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Resource-Aware Distributed Differential Evolution
for Training Expensive Neural-Network-Based

Controller in Power Electronic Circuit
Xiao-Fang Liu , Member, IEEE, Zhi-Hui Zhan , Senior Member, IEEE, and Jun Zhang , Fellow, IEEE

Abstract— The neural-network (NN)-based control method is
a new emerging promising technique for controller design in
a power electronic circuit (PEC). However, the optimization
of NN-based controllers (NNCs) has significant challenges in
two aspects. The first challenge is that the search space of
the NNC optimization problem is such complex that the global
optimization ability of the existing algorithms still needs to be
improved. The second challenge is that the training process of the
NNC parameters is very computationally expensive and requires
a long execution time. Thus, in this article, we develop a powerful
evolutionary computation-based algorithm to find a high-quality
solution and reduce computational time. First, the differential
evolution (DE) algorithm is adopted because it is a powerful
global optimizer in solving a complex optimization problem. This
can help to overcome the premature convergence in local optima
to train the NNC parameters well. Second, to reduce the com-
putational time, the DE is extended to distribute DE (DDE) by
dispatching all the individuals to different distributed computing
resources for parallel computing. Moreover, a resource-aware
strategy (RAS) is designed to further efficiently utilize the
resources by adaptively dispatching individuals to resources
according to the real-time performance of the resources, which
can simultaneously concern the computing ability and load state
of each resource. Experimental results show that, compared
with some other typical evolutionary algorithms, the proposed
algorithm can get significantly better solutions within a shorter
computational time.
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I. INTRODUCTION

THE design of power electronic circuits (PECs) is a
fundamental and significant research topic in power

electronics [1]. However, the controller design in PEC is
a challenging issue due to the time-varying and piecewise
linear characteristics of the power conversion stage (PCS) [2].
Currently, there are two common methods to design the PEC
controller. One is the traditional feedback-network (FN)-based
control method [3], and the other is the new emerging modern
machine learning-based control method [4]. The FN-based
controllers (FNCs) use a set of electronic components (e.g.,
resistors, inductors, and capacitors) to generate a control signal
to feedback to the PCS. Therefore, this is a hardware control
method. Instead, the machine learning-based control method
uses a software method (e.g., an approximation algorithm)
to simulate the control signal. Particularly, as neural net-
works (NNs) have become a very popular machine learning
technique for control tasks due to their strong ability of
function approximation [5]–[11], the NN-based controllers
(NNCs) have been used in PEC. The NNCs use a well-trained
NN to generate control signals to the PCS. Compared with the
FNCs, the design flow of the NNCs is intuitional [12], [13].
NNCs not only avoid the requirement of deep understanding
of the PCS and time-consuming derivation of control laws for
complex PEC systems but also present better performance.
NNCs have gained increasing attention from academic and
industrial communities and have become a new trend in PEC
design [14]. However, there are still challenges to the NNC
design.

First, the performance of the controllers is greatly sensi-
tive to the NN parameters. Backpropagation approaches are
popular for NN training [15]–[18]. However, backpropagation
approaches require a large training data set and are easily
trapped in local optima [19]. Particularly, the training data set
is also difficult to construct for PEC since the excepted control
signal (output) for a given input (state variables from the PCS)
is hard to obtain. Alternatively, evolutionary computation (EC)
has also been applied to NN optimization, termed evolution-
ary NN (ENN) [20]–[22], such as cost evaluation [23] and
parameter optimization [24]. Compared with backpropagation
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methods, EC is gradient-free and has a stronger global search-
ability. However, since the search space of NN optimization
is large and complex, an efficient global optimization method
is in great need. Second, the computational time of controller
optimization is very long since the function evaluation (FE)
of NNC optimization is expensive. Therefore, how to reduce
computational time is also a challenging issue.

In order to relieve the above two challenges, we focus
on developing an optimization algorithm with stronger global
searchability and shorter computational time for PEC con-
troller design. In terms of global optimization, a differential
evolution (DE) algorithm is adopted to find the approximately
optimal parameters of the controllers. DE is a branch of
EC algorithms, which was proposed by Storn and Price [25]
and has been fast developed to become an attractive global
optimizer in recent years due to its simple algorithm structure
and easy implementation [26]–[30]. Since the progress of the
exploration of DE to PEC design is at a slow pace, it is
greatly interesting and of practical value to extend DE to PEC
optimization. The adopted DE algorithm provides a simple yet
efficient approach to solve PEC, attempting to help overcome
the premature convergence of other optimization methods. In
addition, using DE to optimize the NNC in PEC also provides
a kind of powerful approach for ENN.

To further reduce the computational time, it is promising to
leverage the inherited parallelism advantage of DE for extend-
ing traditional centralized DE to distributed DE (DDE) [31].
This way, different individuals can be dispatched on different
computing resources in the evaluation step to calculate fitness
values concurrently to reduce computational time. Although
this is an intuitive idea, the difficulty is how to efficiently
assign the individuals to the resources to reduce the compu-
tational time as much as possible. A very straightforward and
simple way is to evenly divide the individuals into groups
and dispatch each group to one resource [32]–[34]. However,
it may be inefficient since it ignores the computing abilities
and load states of the different distributed resources. Some
load-balance-based methods have also been proposed, such
as CPU-utilization-based distribution mode [35] and dynamic
distribution strategy for heterogeneous tasks on homogeneous
resources [36]. However, they neglect the computing abilities
of the resources. More efficiently, in this article, we develop
a resource-aware strategy (RAS) to adaptively dispatch indi-
viduals to resources according to the real-time performance
of the resources, simultaneously concerning both the com-
puting ability and load state of each resource. The proposed
RAS is incorporated into DDE to form resource-aware DDE
(RADDE).

The proposed RADDE is applied to solve two PEC
instances for verifying its effectiveness. One instance with
an NNC is used to show the advantage of RADDE on NNC
optimization in terms of solution quality and computational
time. Since NNCs require a very long time for optimization,
it is impracticable to perform a large number of experimental
comparisons. To overcome this, another instance with an
FNC using shorter computational time is taken to evaluate
the performance of RADDE and its acceleration in compu-
tational time under different resource environments. Experi-

mental results show that the proposed RADDE algorithm has
generally better performance than the compared algorithms.
The main contribution of this article is to propose a DDE
with a strong global search ability to find good parameters
for controllers of PEC and develop a RAS to help the DDE
significantly shorten the computational time.

The rest of this article is organized as follows. Section II
introduces the DE algorithm and the PEC problems. Section III
describes the proposed RADDE algorithm. Section IV verifies
the performance and time acceleration of RADDE on a PEC
with an FNC. In Section V, the RADDE is applied to a recent
NNC. Finally, conclusions are summarized in Section VI.

II. BACKGROUND

A. DE Kernel

DE uses a population to search for the global optimum
through multiple iterations [41]. In the initialization, N indi-
viduals that represent solution vectors Xi = [xi1, xi2, . . . , xi D]
are randomly generated in the search space, where 1 ≤ i ≤ N
is the individual index and D is the problem dimensionality.
Each dimension xid is within a certain search range [xmin,d ,
xmax,d ] determined by the problem. At every generation, each
individual Xi performs a mutation operator to generate a
new vector Vi = [vi1, vi2, . . . , vi D] by using the difference
information of two other individuals as

Vi = Xr1 + F(Xr2 − Xr3) (1)

where F is the “amplification factor” parameter to control the
scale of the differential vector and is commonly set within
the range of [0, 1], while r1, r2, and r3 indicate different
individual indexes and are also different from individual i .
Note that, if any dimension vid of Vi violates the search
range, it will be set as the value of the corresponding violated
boundary.

In the following, DE performs the crossover operation on
the solution vectors Xi and Vi to obtain a new solution vector
Ui = [ui1, ui2, . . . , ui D] as:

uid =
{

vid , if rand(0,1) ≤ CR or d = ri

xid, otherwise
(2)

where CR is the “crossover rate” parameter and ri is a
randomly selected dimension subject to ri ∈ {1, 2, . . . , D}
to ensure that at least one dimension of Vi will enter the new
solution vector Ui .

After the crossover operation, a selection operation is
applied on the vectors Xi and Ui , and the better one will
be allowed to enter the next generation, as in (3) for a
minimization problem

Xi =
{

Ui , if fit(Ui ) ≤ fit(Xi)

Xi , otherwise.
(3)

Specifically, for a maximization problem, Xi will be replaced
by Ui if Ui has a greater or equal fitness value; otherwise, Xi

enters the next generation.
All the individuals perform these three operations generation

by generation until meeting the termination condition.
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Fig. 1. Block diagram of a PEC with traditional FNC.

Fig. 2. System architecture of a PEC with NNC.

B. PEC With FNC

A PEC usually uses multiple circuit components to imple-
ment its function. The basic block diagram of a PEC with an
FNC is shown in Fig. 1. There are two parts, i.e., PCS and
FNC, in the circuit [37]. Particularly, the PCS part accepts
power from the input source vin and is responsible for trans-
mitting it to the output load RL , while the FNC coordinates the
output voltage vo to control the circuit performance. Usually,
a control signal is given according to the received system state
from the PCS, through the cooperation of multiple resistors,
inductors, capacitors, and other components in the FNC. The
component values in the FNC greatly influence the steady state
of the circuit and should be well optimized.

C. PEC With NNC

Like traditional circuits, a PEC with an NNC also consists
of two parts, named PCS and NNC, as shown in Fig. 2.
The NNC accepts state variables from the PCS as input
and outputs control signals to the PCS for circuit stableness.
To well control the circuit, the NNC needs to be trained for
obtaining optimal NN parameters. Given the circuit model and
fitness function (calculation of training errors), the training of
the NNC is actually a parameter optimization problem. The
parameters of the NNC, i.e., the weights and biases of the
NN, can be optimized by the EC engine. This article codes
the parameters of the NNC as the variables of a solution and
uses RADDE as the optimizer for training.

III. PROPOSED ALGORITHM

A. Representation Scheme and Objective Function

To optimize controllers, the electronic components in an
FNC or the NN parameters in an NNC are represented as

variables in solution vectors. Each individual X is coded as

X = [x1, x2, . . . , xD] (4)

where xd is the dth optimization variable and D represents the
variable dimension. As mentioned in Section I, two different
PEC instances are used for the test. The solution representation
and fitness functions of the two PEC instances are presented
in the following. More details of the two PEC instances will
be described in Sections IV and V.

1) Solution Representation and Fitness Function of FNC:
For a traditional FNC, each individual is encoded as

X = [
R I C

] = [x1, x2, . . . , xD] (5)

where R = [R1, R2, . . . , R|R|], I = [I1, I2, . . . , I|I |], and C =
[C1, C2, . . . , C|C|] represent the component values of resistors,
inductors, and capacitors, respectively, and D = |R|+|I |+|C|
is the problem dimension.

The optimization objective is mainly to reduce the settling
time (ST) and control the overshoot [37] and can be formulated
as

max F(X)

=
RL_ max∑

RL=RL_ min,δRL

vin_ max∑
vin=vin_ min,δvin

[ f1(RL , vin, X) + f2(RL , vin, X)

+ f3(RL , vin, X)] + f4(X) (6)

where RL_min and RL_max, and vin_min and vin_max represent
the minimal and maximal values of RL and vin, respectively,
and δRL and δvin are user-defined step lengths in varying the
values of RL and vin. Specifically, f1 measures the steady-state
error of the output voltage vo and is defined as

f1(RL , vin, X) = K1e−E2/K2 (7)

E (r)
2 =

Ns∑
m=1

[
v

′(r)
o (m) − vref

]2
(8)

where v ′
o is the value of vo after the signal conditioning and is

achieved by using the iterative Secant method [38] to perform
a time-domain simulation that terminates if E (r)

2 is less than a
given tolerance ε and the system has reached the steady state;
E (r)

2 estimates the error between vo’ and vref by Ns simulated
values in the r th iteration, K1 is the maximum attainable value
of f1, and K2 controls the sensitivity of f1 to E2; and f2

measures the transient response of vd = vref − v ′
o, considering

minimizing the maximum overshoot (OV), maximum under-
shoot (UV), and the ST, by

f2(RL , vin, X) = OV(RL , vin, X)

+UV(RL , vin, X) + ST(RL , vin, X) (9)

OV(RL , vin, X) = K3

1 + e(Mp−Mp0)/K4
(10)

UV(RL , vin, X) = K5

1 + e(Mv −Mv0)/K6
(11)

ST(RL , vin, X) = K7

1 + e(Ts −Ts0)/K8
(12)

vd = vref − v ′
o (13)
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where K3, K5, and K7 are the maximum available values
of OV, UV, and ST, respectively, K4 and K6 are passband
constants, K8 controls the sensitivity, Mp0 is the maximum
overshoot, Mp is the current overshoot, Mv0 is the expected
maximum undershoot, Mv is the current undershoot, Ts0 is a
constant, and Ts is the real ST required until |vd | falls within
0.01 × σ band; f3 controls the steady-state ripple voltage on
the output vo by

f3(RL , vin, X) = K9e−A1/K10 (14)

where K9 is the maximum value of f3, K10 is the decay
constant, and A1 represents the ripple voltage areas outside
the tolerance band ±vo around the expected value in the Ns

simulated values; f4 measures the dynamic behaviors during
the large-signal change by

f4(X) =
NT∑
i=1

OV
(
RL ,i , vin,i , X

) + UV
(
RL ,i , vin,i , X

)
+ST

(
RL ,i , vin,i , X

)
(15)

where NT is the number of input and load disturbances used
to evaluate the fitness. Through maximizing the F(X), we can
obtain the optimal component values. Please refer to [37] for
more details of the fitness function.

2) Solution Representation and Fitness Function of NNC:
For an NNC, the representation of each individual is a vector
of the NN parameters as

X = [
w1, . . . , w|weights|, b1, . . . , b|biases|

]
= [x1, x2, . . . , xD] (16)

where all w’s are the weights of the connections in the whole
NN, all b’s are the biases in the neurons of the hidden and
output layers, |weights| is the number of weights, |biases| is
the number of biases, and D = |weights| + |biases| is the
problem dimension.

To find the optimal NN parameters, we need to evaluate
the system performance for each solution of NN parameters.
Given parameter values X for the NNC, a complete system is
built. The system performance is evaluated using three indexes,
i.e., output voltage, inductor current limit, and fluctuation
of the duty cycle. Herein, |Stest| = 1000 tests are used for
evaluation. In each test, we employ the trapezoidal rule to
simulate the PEC for TH = 0.01 s with a time step of 0.1 μs,
and the simulation data of the system (e.g., output voltage,
inductor current, and fluctuation of duty cycle) is adopted to
calculate the fitness value [4]. The three indexes corresponding
to f1, f2, and f3 are calculated as

f1(X) = 1

TH · |Stest|
∑

c∈Stest

∫ TH

0
|uout(t; c; X) − u∗

out|dt (17)

f2(X) = 1

TH · |Stest|
∑

c∈Stest

∫ TH

0
max

{
iL(t; c; X) − i∗

L , 0
}
dt

(18)

f3(X) = 1

TH · |Stest|
∑

c∈Stest

∫ TH

0
|d(t; c; X) − d(t − T ; c; X)|dt

(19)

where X is the parameter setting of the NNC, u∗
out is the

output-voltage set point, i∗
L is the current limit, d is the duty

cycle, and T is the switching period. Notably, the system
performance is measured on the results (i.e., a control signal)
produced by the NNC rather than on the NN parameters
directly. The control signal actually can be expressed as a
function of X , and hence, the parameter setting X of the
NNC is included in (17)–(19) instead of the control signal.
f1 is to evaluate the stability of the output voltage, f2 is
to calculate the violation degree of the current, and f3 is to
evaluate the stability of the circuit. With the three indexes,
the fitness function of system performance is defined as

min F(X) = φ1 f1(X) + φ2 f2(X) + φ3 f3(X) (20)

where the factors φ1, φ2, and φ3 represent the contributions
of the corresponding indexes in the fitness evaluation. φ1 and
φ3 are set as 1, and φ2 is set as 100 to give a large penalty
to the current limit violation according to [4]. By minimizing
the fitness function, we can obtain the optimal NN parameters.
Notably, formulas (17)–(19) with knowledge of the PCS are
readily available, which can help the NN to learn the plant
autonomously.

B. DE Optimization Procedure

Given the representation scheme and the objective function,
the DE algorithm performs the following steps to search for
the optimal solution for the controllers.

Step 1 (Initialization): Set g = 0. Each individual i
initializes its solution Xi (the circuit components in an FNC
or the network parameters in an NNC) by

xid = Ld + rand(0, 1) × (Ud − Ld) (21)

where Ld and Ud are the low and upper bounds of the dth
variable, respectively.

Step 2: Perform the mutation operator for each individual i
as (1) to obtain the mutant vector Vi .

Step 3: Carry out the crossover operator for each individual
i as (2) to obtain the vector Ui .

Step 4: Evaluate Ui for each individual I , and perform the
selection operator as (3) to obtain the survived vector Xi .
For the optimization of the PEC instance with an FNC, (6)
is used for individual evaluation, and the one with a larger
fitness value between Ui and Xi is selected to survive. For the
optimization of the PEC instance with an NNC, (20) is used
for individual evaluation, and the one with a smaller fitness
value between Ui and Xi is selected.

Step 5: Check the termination condition. If the consumed
fitness evaluation times or generations have reached the pre-
defined maximum value, then go to Step 6; otherwise, set
g = g + 1, and go back to Step 2 for the next generation.

Step 6: Output the best individual as the solution found.

C. RAS for DDE

As we know, controller optimization has expensive FEs that
require a long computational time. This article extends the
DE to DDE and dispatches individuals to different computing
resources (e.g., a set of cores) for FE in Step 4. Assume
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Fig. 3. Example of RAS to assign seven individuals IND1–IND7 to
three resources S1–S3. The numbers on the lines between queue IND and
queue S mean the corresponding assignment time. The timeline indicates
the assigned individuals on each resource along time. The length of the
rectangle with “INDn” indicates the required computational time of INDn
on the corresponding resource.

that there are M computing resources S; then, one resource
(i.e., S0) is used for control, and the other M − 1 resources
(i.e., S1, . . . , SM−1) are used for FE. The detailed assignment
strategy RAS will be described in the following paragraph.

The distributed resources (i.e., cores in a cluster) often have
different configurations and load burdens. Considering the
time-varying characteristic of the resources, we do not build an
explicit model to evaluate the computational ability and load
state of each resource. Instead, we adopt the RAS to assign
the individuals according to resources’ real-time performance.

In RAS, the individuals and the resources are arranged in the
queue IND and queue S, respectively. Once S is not empty,
the assignment step is triggered. First, for each resource in
S, it will be assigned one individual in IND, and then, it is
removed from S. Note that, if an individual is assigned, it will
also be removed from IND. Later, once a resource has finished
the FE of the corresponding individual and returned the fitness
value, it will be pushed back to queue S. The assignment
procedure continues until IND becomes empty. In this way,
the resources that have better performance on FE will be
assigned more individuals, while the slow resources will be
assigned fewer individuals. An example is given in Fig. 3.

The contribution of the proposed RAS is that it splits
the evaluation process of all individuals into multiple jobs,
and the multiple jobs are managed by a queue and assigned
to multiple resources in a queue according to the real-time
performance of the resources. Compared with the explicit-
model-based methods [35], [36], the RAS has two advantages.
On the one hand, no knowledge of the distributed resources
needs to be known in advance (i.e., the computational time
of the tasks), and no model for load assessment needs to
be built. On the other hand, the assignment depends on the
real-time performance of the resources but not a predictive
model. This makes the assignment more accurate and better
fit the time-varying feature of the distributed resources.

IV. PEC DESIGN WITH FNC

A. Circuit Configurations

To evaluate the performance of RADDE and test its advan-
tage in reducing computational time, we apply RADDE to

Fig. 4. Circuit schematic of the buck regulator.

optimize the PEC with an FNC, as shown in Fig. 4. It is a
buck regulator with two parts, i.e., a classical buck converter
as the PCS and a proportional-plus-integral controller as the
FNC [37]–[39]. In the PCS part, we assume that RL , rC ,
and rE are known in advance, and the components L and
C are 200 and 1000 μF, respectively [37]. Since the PCS
part always has a static characteristic, only the components
R1, R2, R3, R4, C2, C3, and C4 in FNC are optimized in
this article. Particularly, the input voltage range vin is set as
[20 V, 60 V], the output load RL is set in the range of [2 �,
12 �], the nominal output voltage is 5 V±1%, the switching
frequency is 20 kHz, and the maximum ST is 20 ms. The
search ranges for resistors R1, R2, R3, and R4 are set to be
[100 �, 100 k�], and the search ranges for capacitors C2, C3,
and C4 are set to be [0.1 μF, 100 μF] following [39].

The fitness function (6) is used for evaluation. The parame-
ters in (6) except the decision variables are set following [37].
Particularly, δRL = 3, δvin = 20, Ns = 15 000, NT = 6,
K1 = 2, K3 = 2, K5 = 2, K7 = 2, K9 = 2, Ts0 = 0.025,
Mp0 = 4, and Mv0 = 4 are user-defined parameters according
to circuit knowledge and system characteristics; K2 = 400,
K4 = 0.455, K6 = 0.455, K8 = 2.28 × 10−3, and K10 = 32
are determined according to (10)–(14); Mp , Mv , Ts , and A1

are derived from the system when performing tests.

B. Algorithm Configurations

GA [37], particle swarm optimization (PSO) [40], and
orthogonal learning PSO (OLPSO) [39] are taken for com-
parisons since they have been successfully applied to PEC
optimization and are representative. In the GA, the population
size is set as 30, the crossover rate is set as 0.85, and the
mutation probability is set as 0.25. In the PSO and OLPSO,
the inertia weight linearly decreases from 0.9 to 0.4, the accel-
eration coefficients c1 and c2 are set as 2.0, and the population
size is set as 30 and 40, respectively. The above parameter
settings are according to their original papers, which have
been well-tuned for the PEC optimization. In the proposed
RADDE, the population size is set as 100, and F and CR are
set as 0.5 and 0.9, respectively, according to the suggestion
of [42] and [43]. For fair comparisons, all the algorithms use
a maximal FEs of 1.5 × 104. The experiment is carried out
30 times for each algorithm, and the statistical results are
reported. For clarity, the results of the best algorithm are
marked in boldface.
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TABLE I

EXPERIMENTAL RESULT COMPARISONS OF DIFFERENT APPROACHES

Fig. 5. Convergence curves of different methods for optimizing the FNC.

C. Evaluation on Solution Quality

From Table I, we can see that RADDE obtains the best
“median,” “best,” and “worst” values. According to Wilcoxon’s
rank-sum test at a 0.05 significance level, RADDE performs
significantly better than other algorithms. In addition, given
an acceptable fitness value of 150 following the suggestion
of Zhan and Zhang [39], RADDE succeeded in 25 out of the
30 runs, showing its strong reliability. Although RADDE has
similar best and worst values to OLPSO, RADDE obtained
16 runs (which is more than half of the 30 runs) with fitness
values larger than 192.632 and five runs below 150, resulting
in a median value close to the best and a large Std Dev.
From the convergence curves illustrated in Fig. 5, it can be
seen that the proposed RADDE surpasses other algorithms and
converges to better results. The better performance of RADDE
mainly benefits from its strong exploration ability. Particularly,
both PSO and OLPSO only learn from a particle’s own
history and the global/neighboring best particle, while RADDE
constructs new solutions using a difference component of two
solutions randomly selected from the whole population [as
shown in (1)], which provides stronger exploration ability to
avoid being trapped in local optima. In addition, the crossover
operator enables RADDE to directly inherit some dimensions
of good solutions, helping accelerate algorithm convergence.

To observe the response of the circuit under the disturbances
of voltage and load, the best solutions obtained by different
algorithms are taken as the component values of FNC to carry
out the simulations. In the beginning, the input voltage vin

is 20 V, and the output load RL is 5 �. Then, the input
voltage is suddenly changed in 30 ms, and the load is
suddenly changed in 60 ms. The setting time and disturbance
responses of the voltage and current responded by the FNC
obtained by different algorithms are illustrated in Figs. 6 and 7,
respectively. We can see that the proposed RADDE presents
a smaller overshoot in the inductor current and voltage and
requires a shorter ST to reach a steady state. RADDE is able

Fig. 6. Simulated voltage responses. From 0 to 30 ms, vin is 20 V, and RL
is 5 �; in 30 ms, vin is suddenly changed from 20 to 40 V; and in 60 ms,
RL is suddenly changed from 5 to 10 �. The curves framed by blue boxes
are enlarged. (a) GA. (b) PSO. (c) OLPSO. (d) RADDE.

Fig. 7. Simulated current responses. From 0 to 30 ms, vin is 20 V, and RL
is 5 �; in 30 ms, vin is suddenly changed from 20 to 40 V; and in 60 ms,
RL is suddenly changed from 5 to 10 �. The curves framed by blue boxes
are enlarged. (a) GA. (b) PSO. (c) OLPSO. (d) RADDE.

TABLE II

FIVE CONFIGURATIONS IN HOMOGENEOUS ENVIRONMENT

to optimize the circuit to achieve better dynamic performance
and stronger responseability.

D. Acceleration in Computational Time of RADDE

Since FE is the most time-consuming part, the computa-
tional time of GA, PSO, and OLPSO is similar, which is
about 829.185 s on Intel Core i7-7700 CPU with 3.60 GHz.
The parallel RADDE is speeded up under multiresource envi-
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TABLE III

COMPUTATIONAL TIME (SECONDS) OF DIFFERENT ASSIGNMENT STRATEGIES ON CONFIGURATIONS C1–C5 WITH DIFFERENT LOAD STATES IN
HOMOGENEOUS ENVIRONMENTS

ronments. This section investigates the computational time
acceleration of RADDE in different environments (i.e., dis-
tributed resources with different computing abilities and load
states). The typical uniform assignment strategy (UAS) [32]
(i.e., individuals are dispatched to resources evenly) and the
CPU-load-based assignment strategy (CAS) [35] (i.e., individ-
uals are dispatched to resources based on resource load) are
also integrated into DDE to compare with RADDE. For fair
comparisons, we, on the one hand, carry out an independently
run (IR) for each algorithm in each environment. Moreover,
we, on the other hand, carry out simultaneously run (SR),
where all the three algorithms run in each environment at
the same time to observe their behaviors in the same running
environment. Notably, since UAS, CAS, and RAS are only
used for resource assignment, they do not influence the per-
formance of the optimization algorithms in terms of fitness
evaluation but work differently in terms of computational
time. Experiments are performed in both homogeneous and
heterogeneous environments.

1) Homogeneous Environment: Experiments are indepen-
dently carried out in five homogenous environments named
from C1 to C5, as listed in Table II. In each configura-
tion environment, five kinds of resource-load cases named
L0–L4 are designed for test and are listed in Table III. The
resource-load cases are created to make the homogeneous
resources different; hence, resource selection is meaningful.
They also fit the real scenes in distributed platforms where the
available resources usually have supported applications (loads)
from other users. These specific configurations help compre-
hensively verify the effect of the resource assignment strategies
under different resource environments. Each core can be in

TABLE IV

CONFIGURATION IN HETEROGENEOUS ENVIRONMENT

idle-, low-, medium-, high-, and very high-load states. The
different load states can be obtained by running some special
processes on the CPU. From L0 to L3, the number of resources
in high-load state increases, and the computing resources
become tighter. In the simulations, all the cores in C1 and
C5 are used. Specifically, in C2–C4, to make the population
size divisible by the number of cores, only 21 cores are used.

The results are reported in Table III. We can see that the
proposed RAS obtains the best values (the shortest computa-
tional time) on almost all cases, especially on the high-load
cases, for example, on the cases of IR with L1–L4 and on
all cases of SR. These indicate that RAS can distinguish the
different load states of the resources and assign individuals
for load balance to obtain the shortest computational time.
Specifically, the UAS obtains a slightly shorter time than RAS
in the cases of IR with L0. This is because all the cores
have the same computing ability and load state, and therefore,
a uniform assignment is the best choice. In contrast, the CAS
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TABLE V

COMPUTATIONAL TIME (SECONDS) OF ASSIGNMENT STRATEGIES ON CONFIGURATION C6 WITH DIFFERENT LOAD STATES IN HETEROGENEOUS
ENVIRONMENT

Fig. 8. Circuit schematic of the boost converter.

Fig. 9. Structure of the NN for the controller.

performs generally better than UAS in the IR cases because
it can judge the idle or busy states of different cores and
assign more individuals to idle cores to reduce time. However,
the CAS may fail on distinguishing the different degrees of
the load states for busy resources. Therefore, it is generally
outperformed by both UAS and RAS in the SR cases.

2) Heterogeneous Environment: In this section, we test the
adaptive ability of the RAS to the heterogeneous environment.
The configuration named C6 is listed in Table IV. The results
on C6 with different load cases are reported in Table V.
RAS obtains the shortest time on eight out of ten cases.
Specifically, in the case of IR with L0, the computational
time of RAS is slightly larger than UAS mainly due to the
balance between the transmission time and the discrepancy
of the computational ability of the resources. The RAS costs
more on transmission since it assigns the individuals one by
one. However, the advantage of RAS is obvious in the cases
in which different resources have different load states, i.e.,
the cases of IR with L2–L4 and all cases of SR. For CAS,
it obtains a slightly shorter time than RAS in the IR of L1 but
fails on all the other cases since it can judge the load but not
the computational abilities of different resources. Thus, CAS
does better than UAS in IR cases but worse in SR cases, while
RAS does best to utilize the resources more effectively in both
cases.

TABLE VI

SPECIFICATIONS OF THE BOOST CONVERTER

V. PEC DESIGN WITH NNC

A. Circuit Configurations

In this section, we take a very recent boost converter
with NNC as an example to observe the effectiveness of the
proposed RADDE in NN training. The circuit schematic of the
boost converter is shown in Fig. 8. The NNC receives four
sensor signals, including the inductor current iL , the output
voltage uout, the input voltage uin, and the output current iout,
from the PCS, and then outputs the duty cycle for the main
switch. The structure of the NN is illustrated in Fig. 9. There
are one input layer with four neurons, two hidden layers with
five and three neurons, respectively, and one output layer with
one neuron. iL , uout, uin, and iout are the inputs of the NN,
and the duty cycle is the output of the NN. Herein, the duty
cycle is a signal to control the circuit in PEC. In the NN, the
output fk of the kth neuron in the input layer is directly the
same as its input value. For the following layers, the output
fi, j for the j th neuron in layer i is calculated as:

fi, j = ϕ

(∑
k

wi−1,k,i, j fi−1,k + bi, j

)
(22)

where wi−1,k,i, j is the weight of the connection between
the kth neuron in layer i−1 and the j th neuron in layer
i , bi, j is the bias of the j th neuron in layer i , and ϕ is
the activation function. Herein, the activation function is the
sigmoid function as

ϕ(x) = 1

1 + e−x
. (23)

Due to the physical constraints, the output duty cycle of
the NN is limited below 0.8. The ranges of the parameters
(connection weights and biases) in NN are set as [−2000,
2000] following [4]. The required circuit specifications are
described in Table VI according to [4].
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TABLE VII

RESULTS OF DDE AND DPSO ON OPTIMIZING NNC

Fig. 10. Startup transient performance comparison. The change in the
inductor current, output current, and output voltage of the boost converter
under Rload of (a) and (b) 47.5 and (c) and (d) 23.5 �. (a) Boost converter
with NNC optimized by DPSO, Rload = 47.5 �. (b) Boost converter with
NNC optimized by RADDE, Rload = 47.5 �. (c) Boost converter with NNC
optimized by DPSO, Rload = 23.5 �. (d) Boost converter with NNC optimized
by RADDE, Rload = 23.5 �.

B. Environment and Algorithm Configurations

In the experiment, we apply the proposed RADDE to the
NNC optimization on a cluster. The cluster includes one server
with 68 cores and 1.40 GHz, eight machines with eight cores
and 3.60 GHz, eight machines with eight cores and 3.40 GHz,
and four machines with eight cores and 3.30 GHz. Among the
total 228 cores, one core is used for the master node, and the
other 227 cores are used for slave nodes.

The population size of RADDE is set as 400 follow-
ing the suggestions of Storn and Price [42] and Zhang
and Sanderson [43], and the maximum generation is set as
2000 following [4]. The distributed PSO (DPSO) for NN

Fig. 11. Simulated current and voltage responses from 0 to 20 ms. uin is 12 V.
From 0 to 10 ms, Rload is 94 �; in 10 ms, Rload is suddenly changed from
94 to 36.5 �. (a) Boost converter with NNC optimized by DPSO. (b) Boost
converter with NNC optimized by RADDE.

training in [4] is taken for comparison. The population size
of DPSO is set as 3840, and the maximum generation is set
as 2000 following the original paper [4]. Thus, DPSO uses a
maximum FEs of 7 680 000, while the proposed DDE adopts
only 800 000 FEs. Note that the backpropagation method is not
compared since a large training data set is hard to construct for
the PEC. The expected control signal of the NNC is unknown
for a given input. To test the effectiveness of the proposed
RAS, we also integrate the DPSO with UAS and RAS, forming
UAS/DPSO and RAS/DPSO, respectively. Therefore, four
algorithms, UAS/DPSO, RAS/DPSO, UAS/DDE, and RADDE
(i.e., the RADDE), are performed for comparisons. Since the
execution time is very long, each algorithm only runs one time,
and the obtained result and computational time in seconds are
reported.

C. Result and Comparison

The fitness value [see (20)] of the best solution found
and the computational time of DPSO and DDE are reported
in Table VII. It can be seen that the proposed DDE has
a stronger global searchability. Compared with the DPSO,
our proposed DDE uses fewer FEs to obtain a better value
of 0.62737.

For the computational time, the RADDE gets the shortest
time. Comparing UAS and RAS, the RAS requires only nearly
a half of the time of UAS for DDE, while it reduces a ratio
of 68.8% to UAS on time for DPSO. For example, the com-
putational time of RADDE (50 844.2 s) is much shorter than
that of UAS/DDE (106 278.0 s). Similarly, the UAS/DPSO
requires 894 307.0 s, while RAS/DPSO needs only 278 712.0 s.
It indicates that the training time for UAS/DPSO is even
more than ten days, which seems impractical. We also set
the computational time of RADDE as unit 1.00 and calculate
the ratio of time required by other algorithms compared with
RADDE. From the ratio of the time required by RAS to UAS
in DDE and DPSO, we can also see that the more individuals
in one generation (DPSO uses more individuals than DDE),
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the more obvious the acceleration obtained by the RAS
(17.59/5.48 > 2.09/1.00). Moreover, the acceleration of UAS
is limited by the slowest resources. In contrast, the RAS can
assign the individuals according to the computational ability
of the resources to ease the limitation of the slow resources as
much as possible. In this way, more individuals are assigned
to the fast resources, while fewer individuals are assigned
to the slow resources so that the resources can be utilized
efficiently. In general, the proposed RADDE can obtain a
better result and significantly reduce the computational time
on NNC optimization.

D. Comparisons on Simulation Results

To test the startup transient performance of the trained NNC,
two boost converters with NNC optimized by the DPSO and
RADDE, respectively, are taken for simulation. The input
voltage is set as 12 V, and the load is set as two values of
Rload = 47.5 � and Rload = 23.5 �. The inductor current, the
output current, and the output voltage under these two loads
are reported in Fig. 10. We can see that the NNC optimized
by RADDE performs better. It presents a faster setting and
smaller voltage overshoot under different Rload’s. Moreover,
both the output current and inductor current are strictly below
the maximum limit.

To further observe the transient response of the two NNCs
under large load disturbance, we perform a simulation with
large signal disturbances for 20 ms. In 0–10 ms, the input
voltage is 12 V, and the load Rload is 94 �; then, the load
Rload is suddenly changed to 36.5 � in 10 ms. As demonstrated
in Fig. 11, we can see that the NNC optimized by RADDE
has a stable response for load disturbance. For example, in 10
ms, although both the two NNCs respond to the load change
quickly, the one optimized by RADDE presents smaller current
disturbance and output voltage overshoot. The boost converter
with RADDE-optimized NNC reaches the set point much
faster.

Generally, the RADDE-optimized NNC achieves better per-
formance on startup settling and fast/stable response on large-
signal disturbances. Therefore, the proposed RADDE performs
better than DPSO on NNC optimization.

VI. CONCLUSION

For the modern NNC optimization in PEC, solution quality
and computational time are two challenging issues. This article
develops a RADDE algorithm that the DDE is for optimization
and the RAS is for computational time acceleration. Individ-
uals are adaptively dispatched for FE based on the real-time
performance of the resources.

The performance of the RADDE algorithm has been verified
on two PEC instances, including FNC optimization for a buck
regulator and NNC optimization for a boost converter. Exper-
imental results show that our proposed RADDE can obtain
better results on both FNC and NNC optimization within
significantly shorter computational time. By distinguishing
the computational ability and the load states of different
resources, the adaptive dispatch mode of RAS is able to ease
the limitation of the slow resources and reduce the execution

time as far as possible. In general, the proposed RADDE is
competitive to other EC algorithms on both solution quality
and computational time for controller optimization. This also
provides a new promising approach for ENN. In the future,
we will apply the proposed method on more sophisticated
controllers in PEC and look deep into the exploration and
exploitation abilities of the proposed method.
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