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Abstract : For a continuous and positive function w (λ), λ > 0 and µ a positive measure on (0,∞)

we consider the following integral transform

D (w, µ) (T ) :=

∫ ∞
0

w (λ) (λ+ T )−1 dµ (λ) ,

where the integral is assumed to exist for T a positive operator on a complex Hilbert space H. We

show among others that, if A ≥ m1 > 0, B ≥ m2 > 0, then

‖D (w, µ) (B)−D (w, µ) (A)−D (D (w, µ)) (A) (B −A) ‖

≤ ‖B −A‖2 ×
{D(w,µ)(m2)−D(w,µ)(m1)−(m2−m1)D′(w,µ)(m1)

(m2−m1)
2 if m1 6= m2,

1
2
D′′ (w, µ) (m) if m1 = m2 = m,

where D (D (w, µ)) is the Fréchet derivative of D (w, µ) as a function of operator and D′′ (w, µ) is

the second derivative of D (w, µ) as a real function.
We also prove the norm integral inequalities for power r ∈ (0, 1] and A, B ≥ m > 0,∥∥∥∥∥

∫ 1

0
((1− t)A+ tB)r−1 dt−

(
A+B

2

)r−1
∥∥∥∥∥ ≤ 1

24
(1− r) (2− r)mr−3 ‖B −A‖2

and

∥∥∥∥Ar−1 +Br−1

2
−
∫ 1

0
((1− t)A+ tB)r−1 dt

∥∥∥∥ ≤ 1

12
(1− r) (2− r)mr−3 ‖B −A‖2 .
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1. Introduction

Consider a complex Hilbert space (H, 〈·, ·〉). An operator T on H is said
to be positive (denoted by T ≥ 0) if 〈Tx, x〉 ≥ 0 for all x ∈ H and also an
operator T is said to be strictly positive (denoted by T > 0) if T is positive
and invertible. A real valued continuous function f on (0,∞) is said to be
operator monotone if f(A) ≥ f(B) holds for any A ≥ B > 0.

In 1934, K. Löwner [14] had given a definitive characterization of operator
monotone functions as follows, see for instance [4, pp. 144 – 145]:

Theorem 1. A function f : [0,∞)→ R is operator monotone in [0,∞) if
and only if it has the representation

f (t) = f (0) + bt+

∫ ∞
0

tλ

t+ λ
dµ (λ) (1.1)

where b ≥ 0 and a positive measure µ on [0,∞) such that∫ ∞
0

λ

1 + λ
dµ (λ) <∞.

We recall the important fact proved by Löwner and Heinz that states
that the power function f : (0,∞) → R, f(t) = tα is an operator monotone
function for any α ∈ [0, 1], see [12]. The function ln is also operator monotone
on (0,∞). For other examples of operator monotone functions, see [10, 11].

Let B(H) be the Banach algebra of bounded linear operators on a complex
Hilbert space H. The absolute value of an operator A is the positive operator
|A| defined as |A| := (A∗A)1/2.

It is known that [3] in the infinite-dimensional case the map f(A) := |A|
is not Lipschitz continuous on B(H) with the usual operator norm, i.e., there
is no constant L > 0 such that

‖|A| − |B|‖ ≤ L ‖A−B‖

for any A, B ∈ B(H).
However, as shown by Farforovskaya in [7, 8] and Kato in [13], the following

inequality holds

‖|A| − |B|‖ ≤ 2

π
‖A−B‖

(
2 + log

(
‖A‖+ ‖B‖
‖A−B‖

))
(1.2)
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for any A,B ∈ B(H) with A 6= B.
If the operator norm is replaced with Hilbert-Schmidt norm ‖C‖HS :=

(trC∗C)1/2 of an operator C, then the following inequality is true [1]

‖|A| − |B|‖HS ≤
√

2 ‖A−B‖HS (1.3)

for any A,B ∈ B(H).
The coefficient

√
2 is best possible for a general A and B. If A and B are

restricted to be selfadjoint, then the best coefficient is 1.
It has been shown in [3] that, if A is an invertible operator, then for all

operators B in a neighborhood of A we have

‖|A| − |B|‖ ≤ a1 ‖A−B‖+ a2 ‖A−B‖2 +O
(
‖A−B‖3

)
(1.4)

where
a1 =

∥∥A−1
∥∥ ‖A‖ and a2 =

∥∥A−1
∥∥+

∥∥A−1
∥∥3 ‖A‖2 .

In [2] the author also obtained the following Lipschitz type inequality

‖f (A)− f (B)‖ ≤ f ′ (a) ‖A−B‖ (1.5)

where f is an operator monotone function on (0,∞) and A,B ≥ a > 0.
One of the problems in perturbation theory is to find bounds for

‖f (A)− f (B)‖ in terms of ‖A−B‖ for different classes of measurable func-
tions f for which the function of operator can be defined. For some results on
this topic, see [5, 9] and the references therein.

We have the following integral representation for the power function when
t > 0, r ∈ (0, 1], see for instance [4, p. 145]

tr =
sin (rπ)

π
t

∫ ∞
0

λr−1

λ+ t
dλ. (1.6)

Observe that for t > 0, t 6= 1, we have∫ u

0

dλ

(λ+ t) (λ+ 1)
=

ln t

t− 1
+

1

1− t
ln

(
u+ t

u+ 1

)
for all u > 0.

By taking the limit over u→∞ in this equality, we derive

ln t

t− 1
=

∫ ∞
0

dλ

(λ+ t) (λ+ 1)
,
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which gives the representation for the logarithm

ln t = (t− 1)

∫ ∞
0

dλ

(λ+ 1) (λ+ t)
(1.7)

for all t > 0.

Motivated by these representations, we introduce, for a continuous and
positive function w(λ), λ > 0, the following integral transform

D(w, µ)(t) :=

∫ ∞
0

w(λ)

λ+ t
dµ(λ), t > 0 , (1.8)

where µ is a positive measure on (0,∞) and the integral (1.8) exists for
all t > 0.

For µ the Lebesgue usual measure, we put

D(w)(t) :=

∫ ∞
0

w (λ)

λ+ t
dλ, t > 0 . (1.9)

If we take µ to be the usual Lebesgue measure and the kernel wr(λ) = λr−1,
r ∈ (0, 1], then

tr−1 =
sin (rπ)

π
D (wr) (t) , t > 0 . (1.10)

For the same measure, if we take the kernel wln(λ) = (λ + 1)−1, t > 0, we
have the representation

ln t = (t− 1)D (wln) (t), t > 0 . (1.11)

Assume that T > 0, then by the continuous functional calculus for selfad-
joint operators, we can define the positive operator

D (w, µ) (T ) :=

∫ ∞
0

w (λ) (λ+ T )−1 dµ (λ) , (1.12)

where w and µ are as above. Also, when µ is the usual Lebesgue measure,
then

D (w) (T ) :=

∫ ∞
0

w (λ) (λ+ T )−1 dλ, (1.13)

for T > 0.
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In this paper, we show among others that, if A ≥ m1 > 0, B ≥ m2 > 0,
then

‖D (w, µ) (B)−D (w, µ) (A)−D (D (w, µ)) (A) (B −A) ‖

≤ ‖B −A‖2×


D(w,µ)(m2)−D(w,µ)(m1)−(m2−m1)D′(w,µ)(m1)

(m2−m1)2
if m1 6= m2,

1
2D
′′ (w, µ) (m) if m1 = m2 = m,

where D (D(w, µ)) is the Fréchet derivative of D (w, µ) as a function of oper-
ator and D′′ (w, µ) is the second derivative of D (w, µ) as a real function.

We also prove the norm integral inequalities for power r ∈ (0, 1] and A,B ≥
m > 0, ∥∥∥∥∥

∫ 1

0
((1− t)A+ tB)r−1dt −

(
A+B

2

)r−1
∥∥∥∥∥

≤ 1

24
(1− r) (2− r)mr−3 ‖B −A‖2

and ∥∥∥∥∥Ar−1 +Br−1

2
−
∫ 1

0
((1− t)A + tB)r−1dt

∥∥∥∥∥
≤ 1

12
(1− r) (2− r)mr−3 ‖B −A‖2 .

2. Preliminary results

We have the following representation of the Fréchet derivative:

Lemma 1. For all A > 0,

D (D (w, µ)) (A) (V ) = −
∫ ∞

0
w (λ) (λ+A)−1 V (λ+A)−1 dµ (λ) (2.1)

for all V ∈ S (H), the class of all selfadjoint operators on H.

Proof. By the definition of D (w, µ) we have for t in a small open interval
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around 0 that

D(w, µ) (A+ tV )−D (w, µ) (A)

=

∫ ∞
0
w (λ)

[
(λ+A+ tV )−1 − (λ+A)−1

]
dµ (λ)

=

∫ ∞
0
w (λ)

[
(λ+A+ tV )−1 (λ+A− λ−A− tV ) (λ+A)−1

]
dµ (λ)

= −t
∫ ∞

0
w (λ)

[
(λ+A+ tV )−1 V (λ+A)−1

]
dµ (λ) .

Therefore,

lim
t→0

D (w, µ) (A+ tV )−D (w, µ) (A)

t

= − lim
t→0

∫ ∞
0
w (λ)

[
(λ+A+ tV )−1 V (λ+A)−1

]
dµ (λ)

= −
∫ ∞

0
w (λ)

[
(λ+A)−1 V (λ+A)−1

]
dµ (λ)

and the identity (2.1) is obtained.

The second Fréchet derivative can be represented as follows:

Lemma 2. For all A > 0,

D2(D(w, µ))(A)(V, V )

= 2

∫ ∞
0
w (λ) (λ+A)−1 V (λ+A)−1 V (λ+A)−1 dµ (λ)

(2.2)

for all V ∈ S (H).

Proof. We have by the definition of the Fréchet second derivative that

D2 (D (w, µ)) (A) (V, V )

= lim
t→0

D (D (w, µ)) (A+ tV ) (V )−D (D (w, µ)) (A) (V )

t
.

Observe, by (2.1), that we have for t in a small open interval around 0

D (D (w, µ)) (A+ tV ) (V )

= −
∫ ∞

0
w (λ) (λ+A+ tV )−1 V (λ+A+ tV )−1 dµ (λ) ,
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which gives that

D (D (w, µ)) (A+ tV ) (V )−D (D (w, µ)) (A) (V )

= −
∫ ∞

0
w (λ) (λ+A+ tV )−1 V (λ+A+ tV )−1 dµ (λ)

+

∫ ∞
0
w (λ) (λ+A)−1 V (λ+A)−1 dµ (λ)

=

∫ ∞
0
w(λ)×

[
(λ+A)−1V (λ+At)−1 − (λ+A+tV )−1V (λ+A+tV )−1

]
dµ(λ).

Define for λ ≥ 0 and t as above,

Ut,λ := (λ+A)−1 V (λ+A)−1 − (λ+A+ tV )−1 V (λ+A+ tV )−1 .

If we multiply both sides of Ut,λ with λ+A+ tV , the we get

(λ+A+ tV )Ut,λ (λ+A+ tV )

= (λ+A+ tV ) (λ+A)−1 V (λ+A)−1 (λ+A+ tV )− V

=
(

1 + tV (λ+A)−1
)
V
(

1 + t (λ+A)−1 V
)
− V

=
(
V + tV (λ+A)−1 V

)(
1 + t (λ+A)−1 V

)
− V

= V + tV (λ+A)−1 V + tV (λ+A)−1 V

+ t2V (λ+A)−1 V (λ+A)−1 V − V
= 2tV (λ+A)−1 V + t2V (λ+A)−1 V (λ+A)−1 V

= t
[
2V (λ+A)−1 V + tV (λ+A)−1 V (λ+A)−1 V

]
.

(2.3)

If we multiply the equality by (λ+A+ tV )−1 both sides, we get for t 6= 0

Ut,λ
t

= (λ+A+tV )−1
[
2V (λ+A)−1 V +tV (λ+A)−1 V (λ+A)−1 V

]
× (λ+A+ tV )−1 .

(2.4)

If we take the limit over t→ 0 in, then we get

lim
t→0

(
Ut,λ
t

)
= 2 (λ+A)−1 V (λ+A)−1 V (λ+A)−1 .
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Therefore, by the properties of limit under the sign of integral, we get

lim
t→0

D (D (w, µ)) (A+ tV ) (V )−D (D (w, µ)) (A) (V )

t

=

∫ ∞
0

w (λ) lim
t→0

(
Ut,λ
t

)
dµ (λ)

= 2

∫ ∞
0

w (λ) (λ+A)−1 V (λ+A)−1 V (λ+A)−1 dµ (λ)

and the representation (2.2) is obtained.

Remark 1. One may ask if the above integral representation can be ex-
tended for higher derivative. The author thinks that is possible, however the
calculations are more difficult to perform and are not presented here.

We have the following representation for the transform D(w, µ):

Theorem 2. For all A,B > 0 we have

D (w, µ) (B)

= D (w, µ) (A)−
∫ ∞

0
w (λ) (λ+A)−1 (B −A) (λ+A)−1 dµ (λ)

+ 2

∫ 1

0
(1− t)

[∫ ∞
0

w (λ) (λ+ (1− t)A+ tB)−1 (B −A)

× (λ+ (1− t)A+ tB)−1(B −A)(λ+ (1− t)A+ tB)−1 dµ(λ)
]
dt.

(2.5)

Proof. We use the Taylor’s type formula with integral remainder, see for
instance [6, p. 112],

f (E) = f (C) +D (f) (C) (E − C)

+

∫ 1

0
(1− t)D2 (f) ((1− t)C + tE) (E − C,E − C) dt

(2.6)

that holds for functions f which are of class C2 on an open and convex subset
O in the Banach algebra B (H) and C,E ∈ O.

If we write (2.6) for D (w, µ) and A,B > 0, we get

D (w, µ) (B) = D (w, µ) (A) +D (D (w, µ)) (A) (B −A)

+

∫ 1

0
(1− t)D2 (D (w, µ)) ((1− t)A+ tB) (B −A,B −A) dt

and by the representations (2.1) and (2.2) we obtain the desired
result (2.5).
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3. Main results

We have the following Lipschitz type inequality:

Theorem 3. Assume that A ≥ m1 > 0, B ≥ m2 > 0, then

‖D (w, µ) (B)−D (w, µ) (A)−D (D (w, µ)) (A) (B −A) ‖ (3.1)

≤ ‖B −A‖2×


D(w,µ)(m2)−D(w,µ)(m1)−(m2−m1)D′(w,µ)(m1)

(m2−m1)2
if m1 6= m2 ,

1
2D
′′ (w, µ) (m) if m1 = m2 = m.

Proof. From (2.5) we get

‖D (w, µ) (B)−D (w, µ) (A)−D (D (w, µ)) (A) (B −A)‖

≤ 2

∫ 1

0
(1− t)

[∫ ∞
0
w (λ)

∥∥∥(λ+ (1− t)A+ tB)−1 (B −A) (3.2)

× (λ+ (1− t)A+ tB)−1 (B −A) (λ+ (1− t)A+ tB)−1
∥∥∥ dµ (λ)

]
dt

≤ 2 ‖B −A‖2
∫ 1

0
(1− t)

(∫ ∞
0
w (λ)

∥∥∥(λ+ (1− t)A+ tB)−1
∥∥∥3
dµ (λ)

)
dt.

Assume that m2 > m1. Then

(1− t)A+ tB + λ ≥ (1− t)m1 + tm2 + λ ,

which implies that

((1− t)A+ tB + λ)−1 ≤ ((1− t)m1 + tm2 + λ)−1 ,

and

∥∥∥((1− t)A+ tB + λ)−1
∥∥∥3
≤ ((1− t)m1 + tm2 + λ)−3 (3.3)

for all t ∈ [0, 1] and λ ≥ 0.
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Therefore, by integrating (3.3) we derive∫ 1

0
(1− t)

(∫ ∞
0
w (λ)

∥∥∥(λ+ (1− t)A+ tB)−1
∥∥∥3
dµ (λ)

)
dt

≤
∫ 1

0
(1− t)

(∫ ∞
0
w (λ) ((1− t)m1 + tm2 + λ)−3 dµ (λ)

)
dt (3.4)

=
1

(m2 −m1)2

∫ 1

0
(1− t)

[ ∫ ∞
0

w (λ) ((1− t)m1 + tm2 + λ)−1 (m2 −m1)

× ((1− t)m1 + tm2 + λ)−1 (m2 −m1)

× ((1− t)m1 + tm2 + λ)−1 dµ(λ)

]
dt.

From (2.5) we have for m2 > m1 that

D (w, µ) (m2)−D (w, µ) (m1) + (m2 −m1)

∫ ∞
0
w (λ) (λ+m1)−2 dµ (λ)

= 2

∫ 1

0
(1− t)

[ ∫ ∞
0

w (λ) ((1− t)m1 + tm2 + λ)−1 (m2 −m1)

× ((1− t)m1 + tm2 + λ)−1 (m2 −m1) (3.5)

× ((1− t)m1 + tm2 + λ)−1 dµ(λ)

]
dt.

Also ∫ ∞
0
w (λ) (λ+m1)−2 dµ (λ) = −D′ (w, µ) (m1) ,

and then by (3.5) we get

1

2 (m2 −m1)2

[
D (w, µ) (m2)−D (w, µ) (m1)

− (m2 −m1)D′ (w, µ) (m1)
]

(3.6)

=
1

(m2 −m1)2

∫ 1

0
(1− t)

[ ∫ ∞
0
w (λ) ((1− t)m1 + tm2 + λ)−1 (m2 −m1)

× ((1− t)m1 + tm2 + λ)−1(m2 −m1)((1− t)m1 + tm2 + λ)−1dµ(λ)

]
dt .

By utilizing (3.2) and (3.4) – (3.6) we derive (3.1).
The case m2 < m1 goes in a similar way and we also obtain (3.1).
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Assume that m2 = m1 > 0. Let ε > 0. Then B + ε ≥ m+ ε > m. By the
first inequality for m2 = m+ ε and m1 = m, we have

‖D (w, µ) (B + ε)−D (w, µ) (A)−D (D (w, µ)) (A) (B + ε−A)‖ (3.7)

≤ ‖B + ε−A‖2 1

ε2
[
D (w, µ) (m+ ε)−D (w, µ) (m)− εD′ (w, µ) (m)

]
.

By Taylor’s expansion theorem with the Lagrange remainder we have

D (w, µ) (m+ ε)−D (w, µ) (m)− εD′ (w, µ) (m) =
1

2
ε2D′′ (w, µ) (ζε)

with m+ ε > ζε > m. Therefore

lim
ε→0+

1

ε2
[
D (w, µ) (m+ ε)−D (w, µ) (m)− εD′ (w, µ) (m)

]
=

1

2
D′′ (w, µ) (m)

and by taking the limit ε→ 0+ in (3.7) then we get∥∥D (w, µ) (B)−D (w, µ) (A)−D (D (w, µ)) (A) (B −A)
∥∥

≤ 1

2
‖B −A‖2D′′ (w, µ) (m)

and the second part of (3.1) is proved.

The case of operator monotone function is as follows:

Corollary 1. Assume that f : [0,∞) → R is an operator monotone
function with f (0) = 0. If A ≥ m1 > 0, B ≥ m2 > 0, then∥∥f (B)B−1 −

(
2−A−1B

)
A−1f (A)−A−1D (f) (A) (B −A)

∥∥ (3.8)

≤ ‖B −A‖2 ×


1

(m2−m1)2

[
f(m2)
m2
− f(m1)

m1
− (m2 −m1) f

′(m1)m1−f(m1)
m2

1

]
if m1 6= m2 ,

1
2
f ′′(m)m2−2mf ′(m)+2f(m)

m3 if m1 = m2 = m.

Proof. We denote by ` the identity function ` (t) = t, t > 0. By `−1 we
denote the function `−1(t) = t−1, t > 0. Using these notations we have

D(`, µ)(t) =
f(t)

t
− b , t > 0 ,

where b ≥ 0 and µ is a positive measure on (0,∞).
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The derivative of this function is

D′ (`, µ) (t) =
f ′ (t) t− f (t)

t2
, t > 0 ,

and the second derivative

D′′ (`, µ) (t) =
(f ′ (t) t− f (t))′ t2 − 2t (f ′ (t) t− f (t))

t4

=
(f ′′ (t) t+ f ′ (t)− f ′ (t)) t2 − 2t (f ′ (t) t− f (t))

t4

=
f ′′ (t) t3 − 2t2f ′ (t) + 2tf (t)

t4
=

f ′′ (t) t2 − 2tf ′ (t) + 2f (t)

t3
.

We have

D (w, µ) (B)−D (w, µ) (A)−D
(
`−1f

)
(A)(B −A)

= f (B)B−1 − f (A)A−1

−
[
D
(
`−1
)

(A) (B −A) f (A) + `−1 (A)D (f) (A) (B −A)
]

= f (B)B−1 − f (A)A−1 +A−1 (B −A)A−1f (A)

−A−1D (f) (A) (B −A) ,

since, by using the definition of the Fréchet derivative,

D
(
`−1
)

(A) (B −A) = −A−1 (B −A)A−1.

Also

D (w, µ) (m2)−D (w, µ) (m1)− (m2 −m1)D′ (w, µ) (m1)

=
f (m2)

m2
− f (m1)

m1
− (m2 −m1)

f ′ (m1)m1 − f (m1)

m2
1

.

By making use of (3.1) we deduce (3.8).

We consider the representation obtained from (1.9) for the operator T > 0
and the power r ∈ (0, 1],

T r−1 = D (w̃r) (T )

with the kernel w̃r(λ) := sin(rπ)
π λr−1, r ∈ (0, 1].
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From (3.1) we get for A ≥ m1 > 0, B ≥ m2 > 0 and r ∈ (0, 1] that∥∥∥∥Br−1 −Ar−1 +

∫ ∞
0

λr−1 (λ+A)−1 (B −A) (λ+A)−1 dλ

∥∥∥∥ (3.9)

≤ ‖B −A‖2 ×


(1−r)(m2−m1)mr−2

1 −mr−1
1 +mr−1

2

(m2−m1)2
if m1 6= m2 ,

1
2 (1− r) (2− r)mr−3 if m1 = m2 = m.

We have the following error bounds for operator Jensen’s gap related to
the n-tuple of positive operators A = (A1, . . . , An) and probability density
n-tuple p = (p1, . . . , pn),

J (A,p,D (w, µ)) :=
n∑
k=1

pkD (w, µ) (Ak)−D (w, µ)

(
n∑
k=1

pkAk

)
.

Theorem 4. Assume that Ai ≥ m > 0 for i ∈ {1, . . . , n} and consider
the probability density n-tuple p = (p1, . . . , pn), then

∥∥J (A,p,D (w, µ))
∥∥ ≤ 1

2
D′′ (w, µ) (m)

n∑
k=1

pk

∥∥∥∥∥Ak −
n∑
j=1

pjAj

∥∥∥∥∥
2

≤ 1

2
D′′ (w, µ) (m)

n∑
k=1

n∑
j=1

pjpk ‖Ak −Aj‖2

≤ 1

2
D′′ (w, µ) (m) max

k,j∈{1,...,n}
‖Ak −Aj‖2 .

(3.10)

Proof. From (3.1) we get∥∥∥∥∥D(w, µ) (Ak)−D (w, µ)

(
n∑
j=1

pjAj

)

−D (D (w, µ))

(
n∑
j=1

pjAj

)(
Ak −

n∑
j=1

pjAj

)∥∥∥∥∥
≤ 1

2
D′′(w, µ) (m)

∥∥∥∥∥Ak −
n∑
j=1

pjAj

∥∥∥∥∥
2

(3.11)

for all k ∈ {1, . . . , n}.
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If we multiply this inequality by pk ≥ 0 and sum over k from 1 to n, then
we get

n∑
k=1

∥∥∥∥∥pkD (w, µ) (Ak)− pkD (w, µ)

(
n∑
j=1

pjAj

)
(3.12)

−D (D (w, µ))

(
n∑
j=1

pjAj

)
pk

(
Ak −

n∑
j=1

pjAj

)∥∥∥∥∥
≤ 1

2
D′′ (w, µ) (m)

n∑
k=1

pk

∥∥∥∥∥Ak −
n∑
j=1

pjAj

∥∥∥∥∥
2

.

By making use of the triangle inequality for norms, we also have

n∑
k=1

∥∥∥∥∥pkD (w, µ) (Ak)− pkD (w, µ)

(
n∑
j=1

pjAj

)

−D (D (w, µ))

(
n∑
j=1

pjAj

)
pk

(
Ak −

n∑
j=1

pjAj

)∥∥∥∥∥
≥

∥∥∥∥∥
n∑
k=1

pkD (w, µ) (Ak)−
n∑
k=1

pkD (w, µ)

(
n∑
j=1

pjAj

)
(3.13)

−D (D (w, µ))

(
n∑
j=1

pjAj

)(
n∑
k=1

pkAk −
n∑
j=1

pjAj

)∥∥∥∥∥
=

∥∥∥∥∥
n∑
k=1

pkD (w, µ) (Ak)−D (w, µ)

(
n∑
j=1

pjAj

)∥∥∥∥∥.
By utilizing (3.12) and (3.13) we deduce the first part of (3.10). The rest
is obvious.

Remark 2. From (3.10) we can obtain the following norm inequalities for
power r ∈ (0, 1],
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∥∥∥∥∥∥
n∑
k=1

pkA
r−1
k −

(
n∑
k=1

pkAk

)r−1
∥∥∥∥∥∥ (3.14)

≤ 1

2
(1− r) (2− r)mr−3

n∑
k=1

pk

∥∥∥∥∥Ak −
n∑
j=1

pjAj

∥∥∥∥∥
2

≤ 1

2
(1− r) (2− r)mr−3

n∑
k=1

n∑
j=1

pjpk
∥∥Ak −Aj∥∥2

≤ 1

2
(1− r) (2− r)mr−3 max

k,j∈{1,...,n}

∥∥Ak −Aj∥∥2
,

where Ai ≥ m > 0 for i ∈ {1, . . . , n} and the probability density n-tuple
p = (p1, . . . , pn).

4. Midpoint and trapezoid inequalities

We have the following midpoint norm inequality:

Theorem 5. If A,B ≥ m > 0 for some constant m, then∥∥∥∥∫ 1

0
D (w, µ) ((1− t)A+ tB) dt−D (w, µ)

(
A+B

2

)∥∥∥∥ (4.1)

≤ 1

24
D′′ (w, µ) (m) ‖B −A‖2 .

Proof. From (3.1) we have for all t ∈ [0, 1] and A,B ≥ m > 0,∥∥∥∥∥D (w, µ) ((1− t)A+ tB)−D (w, µ)

(
A+B

2

)

−D (D (w, µ))

(
A+B

2

)(
(1− t)A+ tB − A+B

2

)∥∥∥∥
≤ 1

2
D′′ (w, µ) (m)

∥∥∥∥(1− t)A+ tB − A+B

2

∥∥∥∥2

(4.2)

=
1

2
D′′ (w, µ) (m)

(
t− 1

2

)2

‖B −A‖2 .
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If we integrate this inequality, we get∫ 1

0

∥∥∥∥D (w, µ) ((1− t)A+ tB)−D (w, µ)

(
A+B

2

)
−D (D (w, µ))

(
A+B

2

)(
(1− t)A+ tB − A+B

2

)∥∥∥∥dt
≤ 1

2
D′′ (w, µ) (m) ‖B −A‖2

∫ 1

0

(
t− 1

2

)2

dt (4.3)

=
1

24
D′′ (w, µ) (m) ‖B −A‖2 .

Using the properties of norm and integral, we also have∫ 1

0

∥∥∥∥D (w, µ) ((1− t)A+ tB)−D (w, µ)

(
A+B

2

)
−D (D (w, µ))

(
A+B

2

)(
(1− t)A+ tB − A+B

2

)∥∥∥∥dt
≥
∥∥∥∥∫ 1

0
D (w, µ) ((1− t)A+ tB) dt−D (w, µ)

(
A+B

2

)
(4.4)

−
(∫ 1

0

(
t− 1

2

)
dt

)
D (D (w, µ))

(
A+B

2

)
(B −A)

∥∥∥∥
=

∥∥∥∥∫ 1

0
D (w, µ) ((1− t)A+ tB) dt−D (w, µ)

(
A+B

2

)∥∥∥∥ .
By employing (4.3) and (4.4) we derive the desired result (4.1).

Corollary 2. Assume that f : [0,∞) → R is an operator monotone
function with f (0) = 0. If A,B ≥ m > 0, then∥∥∥∥∥
∫ 1

0
((1− t)A+ tB)−1 f ((1− t)A+ tB) dt−

(
A+B

2

)−1

f

(
A+B

2

)∥∥∥∥∥
≤ f ′′ (m)m2 − 2mf ′ (m) + 2f (m)

24m3
‖B −A‖2 . (4.5)

The proof follows by (4.1) for

D (`, µ) (t) =
f (t)

t
− b , t > 0 ,

where b ≥ 0 and µ is a positive measure on (0,∞).
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Remark 3. If A,B ≥ m > 0, then for r ∈ (0, 1] we get by (4.5) that∥∥∥∥∥
∫ 1

0
((1− t)A+ tB)r−1 dt−

(
A+B

2

)r−1
∥∥∥∥∥

≤ 1

24
(1− r) (2− r)mr−3 ‖B −A‖2 .

(4.6)

The trapezoid norm inequality will be our concern from now on.
For a continuous function f on (0,∞) and A,B > 0 we consider the

auxiliary function fA,B : [0, 1]→ R defined by

fA,B (t) := f ((1− t)A+ tB) , t ∈ [0, 1].

We have the following representations of the derivatives:

Lemma 3. Assume that the operator function generated by f is twice
Fréchet differentiable in each A > 0, then for B > 0 we have that fA,B is
twice differentiable on [0, 1],

dfA,B (t)

dt
= D (f) ((1− t)A+ tB) (B −A) , (4.7)

d2fA,B (t)

dt2
= D2 (f) ((1− t)A+ tB) (B −A,B −A) (4.8)

for t ∈ [0, 1], where in 0 and 1 the derivatives are the right and left derivatives.

Proof. We prove only for the interior points t ∈ (0, 1). Let h be in a small
interval around 0 such that t+ h ∈ (0, 1). Then for h 6= 0,

fA,B (t+ h)− f (t)

h
=
f ((1− (t+ h))A+ (t+ h)B)− f ((1− t)A+ tB)

h

=
f ((1− t)A+ tB + h (B −A))− f ((1− t)A+ tB)

h

and by taking the limit over h→ 0, we get

dfA,B (t)

dt
= lim

h→0

fA,B (t+ h)− f (t)

h

= lim
h→0

[
f ((1− t)A+ tB + h (B −A))− f ((1− t)A+ tB)

h

]
= D (f) ((1− t)A+ tB) (B −A) ,

which proves (4.7).
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Similarly,

1

h

[
dfA,B (t+ h)

dt
− dfA,B (t)

dt

]
=
D (f) ((1− (t+ h))A+ (t+ h)B) (B −A)−D (f) ((1− t)A+ tB) (B −A)

h

=
D (f) ((1− t)A+ tB + h (B −A)) (B −A)−D (f) ((1− t)A+ tB) (B −A)

h

and by taking the limit over h→ 0, we get

d2fA,B (t)

dt2
= lim

h→0

{
1

h

[
dfA,B (t+ h)

dt
−
dfA,B (t)

dt

]}
= D2 (f) ((1− t)A+ tB) (B −A,B −A) ,

which proves (4.8).

For the transform D (w, µ) (t) defined in the introduction, we consider the
auxiliary function

D (w, µ)A,B (t) := D (w, µ) ((1− t)A+ tB)

=

∫ ∞
0

w (λ) (λ+ (1− t)A+ tB)−1 dµ (λ)

where A,B > 0 and t ∈ [0, 1].

Corollary 3. For all A,B > 0 and t ∈ [0, 1],

dD (w, µ)A,B (t)

dt
= D (D (w, µ)) ((1− t)A+ tB) (B −A) (4.9)

= −
∫ ∞

0
w (λ) (λ+ (1− t)A+ tB)−1 (B −A)

× (λ+ (1− t)A+ tB)−1 dµ (λ)

and

d2D (w, µ)A,B (t)

dt2

= D2 (D (w, µ)) ((1− t)A+ tB) (B −A,B −A) (4.10)

= 2

∫ ∞
0

w (λ) (λ+ (1− t)A+ tB)−1 (B −A)

× (λ+ (1− t)A+ tB)−1 (B −A) (λ+ (1− t)A+ tB)−1 dµ (λ) .
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We observe that if f (t) = D (w, µ) (t), t > 0, in Lemma 3, then by the
representations from Lemma 1 and Lemma 2 we obtain the desired equalities
(4.9) and (4.10).

We have the following identity for the trapezoid rule:

Lemma 4. For all A,B > 0 we have the identity

D (w, µ) (A) +D (w, µ) (B)

2
−
∫ 1

0
D (w, µ) ((1− t)A+ tB) dt

=

∫ 1

0
t (1− t)

[ ∫ ∞
0

w (λ) (λ+ (1− t)A+ tB)−1 (B −A) (4.11)

× (λ+ (1− t)A+ tB)−1 (B −A) (λ+ (1− t)A+ tB)−1 dµ (λ)

]
dt .

Proof. Using integration by parts for the Bochner integral, we have

1

2

∫ 1

0
t (1− t)

d2D (w, µ)A,B (t)

dt2
dt

=
1

2

[
t (1− t)

dD (w, µ)A,B (t)

dt

∣∣∣∣1
0

−
∫ 1

0
(1− 2t)

dD (w, µ)A,B (t)

dt
dt

]
=

∫ 1

0

(
t− 1

2

)
dD (w, µ)A,B (t)

dt
dt

=

(
t− 1

2

)
D (w, µ)A,B (t)

∣∣∣∣1
0

−
∫ 1

0
D (w, µ)A,B (t) dt

=
1

2

[
D (w, µ)A,B (1) +D (w, µ)A,B (0)

]
−
∫ 1

0
D (w, µ)A,B (t) dt ,

that gives the identity

D (w, µ) (A) +D (w, µ) (B)

2
−
∫ 1

0
D (w, µ) ((1− t)A+ tB) dt

=
1

2

∫ 1

0
t (1− t)

d2D (w, µ)A,B (t)

dt2
dt . (4.12)
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By (4.12) we have

1

2

∫ 1

0
t (1− t)

d2D (w, µ)A,B (t)

dt2
dt (4.13)

=

∫ 1

0
t (1− t)

[ ∫ ∞
0

w (λ) (λ+ (1− t)A+ tB)−1 (B −A)

× (λ+ (1− t)A+ tB)−1 (B −A) (λ+ (1− t)A+ tB)−1 dµ (λ)

]
dt .

By making use of (4.10) and (4.13) we deduce (4.11).

We can state now the corresponding trapezoid norm inequality:

Theorem 6. If A,B ≥ m > 0 for some constant m, then∥∥∥∥D (w, µ) (A) +D (w, µ) (B)

2
−
∫ 1

0
D (w, µ) ((1− t)A+ tB) dt

∥∥∥∥
≤ 1

12
D′′ (w, µ) (m) ‖B −A‖2 .

(4.14)

Proof. By taking the norm in (4.11), we obtain∥∥∥∥D (w, µ) (A) +D (w, µ) (B)

2
−
∫ 1

0
D (w, µ) ((1− t)A+ tB) dt

∥∥∥∥ (4.15)

≤ ‖B −A‖2
∫ 1

0
t (1− t)

(∫ ∞
0

w (λ)
∥∥∥(λ+ (1− t)A+ tB)−1

∥∥∥3
dµ (λ)

)
dt.

Since A,B ≥ m > 0, then for λ ≥ 0 and t ∈ [0, 1],

λ+ (1− t)A+ tB ≥ λ+m,

which implies that

(λ+ (1− t)A+ tB)−1 ≤ (λ+m)−1 .

This implies that ∥∥∥(λ+ (1− t)A+ tB)−1
∥∥∥3
≤ (λ+m)−3

for λ ≥ 0 and t ∈ [0, 1].
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By multiplying this inequality by t (1− t)w (λ) ≥ 0 and integrating we get∫ 1

0
t (1− t)

(∫ ∞
0

w (λ)
∥∥∥(λ+ (1− t)A+ tB)−1

∥∥∥3
dµ (λ)

)
dt

≤
(∫ 1

0
t (1− t) dt

)(∫ ∞
0

w (λ) (λ+m)−3 dµ (λ)

)
=

1

6

∫ ∞
0

w (λ) (λ+m)−3 dµ (λ) .

(4.16)

Taking the derivative over t twice in (1.8), we get

D′′ (w, µ) (t) := 2

∫ ∞
0

w (λ)

(λ+ t)3dµ (λ) , t > 0 ,

that gives ∫ ∞
0

w (λ) (λ+m)−3 dµ (λ) =
1

2
D′′ (w, µ) (m)

and by (4.15) and (4.16) we derive (4.14).

Corollary 4. Assume that f : [0,∞) → R is an operator monotone
function with f (0) = 0. If A,B ≥ m > 0, then∥∥∥∥A−1f (A) +B−1f (B)

2
−
∫ 1

0
((1− t)A+ tB)−1 f ((1− t)A+ tB) dt

∥∥∥∥
≤ f ′′ (m)m2 − 2mf ′ (m) + 2f (m)

12m3
‖B −A‖2 . (4.17)

The proof follows by (4.14) for

D (`, µ) (t) =
f (t)

t
− b , t > 0 ,

where b ≥ 0 and µ is a positive measure on (0,∞).

Remark 4. If A,B ≥ m > 0, then for r ∈ (0, 1] we get by (4.5) that∥∥∥∥Ar−1 +Br−1

2
−
∫ 1

0
((1− t)A+ tB)r−1 dt

∥∥∥∥
≤ 1

12
(1− r) (2− r)mr−3 ‖B −A‖2 .

(4.18)
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