
the same as that used in BDDEA-LDG, and the difference COMPARISONS BETWEEN OFFLINE DDEAS
between them is that GA-SBX only employs real FEs for the
evolution while the evolution of BDDEA-LDG is driven by Problem | D | BDDEA-LDG DDEA-SE
data and surrogates. In addition, the random sample method 10 [1.01E+0043.99E-01 | 1.02E+0044.90E-01 (=)
is actually the offline data sampled by LHS, which is an ideal Ellipsoid zg f‘ifiiﬁ?ﬁ‘?giigg f’g?gig?f:'ggsjgg ((3)
baseline to observe the effectiveness of BDDEA-LDG. Also, 100 5.55E+0141.12E+01 | 3.12E+02.46.13E+01 ()
GA-SBX with 110-D and 550-D FEs are also employed 10 |3.52E+01+8.58E+00 | 2.95E+01+5.04E+00 ()
for companions, which can help figure out the strengths of Rosenbrock |20 S-00E+0127.35E+00 | 5.67E+01+5.34E+00 (+)
BDDEA-LDG. 50 |9.81E+01+8.99E+00 | 8.41E+01+4.05E+00 (-)
The comparison results provided in Table IV are ana- 100 1.93E+02£2.26E+01 ) 2.65E+02:42.485+01 (1)
. . 10 |6.39E+0018.38E-01 | 6.40E+00+1.14E+00 (=)
lyzed by Friedman test with the Bergmann—Hommel post-hoc 30 |5.57E100£6.33E-01 | 4.83E+00£5.10E-01 (-
test (significance level = 0.05), where the control method Ackley T S TR T00£3.76E-01 | 4 82510023 SSE-01 =)
is BDDEA-LDG. The results indicate the effectiveness of 100 |4.71E+00+3.08E-01 | 7.27E+00+7.09E-01 (+)
BDDEA-LDG. First, Table IV shows that the BDDEA- 10 |1.29E+00+1.34E-01 | 1.31E+00+1.46E-01 (=)
LDG outperforms GA-SBX when given the same budgets Griewank 30 |1.37E+00£1.00E-01 | 1.34E+0047.46E-02 (=)
. 50 |1.42E+00£8.23E-02 | 1.94E+00+2.45E-01 (+)
(11-D FEs) on all the problems, reflecting the advantages of 100 |1.80E+00£2.34E-01 | 1.81E+0122.12E+00()
LlSiIlg surrogates. Furthermore, BDDEA-LDG can still out- 10 [6.51E+01+2.96E+01 | 6.59E+01+1.89E+00(=)
perform the GA-SBX with 110-D FEs and have competitive Rastrigin 30 [1.46E+02+4.34E+01 | 1.85E+02+1.61E+01(+)
performance when compared with the GA-SBX with 550-D % 50 [1.90E+02:3.18E+01 | 1.87E+0243.03E+01(x)
FEs. That is, BDDEA-LDG is able to use 10% FEs budgets 100 4.0SE+02£1.44E+02 | 8.11E+02+8 26E+01(+)
+/~/- NA 8/8/4
to generate better results and 2% budgets to generate com- Average Ranking 3 168
petitive results when compared with GA-SBX. Second, the Adjusted p-value NA 0.1175

BDDEA-LDG also produces better results than the random
sample method on all the benchmark problems. This illustrates
that the performance of the BDDEA-LDG is not by chance,
but by its appropriate data generation and model management.

D. Comparisons With Offline Data-Driven Evolutionary
Algorithms

This part compares the offline DDEAs on all the bench-
mark problems and provides the results in Table V.
Although DDEA-SE is a state-of-the-art offline DDEA, the
BDDEA-LDG can obtain better overall performance than the

DDEA-SE. According to the Wilcoxon’s rank-sum tests, the
BDDEA-LDG performs significantly better than, similar to,
and significantly worse than DDEA-SE on 8, 4, and 4 prob-
lems, respectively. Moreover, BDDEA-LDG produces the best
optimization results (as marked in bold) on 12 of the 20 prob-
lems. According to the Friedman test with the Bergmann—
Hommel post-hoc test (significance level = 0.05 and with
the BDDEA-LDG as the control method), BDDEA-LDG has
a smaller ranking value than DDEA-SE (p-value = 0.1175).
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TABLE VI
COMPARISONS BETWEEN THE PROPOSED ALGORITHM AND ONLINE
DDEAS ON LOW- AND MEDIUM-DIMENSIONAL PROBLEMS

Problem | D | Metric [BDDEA-LDG | CAL-SAPSO GPEME
10 Mean 1.01E+00 9.70E-01 (~) | 3.64E+01 (+)

Ellipsoid Std. 3.99E-01 8.30E-01 1.68E+01
30 Mean 6.66E+00 4.05E+00 (-) | 1.19E+03 (+)

Std. 2.09E+00 1.11E+00 2.12E+02
10 Mean 3.52E+01 1.74E+01 (-) | 1.80E+02(+)

Rosen- Std. 8.58E+00 3.90E+00 6.54E+01
-brock 30 Mean S.00E+01 5.18E+01 (+) | 2.68E+03 (+)

Std. 7.35E+00 1.01E+01 8.21E+02
10 Mean 6.39E+00 2.01E+01 (+) | 1.41E+01 (+)

Ackley Std. 8.38E-01 2.40E-01 2.30E+00
30 | Mean | S.STE+00 [ 1.67E+01 (+) | 1.93E+01 (+)

Std. 6.33E-01 2.70E-01 3.00E-01
10 Mean 1.29E+00 1.29E+00 (») | 2.95E+01 (+)

Gricwank Std. 1.34E-01 1.40E-01 1.17E+01
30 Mean 1.37E+00 1.08E+00 (-) | 2.71E+02 (+)

Std. 1.00E-01 3.87E-02 4.72E+01
10 Mean 6.51E+01 8.87E+01 (+) | 7.08E+01 (+)

Rastrigin Std. 2.96E+01 2.15E+01 1.23E+01
30 Mean 1.46E+02 8.54E+01 (-) | 3.02E+02 (+)

Std. 4.34E+01 1.76E+01 2.86E+01

+/~/- NA 4/2/4 10/0/0
Average Ranking 1.5 1.68 2.82
Adjusted p-value NA 0.6698 0.0060

The above results show the effectiveness of BDDEA-LDG. Its
outstanding performance is likely brought by the LDG and
the BS, which can improve the surrogate performance accord-
ing to the features and characteristics of current problems. In
addition, the BDDEA-LDG is more likely to yield promising
results on high dimensional problems. On all the benchmarks
with 100 decision variables, BDDEA-LDG outperforms the
DDEA-SE significantly. It seems that 11-D data are not enough
for locating the optimum in high dimensional problems.
Therefore, employing LDG to generate data may provide more
useful information and then enhance solution accuracy. In
general, BDDEA-LDG can be considered as competitive in
solving offline data-driven optimization problems.

E. Comparisons With Online Data-Driven Evolutionary
Algorithms

This part compares BDDEA-LDG with state-of-the-art
online DDEAs. As CAL-SAPSO and GPEME are proposed
for low and medium dimensional problems while SA-
COSO and MGP-SLPSO are for high dimensional prob-
lems [18], [19], [47], the comparisons are divided into two
parts, problems within 30 dimensions and problems exceed-
ing 30 dimensions. Also, the CAL-SAPSO and GPEME are
only compared in 10- and 30-D problems and the SA-COSO
and MSP-SLPSO in 30-, 50-, and 100-D problems, as the
literature does [15].

Table VI provides the comparison results on 10- and 30-D
problems, showing that the BDDEA-LDG can outperform
GPEME and obtain competitive results when compared with
CAL-SAPSO. Although CAL-SAPSO obtains the best results
in six problems while the BDDEA-LDG only in 5, BDDEA-
LDG performs better than and similar to CAL-SAPSO on
4 and 2 problems, respectively. Moreover, the Friedman test
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with the Bergmann—Hommel post-hoc test (significance level =
0.05) shows that BDDEA-LDG has a smaller average ranking
than CAL-SAPSO and the p-value indicate that the BDDEA-
LDG performs similar to CAL-SAPSO. These comparisons
support the effectiveness of BDDEA-LDG on low and medium
problems.

Table S.I in the supplementary material provides the com-
parison results on 30-, 50-, and 100-D problems. In Table
S.I in the supplementary material, BDDEA-LDG is shown
to be efficient on medium and high dimensional problems,
significantly outperforming SA-COSO and MGP-SLPSO on
15 and 9 test problems, respectively. According to the
Friedman test with the Bergmann-Hommel post-hoc test
(significance level = 0.05 and BDDEA-LDG as the con-
trol method), BDDEA-LDG shows significant improvements
over SA-COSO and obtains best ranking among the three
algorithms. Furthermore, the experiments show that BDDEA-
LDG and MGP-SLPSO are suitable for different kinds of
problems. For example, MGP-SLPSO outperforms BDDEA-
LDG on Ellipsoid and Griewank problems at all the tested
dimensions while BDDEA-LDG outperforms MGP-SLPSO
on Rosenbrock, Ackley, and Rastrigin problems at all the
tested dimensions. Nevertheless, BDDEA-LDG significantly
outperforms MGP-SLPSO on nine problems while it is only
significantly beaten by MGP-SLPSO on six problems, showing
that in general BBDDEA-LDG has better performance than
MGP-SLPSO on these problems.

F. Contribution Analysis of Different Components in the
Proposed Algorithm

This part further studies the contributions and influences of
BS and LDG individually.

First, the experiments are conducted to compare different
surrogate strategies. That is, the same optimizer, GA-SBX,
are configured with different surrogate models to develop
four variants of BDDEA-LDG: 1) the original BDDEA-LDG;
2) the variant without BS; 3) the variant without LDG;
and 4) the variant without both BS and LDG. The above
four algorithms are simply denoted as BDDEA-LDG, DDEA-
LDG-w/0-BS, BDDEA-w/0o-LDG, and DDEA-w/0-BS-LDG,
respectively. DDEA-LDG-w/0-BS adopts the single RBFNN
built on data after LDG, BDDEA-w/o-LDG employs the
simple ensemble of 50 RBFNNs built on original offline
data, and DDEA-w/0-BS-LDG uses a single RBFNN built
on original offline data. Table VII provides the optimization
results and average ranking values while Table S.II in the
supplementary material provides the p-value obtained by
Friedman test with the Bergmann—-Hommel post-hoc test
(significance level = 0.05). According to average ranking,
BDDEA-LDG is the best among all the four algorithms, fol-
lowed by DDEA-LDG-w/0-LDG and BDDEA-w/0-BS, while
the DDEA-w/0-BS-LDG is the worst. The ranking results
show that using BS or LDG is better than not using them,
and the combination of BS and LDG can obtain better
results than using one of them. Furthermore, according to the
Wilcoxon’s rank-sum test, BDDEA-LDG significantly outper-
forms DDEA-LDG-w/o0-BS and BDDEA-w/o-LDG on 20 and
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TABLE VII

Problem D BDDEA-LDG DDEA-LDG-w/0-BS BDDEA-w/0-LDG DDEA-w/0-BS-LDG
10 1.01E+0043.99E-01 3.47E+00£2.26E+00(+) 1.34E+00+7.30E-01(+) 3.01E+00£1.67E+00(+)
Ellipsoid 30 6.66E+00+2.09E+00 2.41E+01+1.38E+01(+) 7.35E+00+2.28E+00(+) 1.83E+01+6.93E+00(+)
50 1.31E+01+3.19E+00 5.00E+01+2.20E+01(+) 1.91E+0146.38E+00(+) 6.76E+01£3.74E+01(+)
100 5.55E+01+1.12E+01 2.46E+02+1.89E+02(+) 4.79E+02+2.63E+02(+) 1.24E+03+9.66E+02(+)
10 3.52E+01+8.58E+00 5.36E+01+3.62E+01(+) 3.14E+01+7.23E+00(-) 4.64E+01+1.46E+01(+)
Rosenbrock 30 5.00E+01+7.35E+00 9.90E+01+2.28E+01(+) 6.84E+01+8.07E+00(+) 9.59E+01+2.17E+01(+)
50 9.81E+01+8.99E+00 1.27E+02+1.69E+01(+) 1.07E+02+1.63E+01(+) 1.56E+02+3.77E+01(+)
100 1.93E+02+2.26E+01 3.12E+02+1.65E+02(+) 4.12E+02+1.43E+02(+) 8.41E+02+7.14E+02(+)
10 6.39E+00+8.38E-01 9.12E+00+2.27E+00(+) 6.45E+00£1.07E+00(+) 7.71E+00£1.47E+00(+)
Ackley 30 5.57E+00£6.33E-01 7.26E+00+1.40E+00(+) 5.32E+00£5.31E-01(-) 7.39E+00+1.01E+00(+)
50 4.81E+00+3.76E-01 6.59E+00+8.70E-01(+) 4.77E+00+2.32E-01(-) 6.95E+00+8.97E-01(+)
100 4.71E+0043.08E-01 7.49E+00£1.15E+00(+) 4.99E+00+6.67E-01(+) 8.15E+00£9.82E-01(+)
10 1.29E+00+1.34E-01 2.36E+00+1.31E+00(+) 1.36E+00+2.23E-01(+) 2.14E+00+7.71E-01(+)
Griewank 30 1.37E+00+1.00E-01 3.08E+00+9.33E-01(+) 1.41E+00+1.73E-01(+) 2.68E+00+5.63E-01(+)
50 1.42E+00+8.23E-02 3.45E+00£1.45E+00(+) 1.57E+00+1.69E-01(+) 3.61E+00+1.45E+00(+)
100 1.80E+00+2.34E-01 1.10E+01+6.79E+00(+) 1.68E+01+2.13E+01(+) 8.97E+01+1.00E+02(+)
10 6.51E+01+2.96E+01 9.94E+01+2.60E+01(+) 6.98E+01+2.53E+01(+) 8.85E+01+2.11E+01(+)
Rastrigin 30 1.46E+02+4.34E+01 2.27E+0244.55E+01(+) 1.57E+02+3.61E+01(+) 2.28E+02+5.11E+01(+)
50 1.90E+02+3.18E+01 3.82E+02+5.66E+01(+) 2.23E+02+5.34E+01(+) 3.98E+02+8.86E+01(+)
100 4.05E+02+1.44E+02 8.06E+02+1.62E+02(+) 8.76E+02+1.90E+02(+) 1.04E+03+8.00E+01(+)
+~/- NA 20/0/0 17/0/3 20/0/0
Average Ranking 1.15 3.20 2.05 3.60

Ellipsoid Ackley
-~ -~ Surrogate without LDG |- - - - Surrogate without LDG|
Surrogate with LDG Surrogate with LDG

Fitness

Griewank i Rastrigin
- - - - Surrogate without LDG
Surrogate with LDG

- - - - Surrogate without LDG|
Surrogate with LDG

(@) (b)

Fig. 3. Approximation result of single-RBF surrogates with or without LDG. (a) Ellipsoid function. (b) Ackley function. (c) Griewank function. (d) Rastrigin

function.

17 of the total 20 test problems, respectively, indicating that
both the BS and LDG contribute to the promising performance
of BDDEA-LDG.

Furthermore, in order to provide more observations about
how the LDG works, approximation results of surrogates with
or without LDG are plotted in Fig. 3. For fair comparisons, the
two surrogates are configured as single RBFNN with the same
parameters and use the same amount (11-D) of offline data for
model training. To plot clearer and more obvious differences of
approximations, LDG is performed ten times and experiments
are carried out on 1-D problems. In addition, the Rosenbrock
function is not employed, for it will degenerate to a sim-
ple convex quadratic function when the dimension decreases
to 1. In Fig. 3, on functions with multiple local optima, sur-
rogates with LDG can obtain smoother approximated curves,
which can be easier for EAs to optimize. Furthermore, on
Ackley, Griewank, and Rastrigin functions, the global opti-
mum of surrogates using LDG is closer to the real one. The
above visualizations suggest the advantages of LDG.

In addition, the experiments are also conducted to test
the effectiveness of BS and LDG on other surrogate mod-
els. Table S.III in the supplementary material compares the

optimization results of three models: 1) Kriging model (also
known as Gaussian process model); 2) Kriging model using
LDG; and 3) Kriging model using both BS and LDG. They
are denoted as Boosting Kriging with LDG (BKriging-LDG),
Kriging model with LDG but without BS (Kriging-LDG-
w/0-BS), and Kriging model without both BS and LDG
(Kriging-w/0-BS-LDG), respectively. These three models are
obtained as follows. First, a Kriging model, Kyfine is built
on the offline data. Second, Kyfine iS employed to select
data to perform LDG and then build the second Kriging model,
Kipg, on the data set containing both offline and synthetic
data. Subsequently, the Kriging-LDG-w/0-BS will employ the
Kipg, while Kriging-w/o-BS-LDG will use the Koffine. AS
for BKriging-LDG, only once LDG is carried out because
the training time of Kriging is long and will increase rapidly
as the data size increases. That is, the average prediction of
Kofine and Kypg is adopted in BKriging-LDG as the final
prediction. The parameters of both the Kymine and Kipg are
configured the same according to [13] and the employed
optimizers are the same GA-SBX. The multiple comparisons
among these four models are performed by Friedman test
with the Bergmann—Hommel post-hoc test(significance level
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= 0.05), where their average ranking values are shown in
Table S.III in the supplementary material and the p-values
are given in Table S.IV in the supplementary material. The
results in Table S.III in the supplementary material show that
the BS and LDG can be useful for other surrogate models like
the Kriging model, because BKriging-LDG can significantly
outperform Kriging-LDG-w/0o-BS and Kriging-w/o-BS-LDG
on 8§ and 9 of the 20 problems, respectively. In terms of
the average ranking value, BKriging-LDG can also have the
best ranking among the three algorithms. Moreover, the LDG
has shown to be effective because Kriging-LDG-w/o-BS can
obtain a better average ranking value than Kriging-w/o-BS-
LDG (2.07 versus 2.30). These show that the BS and LDG can
be useful for different kinds of surrogates, including RBFNNs
and Kriging models.

To obtain further observations, visualizations of the approx-
imations obtained by the above three models are provided in
Fig. S.1 in the supplementary material, which are on 1-D prob-
lems. Fig. S.1 in the supplementary material shows that the
landscapes approximated by BKriging-LDG can have more
accurate positions of the global optima than Kriging-w/o-BS-
LDG and Kriging-LDG-w/0-BS, and those approximated by
Kriging-LDG-w/0-BS are also better than Kriging-w/o-BS-
LDG. These results validate the effectiveness of BS and LDG
on the Kriging model.

G. Influences of Surrogate Number in Boosting Strategy

This part investigates the influence of surrogate number 7.
BDDEA-LDG variants with different surrogate numbers, such
as 5, 10, 15, 20, 50, 100, and 150, are compared on Ellipsoid
and Rastrigin problems at 10 and 100 dimensions.

The results shown in Fig. 4 indicate that the effect of
the surrogate number has a strong relationship with the
problem dimension. On the one hand, for 10-D problems,
the obtained fitness first increases and then decreases along
with the increase of the surrogate number. Furthermore, on
the Ellipsoid problem, 50 to 100 surrogates are preferred for
better results, while on the Rastrigin problem, 20 to 100 surro-
gates can produce a smaller error. However, the algorithm with
150 surrogates performs poorer than 50 and 100 surrogates on
both 10-D Ellipsoid and Rastrigin functions. The reason for
the poor performance of 150 surrogates may be the over fitting
problem, where the surrogate model approximates too close to

the evaluated data but fails to predict the new data correctly.
On the other hand, on 100-D problems, solution accuracy
improves as the surrogate number increases, indicating that
150 or more surrogates will be better. This suggests that, as the
problem complexity and the number of local optima increases
rapidly, a surrogate model that overfits in low dimensional
problems may be not complex enough for approximating high
dimensional problems. For example, in Fig. 4, the algorithm
with 150 surrogates overfits in 10-D problems and perform
worse than 50 and 100 surrogates. But on 100-D problems,
the solution produced by 150 surrogates are more accurate
than 50 and 100 surrogates. In conclusion, more surrogates
can further enhance BDDEA-LDG on the solution accuracy
within a range and the range tends to enlarge as the problem
dimension increases.

H. Influences of Configuration Settings in Localized
Data Generation

This part studies the effect of configurations in LDG. As
the selection criterion, the size of the neighborhood for LDG,
and the size of data generated by LDG may have effects on
the algorithms, these three settings are discussed as follows.

First, different selection criteria for constructing the S in (1)
are compared experimentally. As the original criterion used in
LDG is diff = Ype — F(x), its opposite value and absolute
value are employed in comparisons. Also, diff = — F(x) is
employed for a baseline, because it is the real fitness value and
will not be influenced by surrogate predictions. In the experi-
ments, the parameter settings of each algorithm are the same
with BDDEA-LDG except the diff. The results provided in
Table S.V in the supplementary material presents that the orig-
inal criterion significantly outperforms others. Table S.V in the
supplementary material shows that diff = F(x) — Ypre performs
significantly worse than the original one on 18 of 20 prob-
lems. In addition, diff= ||Ype — F(x)|l1 and diff = — F(x)
are also outperformed by the original one on 18 problems.
According to Friedman test with the Bergmann—Hommel post-
hoc test (significance level = 0.05), the control method, i.e.,
diff = Ype — F(x), obtains the best average ranking and
shows significant improvement over the other three criteria.
These results indicate that the original criterion can handle
this problem well.
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Second, the experiments are conducted to investigate the
sensitiveness of neighborhood size I/, which aims to control
the safe region for LDG. In the experiments, BDDEA-LDG
was independently configured with 107!, 10, 10%, or 103 times
the original / value computed by (2), which are denoted as
I* = 10711, I* = 10, I* = 10?[, and I* = 103, respectively.
Also, the original BDDEA-LDG is denoted as [* = [, where
the [ value is computed by (2). The results reported in Table
S.VIin the supplementary material how that the BDDEA-LDG
with [* = [ is the best among the five algorithms according
to the Wilcoxon’s rank-sum test. In Table S.VI in the sup-
plementary material, BDDEA-LDG with [* = [ significantly
outperforms all the three BDDEA-LDG variants with larger
I* values on 17 of 20 problems, and only performs worse on
the rest three problems. This suggests that the / value obtained
by (2) can provide a safer region than larger / values to avoid
most noises when performing LDG. Furthermore, when com-
pared with smaller /* value, the BDDEA-LDG with [* = [ can
perform similar to the variant with/* = 10~!/ on most of the
problems. Nevertheless, BDDEA-LDG with [* = [ still signif-
icantly outperforms BDDEA-LDG with /* = 10~/ value on
five problems while it is only significantly beaten on two prob-
lems, showing that the / value obtained by (2) is small enough
and will not make more noises than smaller / value. Based on
the above, the [/ value obtained by (2) is very suitable for
BDDEA-LDG.

Third, the experiments are performed to study the influences
of the size of data generated in LDG. As the original setting
is generating 50% of ITDI (i.e., 0.5ITDI) synthetic data in each
LDG, configurations of different data sizes from 0.117DI to
1.0ITDI are tested, where ITDI is the size of the training data set
that only contains offline data. Generally speaking, the size of
data generated in LDG can have influences on two aspects:
1) the time cost for training surrogates and 2) the optimization
performance of the algorithms. Therefore, the experiments are
divided into two parts. First, Table S.VII in the supplementary
material compares the average time cost for model training
of the BDDEA-LDG with different sizes of generated data.
Second, Table S.VIII in the supplementary material provides
the optimization results obtained by BDDEA-LDG with dif-
ferent sizes of generated data. Moreover, the time costs and
optimization results are compared using the Friedman test
with the Bergmann—-Hommel post-hoc test (significance level
= 0.05), which are given in Table S.IX in the supplemen-
tary material. The results in Table S.VII in the supplementary
material show that as the size of generated data increases
from 0.1I7DI to 1.0ITDI, the time cost for model training also
increases. While in Table S.VIII in the supplementary material,
the optimization results show that 0.517DI can have better over-
all performance than other settings. For example, 0.517DI sig-
nificantly outperforms 0.117DI, 0.2I7DI, 0.3ITDI, and 0.4/TDI| on
17, 17, 17, and 14 problems, respectively. Furthermore, the
0.5ITDI obtains the best ranking value (i.e., 3.15) among
the ten different settings. In addition, the p-values in Table
S.IX in the supplementary material show that 0.5I7D| per-
forms significantly better than 0.117DI, 0.2ITDI, 0.3ITDI, and
1.0ITDI, in terms of the optimization results. When consid-
ering the multiple comparisons of time cost in Table S.IX

Fig. 5.

Diagram of an arterial road with four intersections.

in the supplementary material, 0.5I7DI| also shows significant
improvements over 0.8I7DI, 0.9ITDI, and 1.017DI, and performs
similar to 0.4I7DI, 0.61TDI, and 0.7I7DI . Therefore, 0.5I7DI| can
be the best setting for balancing the algorithm performance and
time cost, which is the recommendation in this article.

L. Arterial Traffic Signal Timing Optimization

This part employs an arterial traffic signal timing
optimization problem to test the proposed algorithm. Due to
the substantial increase in vehicle numbers, the traffic con-
gestion phenomenon has received increasing attention,which
means traffic demand exceeds the capacity of transportation
systems [70]. To alleviate traffic congestions, optimizing traf-
fic signal control is one of the most effective ways, especially,
in arterial traffic [71]. However, the evaluation of a signal con-
trol plan is not easy and may last a week, or even a month [71].
Otherwise, the signal plans tested well during workdays may
not work well on holidays, because the behaviors of the
drivers and the traffic flow differ from day to day. Therefore,
to shorten the evaluations, the signal control plan is often
designed through simulations of professional software, like
VISSIM [72], [73]. As the simulations can also be time con-
suming, arterial traffic signal timing optimization is an ideal
place to employ DDEAs.

An arterial traffic signal timing problem can be formulated
as follows [73]:

g};% OF(C, g,9) (7N
$.t. Cmin < C < Ciax (3
0<6,<C VzeZ 9)
8min < &zi < gmax VZEZViel (10)

821+ 81=8,5+8.6 VZ€EZ (11)
823+t 8.4=8,7+838 VZeZ (12)

where OF is the objective function of three decision variables
including cycle period (C), green splits (g), and offsets (),
Z is the intersection set (each Z has 8 g), I is the signal set of
an intersection (containing green, yellow, and red signals), and
Cmax and Cpin are maximum and minimum cycle length for
a complete period, gmax and gmin are the maximum and min-
imum of a green splits, respectively. Equations (11) and (12)
are for the ring-barrier diagram strategy such that the east-west
and north-south movements will not contradict each other.
The signal timing problem used in this article is a road with
four intersections (Z = 4), both of which are T-junctions, as
shown in Fig. 5. In this case, the problem dimension is 37, with
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TABLE VIII
RESULTS OF THE ARTERIAL TRAFFIC SIGNAL TIMING PROBLEM

Algorithm Average of Needed Travel Time
(seconds)

Offline BDDEA-LDG 3.01E+02+1.57E+01
DDEA-SE 3.17E+024+2.01E+01
Online CAL-SAPSO 3.12E+0243.21E+01
GPEME 3.35E+02+1.64E+01
Random sample 4.57E+0246.52E+01
GA-SBX 3.79E+02+4.28E+01

four variables of 6, 32 variables of g, and one variable of C,
respectively. In addition, Cpax and Chyin are set as 120 and
60 s, while gmax and gmin are configured as 40 and 10 s. The
objective function is defined as the average travel time for each
vehicle, which can be simulated by VISSIM [73]. As the tim-
ing of the signals in VISSIM has precision limits, the solution
value of each dimension will be rounded off before simula-
tions. To simulate traffic congestions, 2.2 X 104 vehicles with
different behaviors and characteristics were generated accord-
ing to a predefined distribution in VISSIM. Those vehicles
were set with different starting points and destinations. To
ensure all the vehicles can reach their destinations, each simu-
lation would last for 10* simulation seconds before calculating
the result.For the comparisons, SA-COSO and MGP-SLPSO
were not employed because 37 is not a high dimension. To
validate the effectiveness of DDEAs, the results obtained by
the random sampling method and GA-SBX are also recorded.
For fair comparisons, all the algorithms can only use 407 eval-
vations in total, namely, 11 times the problem dimension 37.
In addition, to reduce accidental error, each algorithm per-
forms 25 independent runs and the average results were used
for comparisons.

Table VIII provides the experimental results with the best
result marked in bold. In Table VIII, the BDDEA-LDG can
obtain the best results while the DDEA-SE and the CAL-
SAPSO perform similarly, which suggests the advantages of
the BDDEA-LDG. Furthermore, all DDEAs outperform the
GA-SBX and the random sample method, suggesting the effec-
tiveness of DDEAs in solving this problem. In summary, the
performance of our proposed algorithms has been verified by
the arterial traffic signal timing problem.

V. CONCLUSION

Although DDEAs have shown efficiency in solving real-
world optimization problems, there are still some difficulties
in designing powerful DDEAs, especially, in data utilization
and model management. In this article, a BDDEA-LDG algo-
rithm is proposed by combining the model managements and
data generation methods. It employs the BS to boost the sur-
rogate performance according to the problems at hand, so that
it can obtain suitable surrogate models for different problems.
Furthermore, the LDG is proposed to alleviate the data short-
age and cooperates with the BS through generating data.
In addition, to make a balance between execution time and
accuracy, this article empirically studies the tradeoff between
the optimization procedure and the model management of
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BDDEA-LDG, which benefits the algorithm performance.
To access the effectiveness of the proposed methods, the
experiments and comparisons are conducted on widely used
benchmarks and an arterial traffic signal timing optimization
problem. The results show that the proposed algorithms are
able to outperform state-of-the-art algorithms when given the
same computational budgets, suggesting the efficiency of the
proposed methods.

For future work, the algorithm proposed in this article will
be applied to solve problems with more complicated chal-
lenges, such as large-scale [74], multi/many-objective [75],
multimodal [76], dynamics [77], and constraint [78].
Moreover, the BS and LDG will be extended to more dif-
ferent types of surrogate models to further study their effi-
ciency in improving the algorithm performance. In addition,
researches will be conducted on combining the proposed
strategies (i.e., BS and LDG) with other different optimization
algorithms (e.g., PSO and DE [79]), so as to obtain more
advanced DDEAs.
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