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Abstract: Expensive optimization problem (EOP) widely exists in various significant real-world applications. However, EOP requires
expensive or even unaffordable costs for evaluating candidate solutions, which is expensive for the algorithm to find a satisfactory solu-
tion. Moreover, due to the fast-growing application demands in the economy and society, such as the emergence of the smart cities, the
internet of things, and the big data era, solving EOP more efficiently has become increasingly essential in various fields, which poses
great challenges on the problem-solving ability of optimization approach for EOP. Among various optimization approaches, evolution-
ary computation (EC) is a promising global optimization tool widely used for solving EOP efficiently in the past decades. Given the
fruitful advancements of EC for EOP, it is essential to review these advancements in order to synthesize and give previous research ex-
periences and references to aid the development of relevant research fields and real-world applications. Motivated by this, this paper
aims to provide a comprehensive survey to show why and how EC can solve EOP efficiently. For this aim, this paper firstly analyzes the
total optimization cost of EC in solving EOP. Then, based on the analysis, three promising research directions are pointed out for solv-
ing EOP, which are problem approximation and substitution, algorithm design and enhancement, and parallel and distributed computa-
tion. Note that, to the best of our knowledge, this paper is the first that outlines the possible directions for efficiently solving EOP by
analyzing the total expensive cost. Based on this, existing works are reviewed comprehensively via a taxonomy with four parts, includ-
ing the above three research directions and the real-world application part. Moreover, some future research directions are also discussed
in this paper. It is believed that such a survey can attract attention, encourage discussions, and stimulate new EC research ideas for solv-
ing EOP and related real-world applications more efficiently.
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1 Introduction AlphaFold2 is very computationally expensive and will be

unaffordable for many researchers. Moreover, the “ex-

pensive cost” is a relative concept rather than an abso-
lute concept in many real-world problems. For instance,

Expensive optimization problem (EOP)[I=3 refers to

the problem that requires expensive or even unaffordable
when encountering the emergencies like epidemics out-

breaks or natural disasters, transportation and dispatch-
ing can be urgent for supporting daily operations and
saving lives, where the time cost of optimization in nor-
mal situations will become too expensive to accept at this
timel7l. Therefore, with the progress of real-world society
and the emerging issues like the smart cities, the internet
of things, and the big data era, solving EOPs more effi-

costs to evaluate candidate solutions, which widely exist
in many significant real-world applications. For example,
the deep learning-based AlphaFold2 for predicting pro-
tein structure is considered worldwide as a potential ap-
proach to a 50-year-old grand challenge in biologyl 5.
But the training of AlphaFold2 (i.e., optimizing the large-
scale network parameters) requires 128 TPUv3 cores (i.e.,

the third generation of tensor processor unit for Al/deep
learning) together with several weeks, where a TPUv3
can have much larger computational abilities than many
supercomputerslfl. That is, the parameter optimization of
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ciently has become increasingly essential for prospering
various fields.

However, due to the expensive cost of evaluating can-
didate solutions, EOP is difficult for optimization al-
gorithms to search for a satisfactory solution®. For this
aim, evolutionary computation (EC) has been widely ad-
opted to solve EOPs, leading to a fast-growing research
field®11, In general, EC is a type of optimization meth-
odology that is inspired by biological evolution and live
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organism characteristics!? 3. Commonly seen EC al-
gorithms include evolutionary algorithm (EA) like genet-
ic algorithm (GA)[ and differential evolution (DE)[15-17]
and swarm intelligence algorithms like particle swarm op-
timization (PSO)(%22 and ant colony optimization
(ACO)23-23, With the idea of “survival of the fittest”
from natural evolution, EC algorithms generate new indi-
viduals via corresponding evolutionary operators and se-
lect individuals with better fitness as a new population
into the next generation. Based on this, EC algorithms
can find a satisfactory solution efficiently without the
need for gradient information, which is very suitable for
solving real-world problems(2¢.

To date, various researches into EC for EOP have
been conducted and achieved considerable success.
However, the work of EC for EOP is still dispersed in the
literature and remains to be consolidated in a systematic
manner. Therefore, given the rapid and important ad-
vancements of EC for EOP, it is essential to review these
advancements in order to synthesize and give previous re-
search findings and references to help develop relevant re-
search fields. For this purpose, this paper attempts to
provide a systematic and comprehensive survey to com-
pletely review and analyze how to enable and develop EC
algorithms for tackling difficult EOPs efficiently. In addi-
tion to present the review more concisely and clearly, this
paper selects and cites related work by considering their
sources, publication years, impact, and the cover of differ-
ent aspects of the topic surveyed in this paper. Overall,
the main contributions of this paper are given as follows.

Firstly, this paper mathematically analyzes the total
expensive cost of using EC for solving EOPs. Then, based
on the analysis, this paper further gives three directions
for reducing the total cost, as shown in Section 2 later.
Note that, to the best of our knowledge, this paper is the
first that derives the potential research directions by ana-
lyzing the total expensive cost of using EC for solving
EOPs.

Secondly, a systematic taxonomy is introduced to sys-
tematically and structurally review the existing works ac-
cording to their efforts in the above-pointed directions for
solving EOPs efficiently. Although there exist some sur-
vey papers about EC for EOP in the literaturel!=3l, our
survey is based on the above novel taxonomy. It, there-
fore, can help better understand why and how existing
works can be helpful in solving EOPs, as well as provid-
ing inspiration for future researches and studies.

Thirdly, this paper explores and discusses some fu-
ture research areas and open problems related to the use
of EC to tackle EOPs. This can encourage and support
the broadening and deepening of research in the related
fields.

The remainder of this paper is arranged as follows.
Section 2 provides the preliminaries, including the defini-
tion of EOP, a brief introduction to the EC, the analysis
of total cost for using EC to solve EOPs, and the novel
taxonomy. Sections 3—6 review the research work system-
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atically according to the taxonomy. Section 7 proposes
and discusses some future research directions, while Sec-
tion 8 gives the conclusions finally.

2 Preliminaries

2.1 Expensive optimization problem and
relevant optimization problems

EOP is the same as other optimization problems ex-
cept that the evaluation of candidate solutions is compu-
tationally/financially expensive to perform. Note that the
evaluation can contain various aspects including the ob-
jective value, constraint violation degree, and robustness
of candidate solutions. According to the problem charac-
teristics and application needs, EOP can be extended to
the corresponding complex problem[26: 271,

Moreover, the concept of EOP is usually mentioned
together with some similar problem concepts, including
data-driven optimization problem, surrogate-assisted op-
timization problem, and large-scale optimization problem.
The relationship between EOP and these problems can be
presented as Fig. 1, and is described as follows.

Surrogate-assisted optimization probleml/8l. Sur-
rogate-assisted optimization problem refers to the prob-
lem that uses surrogates to assist the optimization. Often,
the reason for using surrogates is that the fitness or con-
straint evaluation of candidate solutions is expensive or
difficult to access. Based on this, most surrogate-assisted
optimization problems are EOP. In fact, surrogates are
also widely used to solve EOPs in the literature, where
the related contents will be described later in Section 3.

Data-driven optimization probleml? 10, The
data-driven optimization problem is a type of real-world
optimization problem that only data acquired from simu-
lations, physical experiments, or daily life, can be used to
evaluate the objectives and constraints of candidate solu-
tions, because computationally cheap functions do not ex-
ist for this problem. Therefore, many data-driven optim-
ization problems can also be considered as a special kind
of EOP.

Surrogate-assisted
optimization problem

Large-scale

Data-driven Loe
optimization problem

optimization problem Expensive optimization

problem

Fig. 1 Relationship between expensive optimization problem
and some relevant optimization problems
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Large-scale optimization problem[28]. Large-scale
optimization problems focus on the large-scale challenges
that make optimization difficult. The challenges can in-
clude large search space, high variable dimension, and the
need to process a large amount of data for evaluating
solutions. As a result, the large-scale characteristic often
makes the related calculation (e.g., fitness evaluation) ex-
pensive, and therefore many large-scale optimization
problems can be regarded as EOPs[29: 30,

2.2 Evolutionary computation

As mentioned earlier in the Introduction part, EC al-
gorithms evolve better solutions generation by generation.
In general, the flowchart of EC can be presented as Fig. 2,
which includes initialization, fitness evaluation (FE),
solution evolution with evolution operators, and selection.
Moreover, the solution evolution, FE, and selection will
be iteratively performed to generate and select better
solutions from the previous generation to the next genera-
tion, so as to obtain the optimal or satisfactory solution.
Therefore, the main computational cost of EC lies in per-
forming evolutionary operators, FE, and selection, espe-
cially when the problem is an EOP.

2.3 Analysis of total optimization cost

As the key characteristic of EOP is the expensive
evaluation, the total cost of using EC for solving the
EOP can be defined as

Total__cost = O(N) x O(C) = O(N x C) (1)

where O(C) is the average cost of every expensive
evaluation, O(N) indicates the time complexity of an EC
algorithm for solving the problem with respect to the
number of evaluations (i.e., the total number of required
evaluations for finding a satisfactory solution).
Specifically, if O(C) refers to the computational time

cost, then (1) can be further rewritten as

¢ Start D

v

Initialization and fitness
evaluation

L]

Solution evolution with
evolutionary operators

* I

| Crossover operator |

| Mutation operator |

Fitness evaluation and
selection

Fig. 2 General flowchart of evolutionary computation
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Total cost =

where P (P >1) is the acceleration of optimization
provided by parallel and distributed computation
techniques.

As mentioned before, the key issue in EOP is the ex-
pensive fitness and/or constraint evaluation, i.e., O(C) in
(1) and (2) will be very large, which lead to an unafford-
able Total cost. However, (1) and (2) also indicate that
efforts can be made in three directions to solve the EOP
more efficiently. These three directions are decreasing
O(QC), decreasing O(N), and increasing O(P). In fact, ex-
isting works for EOP have been proposed and studied im-
plicitly along with these three directions, which can be
summarized as using problem approximation and substi-
tution to reduce evaluation cost to decrease O(C), design-
ing advanced EC algorithms to improve search efficiency
to reduce O(N), and using parallel and distributed com-
putation to accelerate the optimization by increasing
O(P), as illustrated in Fig.3.

2.4 Taxonomy

Based on the above contents and Fig. 3, the systemat-
ic taxonomy of existing research works can include three
parts: problem approximation and substitution, al-
gorithm design and enhancement, and parallel and dis-
tributed computation. Besides, as EOP arises from real-
world applications, reported case studies and benchmark
problems derived from real-world applications should also
be surveyed. Therefore, the taxonomy of this paper in-
cludes four major parts, as shown in Fig.4. Specifically,
the first part (i.e., problem approximation and substitu-
tion) includes problem simplification, fitness approxima-
tion, constraint approximation, and multi-fidelity substi-
tution; the second part (i.e., algorithm design and en-
hancement) introduces optimization framework and
paradigm, novel operators, fitness inheritance, and hy-
brid algorithms and configurations; the third part (i.e.,
parallel and distributed computation) considers accelera-
tions for approximation and optimizations; and the fourth
part (i.e., real-world applications) is about the real-world

in expensive optimization problems
ie., O (NxC)/P)

/\

Parallel and distributed
computation

[Challenge: Expensive optimization costJ

Algorithm design and

enhancement

Problem approximation
and substitution

| T
Reduce evaluation cost Improve search efficiency

to decrease O(C) to reduce O(N) by increasing O(P)

v ' !

[ Various expensive optimization problems and real-world applications J

Reduce time cost

Fig. 3 Three directions to reduce expensive optimization costs
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Problem simplification

Fitness approximation
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| Problem approximation
and substitution

Constraint approximation

Multi-fidelity substitution

Optimization framework and paradigm |

Novel operators |

| |Algorithm design
and enhancement

Fitness inheritance |

Taxonomy

Hybrid algorithms and configurations |

Acceleration for approximation

| |Parallel and distributed
computation

Acceleration for algorithm

Real-world applications

Competitions and benchmarks

\
S i R s U s s I O

|
|
Real-world case studies |

from real-world

Fig. 4 Anillustration of the taxonomy

case studies and competitions and benchmarks from real-
world applications.

3 Problem
substitution

approximation and

In many optimization problems, mathematical or ex-
act objective/constraint functions for evaluating solu-
tions may not exist. In such situations, candidate solu-
tions can only be evaluated by computationally expens-
ive numerical simulations or physical experiments, e.g.,
wind tunnel experiments. This poses great challenges on
EC, because most EC algorithms are based on FEs for
evolutionary optimization. In order to address this issue
and reduce the optimization difficulty, approximation
methods have been widely researchedl® 9. Generally
speaking, existing approximation methods can be mainly
classified into four categories, i.e., problem simplification,
fitness approximation, constraint approximation, and
multi-fidelity substitution.

3.1 Problem simplification

Problem simplification is a straightforward yet effi-
cient approach when the original optimization problems
are computationally expensive. Problem simplification
aims to simplify the original EOP to be a problem model
that is more computationally efficient to access, so as to
relieve the expensive computational burden. For example,
to replace the original expensive simulation for the dis-
patching rules design problem, Nguyen et al.llll de-
veloped a simplified simulation model with two proposed
strategies. The first strategy eliminates the warmup and
running time in simulations, whereas the second strategy
minimizes the search space, e.g., by reducing the number
of operations and machines for each job. The experiment-
al results reveal that by combining the two strategies, a
simplified but accurate enough simulation model can be
developed with significantly less computational cost than
the original and complete simulation evaluation. Further-
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more, He et al.3l] formulated the expensive ratio error es-
timation problem for the voltage transformer into a relat-
ively simple and cheaper problem. Then, eight represent-
ative multi-objective evolutionary algorithms were used
to analyze and solve the problem. Voutchkov et al.[32]
suggested a simplified mathematical model for solving se-
quential combinatorial finite element problems, which
would minimize the expensive computational cost consid-
erably. Besides, in some real-world optimization prob-
lems, there have been many FEs with different computa-
tional costs for simplifying the specific real-world EOP.
For example, 2-D and 3-D computational fluid dynamics
(CFD) simulation can be used to replace the real-world
wind tunnel experiment during the optimization of the
aerodynamic structure, where the 2-D and 3-D simula-
tions are significantly more computationally cheapl33l.

3.2 Fitness approximation

Unlike the problem simplification methods that sim-
plify the original problem, the fitness approximation dir-
ectly approximates or predicts the fitness value of candid-
ate solutions, so as to reduce the expensive cost of per-
forming the expensive FE. Mathematically, for a continu-
ous function, the relationship between the fitness of z
predicted by the approximated fitness function, say f(z),
and that given by the real fitness function, say F(z), can
be expressed as

F(z) = f(z) +e(x) 3)

where €(x) represents the approximation error of f on x.

In general, fitness approximation methods approxim-
ate the objective fitness function based on evaluated data,
i.e., the solutions evaluated by the original expensive FE.
Based on this, the approximated objective function (also
called surrogate model) will be employed to substitute
the original FE to evaluate un-evaluated candidate solu-
tions®. Therefore, fitness approximation-based optimiza-
tion is often referred as data-driven or surrogate-assisted
optimization. In such an end-to-end approach, the fitness
approximation only needs to focus on the relationship
between candidate solutions and their real fitness. That
is, the fitness approximation approach has a great gener-
alization ability and can be used to solve a variety of
EOPs. As a result, many fitness approximation methods
have been investigated and proposed(9-12,

Generally speaking, the fitness approximation mainly
includes three procedures: data processing, surrogate
model building, and model update and management. In
order to approximate the fitness function and build sur-
rogates accurately, various model building methods can
be used, including traditional interpolation methods, such
as polynomial regression model 35 and machine learn-
ing techniques, such as the Kriging modell36-38]  artificial
neural networks3% 401 radial basis function neural net-
works[1744, and random forest45-47. To better show the
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application scope of different surrogates, the comparison
of some commonly seen surrogates is presented in Table 1.

Moreover, various fitness approximation methods have
also been examined using effective machine learning
strategies. For example, for constructing accurate surrog-
ates, Wang et al.l8] proposed to use the active learning
strategy to construct a committee-based surrogate en-
semble for solving EOPs, which is shown to be effective.
As for offline data-driven optimization problems, Wang
et al.49 investigated an ensemble learning-based surrog-
ate management strategy that adaptively selects a small
but diverse selection of surrogates to improve the approx-
imation accuracy. To enhance the surrogate robustness
and accuracy, Wei et al.’0l suggested a gradient boosting
classifier, which can generate promising results with a
limited training dataset. Considering that the evaluated
data might not be enough for fitness approximation, Li et
al.Pll proposed a localized data generation (LDG) meth-
od with a boosting learning method to obtain a better
surrogate model, which can automatically improve both
model accuracy and data quantity according to the tar-
geted problem. Besides, Li et al.l’2l combined a novel di-
verse surrogate generation method and selective en-
semble method to design the perturbation-based en-
semble surrogates (PES) for data-driven optimization,
resulting in a larger training data amount, better data
utilization, and enhanced surrogate accuracy in the pro-
posed algorithm. These are the recent boosting data-driv-
en EA with LDG (BDDEA-LDG) and data-driven EA
with PEs (DDEA-PES) algorithms.

Besides finding a general approximated function via
machine learning methods, fitness imitation has also been
researched for evaluating individuals. Generally speaking,
fitness imitation predicts the fitness of a new individual
based on evaluated individuals that are related to that in-
dividual. For example, Salami and Hendtlass/®3 sugges-
ted a fitness imitation method in which the new individu-
al'’s fitness is the weighted sum of the evaluated individu-
als’ fitness. Sun et al.’4 proposed a fitness imitation
strategy that estimates the fitness of the targeted indi-
vidual based on the distance between it and other evalu-
ated individuals. Furthermore, Tian et al.l5%] presented a
Gaussian similarity measurement to better estimate indi-
vidual fitness. Besides, Kim and Chol5¢ split the popula-
tion into different clusters and then estimated the fitness
of the majority individual in each cluster based on the

evaluated individual in the corresponding cluster. Simil-
arly, Jin and Sendhoff(’’] put forward a cluster-based
method to decrease the FE, in which the individual
closest to the cluster center is accessed using real fitness
data while the others are accessed via estimation.

3.3 Constraint approximation

Real-world optimization problems usually contain con-
straints that need to be satisfied. Moreover, the con-
straint functions can be expensive to access during the
FE. Therefore, many studies have been conducted to
handle the expensive constraint functions via constraint
approximationl58l. Similar to the fitness approximation
described above in Section 3.2, expensive constraint func-
tions can also be approximated via an end-to-end fashion,
so as to reduce the expensive computational cost in FE.
Consequently, methods mentioned in Section 3.2 for fit-
ness approximation can also be used for constraint ap-
proximation, with one model for all constraints or mul-
tiple models for multiple constraints separately®. When
compared with fitness approximation, the distinct and
challenging issue in constraint approximation is how to
handle the approximated constraints, which can be cat-
egorized into two main categories: full constraints-based
and partial constraints-based handling techniques.

The first category handles all constraints via approx-
imation. After approximating the constraint function, EC
algorithms can use constraint handling techniques to gen-
erate feasible solutions. In general, commonly seen con-
straint handling techniques involve penalty method[6 re-
pair methodll, multi-objective method62, and epsilon
level comparison method®]. For example, Li and
Zhangl6% proposed a method termed multiple penalties
and multiple local surrogates for solving expensive con-
strained problems. The method identifies some subprob-
lems and constructs local surrogates to optimize these
subproblems in every generation. Each subproblem penal-
izes the constraints in the original problem with a differ-
ent penalty coefficient and different local search subre-
gions. By doing so, the method can approach the optimal
solution from different directions based on different con-
straint influences, which only requires a low computation-
al overhead for building corresponding local surrogates.
Habib et al.l53 suggested a multiple surrogates-assisted
decomposition-based evolutionary algorithm for solving

Table 1 Comparisons of commonly seen surrogates

Surrogate

Main applicable scope

Characteristic

Gaussian process (Kriging model) Continuous problem

Artificial neural network Continuous problem

Radial basis function neural network Continuous problem

Random forest

Discrete and combinational problem

High accuracy with the estimation of prediction
uncertainty, but with a high computational burden

High accuracy, long training time

Highly nonlinear approximation ability, low
computational burden

Less tuning parameters, suitable for discrete input
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the expensive constrained problem, where an epsilon level
comparison method is used to accept some individuals
who violate constraints slightly to enhance the evolution-
ary search.

In contrast to considering all constraints, the partial
constraints-based handling technique aims to utilize some
of the representative constraints to replace all constraints
without decreasing the quality of final solutions, so as to
reduce the expensive cost of accessing unnecessary con-
straint evaluations. In order to achieve this, a straightfor-
ward idea is to use the constraint functions one by one
and stop immediately until the solution violates the con-
straints, which is termed the “evaluate till you violate”
approachl64. Following this, some studies have been un-
dertaken to find suitable sequences for performing con-
straint evaluations one by one, e.g., the sequence in a ring
topology!®] and flexible sequence for different sub-popula-
tionsl®6: 67 5o as to minimize the unnecessary evaluation
costs. Moreover, Rahi et al.[68] proposed to learn the suit-
able sequence for performing constraint evaluations dur-
ing the optimization, which has obtained better results
than existing methods.

3.4 Multi-fidelity substitution

In many real-world optimization problems, the fidel-
ity (i.e., accuracy level) and computational cost of the FE
could be modified with various settings and configura-
tions such as simulation timel69. As a result, there is a
tradeoff between the fidelity level of the evaluation and
the corresponding computational cost. Moreover, approx-
imation methods with different fidelity or accuracy level
could be cooperated to obtain a better final model. Based
on the above, multi-fidelity substitution looks at ways to
get a multi-fidelity evaluation model with a better bal-
ance between evaluation fidelity and computational cost
to substitute the expensive FE. For example, Alexandrov
et al.l"V put forward a variable-fidelity model for meshes
of various refinement based on Euler analysis. Zheng et
al.™M developed a variable fidelity optimization (VFO)
framework to achieve high-speed and high-fidelity optim-
ization. Lim et al.["? developed a dynamic fidelity compu-
tational model for FE, in which the fidelity of the compu-
tational model grows as the evolution progresses. Koziell"!
investigated a multi-fidelity optimization in which the
computational model'’s fidelity level can be adaptively
modified. With simulation-based FE of different accur-
acy scales, Wu et al.™4 developed a scale-adaptive FE
(SAFE) approach for the crowdshipping scheduling ap-
plication problem, which can strike a better balance
between solution accuracy and computational cost. Li et
al.["8] proposed a surrogate-assisted multi-level evaluation
method to reduce the expensive computational cost in op-
timizing the CNN hyperparameters. In this method, two
levels of evaluation, i.e., surrogate-based and training-
based FE, are cooperated to balance the optimization ac-
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curacy and computational cost, which has shown great ef-
ficiency on real-world data.

Furthermore, some studies adopted a number of Kri-
ging models to approximate the FE with varying degrees
of wvalidity®78. In such methods, the correlations
between multiple Kriging models can be estimated using
the bridge function of Kriging models to help the selec-
tion of different evaluation models(™l.

In contrast to the selection for multi-fidelity models,
Smith et al.80] explored how to produce models with both
high accuracy and low complexity, and suggested a multi-
objective algorithm to address this issue. Sun et al.l] de-
signed a multi-fidelity optimization for the sheet metal
forming process, in which low-fidelity models are used to
approximate the high-fidelity models. Li et al.2 used a
high-fidelity model to break the problem down into sever-
al sub-problems and then adopted the low-fidelity model
to approximate each sub-problem. In addition, Sun et
al.13] also coupled the fitness approximation and evolu-
tionary approximation with different fidelities for high di-
mensional expensive problems, which have proved to be
beneficial. Besides, Li et al.[’7l designed a three-level sur-
rogate model method for solving expensive optimization,
where the three levels surrogate are utilized to guide the
optimization for global search, subregion search, and loc-
al exploitation search, respectively.

3.5 Comparisons and discussions

This part gives a comparison and discussion on state-
of-the-art problem approximation methods. According to
the category in problem approximation methods for EOP,
Table 2 lists and compares some representative works in
recent three years, i.e., those published in IEEE Transac-
tions from 2019 to 2021. In Table 2, three observations
can be obtained. First, there is a lack of work for prob-
lem simplification in IEEE Transactions in recent years,
which suggests that more research focuses are given to
the other three categories. Second, the majority of these
works are for multi-objective/many-objective and con-
strained problems. This may be due to that real-world
application problems often have multiple objectives and
constraints. Third, most methods consider fitness approx-
imation with surrogates to learn a computationally effi-
cient model to replace the original expensive FE. The
reasons might be that with the development of artificial
intelligence, end-to-end learning-based approximation
methods have become more accurate, efficient, and con-
venient for researchers to use in these years.

4 Algorithm design and enhancement

This section reviews the methods for solving EOP via
efficient algorithm design and enhancement. In fact, be-
sides EOP, it is also very significant when evaluating an
EC algorithm for solving non-expensive problems, which
results in many studies for improving algorithm effi-
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Table 2 Comparisons of some recent works with different problem approximation methods

Category Recent works Problem features Approximation method Year Publication
Fitness MGP- Expensive, high- Multi-objective surrogate 2019 IEEFE Transactions on Evolutionary
approximation SLPSOI36] dimensional considering approximation Computation
accuracy and uncertainty
KTA2[7] Expensive, many-objective Influential point-insensitive 2021 IEEFE Transactions on Cybernetics
model with an adaptive infill
criterion
GCS- Expensive, many-objective Multi-task surrogate to 2019 IEEFE Transactions on Cybernetics
MOELBS] approximate subproblems
MTCNPBY  Expensive, multi-task Surrogate-assisted 2020 IEEE Transactions on Evolutionary
multi-task learning Computation
E2EPPM7  Expensive optimization Random forests with a 2020 IEEE Transactions on Evolutionary
of the hyperparameters selective ensemble strategy Computation
of deep learning models
DDEA-SE[9 Single-objective, Selective surrogate ensembles 2019 IEEE Transactions on Evolutionary
small data-driven of radial basis function Computation
neural networks
CA-LLSOBY Expensive, online Gradient boosting of weak 2021 IEEE Transactions on Evolutionary
data-driven, models to obtain a powerful Computation
single-objective model
BDDEA- Single-objective, Surrogate ensembles with 2020/ IEEE Transactions on Evolutionary
LDG1 / small data-driven data generation 2021 Computation/
DDEA- IEEE Transactions on Evolutionary
PESPH2] Computation Cybernetics
HSMEA63]  Expensive, multi-/ Approximating each 2019 IEEFE Transactions on Evolutionary
many-objective objective function Computation
TLRBFU"7  Expensive, single-objective Three-level surrogate model 2021 IEEE Transactions on Cybernetics
DSCPSO-  Expensive, multi-modal Modal-guided dual-layer 2021 IEEFE Transactions on Evolutionary
EMMIB3] cooperative surrogate model Computation
MiSACOBY Expensive, mixed-variable Combination of surrogates for 2021 IEEE Transactions on Cybernetics
mixed-variable approximation
SGAI83] Expensive, high- Approximated surrogates for 2020 IEEE Transactions on Evolutionary
dimensional local search and solution Computation
update
Constraint RF- Data-driven, constrained, Approximating objective and 2020 IEEE Transactions on Evolutionary
approximation CMOCOWM3 multi-objective, constraint functions separately Computation
combinatorial
MPMLSI[6]  Expensive, constrained Penalizing the constraints 2021 IEEE Transactions on Evolutionary
in the original problem Computation
GLoSADEI[6! Expensive, constrained Using surrogates to refine 2019 IEEE Transactions on Cybernetics
solutions that violate
constraints
SParEA[68]  Expensive, constrained Using partial evaluation to 2021 IEEE Transactions on Evolutionary
substitute full evaluations Computation
Multi-fidelity SAFEI™] Expensive, single-objective A novel scale-adaptive 2021 IEEE Transactions on Evolutionary
substitution fitness evaluation method Computation
SHEDAI™  Expensive, mixed-variable A surrogate-assisted multi- 2021 IEEFE Transactions on Neural Networks and
level evaluation method Learning System
ciency via the algorithm design and enhancement. As a 4.1 Optimization framework and paradigm
result, numerous existing works to improve algorithm effi-
ciency for non-expensive problems can also be adopted to As various EOPs have different characteristics, using
solve EOPs. However, to concentrate on the topic of this suitable optimization framework and paradigm can solve
survey, this section will only review related work for im- the targeted problem in a more efficient way. For solving
proving the efficiency of EC for EOP, which are categor- various EOPs, commonly seen optimization frameworks
ized into four parts, including optimization framework include multi-population/multi-swarm evolution®6: 871 co-
and paradigm, novel operators, fitness inheritance, and evolution[®-9)] decomposition-based evolution(63; 911, while

hybrid algorithms and configurations.

widely used optimization paradigms involve single-object-
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ive optimization®l, multi-objective/many-objective op-
timization929], constrained optimizationf, multimodal
optimization[®3; 97, 98] mix-variable optimization84 99, and
multi-task optimization[100; 101],

Moreover, with proper problem transformation and re-
formulation methods, efficient optimization paradigms
can be utilized to solve a variety of problems. For ex-
ample, Han et al.[192 transferred a multi-objective optim-
ization problem into a number of scalar subproblems and
utilized infill-sampling criteria and constraint handling
method to solve the subproblems, where real-world simu-
lation-based engineering design optimization problems
have verified the effectiveness of the proposed approach.
Liao et al.ll03] treated the multiple surrogate-assisted op-
timization processes for solving a computational EOP as
a multitask optimization procedure, and then proposed to
use multi-tasking optimization methods to accelerate the
convergence. Experimental results have validated that
treating multiple surrogate-assisted optimizations as a
multitask optimization is effective on twelve widely used
benchmark problems of up to 200 dimensions. However,
although various optimization frameworks and paradigms
have obtained great results for EOP, it could be better to
choose the suitable framework and paradigms based on
the prior knowledge about the problem characteristics
and features, so as to obtain more satisfactory results.

4.2 Novel operators

Designing novel evolutionary operators can be helpful
to accelerate the convergence and enhance the optimiza-
tion accuracy of algorithms, so as to solve EOPs more ef-
ficiently. For example, Cai et al.l'04 proposed a mnovel
mutation operator that integrates the best solution indic-
ated by different surrogates, so as to guide the mutation
direction of the populations, where the effectiveness of
the proposed operator is demonstrated in the experi-
ments on high dimensional EOPs with dimensions up to
200. Gu et al.l'05] presented an adaptive probability oper-
ator-based stochastic ranking strategy that enhances solu-
tion quality by considering both convergence and di-
versity. The proposed method is effective for constrained
and multi-objective EOPs according to the numerical
studies in the paper. Zhang et al.l!06] adopted a batched
constrained decomposition method with grids to balance
the population convergence and diversity, so as to con-
duct better the batched sampling for solving the multi-
objective EOP, which is shown effectiveness on difficult
test problems. Besides, various methods have also been
studied to improve the algorithm efficiencyl(85: 107-109],

4.3 Fitness inheritance
Fitness inheritance is similar to the fitness approxima-
tion mentioned in Section 3.2 in that both of them at-

tempt to reduce the need for expensive FEs by estimat-
ing some individual fitness. However, they are different in
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that the fitness inheritance is designed based on the indi-
vidual relationship given by the evolutionary operator[s,
while fitness approximation does not consider the evolu-
tionary operator in EC. In general, fitness inheritance cal-
culates the fitness of candidate individuals based on oth-
er related individuals during the evolution, such as the
parents in crossover operators. For this, Smith et al.[l10]
demonstrated the theoretical and actual efficiency of fit-
ness inheritance for GA. Furthermore, Chen et al.l'l] sug-
gested a fitness inheritance method to accelerate the al-
gorithms, while Zheng et al.[12] used a fitness inheritance
method in GA to tackle a design problem on vector
quantization codebooks. In addition, Sastry et al.[l13]
provided analyses of the fitness inheritance in general EA.
Although the fitness inheritance effectively reduces the
need for FEs, it has a similar usage when compared with
the methods for problem approximation and substitution
(as mentioned in Section 3). Therefore, it might be help-
ful to combine the idea of fitness inheritance with meth-
ods for problem approximation and substitution to solve
EOPs more efficiently.

4.4 Hybrid algorithms and configurations

Given that different algorithms may be suitable for
different EOPs, hybrid algorithms have also been con-
sidered for solving various EOPs more efficiently. Zhan et
al.['’] proposed an algorithm called Cloudde that integ-
rates four populations with different configurations by an
efficient resource allocation, which has shown significant
efficiency in the design of power electronic circuits where
the FE is very computationally expensive. Sun et al.[43]
suggested a cooperative algorithm that hybrids a PSO al-
gorithm for local search and a social learning PSO al-
gorithm for exploration, so as to improve search effi-
ciency. The proposed algorithm is shown to be efficient in
solving high-dimensional EOPs. Zhen et al.l!5] proposed
data-driven evolutionary sampling optimization frame-
work that combines two evolutionary sampling strategies
and employs one of them in different evolutionary stages
to effectively balance the global and local searches. In ad-
dition, other hybrid algorithms and configurations have
also been studied and shown effectivell16-118],

4.5 Comparisons and discussions

This part gives a comparison and discussion on the al-
gorithm design and enhancement of the state-of-the-art
works. According to the category in algorithm design and
enhancement for EOP, Table 3 lists and compares some
recent representative works in the recent three years, i.e.,
those published in IEEE Transactions from 2019 to 2021.
Table 3 offers four observations. First, the works listed in
Tables 2 and 3 have many overlaps. This indicates that
both efficient problem approximations and powerful op-
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Table 3 Comparisons of some recent works with different algorithm designs and enhancements

Algorithm design and

Category Recent works Problem features Year Publication
enhancement
Optimization MPMLSI[60] Expensive, constrained Constrained optimization by 2021 IEEE Transactions on
framework and assigning individuals to optimize Evolutionary Computation
paradigm penalty sub-problems
HSMEAI63] Expensive, multi-/ Decomposition-based multi- 2019 IEEE Transactions on
many-objective objective optimization with a Evolutionary Computation
proposed local search operator
CSEA[] Expensive, many-objective Many-objective optimization 2019 IEEE Transactions on
framework based on a proposed Evolutionary Computation
dominance relationship prediction
DSCPSO-EMM®3] Expensive, multi-modal Multi-modal optimization based 2021 IEEE Transactions on
on a dual-population cooperative Evolutionary Computation
particle swarm optimizer and a
hybrid strategy of clustering and
peak-valley
MiSACO[84] Expensive, mixed-variable Mixed-variable optimization 2021 IEEE Transactions on
based an ant colony optimization Cybernetics
with three proposed selection
operators
G-MFEA[100] Expensive, multi-task Multi-task optimization with two 2019 IEEE Transactions on
strategies for decision variable Evolutionary Computation
translation and shuffling
Novel AE-CNN+ Computationally expensive GA with block-based and 2020 IEEE Transactions on
operators E2EPPH7] evaluation of the variable-length encoding scheme Evolutionary Computation
hyperparameters of deep
learning models
CA-LLSOB0] Expensive, online data- Level-based learning swarm 2021 IEEE Transactions on
driven, single-objective optimizer with an exploitation Evolutionary Computation
strategy
GLoSADE®1] Expensive, constrained DE with two mutations strategies 2019 IEEE Transactions on
for global and local search Cybernetics
SAFEI™] Expensive, single-objective Cooperative of evaluation 2021 IEEE Transactions on
methods with different scales Evolutionary Computation
and a neighbor best-based
fitness evaluation strategy
SHEDAI] Expensive, mixed-variable Surrogate-assisted hybrid-model 2021 IEEE Transactions on Neural
estimation of distribution Networks and Learning System
algorithm with a novel
initialization method and an
adaptive model learning method
SGAIBI Expensive, high-dimensional ~GA with a crossover based on 2020 IEEE Transactions on

predicted parents and a local
search operator

Evolutionary Computation

timization algorithms are essential in solving EOPs effi-
ciently. Second, the listed works are in the category of
optimization framework and paradigm or novel operators,
which indicates the recent research focus and direction in
algorithm design for EOP. Third, enhanced algorithms
are mainly the variants of GA, DE, and PSO. This may
be because that these three algorithms are effective and
efficient in solving various complex optimization prob-
lems. Fourth, as shown in Table 3, different EC al-
gorithms are used for different problems, suggesting that
different EC algorithms may be suitable for different
EOPs.

5 Parallel and distributed computation

When evaluating candidate solutions is computation-
ally expensive, parallel and distributed techniques can be

used to accelerate the optimization and reduce the com-
putational time cost. Existing related works can be
roughly classified into two categories, i.e., acceleration for
approximation and acceleration for the optimization pro-

cess, which are described as follows.

5.1 Acceleration for approximation

Acceleration for approximation refers to the methods
that incorporate parallel and distributed techniques with
simulation and surrogate models. In an aerodynamic
shape optimization problem, Karakasis et al.l'l%9 sugges-
ted a distributed EA with surrogates to help reduce the
expensive computational time cost of invoking unneces-
sary computational fluid dynamics. The algorithm will di-
vide the population into some sub-populations and evolve
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them with surrogates simultaneously. The best solution in
each sub-population will be migrated to other sub-popula-
tions regularly to improve the optimization. The results
in the experimental studies reveal that combining surrog-
ates and distributed methods yields the highest computa-
tional efficiency in term of the time cost. Furthermore,
Akinsolu et al.120] suggested a parallel model to improve
the parallelization of surrogate-assisted EA. To be specif-
ic, the proposed algorithm selects various solutions with
potential fitness together for the computationally expens-
ive FE. During this, the expensive FE of each selected
solution can be done simultaneously, so as to reduce the
expensive computational time cost.

Despite the above, the algorithm parallelization can be
further improved if there are multi-fidelity or multi-level
surrogates when solving EOPs. For example, Karakasis et
al.'21] put forward a hierarchical distributed EA for solv-
ing the expensive shape optimization problem, where each
sub-population uses a surrogate with different accuracy
levels and computational time costs. During the distrib-
uted evolution of sub-populations, better solutions will be
reallocated to sub-populations that use a more expensive
but also more accurate surrogate, while worse solutions
will be reallocated to sub-populations with a less accur-
ate but cheaper surrogate, so as to fully utilize the com-
putational budget. In addition, Sun et al.}22 presented an
asynchronous parallel surrogate optimization algorithm,
which is based on the ensemble surrogate model and the
stochastic response surface method. The algorithm uses
parallel computing techniques to speed up both the
weights update of ensemble surrogates and parameter op-
timization, which has proven to be efficient for solving
EOPs.

5.2 Acceleration for optimization

Despite the approximation, many parallel and distrib-
uted methods have been investigated to speed up the op-
timization process of EC algorithms, so as to solve EOPs
more efficiently!23], For example, a parallel DE is pro-
posed by Liu et al.l'24] for solving the power electronic cir-
cuit optimization problem with simulation-based time-
consuming FEs. The parallel DE can assign candidate
solutions to diverse resources for parallel FEs based on
distributed cloud computing resources, and thereby redu-
cing the expensive time cost. The experimental results
showed that the parallel DE could significantly speed up
the evolutionary search process. Knowing that the com-
putational resources may have varying workloads and
computing capabilities, Ma et al.[125 developed a distrib-
uted DE with a load balance technique for efficiently and
correctly allocating computational FE tasks to various re-
sources. This method considers and calculates the load in-
formation of each resource for executing dynamic re-
source allocations, which allows the topology between in-
dividuals and resources to change adaptively for the bet-
ter usage of the concurrent computational resources. Dif-
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ferent from just assessing the load information of re-
sources, Zhan et al.l'4 proposed a distributed cloud-
ready differential evolution (Cloudde), which considers
both the resource workload and the computational cost of
all FE tasks. The Cloudde estimates the suitable number
of FEs assigned to each processing node based on the cor-
responding resource workloads and computational bur-
dens, and then allocates the individuals for FEs accord-
ingly, which has proven to be very efficient in both nu-
merical simulation and a real-world case study on power
electronic circuit design application. Similarly, to solve
complex EOPs efficiently, Zhan et al.126] developed an
adaptive distributed DE, where three populations (for ex-
ploration, exploitation, and balance) co-evolve concur-
rently using the master-slave multi-population distrib-
uted framework. Experimental results on extensive bench-
mark problems and real-world problems have shown the
great search efficiency of the proposed distributed DE.
Besides, for the expensive neural-network-based control-
ler optimization in a power electronic circuit, Liu et
al.127 investigated a resource-aware method to utilize dis-
tributed resources more efficiently by adaptively assign-
ing individuals to resources depending on the real-time
performance of the resources, which can significantly re-
duce the expensive computational time cost. Besides, Li
et al.l'28] proposed a generational-level parallelism to de-
velop a pipeline-based parallel PSO algorithm, which has
obtained promising speedup on various problems with dif-
ferent time delays in every FE.

In addition, as shown in Fig. 1, optimization problems
with large-scale characteristics are often also EOPs.
Moreover, the large-scale characteristics of some EOPs,
such as large search space, high variable dimension, and
the large quantity of data, often result in more expensive
computational costs for optimization. When solving such
large-scale optimization problems and/or large-scale
EOPs, distributed methods can help improve algorithm
efficiency to reduce the expensive time cost. For example,
Ge et al.1?9 suggested a distributed DE with adaptive
merge and split to quickly locate the best solutions for
large-scale problems with computationally expensive FEs,
where experimental results have demonstrated the good
search efficiency, scalability, and speedup of the pro-
posed algorithm. Wang et al.130 put forward a distrib-
uted PSO with a master-slave multigroup distributed
model for coevolution, so as to improve the search effi-
ciency and reduce the total expensive time cost. The pro-
posed algorithm is applied to a large-scale cloud work-
flow scheduling application and obtains better results
than compared algorithms. Furthermore, Wang et al.[131]
used a master-slave multi-subpopulation distributed mod-
el for PSO to avoid local optima and accelerate optimiza-
tion convergence, which is proven effective in experi-
ments with 35 large-scale optimization problems with
computational expensive FEs. Moreover, distributed al-
gorithms can integrate with problem decomposition and
resource allocation methods to cope with the large-scale
challenges of computational EOP efficiently. That is, EC
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algorithms can decompose the problem into several smal-
ler-scale sub-problems and optimize sub-problems concur-
rently via coevolution, so as to obtain a better solution
more efficiently!32]. In decomposition-based methods, it is
suggested that more computational resources should be
allocated to optimize sub-problems that have larger con-
tributions to the overall problem optimization, so as to
fully utilize the available computational resources wisely
and efficiently. In general, methods for estimating the
contributions of different sub-components can be based
on moving averagel!32, weighted averagel!33], most recent
contribution(!34, average of recent contributions[!35, pre-
defined value function[!36], sensitivity analysis/!37], delta
disturbancel!38], Gini index[!3%, and multi-objective evalu-
ation considering both fitness and diversityl140,

5.3 Comparisons and discussions

This part compares and discusses different parallel
and distributed computation methods for EOP in recent
works. According to the category in parallel and distrib-
uted computation methods for EOP, Table 4 introduces
some works in three recent years, i.e., those published in
IEEE Transactions from 2019 to 2021. From Table 4, we
can have two observations. First, the majority of works in
Table 4 are for real-world applications. This may be due
to the fact that the expensive computational cost in real-
world problems can help better show the benefits from
parallel and distributed methods, while the benchmark
problems (unless with time delay settings or large-scale
characteristics) may not be computationally expensive
enough to demonstrate the acceleration brought by paral-
lel and distributed methods. Second, as shown in Table 4,
parallel and distributed methods are usually used to im-

prove search efficiency for accelerating the optimization
rather than for accelerating the approximation. This sug-
gests that the parallel and distributed methods for ap-
proximation may be insufficient in the current literature.

6 Real-world applications

6.1 Real-world case studies

As numerous EOPs arise from different real-world ap-
plications and have various challenges, many pieces of re-
searches have been undertaken to deal with the corres-
ponding challenges by considering the specific problem
types and features, leading to application-driven meth-
ods and approaches. For example, Wang et al.ll4l fo-
cused on the health care area and suggested a novel evol-
utionary method for the trauma system design optimiza-
tion, where a large number of historical records make the
FE very computationally expensive. The authors recog-
nized that the problem is an offline data-driven problem
and proposed a clustering method with multi-fidelity sur-
rogates to achieve a balance between computational time
cost and optimization accuracy. The reported results re-
veal that the proposed algorithm can save up to 90% of
computational cost while still producing a satisfactory
outcome. Differently, Guo et al.[14?] researched the fused
magnesium furnaces optimization, which is a typical
small data-driven EOP. In this problem, the FE is ex-
pensive to conduct and only a small quantity of evalu-
ated data may be used to develop surrogates to approx-
imate the FE. In order to handle this challenge, a low or-
der polynomial model is built for generating more data to
help better approximate the FE. Moreover, Wang et al.[*8]

Table 4 Comparisons of some recent works with different parallel and distributed computation methods

Parallel and
distributed methods

Category Recent works Problem features

Time complexity and

. Year Publication
speedup analysis

Acceleration for PSAEDI[120]
approximation

Expensive
optimization in
electromagnetic
design

Parallel simulations to
obtain data to build
approximation model

IEEEFE Transactions on
Emerging Topics in
Computational
Intelligence

Up to 7.36 times speedup 2019
over compared methods

Acceleration for RADDE[27]
optimization

Expensive
optimization of the
controller in power to resources
electronic circuit

P3S0[128] High-dimensional,
single-objective,

fitness evaluations
with different time

delays

DGLDPSO30  Large-scale cloud

workflow scheduling on dynamic group

A distributed DE with a About 2 to 4 times speedup 2021
resource-aware strategy under situations with
neural-network-based to dispatch individuals  various load burdens and

A pipeline-based parallel Theoretical speedup can 2020
PSO in the generational- reach [ NP/3] with NP as
level parallelism

A distributed PSO based Time complexity is 2020

IEEEFE Transactions on
Neural Networks and
Learning Systems
states

IEEEFE Transactions on
Cybernetics

the number of particle

individuals, which has been

verified experimentally

IEEE Transactions on

O(MaxFEsX D), where Cybernetics

learning MaxFEs is the total number
of FEs, and D is the
problem dimension
AGLDPSO[31  Large-scale, A distributed PSO based Time complexity is 2021  IEEE Transactions on

complexity
learning

on adaptive group

O(MaxFEsX D) Cybernetics
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used an active learning and surrogate-assisted algorithm
to solve a transonic airfoil design optimization challenge,
where evaluating potential airfoil requires computation-
ally expensive CFD simulations. The proposed algorithm
can generate a high-quality solution quickly using the act-
ive learning-based surrogate. As for the crowdshipping
scheduling application problem with multiple available
computationally expensive evaluation methods, the
SAFEI[™ method is proposed with a scale-adaptive evalu-
ation approach to solve the problem and obtain prom-
ising results. Moreover, Chugh et al.'43] proposed a kri-
ging-based EA to tackle main challenges in the expensive
shape optimization of an air intake ventilation system,
i.e., the challenges of formulating the optimization prob-
lem, connecting different simulation tools, dealing with
computationally expensive objective functions, and ob-
taining promising results. In addition, in the blast fur-
nace optimization problem, Chugh et al.¥ implemented
principal component analysis to reduce the problem com-
plexity and optimization difficulties, which has shown to
be effective. Nevertheless, the robust optimization of an
airfoil design application with various possible worst-case
scenarios was treated as a multi-task optimization prob-
lem by Wang et al.l!43l, who proposed a surrogate model
in the joint space of the decision and scenario spaces to
replace some of the expensive FEs to solve the problem
efficiently.

6.2 Competitions and benchmarks from
real-world

As mentioned above, different EOPs may favor differ-
ent algorithm characteristics and features, which could
not be ideal for testing and comparing new methods pro-
posed by researchers. Therefore, some works have been
conducted to provide EOP competitions and benchmarks
that reveal the difficulties and challenges from real-world
applications and evaluate various state-of-the-art meth-
ods, so as to bridge the gap between academic and applic-
ation. For example, Table 5 lists the competitions based
on real-world EOPs in the past three years. Due to the
inconvenient and expensive FEs, the problems in the

Machine Intelligence Research 19(1), February 2022

competitions listed in Table 5 are treated as data-driven
optimization problems, where only some evaluated solu-
tions will be provided for participants to build approxim-
ation models for optimization. Moreover, Wu et al.[" de-
veloped 35 test instances (i.e., 25 medium-scale instances
and 10 large-scale instances) for the expensive crowd
shipping optimization application based on existing open-
source real-world vehicle routing application instances. He
et al.l46l selected seven multi-objective optimization
benchmark problems from real-world applications with
expensive FE, aiming to promote the research on data-
driven evolutionary multi-objective optimization by sug-
gesting a set of problems extracted from various real-
world optimization applications. In addition, as design
optimization problem often has an expensive and highly
nonlinear objective and constraints functions, Picard and
Schiffmann(!47l presented a framework to design electro-
mechanical actuators, called the multi-objective design of
actuators, and generated 20 constrained multi-objective
test problems from the framework with a specific focus on
constraints for analyses and studies.

7 Potential research directions and
open problems

Many researches have successfully implemented the
idea of using EC to solve EOPs efficiently. However, des-
pite the fact that much work has been done and the stud-
ies have been reviewed in the previous sections, we dis-
covered that research in this field is still not systematic
and that many issues remain unsolved. Therefore, this
section highlights several possible research directions and
open problems in the hope of inspiring further extensive
and in-depth research on this topic. Specifically, as shown
in Fig. 5, five potential future directions from three levels
(i-e., theory-method-application level) are considered and
discussed in the following contents.

7.1 Deeper theoretical analysis

As EC for EOP has become more complex by incor-
porating the problem approximation, novel operators, and

Table 5 Competition problems from expensive real-world applications in three recent years

Competitions Description

Year Links

Competition at IEEE congress
on evolutionary computation

Competition at IEEE world
congress on computational
intelligence

Competition at IEEE congress
on evolutionary computation

Seven benchmark multi-objective 2019
optimization problems from real-world
applications, where the evaluations are
expensive

Eight benchmark problems from two real- 2020
world applications of aerodynamic

optimization and software configuration

tuning

Six problems of parameter optimizations of 2021
flocking model for a swarm of robots in
different scenarios

https://mp.weixin.qq.com/s/0QjFs3zl-0Z_0i-
Ww3hbIQ// or
https://github.com/HandingWang/DDMOP

https://mp.weixin.qq.com/s/02F TnctkC61-
ssUNSAqKJA// or
https://github.com/HandingWang/DDEO-
WCCI2020

https://handingwang.github.io/DDEO-
CEC2021/
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Theory Deeper theoretical analysis

!

Larger search diversity
Method { More adaptive configuration and control
Better knowledge learning and utilization
Application }—~ Further test on different problems

Fig. 5 Potential future research directions and open issues

parallelization methods, it will be more difficult to clarify
whether the trade-off between optimization accuracy and
optimization efficiency will be acceptable and how the
trade-off is achieved. In addition to the numerical studies
based on benchmark functions, it may be essential to
make deeper theoretical analyses on the new EC al-
gorithms for EOP, so as to clarify the influences of incor-
porating methods in the search procedure of EC. There-
fore, it could be a worthwhile research direction to con-
duct a deeper theoretical analysis on the components of
the proposed EC.

7.2 Larger search diversity

As approximation methods may have approximation
bias and uncertainty in some search areas, populations
with smaller diversity may be trapped in local optima in-
dicated by the approximation models. Therefore, it could
be a potential research direction to improve the search di-
versity of algorithm to reduce the negative influence of
the approximation model as much as possible.

7.3 More adaptive configuration and con-
trol

Due to the expensive FEs, it would be impossible to
configure the parameters of both EC and approximation
models for a new problem via a trial-and-error manner.
Therefore, the adaptive and automatic configuration and
control of the algorithm including the surrogate model
management would be a necessary research direction for
obtaining algorithms that can work well for various emer-
ging problems and applications.

7.4 Better knowledge learning and utiliza-
tion

The expensive FE cost poses great challenges in ob-
taining useful knowledge and information from the prob-
lems for improving the search process. Therefore, it would
be appealing to consider advanced knowledge learning
and utilization approaches to improve EC, such as few-

shot learning, self-supervised learning, and knowledge
transfer from related problems and scenarios.

7.5 Further test on different problems

The good performance of EC for EOP is mainly stud-
ied on continuous problems and is mainly in the field of
several kinds of optimization problems, such as the multi-
objective and constrained problem. However, the applica-
tion of EC in more complex problems is still insufficient,
such as problems with discrete and combinationall148-150]
multitask[’5l, dynamicl®2, many-objectivel!53, 154 and
multi-modal characteristicl55-157, Moreover, powerful EC
is also needed for complex problems with hybrid diffi-
culties, such as combinational multi-objective diffi-
cultyl158: 159 constrained multi-objective difficulty160-162]
and sparse multi-objective difficulty[l63, 164, Therefore, ex-
ploring how to design effective and efficient EC algori-
thms for these complex problems could be a potential re-
search direction in the near future.

8 Conclusions

This article has provided a comprehensive survey on
EC for EOP. In this paper, analysis has been provided
mathematically on the total optimization cost of using
EC to solve EOPs, based on which three research direc-
tions have been pointed out for reducing total cost. The
taxonomy of researches has been defined by considering
the three directions and the application. As a result, the
taxonomy contains four parts: problem approximation
and substitution, algorithm design and enhancement, par-
allel and distributed computation, and real-world applica-
tions. In each part, existing related works are further
classified and introduced. Therefore, such a systematic
taxonomy can offer a better understanding of why and
how EC algorithms have been used to solve EOPs effi-
ciently and provide references to help researchers in vari-
ous fields to solve EOPs more efficiently. Based on the re-
view of the existing works, some potential directions and
open problems have also been proposed and discussed for
this area, so as to provide inspiration to the ongoing de-
velopment of the related research fields. We hope that
this survey can help systematize existing work, evoke in-
creased interest, inspire new ideas, and expand the scope
of research in this new, exciting, and fascinating research
area.
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