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BASIC RESEARCH

Leptin receptor defect with diabetes causes skeletal muscle atrophy in female 
obese Zucker rats where peculiar depots networked with mitochondrial damages
Jacques Gilloteauxa,b,c*, Charles Nicaiseb, Lindsay Sprimontb, John Bisslerc,d, Judith A Finkelsteinc+, 
and Warren R Paynee*

aDepartment of Anatomical Sciences, St George’s University School of Medicine, K B Taylor Global Scholar’s Program at the University of 
Northumbria, School of Health and Life Sciences, Newcastle upon Tyne, UK; bUnité de Recherches de Physiologie Moleculaire (URPHyM) - 
Narilis, Département de Médecine, Université de Namur, Namur, Belgium; cDepartment of Anatomy, Northeast Ohio Medical University 
(Neomed), Rootstown, OH, USA; dDivision of Nephrology at St. Jude Children’s Research Hospital and Le Bonheur Children’s Hospital, The 
University of Tennessee Health Science Center, Memphis, TN, USA; eInstitute for Sport and Health, Footscray Park Campus, Victoria University, 
Melbourne, VIC, Australia

ABSTRACT
Tibialis anterior muscles of 45-week-old female obese Zucker rats with defective leptin receptor and 
non-insulin dependent diabetes mellitus (NIDDM) showed a significative atrophy compared to lean 
muscles, based on histochemical-stained section’s measurements in the sequence: oxidative slow 
twitch (SO, type I) < oxidative fast twitch (FOG, type IIa) < fast glycolytic (FG, type IIb). Both oxidative 
fiber’s outskirts resembled ‘ragged’ fibers and, in these zones, ultrastructure revealed small clusters 
of endoplasm-like reticulum filled with unidentified electron contrasted compounds, contiguous 
and continuous with adjacent mitochondria envelope. The linings appeared crenated stabbed by 
circular patterns resembling those found of ceramides. The same fibers contained scattered 
degraded mitochondria that tethered electron contrasted droplets favoring larger depots while 
mitoptosis were widespread in FG fibers. Based on other interdisciplinary investigations on the lipid 
depots of diabetes 2 muscles made us to propose these accumulated contrasted contents to be 
made of peculiar lipids, including acyl-ceramides, as those were only found while diabetes 2 
progresses in aging obese rats. These could interfere in NIDDM with mitochondrial oxidative 
energetic demands and muscle functions.
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Introduction

We must always tell what we see. Above all, and this is 
more difficult, we must always see what we see. Charles 
Péguy (1873–1914).

Diabetes is a worldwide-distributed metabolic 
malady that afflict people with type 2 or non- 
insulin dependent diabetes mellitus (NIDDM), 
typically developed in aging adults. Nowadays, the 
rate of diabetes 2 is also increasing in all ages, 
including children and young adults, due to over-
weight, unhealthy diet and physical inactivity. 
Diabetes 2 has been known since Antiquity1 and 
the topic has been reviewed by an immense number 
of clinical care specialists in biomedical fields. Its 
impact on public health cost is surveyed by national 

and international organizations of medicine, 
because its metabolic alterations favors many 
other disabilities and pathologies leading to an 
excess of fatalities before age 70.2–9 One of the 
etiologies is a defective adipokine leptin 
receptor.10–12 The animal model that best matches 
human leptin receptor defect is the genetically 
obese Zucker rat13–33 which progresses at an early 
age to diabetes 2 because, soon after weaning, 
young male and female rodents of the fa/fa 
(obese) strain manifest hyperphagia.12 Thus, at 
young age, this rodent rapidly develops a clear phe-
notypic obesity due to leptin excess with hyperin-
sulinemia and insulin insensitivity. Consequently, 
these growing and aging rats undergo other endo-
crine entwined defects that favored multiple organ 
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function’s changes similarly to what one can find in 
most of the clinical progression in the human 
NIDDM in diabetes type 2.13–33

Even though the skeletal muscles encompass 
about 40% body weight and the tissue plays an 
important regulatory function in expenditure due 
to its functions in locomotion and metabolism,34 it 
is only a very small number of ultrastructure 
reports that have been published about the human 
obesity and diabetes 2 skeletal muscles.35–37 There, 
lipid depots but mitochondria functions seemed to 
have lastly delved on this last organelle in NIDDM 
[e. g. 37–46 but this focus topic is not without 
controversy.47 Like in human diabetes 2, the obese 
Zucker rat skeletal muscle histopathology does not 
appeared strikingly changed from a normal muscle 
sample with light microscopy and, thus, has 
remained neglected insofar about its fine features 
with aging. These and other tissues would be also 
influenced by several defective leptin transduction 
signals, including endocrine secretions out of 
hypothalamus and peripheral tissues (e.g. ghrelin 
in the stomach lining; adiponectin, resistin from 
adipose tissues), 10,11,23–27 as well as of the thyroid 
glands.29–31 Muscle tissues are potent targets for the 
iodinated hormones to stimulate mitochondrial 
metabolic expenditure and, thus, could provide 
some relief for diabetes progress through increased 
storage’s anabolism38,48–54 in addition to or accom-
panying recent medications,55 including in this 
Zucker rat model.56

This report extends an early histochemistry 
study, complemented by some preliminary electron 
microscopy investigations as abstracts.57,58 

Altogether, our fine structure data further show 
that diabetes 2 accompanied by leptin receptor 
defect, induces some skeletal muscles (in this case, 
the tibialis anterior muscles) of old female diabetic 
rats to atrophy also caused by a progress in their 
defective innervation.32,33 Moreover, the oxidative 
fibers cursory examination of its semi-thin sections 
appeared with ragged aspect and the fine structure 
of these revealed undescribed electron-contrasted 
interconnected depots, liposome-like components 
of endoplasmic contiguities and continuities with 
adjacent mitochondria outer membranes. Based on 
recent literature and other in vitro data, we can 
point out that those stored lipids and other electron 
contrasted components could include ceramides 

and metabolites, key impeding compounds of insu-
lin and leptin sensitivity.59–63 Yet, at the time of 
these investigations, a lack of funding and time 
made us not able to further identify and character-
ize these depots by markers and complementary 
techniques because the same oxidative fibers 
showed scattered damaged and lytic mitochondria 
as remnants out of ‘mitoptosis,’ instead of 
mitophagy.45–47,64 Interestingly, some of the 
damaged organelles appeared to house or accumu-
late similar, unidentified electron contrasted mate-
rials and lipids. Finally, the highest number of 
mitolyses, including mitoptosis, without involving 
lipid-like content were revealed in the fast glycoly-
tic (FG) fibers. Associated with NIDDM, would 
these organelle’s eliminations be part of ambulatory 
weakness due to FG fibers developing defects with 
time, as in human? .65

Material and methods

Ethical concerns

The Institutional Animal Care and Use Committee 
(AAALAC) of the Northeastern Ohio Universities 
College of Medicine (NEOMed), Rootstown, Ohio 
approved all the experimental protocols (animal 
maintenance, experimentation, anesthesia, sacrifice 
and/or euthanasia procedures) of the Zucker rats by 
Dr J Finkelstein who used them for brain 
studies,23,24 endocrine organs and peripheral 
nerves29–33 and by Dr N F Paradise for cardiac 
functions.61,62 We were allowed to also use the 
rat’s remains to excise several other organs, includ-
ing the tibialis anterior muscles, used for this 
investigation.

Animal care and tissue’s collection

The obese Zucker (or fatty) female rats that have 
both recessive traits (fa/fa) while Zucker rats Fa/? 
were the lean rats. Both genotypes possible of lean 
Zucker rats (either Fa/Fa or Fa/?) due to their either 
dominant homozygous trait or heterozygous; there, 
mark ‘?’ indicates the uncertain trait associated with 
the lean rat used in laboratory, as relying on its 
morphology, characteristic of ‘lean’ or at least het-
erozygous rats as noted in previous 
publications.29–33
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Five female obese Zucker rats (fa/fa) (45 weeks of 
age, 584 ± 20.2 g) and five lean littermates (Fa/?) 
(271 ± 11.5 g) out of a colony of rats purchased 
from Charles River Laboratories (Raleigh, NC) 
derived from original stocks13–15,21,23,24 were all 
maintained in a constant environment (22°C) 
with a reversed 12 h/12 h light/dark cycle because 
the same age groups were part of another experi-
ment dealing with exercise. The cycle was reversed 
to facilitate better running performance as rats are 
nocturnal animals. Purine lab chow and water were 
available ad libitum throughout their care.

Light (LM) and transmission electron (TEM) 
microscopy

Histochemistry
While hearts were used for cardiac performance 
investigations66,67 and necessitated fast dissections 
avoiding interfering anesthesia, these 45-week-old 
female rats, were sacrificed by decapitation. Three 
tibialis anterior muscles from lean and from obese 
female Zucker rats were excised for histochemistry, 
frozen by isopentane cooled in liquid nitrogen, and 
10-µm serially cut sections at −25°C were incubated 
for Ca2+-activated ATPase (E.C. 3.6.1.3) by the 
method of Guth and Samaha (pre-incubation at 
pH 10.4)68 and for succinate dehydrogenase (E.C. 
1.3.99.1) or SDH69 as applied in other skeletal 
muscle investigations.70–72 Reagents were obtained 
from Sigma Chemical Co (St Louis Mo). 
Measurements of muscle diameters were accom-
plished by measuring the widest diameter of each 
fiber profile in one direction, then at right angle to 
the first, and taking the average of both values using 
Song’s technique73 and an Apple morphometric 
program.70–75

TEM processing
The rat’s corpses used for LM were rapidly perfused 
with 3.5% buffered glutaraldehyde solution (0.1 M 
Na cacodylate, pH 7.35, at room temperature for 
15 min), as in71 and the 3 contralateral legs, sec-
tioned with tibialis muscles still in situ, were excised 
to undergo the same fixation that continued for 2 h 
at 4°C. Washed in buffered sucrose solution, seg-
ments of muscle specimens were thinned into mus-
cle fiber bundles, postfixed in 1.5% aqueous 
osmium tetroxide solution and processed for 

transmission (TEM) electron microscopy after 
embedment in PolyBed epoxy resin (Polysciences, 
Warrington PA.). One-µm thick sections, stained 
by toluidine blue, were observed with an Olympus 
BX51 light photomicroscope (Olympus America, 
Melville NY) to select areas for ultramicrotomy. 
Ultrathin sections were collected on 50, 75- and 
100-mesh hexagonal copper grids (SPI, West 
Chester PA), contrasted by uranyl acetate and lead 
citrate prior to be examined in a JEOL 100 
S electron microscope (JEOL USA, Inc, 
Peabody, MA).

Statistical analyses

Statistical analyses were performed with GraphPad 
Prism (v 7.0) statistical software. Normal distribu-
tion of fiber size was evaluated using 
a Kolmogorov-Smirnov test. All data were 
expressed as means ± s.e.m. Two-tailed Mann- 
Whitney test was used to test for differences 
between lean (fa/fa) and obese (Fa/?) rats, with 
a significant difference set at p< .05. One-way 
Kruskal-Wallis ANOVA followed by Dunn’s multi-
ple comparison test was applied to compare 
between both rat’s 3 fiber types (FG, FOG and 
SO). Similar quantitative comparisons have been 
done concerning mitochondrial damages and lipid 
depots in relationships with section’s areas 
observed.

Results

Light microscopy (LM)

General histology
The LM surveys of the semi-thin sections, stained 
by toluidine blue, the muscle fiber profiles dis-
played diverse aspects of staining characteristics, 
allowing to recognized them as 3 main types, with 
their specific staining topography. A brief qualita-
tive survey allowed to recognize that the whitish- 
stained were always the widest fiber profiles, likely 
being the fast glycolytic fibers, displaying an almost 
transparent orthochromatic aspect compared with 
oxidative fibers that were narrower than the first 
ones. Moreover, the strongest with toluidine stain 
ones were the thinnest, matching the SO type with 
histochemistry (see 1.b) and all FOG revealed 
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outskirts whose qualitative profiles revealed many 
longitudinally-oriented, elongated, narrow inter-
myofibrillar masses and thick subsarcolemmal 
(and perikaryal) accumulations of admixed ortho-
chromatic and metachromatic contrast. This mor-
phology aspects made the fibers to appear more of 
less serrated, seemingly ‘ragged’ according to the 
randomness plane of thin sectioning. All semi-thin 
sections revealed their fine muscle cross-striations. 

The endomysium, made of intercellular loose con-
nective elements, is displayed as narrow gaps 
between muscle fibers where small blood vessels, 
mainly capillaries, can be revealed. (Figure 1(a-d)).

Histochemistry and morphometry
Following samples of obese and lean muscles 
stained by classic histochemical markers as fiber 
types, a cursory look made LM aspects of all the 

Figure 1. a-d: Pane of 1-µm thick longitudinal (a – c) and oblique cross-sections (b – d) of one 45 weeks old female obese Zucker tibialis 
anterior muscle, stained by toluidine blue. A cursory view reveals basophilic perikaryal and intermyofibrillar components in all the 
oxidative fibers, giving them a sort of ‘ragged’ aspect (black arrows). In overall, qualitatively, the muscle fiber diameters appeared as FG 
> FOG > SO types, whose diameter was verified quantitatively in (Figure 2(a-c)). b center displays a spot-fold artifact, not a central 
nucleus.
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muscle fibers of the obese rats narrower than the 
lean muscle fiber of the same age female. Moreover, 
the histochemical markers and the histogram’s 
comparisons between muscle fiber type 

measurement’s distribution were illustrated 
(Figure 2(a,c)). There, the Kolmogorov-Smirnov 
tests, demonstrated with high significations that 
the quantitative measurements were normal 

Figure 2. a-c. Comparative histograms of tibialis anterior muscle samples of Zucker obese and lean of the 45-week-old female rats and 
statistical comparisons indicate overall atrophy of the obese fiber types.
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distributions (p < .0001) as well as the assumptions 
made with of histology qualitative aspects because 
SO or Type I fibers had 35.23 ± 8.387 µm in fa/fa 
(n = 121) vs 41.36 ± 4.886 µm (n = 100) with high 
significance (Figure 2(a)). The others, the fast oxi-
dative glycolytic or intermediate type (FOG or type 
II A) in fa/fa measured 47.52 ± 6.089 µm (n = 84) vs 
Fa/? 61.83 ± 12.03 µm (n = 63) (Figure 2(b)) as well 
as the fast glycolytic type (FG or type IIB) revealed 
their narrow diameter in fa/fa 56.63 ± 10.28 µm 
(n = 113) to be still smaller than the ones of Fa/? 
having 88.60 ± 11.33 µm (n = 100) (Figure 2(c)). All 
the comparisons made between fiber types were 
verified with Mann-Whitney tests showing high 
significative meanings (p < .0001) Those compar-
isons between obese (fa/fa) and lean (Fa/?) fiber 
types of the tibialis muscles confirmed them to 
reveal and confirm the overall atrophy of the 
obese NIDDM muscles.

Transmission electron microscopy (TEM)

Out of LM 1-µm semi-thin sections (Figure 1(a)) of 
the muscle’s samples, selected areas were used for 
ultrathin sections, as shown in the further figures. 
There, the 3 main skeletal muscle fiber types con-
sidered of the 45-week-old tibialis can be seen adja-
cent to one another, and even though already 
recognized with semi-thin sections, ultrastructure 
aspects made more comforting and new observa-
tions, especially about mitochondria and lipid 
deposits.

Subsarcolemmal and intermyofibrillar 
mitochondrial profiles

Accumulations of mitochondria profiles with adja-
cent osmiophilic deposits can be revealed in the 
outermost zones of the sarcoplasm and in the inter-
myofibrillar zones, also illustrated in all the Figures 
4(a-c), 5(a,b), 6, 7, 8(a-d), 10(a,b), 11(c), 12(a) and 
13(a). These accumulated mitochondria suggested 
and further confirmed that either the muscle pro-
files belonged to both oxidative fiber types, i. e. SO 
(type I) and FOG (type IIA) or fast fatigable or 
glycolytic as abbreviated FG, according to the his-
tochemical profiles and fine aspects of this tibialis 
muscle fiber contents. The oxidative types have 
accumulations of the organelles but, especially, the 

FOG fibers would recall those described in muscle 
pathology as ‘ragged.’ However, if most of them do 
not seem to bear blemishes or altered microstruc-
tures at low magnification, the study of high mag-
nification micrographs made us found peculiar 
scattered mitochondrial degradations with quasi 
obliteration or mitoptosis throughout the three 
fiber types (Figures 3, 4(a-c), 5(a,b), 6, 7, 8(a-d), 
10(a,b), 11(c), 12(a) and 13(a) and Table 1).

The lipid depots (LDs)

The osmiophilic structures revealed different 
morphologies and can be subdivided into two 
types: (i) spherical fatty deposits (SDs) and (ii) 
interconnected subsarcolemmal or liposome-like 
bodies (Ls).

The spherical depots (SDs)
Specifically, large spherical fatty deposits ranging 
from 0.5 to 1.3 µm in diameter were usually located 
adjacent to mitochondria, either and both the sub-
sarcolemmal zones or aligned with mitochondria in 
the intermyofibrillar sarcoplasm that belonged to 
both SO and FOG fibers (Figures 4(a-c), 5, 8(a,b), 
10(c), 11(a)); however, these were only rarely viewed 
in the FG fibers (Table 2; Figures 3(a), 9(a) and 12(a, 
b), Table 1). In this subsarcolemmal location, some 
showed a bizarre and surprising eccentric degrada-
tion accompanied by debris (Figure 4(b)). With 
these accumulated mitochondria, SDs contributed 
the peripherally located festoons found in the LM 
sections (Figure 1(a-d)) that rendered the oxidative 
fibers as ‘ragged.’ It is only at the highest magnifica-
tions that these spherical structures appeared as lipid 
droplets without limiting membrane or apparent 
lining structure (Figures 5(a,b), 10(c,d), 11(a)). 
Their content displayed a sort of centripetal gradient 
of electron contrast reaching a lesser electron pale 
core as an amorphous blurry or mottled aspect, 
caused by the thickness of the sample’s fixation, 
processing and sectioning (Figures 8, 10(c), 11(a), 
12(a) and 13(c,d)). When detected in the subsarco-
lemmal zones, SDs showed a more uniform, full 
contrast but slightly distorted by the crowding with 
either the adjacent mitochondria profile and/or of 
a myofibril as well as the location of the triads 
(Figure 5(a,b)); SD distorted shapes revealed 
a homoeomorphic topology (Figures 4(a-c), 5(a,b), 
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7, 9(a,b), 11(a), 12(a)). This deposit type is excep-
tionally found in the FG fibers (Figures 3(a),10(a), 
12(a)). There, they were solitary and closely adjacent 
to the sarcolemma, often without a clear core.

The liposome networks (Ls) or interconnected 
subsarcolemmal deposits
Among oxidative fibers subsarcolemmal mito-
chondrial aggregates, other poorly recognizable 
deposits by LM aspects were only describable 
through fine structure aspects. Displayed as 
small lipid-like deposits, these Ls were highly 
and uniformly electron dense contrasted and 
their shapes varied; smaller than the SDs and 
found with the electron microscope as string- 
like accumulations recalling those of liposomes 
as lined by poorly-recognized lining membrane. 
Only found to the narrow perikaryal and sub 
sarcolemmal zones of the muscle fibers, their 

Figure 3. a-b: Pane of TEM aspects of 45-week-old obese female fa/fa tibialis anterior muscle showing parts of adjacent 3 main fiber 
types. Both SO and FOG fiber profiles typically contained mitochondria aggregates in the subsarcolemmal perikaryal and intermyofi-
brillar zones with large spherical lipid deposits (white arrows). FG fibers displayed only rare droplets (low left bottom arrow). b: 
Enlarged view of peripheral zone of an FOG fiber with spherical lipid depots (white arrows), adjacent to mitochondria. Em: 
Endomysium; FG: fast glycolytic fiber; v: blood vessel, l: lymphatic capillary.

Table 1. Comparisons between muscle tibialis sampled from 
obese (fa/fa) and lean (Fa/?) rats represented in Figure 2(a-c) as 
histograms.

Muscles SO or 
Type I

FOG or 
Type IIA

FG or 
Type 

IIB
n = 3 fa/fa Fa/? fa/fa Fa/? fa/fa Fa/?
nb values 121 100 84 63 113 100
Mean 

Diameter
35.23 41.36 47.52 61.83 56.63 88.60

S.D. 8.387 4.886 6.089 12,03 10.28 11.33
s.e.m. 0.7625 0.4886 0.6643 1.5160 0.9667 1.1330
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fine structure features revealed them as if 
initiated near or by the small Golgi zones to 
form Ls (Figures 7, 10(a,b)). They also displayed 
interconnected oweverclumps of various shapes 
(Figures 6, 7, 9(a,b), 10(a)). With higher magni-
fications, Ls revealed a unit membrane lining 
with crenate aspect (Figures 6, 8(c,d)). In some 
oblique or tangential sections, the electron 
micrographs made up them of some aligned, 
interconnecting circular channels along their lin-
ing membranes, including those that contacted 
the outer membrane of the mitochondrial envel-
ope (Figure 8(a-d)). In some cases, Ls were 
noted with a sort of hexagonal profile (Figure 8 
(d)) among a filled to swollen homeomorphic 
endoplasm network (Figure 8(b)). Therefore, 
these Ls differed from the aforementioned SDs, 
those lacked lining membrane. In addition, the 
network of smooth endoplasm structures with 
electron contrasted content associated with the 
outer membrane’s of the mitochondria envelopes 
through linkages or blunt conduits in continuity 
and their dense content of the intermembrane 
space, the inner membrane and the 

mitochondrial matrix (Figures 6 and 9(b)). 
Enlargements of some parts revealed in 
Figure 8(e,f) provide further details of the cre-
nated lining of the Ls and its reticulum- 
containing complex that appeared to demon-
strate elongated channel-like, resembling those 
found in vitro and in vivo, with lipids and 
phospholipids enriched by ceramides.

Mitochondria degradations and mitoptoses

Throughout all the muscles of the obese adult 
female Zucker rat, many of the mitochondria 
profiles showed either compacted matrices or 
with blurry aspects of matrices under high 
TEM magnifications in SO and FOG fibers 
(Figures 4(a-c), 7, 8(a,b), 9(a,b), 11(a-c)). Some 
others also showed scattered damage, and rem-
nants of them. The damaged organelles were 
either swollen (Figure 4(a)) or both in part 
swollen and degraded (Figures 4(a), 5(a,b), 7, 8 
(a), 9(a), 10(a), 11(a-c)) as well as entirely oblit-
erated from the muscle fibers (Figures 11(a-c), 
12(a-e)). Even with the small number of fibers 
illustrated throughout the illustrations collected 
of this report, we evaluated the ratios of mito-
chondria profiles degraded were most numerous 
in the FG fibers compared with both oxidative 
SO and FOG ones (Figures 12(a-d), 13(a-e); 
Table 1). In damaged organelles, inner mem-
branes and cristae were still recognized within 
but in peculiar aspects, as illustrated by the pane 
of Figure 10(a-d), the mitochondrial remnants 
appeared as irregular morsels associated with 
electron dense droplets with a somewhat con-
centrically-aligned deposits as tiny electron 
dense deposits or granule-like with an accumu-
lated centripetal-like pattern in the spaces made 
by the swollen or partially deteriorated mito-
chondria Internum or matrix (Figures 10(a-d), 
11(a) and 14).

Endomysium

Most of the muscle fiber’s basal laminae seemed to 
lack or were free from other typical

components of the basement membrane, i. e. 
collagen fibers of the endomysium, save

Table 2. Obese female Zucker rat tibialis anterior muscle: mito-
chondria and spherical lipid deposits from 55–65 nm thick sec-
tion’s micrographs.

Skeletal muscle fiber types
SO fibers 
n = 3

FOG fibers 
n = 3

FG fibers 
n = 3

Surfaces of the illustrated fiber 
sections in µm2 

Total Section (µm2)

40 
250 
525 
815

2100 
20 

1250 
3370

250 
300 
90 

740
Mitochondria
Mitoptosis nb per total nb 
mitochondria profiles in the 
muscle fibers 
Total nb mitochondria 
Total nb mitoptoses 
% Mitoptoses

10/123 
3/ 98 

15/269 
490 
28 

5.71

5/86 
3/65 

15/365 
516 
23 

4.45

6/25 
3/15 
8/15 

55 
17 

30.90

Spherical Lipid Deposits (SDLS)
Subsarcolemmal 
SDLs nb 
Total nb 
Total Section’s area (µm2) 
% total Section

1 
2 
1 
4 

3.2005 
1.5707

1 
0 
3 
4 

3.1416 
0.0932

1 
1 
1 
3 

0.75 
0.0099

Intermyofibrillar 
SDLs nb 
Total nb 
Total Section (µm2) 
% total Sections

9 
12 
20 
41 

32.2014 
3.9510

29 
4 

34 
67 

52.6218 
1.5614

0 
0 
0 
0 
0 
0

Total section of SLDs (µm2) 
% total Section

35.4019 
4.3438

55.7634 
1.6547

0.75 
0.0993

n = number of muscle micrographs; nb: number; S: Surface section’s 
measured.
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when muscle fibers were distant of less than 
1-µm intercellular gap (Figures 5(a-c), 9(a,b), 
10(a), 12(a)). Blood and rare lymphatic capil-
laries were often detected in the intercellular 
spaces.

Discussion

The fa/fa Zucker rats

Obvious somatic differences contrast the obese 
Zucker rats from the lean Zucker rat or any other 
lean ‘strains’ of laboratory rats, whether male or 
females due to their stooped posture and size, at 

rest, they bare their excessive weight. 
Furthermore, anesthetized, the huge adipose 
reserves made the rodents expand to appear as 
sorts of thick quiches.9–12 Following the discovery 
of leptin, a product of secretion by the adipose 
cells, enterocytes and probably other unknown 
cells and tissues that influenced multiple CNS 
neurocrine centers and modulates other tissue’s 
functions 20–33,54 including antidiabetic effects.9– 

11 However, born without adequate leptin 
receptors,12–14,17–20 these rats are driven by glut-
tony and undergo diabetes 2. Both male and 
female rats showed the same pattern of NIDDM 
ensued defects.12–33

Figure 4. a-c: Enlarged spherical lipid deposits (SDs) located in intermyofibrillar location found in all SO or FOG fibers, among the rows 
of adjacent mitochondria as well as rare in subsarcolemmal position (c) and seldom found in FG fibers. White open arrows indicate 
damaged and degraded mitochondria throughout a and c. in b, a puzzling, eccentric fatty degradation between SD with mitochon-
drion. Note the centripetal gradient of oxido-reduced osmium contrast of all SDs. bl: basal lamina.
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Skeletal muscles and muscle fiber types

Skeletal muscle investigations have been achieved 
with animal models, invertebrates and vertebrates, 
including humans, through biopsies of patients and 
volunteered athletes. These abundant investigations 
allowed to comprehend both structure and functions 
of this bodily tissue, in deciphering its contractile fine 
machinery that the tissue has adapted with the ske-
letal frame for posture and locomotion e. g.35,72–81 

Out of these studies, using histochemical methods, at 
first, with toluidine blue alone71,82 and, based on the 
intensity of staining at different pH levels, muscle 
fibers among muscles have been classified into 3 
types, using myofibrillar ATPases and other mito-
chondrial dehydrogenases activities (such as succinic 
dehydrogenase (SDH)49,68–72,74,75,83–89; they pro-
vided a simple terminology as the SO (low ATPase, 

high SDH), FOG (high ATPase, high SDH) and FG 
fibers (high ATPase, low SDH). Ultimately, other 
studies subdivided human skeletal muscle tissue 
into seven human muscle fiber types, identified by 
myosin ATPase histochemical staining, from the 
slowest to the fastest ones: types I, IC, IIC, IIAC, 
IIA, IIAB, and IIB whose number’s sequence corre-
sponded from the ‘red’ or most ‘oxidative’ fibers 
(type I) to the most ‘white’ or ‘glycolytic’ ones as 
labeled IIB and, anatomically perceived from the 
most to least anatomical crimson tones corresponded 
to their relative content in myoglobin and mitochon-
dria loads and activities.49,80–89 Further refined bio-
chemical techniques made ultimately 9 subtypes of 
the muscle fiber types to be recognized.86–90 

However, the adjacent subtypes tended to transiently 
convert into one another each other or to a main 

Figure 5. a-b Female Zucker FG tibialis muscle. a: SD deposit enlarged in the subsarcolemmal zone to view its inherent deformations 
(white arrows) caused by its adjacent muscle fiber substructures: sarcolemma, adjacents T-tubule (T), damaged mitochondria and 
myofibril. This later one also displayed a ‘compressed’ aspect, centered at and around its Z disc intersarcomere zone. Brackets: triad 
structures, including those displaced by deposit; bl: basal lamina; mt: mitochondrion. B: Enlarged aspect to verify the absence of 
membrane lining of the SD but T-tubule and part of mitochondria envelope are there, recognized. bl: basal lamina; Bm: Basement 
membrane; Em: endomysium.
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functional ‘type’ according to the stimulated gene’s 
expression(s) triggered after endurance and/or resis-
tance training, with hypertrophy differences.80,85,88 

These can be used only for specialized study. 
However, these subtypes for any given muscle can 
be grouped differently by different researchers which 
created confusions between of published data com-
parisons. Thus, as cited and commented in several 
recent reports, most studies do not use these refined 
fiber types for making easier common ground of 
understanding between publications and categorize 
all muscle fibers into the ‘original’ three main fiber 
types.68–70,83,84,89–95 Meanwhile, muscle genetic and 
histochemistry analyses demonstrated homologies 
between human and rodents e. g. 85–87, 89–94 and 
electron microscopy studies verified histology and 
fine structural homologies between rodents and 
human muscle fiber types 34,35,77–79,80,81,88–90, 92, 95–98

The atrophy of the tibialis anterior muscle

As we followed the most common usage, we here 
reported about: (i) slow-twitch oxidative or type 
I (abbreviated SO), (ii) fast-twitch oxidative or 

type IIA (FOG) and (iii) fast-twich or type IIB 
(FG for ‘fast glycolytic’ or ’fast fatigable glycoly-
tic’) muscle fiber types. The rare, subtypes IIC, 
IIAC and IIAB were not even tried to be detected 
by special labelings, making less than 0.5% in this 
hindleg tibialis muscle. One has added to our 
initial reports about the obese Zucker rat 
muscles57,58 and comforted other data on the 
same muscles where exercise physiology experi-
ments were compared between male and female 
Zucker rats99–102 and those about the same mus-
cle without considering all 3 fiber types93,103–110 

by finding obese tibialis muscle fiber size demon-
strated atrophy for all fiber types, 14.82% for SO 
fibers, 23,14% for FOG fibers and 24,79% for FG 
fibers respectively when compared to lean tibialis 
muscles whether in Zucker strain or other labora-
tory rats.70,99,102,110–113 Overall, the obese Zucker 
muscle measurements found in this study supple-
mented other’s data, such as those of poor incor-
poration of radiolabelled precursors,112 reflected 
by decreased DNA and RNA contents,113,114 

likely hampered by deficient hypothalamo- 
hypophyseal signaling secretions caused by 

Figure 6. TEM montage pane of ibialis anterior muscle of obese female Zucker rat showing adjacent FG, FOG and SO fibers where 
a square indicated the field further enlarged in (Figure 7). White open arrows mark interconnected liposomes, only located in the 
subsarcolemmal and perikaryal muscle zones; rare SDs are also viewed. V: blood vessels.
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central leptin receptor defects, such as that of 
somatomedin (IGF-1), growth hormone (IGF-2)-
10,22–31,99,112–116 and still unknown factors, such 
some impeding bone117 and insulin signaling and 
functions,99–102,118,119 favoring thyroid gland 
changes25,29–33,120 and poor vascular supply as 
parts of the defective muscle homeostasis (108 vs 
119,121,122) and muscle atrophy that were also 
found in human diabetes 2.123–125 This syndrome 
can be improved by exercise.123 All the aforemen-
tioned data, including those of muscle, can also 
worsen with age in human cases126,127 and the 
associated insulin resistance further increased by 
such sarcopenia.125 The found muscle atrophy of 
the Zucker rat can be further comforted by 
a progression of tibialis nerve demyelination 
damages reported earlier, at younger age, where 
metabolites of sphingomyelin have been hypothe-
sized, disrupting the myelin architecture 32,33; see 
paragraph 4.b.

Skeletal muscle fine structure and diabetes obesity

Surprisingly, in human, only scarce but old studies 
have dealt with biopsies about fiber types35–37,95– 

97,126,127 and after exercise35,80,95,126,128 and too few 
about diabetes 2 36,37 but included or based studies 
with only biochemistry aspects7–9,125–129 even 
though utrastructural aspects would bring imagery 
resolution about crucial interpretative cell changes 
to verify and interpret some metabolic changes, like 
in many other tissues. A search through several 
specialized texts relevant to muscle defects con-
firmed this lack of human and animal ultrastruc-
ture data i. e. 130–135 Finding obesity-linked atrophy 
of the fiber types and serrated fringes of the oxida-
tive fibers made us to further analyze fine features 
of the muscle samples with electron microscopy.

The distribution of both intramyofiber lipid 
depots LDs and SDs showed in our samples as 
well as those of young Zucker rats 99–102,112,113,136 

corresponded to the known distribution in as 

Figure 7. Ls and a single spherical deposit deposit in both SO and FOG fibers of an adult female obese Zucker rat (surrounded by 
broken rectangles whose enlarged views are displayed in (Figures 8(a) and 10(a-b)). Both fiber types contained mitochondria 
aggregates with a few degraded as marked with open arrows.
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subsarcoplasm (SS) and intermyofibrillar (IM) lipid 
depots similar to those distributed in all typical 
mammal and humans79–98,102,117,126–136 as well as 
those found in obesity and/or diabetes 2 
cytopathology.32,35,49,51,57,96,97,102,122,124–132 Other 
clinical studies have involved highly specialized 
imaging techniques, invasive or not invasive, and 
included the human tibialis anterior muscle as well 
as other muscles e. g. 112,113,126–128,136–142 with those 
of rodents, including the same Zucker rat 
model.93,94,99–108,111–122,129,143,144 All confirmed 
the increased lipid depot distribution in diabetics 
and, surprisingly, the diabetic iris muscle was stu-
died, even though, a smooth muscle.145,146

There, Zucker obese rat fatty deposit’s distribu-
tion in fiber types was limited to red and white 
fibers94,99,102,103,143 and other data showed there 
were no significative differences between 
human34,36,45,49,51,80,96–102,134,136,143,144 with 

rodent’s sex about muscle fiber type 
distribution.35,93,103–107 One also can suggest that 
we found in old female diabetic rat’s muscle ultra-
structure could mirror unstudied old diabetic 
patients as a sort of incentive to pursue other 
human longitudinal studies. Additionally, leptin 
receptor models could also be created through 
gene knockout.

The lipid depots (LDs)
The LDs occurred in muscles like in many other 
tissues through coalescence from diffusion and 
endocytosis of extracellular heterogeneous hydro-
phobic dietary triglycerides, cholesterol metabolites 
and phospholipids sources.35,49,126,129,147–150 These 
depots, as non-lined membrane droplets, in 
appearance unambiguous, with spherical profiles 
as those named here SDs, usually also accumulated 
small amounts of peculiar lipoproteins and 

Figure 8. a-d: Example of liposome’s aggregate (Ls) of 45-week-old female obese Zucker tibialis anterior muscle. a and b illustrate the 
numerous interconnecting bridges or channels appeared (white arrows) as a continuous reticulum contained the electron dense 
material that extended to the outer membrane of the mitochondria envelopes. In random sections, shapes of Ls varied in a sort of 
complex topology containing round to elongated ovoid into dodecahedron-like profiles (star) within the smooth endoplasmic 
reticulum. In c and d: Details of linings (in c, thick and white arrows) appeared and revealed a crenated aspect and, in d, further 
enlarged views of the same linings in oblique section formed sorts of circular, sieve-like aspect between encased pouch contents (thin 
white arrows) of similar size as those found ceramide-rich by others in vitro. g: Golgi; m: mitochondria. e-f: TEM enlargements of some 
parts of 8 b out of the previous pane revealed the crenated lining of the Ls complex (white arrows and a black on channel-like e). In f: 
micrograph further details demonstrated elongated channel-like, resembling those found in vitro, with phospholipids enriched by 
ceramides.

358 J. GILLOTEAUX ET AL.



proteins, including several that hedge these fatty 
droplets as perilipins. In the lipid-rich matter, 
some enzymes linked to signaling and lipid synth-
esis, RNAs along with lipid-soluble toxicants have 
been detected.147 LDs have been described as 
‘inclusions’ in cytology or as secretory ‘milk’ pro-
ducts in mammary glands for offspring.148,149,151,152 

These intracellular droplets can located adjacent to 
mitochondria profiles, like in muscles35,36,77– 

81,84,87–89,91,96–98,126,128,150,153–156 and, in large 
quantities in the adipose tissues, specialized for 
lasting storages for energy source triggered through 
β-oxidative stimuli or other neuro-hormonal sig-
nals, yielding maximal output of ATPs in muscles 
for contractility35–37,49,50,52,147,154 or, pathologi-
cally, with changed content, to alter the Krebs 
cycle output.38–48,51,53,154–157 In all our fine struc-
ture data, using a similar cacodylate buffered fixa-
tive and processing of muscle samples, as done in 
previous studies where the lipid droplet’s content 
appeared typically electron-lucent in muscle tissues 
as in other reports about other cells148,158–161 or of 
young diabetic muscles36 and, without using imi-
dazole buffers as in,158–161 the peculiar electron 
contrasted content with central mottled part 
appeared to strongly indicate high levels of ethyle-
nic bounded components comprising unsaturated 
lipids or metabolites that enabled fixation to 
undergo oxido-reduction process of osmium tetr-
oxide into osmates162–166; there electron contrast 
could be further increased by ceramide moieties 
involving high C numbers among the 
depots153,154,165 as also found in diabetes with bio-
chemical analyses63 and commented in the next 4.b 
and 4.b paragraphs.

Classic LM examination of biopsies83,84,88,91,130– 

135 along with magnetic resonance spectroscopy 
analyses showed an inverse relationship between 
accumulated lipids in human skeletal muscle tis-
sues and insulin sensitivity for sedentary and obese 
humans where muscle LDs tend to increase.60,136– 

142,155–157,167–177 The LD’s distribution in the obese 
Zucker rat skeletal muscle have concurred with 
those found in humans34,36,45,49,51,80,96– 

102,134,136,143,144,178 and the obese female Zucker 
rats, like in both sex of mammals and human dia-
betes models, have oxidative muscle fibers always 
containing significant more SDs comparably to 
those rare, SDs of the fast glycolytic ones with LM 

and fine structure145 whose measurements are sum-
marized in Table 1 and in Figure 13(a,b). These 
findings comforted this rat diabetes 2, along with 
other functional aspects documented with light 
microscopy, biochemistry and 
histochemistry.13,14,36,45,60,80,96–98,102,134,136,143,144 

The clarification of the so-called ‘athlete’s paradox’ 
facilitated in the understanding as to how skeletal 
muscles utilize lipids and made authors to revisit 
the idea that lipid uptake with excess depots in 
obesity and diabetes 2 could contribute to insulin 
resistance39,40,45,54,56,150,152–158,167–170,179,180 due to 
muscle’s reduced and repressed oxidative enzyme’s 
activities, respectively.150,168,179,180 On the opposite, 
endurance training favored lipid uptakes and if LDs 
increased, sometimes more than in obesity,60,153,154 

these stores became efficiently used by an adapted, 
heightened, aerobic anabolism156,171–178,181–189 

caused by upregulated transcriptional activities, 
such as those of mRNAs of the hormone-sensitive 
lipase (LIPE), intramyocellular fatty acid’s trans-
port via muscle fatty acid binding protein 
(FABP3), and oxidative phosphorylation (cyto-
chrome c oxidase I), including those of the tibialis 
anterior muscle,59,60,150,174 all boosted through 
high-intensity interval aerobic exercises.150,173– 

178,181–183,190 It was with quite similar findings in 
rats,191 including the Zucker rats.192–195 

Phosphorylation changes of the coating surface 
proteins or lipoproteins such as perilipin 5, asso-
ciated with oxidative fibers, including other orga-
nelles and the LDs can be modified by specific 
exercises that would adapt and improve the 
human NIDDM syndrome 152–155,181,196 while peri-
lipin 2 is mainly with glycolytic fibers, in lesser 
amount and mainly located around the very rare 
LDs of FG fibers.154,181

SDs as Ls with ceramides?
LD’s fine morphology of the found SDs sug-
gested the admixed presence of other lipid- 
soluble electron-dense containing highly ethy-
lenic groups with polar compounds in these 
old female diabetic muscles that could perturb 
the energetic capabilities of the organelles, 
impeding the normal utilization of lipids by 
the fiber’s mitochondria along with or as ‘insu-
lin resistance’ in dealing mainly with oxidative 
fibers. Among these, least metabolically active 
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ones included long chain acyl-coenzyme As, 
diacylglycerol and ceramides.39–46,59–63,191– 

195,198–202 Excessive lipid up taken caused by 
overfeeding and parts of the LDs, where cera-
mides originated from palmitate metabolism 
have lately received prominence after so much 
notices had focused on other lipids.45,59–63,198– 

204 Ceramides in obese muscles could share 
multiple aspects in causing insulin 
resistance62,205–207 through changing membrane 
surfaces,208,209 displacing membrane rafts206 

with rearrangements of transmembrane 
channels210 and changed other surface 
signalings211 that could relate to the impeded 
mitochondrial respiration as ‘resistance’212 that 
can be reestablished by exercise, as discussed 
above.

An endoplasm reticulum filled excess amounts of 
inadequate metabolites, including lipids and 
ceramides as liposomes?
The sarcoplasm contains an endoplasmic reticulum 
highly specialized for fast ionic and energetic 
exchanger in muscles35–37,77–81,83,84,97,98,130,131,213 

and some part of it, like the sarcoplasmic reticulum, 
associated with ionic exchanges with myofibrils, 
could compartmentalize and specialize out of sarco-
lemma endocytosis and transcytosis, via Golgi appa-
ratus and endosome-like, storage lipid sites. Obesity 
and hyperglycemia already make both increase in 
circulating shorter-chain saturated free fatty acids 
(FFA) that serve as substrates for and induce de 
novo ceramide synthesis24,25,199–204 along with 
other complex lipids and cholesteryl esters captured 
by receptor-mediated endocytosis taken up from 

Figure 9. a-b: FOG and FG adjacent fibers of adult obese female Zucker rat tibialis anterior muscle. Note the FOG aggregate of 
mitochondria compared with the FG fiber (low part of 10A) devoid of such subsarcolemmal crowding but one SD showed closely 
adjacent to the sarcolemma. Both micrographs illustrate small aligned heavily contrasted strings of three vesicles in both fibers, 
marked by white arrows as Ls. A Golgi (g) zone could be involved with local endoplasm and process of capture and storage of these 
formed vesicles.
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extracellular milieu (exiting circulation). Those can 
become parts of a reticulum of the endoplasm con-
structed with the subsarcolemmal Golgi apparatus 
(Figure 9(a,b)) into a membrane-enclosed lipids net-
work of dynamic topology (as ‘fixed’ but illustrated 
in (Figures 6 and 8(e)). The string-like vesicles 
found in slow fibers resembled the chylomicrons 
found by others214–216 – sometimes called lipo-
somes – that resembled the same ones constructed 
artificially with double concentric amphiphilic lipid 
layers (phospholipids) that associate with water to 
form vesicles,217,218 making ‘nanoliposomes’ to deli-
ver medications,217–220 including oligonucleotides 
(i.e., recent polyRNA vaccines against SARS-Cov 
19). Ours are even more similar to those ceramides 
immunolabelled in keratinocytes.221 Referring to 
our micrographs, accumulated liposomes enlarged 
by accretion and filled this swollen endoplasm net-
work that acquire topologic variations of shapes, 

because of their corralled linings and as Ls, like in 
LDs, connected to the mitochondria oxidative ‘fur-
naces.’ Hence, those lipids enriched by complexed 
long-chain acyl groups, ceramides and their sphin-
gosines ‘escaping’ autophagy through changes of 
perilipins61–63,222 i. e. forming other electron- con-
trasted fine structures depots. Focusing about cera-
mides, the literature about them showed they not 
only overload the endoplasmic reticulum content 
but also its linings,205–211,222–224 where membranes 
and intermembrane contacts in cross- and oblique 
sections showed peculiar crenated (<10 nm diam) to 
circular (10–25 nm in diam) formations in Figure 8 
(c,e,f). These crenate aspects may relate to those 
reports that have not only detected membrane 
changes but also, in vitro verified channels made 
by accumulated ceramides including those found 
in mitochondria.214,215,223,224 Whether or not cera-
mides or complex lipids, it is the first time, with 

Figure 10. a – d: FOG and SO muscle fibers of adult obese female Zucker rat. Among the crowded intermyofibrillar mitochondria, 
degraded structures (arrowheads) bearing some concentric membrane whorls or stacks revealed what could be a filing by highly 
electron dense contrasted droplets ranging from 8–20 nm in diameter alongside those membranes (white arrows). d: Enlarged view of 
c demonstrates the centripetal-like trend of the aggregated deposits while becoming centrally coalescent and, thus, widened.

ULTRASTRUCTURAL PATHOLOGY 361



electron microscopy, that an ‘endoplasm’ displayed 
highly contrasted ‘reticulum’ or Ls network that 
reached and contacted the mitochondria outer 
membrane was detected in diabetes 2 muscles 
because LM aspects have not evidenced these struc-
tures yet.

Mitochondrial profiles and degradations as 
mitolyses and mitoptoses

As one noted in the above paragraph 4.c, the ear-
liest reports dealing with human and animal mod-
el’s investigations classically demonstrated the high 
content in mitochondria profiles along with lipid 
deposits in slow or oxidative fibers vs. those of 
glycolytic, fast twitch and fatigable. 35,36,77–81,64– 

83,97,98,130,131,225 However, token data collected 
about human and animal NIDDM/diabetes 2 mus-
cle fine structure in specialized 
publications35,36,126,128 could have been caused by 

LM poor resolution and marker’s deficiency and, 
thus, may have reduced diabetes 2 interest with 
ultrastructure to befall focused on resolving meta-
bolism. One also realized in our preliminary studies 
with LM alone that one disclosed atrophy and only 
glimpses of morphology alterations, similar to 
those that followed.57,58 However, during the last 
three decades, molecular aspects have made so 
much strides and one would expect to provide 
interest for further longitudinal investigations in 
the TEM. Studies have clarified between the sub 
sarcolemma (SS) LDs and intermyofibrillar (IMF) 
LDs153,154,220–222 along with specializations have 
been shown between them and the IMF and SS 
mitochondria due to proteomic and biochemical 
differences analyzed through mass spectrometry, 
because IMF LDs appeared to be the main fuel 
source for the IMF mitochondria that provide 
energy for adjacent myofibrils and sustained mus-
cle contractility containing the highest levels of 

Figure 11. a-c: Typical mitolytic aspects or mitolysis in adult female obese Zucker rat tibialis anterior oxidative slow twitch (SO) and fast 
twitch or FOG muscle types. Profiles of sub-sarcolemmal (a-b) or intermyofibrillar (c) mitochondria revealed matrices either partially or 
entirely swollen-like degraded compared with other adjacent typical mitochondria profiles (white arrows). Highly contrasted SDs 
appear in both a and b. bl: basal lamina.
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enzymes and phosphorylation proteins along with 
those respiratory chain complex while the SS LDs 
and mitochondria dealt with providing energetic 
demands for SS membrane related homeostatic 
and functions including those interactions- 
transports and dynamic exchanges of ions, meta-
bolites of the adjacent endomysial space’s.14,60,66– 

81,153,220–224,226–228 Muscle fiber genome expression 
is also modulated by nerve influences, consistent 
with each fiber type and 
activity.36,40,80,85,88,89,98,128,220–224,226–231 In the case 
of diabetes, palmitate metabolism yields ceramide 
and sphingosine compounds59,61–63,198,199,211,229– 

231 and, probably, unlike of uninucleate cells, 
a pathway implicating reactive oxygen species 
(ROS) and reactive nitrogen species (RNS) in the 
organelles implicated, those located in SS locations 
and some IMF ones induce cytochrome c escape 
that activates an ‘apoptotic’-like pathway that 

swerve into mitochondrial fission and/or degrada-
tion known as ‘mitoptosis’ instead of mitophagy.45– 

47,64,202,231,232 However, as seen in all muscle fiber 
types, the lytic degradations which cause(s) is (are) 
unclear – maybe peroxidations – 45,46,231–234 

damaged matrices or internum and the inner mem-
brane of the envelopes while most of the external 
membranes were left preserved, rendered resilient 
due to their remodeling with ceramides and/or 
metabolites, providing diverse type channels235– 

240. The linings and extensions of the Ls mem-
branes could be loaded with the same ceramides 
or sphingosines as we revealed circular infrastruc-
tures, described in paragraph 4.c. These mitochon-
drial partially or entirely executed with cavitation of 
their matrix47,148 can also become sinks of over-
loaded complex lipids as suggested in tethering 
them in the lucent remnants as in Figure 10(a-c) 
and measurements seemed to have indicated that 

Figure 12. a-e: Obese female Zucker fast glycolytic (FG) muscle fiber ultrastructural aspects in cross, oblique and longitudinal sections. 
Typical myofibril architecture also showed throughout mitochondrial degradations as mitolyses or mitoptoses (small white arrows) and 
enlarged in d. These degradations occurred mostly within outermost regions of the myocytes. Notice throughout all the sections no 
glycogen aggregates (as in c, black arrows) showed in the intermyofibrillar sarcoplasm.
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for FG surfaces of sectioning measured, the number 
of mitolyses is significantly more important than in 
the oxidative fibers (Table 1 and Figure 13(c,d) 
where mitoptosis revealed only outer membrane 
of the envelope left. Could we hypothesize that, 
based on literature,45–47,64,241 mitoptosis happened 
without apoptosis of the myocytes triggered by 
ceramides while myocytes were left to ‘survive,’ 
protected by their multinucleate structure that still 
control whatever can be in the diabetic syndrome 
mitochondria, with their altered their energetic 
capabilities.199,200,212,213,225,228–234,237–243 

Diagrammatic representation in Figure 14 of the 
pane of (Figure 10(a-d)) suggesting the possibility 
of mitochondrion remnants as outer membrane, 
already natural ‘sinks’ for acylated lipids, gave in 
and yielded to become other lipid depots.

Conclusion and translational research 
considerations

Diabetes 2 as NIDDM syndrome condition of the 
female Zucker rat muscles showed to accumulate 
lipids and again demonstrated the validity of this 

Figure 13. a-d: Comparative histograms from fine structure micrographic counts displaying more SDs in oxidative (SO and FOG) than 
FG fibers while none can be found FG fibers (a and b). In c: Mitolyses, including mitoptoses, are significantly more abundant in FG fibers 
than oxidative fibers. d: Surfaces of the 3 types of muscle ultrathin sections measured where a, b and c distributions were reported of 
the 45-week-old obese female Zucker rat tibialis anterior muscles.
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rodent model to uncover some of the fine struc-
ture aspects associated correlated with peculiar 
metabolites depots197 that could be involved in 
impeding sarcoplasm and mitochondrial anabo-
lism, perturbing the insulin and other neuro- 
hormonal signals. Furthermore, our report con-
curred with the views of others154,211 a that the 
regulatory mechanisms conferring lipid ceramide 
depositions207 and utilization in skeletal muscle 
remain elementary and that more should be 
understood about musculature fine structure 
changes and gender along with aging in people 
afflicted by diabetes type 2, using interdisciplinary 
tools where fine morphology should be used along 
biochemistry markers for longitudinal investiga-
tions, including those of human biopsies, as it is 
done for other muscle diseases244 Those could 
clarify functions and damages found as in Zucker 
rat model that may translate to further analyses of 
the human muscle’s changes. These studies could 

bring into adjustments of the lipid-deficient or 
altered metabolism qualifying this public health 
syndrome and, could contemplate and assist as 
with the aging population with adjustment not 
only of seric glucose and carbohydrates nutrient’s 
intake with new medications10,245 but also, pro-
gressing with exercise and nutrients 
adaptations37,51,246,247 along with further studies 
in rodents, whether with knockouts, and/or like 
with this rat model.99,100,241,248,249
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