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Parkinson’s disease (PD) is a common neurodegenerative condition affecting a significant
number of individuals globally, resulting in the presentation of debilitating motor and non-
motor symptoms, including bradykinesia, resting tremor, as well as mood and sleep dis-
orders. The pathology of PD has been observed to spread through the central nervous
system resulting in progressive brain degeneration and a poor prognosis. Aggregated
forms of the protein α-synuclein, particularly intermediary aggregates, referred to as oli-
gomers, or preformed fibrils, have been implicated as the causative agent in the degener-
ation of neuronal processes, including the dysfunction of axonal transport, mitochondrial
activity, and ultimately cellular death. Extracellular vesicles (EVs) have been strongly impli-
cated in the propagation of PD pathology. Current observations suggest that aggregated
α-synuclein is transported between neurons via small EVs in a series of exocytosis and
endocytosis cellular processes leading to the observed spread of neurotoxicity and cellu-
lar death. Despite some understanding of the role of EVs in neurodegeneration, the exact
mechanism by which these lipidic particles participate in the progression of Parkinson’s
pathology is not entirely understood. Here we review the current understanding of the
role of EVs in the propagation of PD and explore their potential as a therapeutic target.

Introduction
Parkinson’s disease (PD) is the second most common neurodegenerative disease after Alzheimer’s
disease (AD), with a reported age-standardised incidence rate of 13.43 per 100 000 individuals in 2019
[1]. The disease is characterised by the loss of nigrostriatal dopaminergic neurons and non-
dopaminergic neurons [2]. Clinically, PD is described as a heterogenous condition [3] with motor
symptoms often consisting of akinesia, bradykinesia, rigidity, tremor, and changes of gait [4]. Patients
also exhibit non-motor symptoms such as pain, sleep dysfunction, and psychiatric disorders [5,6].
Environmental risk factors that bring about cellular stress have also been linked to the progression of
PD, including brain traumas and exposure to pesticides [7]. Currently, there are no disease-modifying
treatments or neuroprotective therapeutics available for patients diagnosed with PD. Levodopa, a
dopamine precursor pharmacological agent, remains the most effective therapy [8,9]. However, long-
term usage of this drug can result in various forms of dyskinesia [10], hallucinations, and other
adverse effects [11]. A central hallmark of the disease state is the presence of Lewy bodies in surviving
neurons. These are composed primarily of a misfolded form of the protein α-synuclein aggregated
into amyloid structures which has been associated with compromised cellular activity and eventual
cell death. α-Synuclein within these inclusions is phosphorylated at serine-129 (S129), with this post-
translational modification acting as a marker for neurodegeneration [12]. These cells also show signs
of extensive oxidative and endoplasmic reticulum-related stress [13]. The mechanism by which
α-synuclein is induced to aggregate within the cell and the pathological spread between cells in the
diseased brain is not fully understood. Extracellular vesicles (EVs) along with factors such as SNCA
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genetic mutations, aggregation of α-synuclein, and cellular stresses have been implicated in the propagation of
PD and are thought to play a central role in pathology [14–18]. In this review, we will explore the role of EVs
in propagating PD pathology.

Establishing the connection between extracellular vesicles
and α-synuclein in PD pathology
The cellular role of extracellular vesicles
EVs are membranous vesicular structures containing a range of biomolecular cargo secreted into the extracellu-
lar space by cells [19]. The ability to transfer biological molecules between cells has implicated EVs in numer-
ous diseases such as cancer [20], cardiovascular diseases [21], and neurological disorders [17]. Various EV
subtypes include exosomes, microvesicles (MVs), and apoptotic bodies [22]. Exosomes are nano-sized struc-
tures, ranging from 30 to 150 nm in diameter and are formed from the invagination of the late endosomal
membranes within limited multivesicular bodies (MVBs). These MVBs fuse with the cellular plasma membrane
releasing intraluminal vesicles into the extracellular space [23,24]. MVs, are more heterogeneous in their size
span, primarily observed to be up to 1000 nm in diameter. MVs are produced and released into the extracellu-
lar space through plasma membrane outward budding and pinching, also called ‘shedding’ [23,25] or ectocyto-
sis [26]. EVs are specialised, dynamic structures produced by a wide range of cellular types with essential roles
in endocytosis and cellular communication [27,28]. The biomolecular cargo carried by these EVs varies upon
the cell type they are released from [29]. Typically, exosomes and MVs have been found to contain cytosolic,
membrane and nuclear proteins, lipids, messenger RNA (mRNA), micro-RNA (miRNA), and non-coding
RNA species [30]. Despite its physiological importance, EVs have been implicated in PD and other neurode-
generative diseases [31], with exosomes and MVs primarily associated with neuropathology [17]. In the context
of PD, α-synuclein has been shown to co-localise with cellular endocytic components such as endosomes and
lysosomes [32]. Further, EVs have been observed to contain misfolded α-synuclein aggregates at the cell body
and the neuronal synapse for the purpose of release into the extracellular space [33]. EV-mediated transfer of
α-synuclein has been shown to occur between neurons as well as between neuronal and glial cells such as
microglia and astrocytes, potentially contributing to PD pathology [34–36].

The role of α-synuclein in PD
At the core of PD pathology, is α-synuclein, a 140-residue protein encoded by the SNCA gene. The protein has
three identified domains, a lipid binding N-terminal region, the central non-amyloid component (NAC), and
the negatively charged C-terminal region. The protein is primarily localised in the presynaptic nerve terminals
and can bind to SNARE complexes through interactions with synaptobrevin-2/VAMP-2 [37], regulating neuro-
transmitter release [38] as well as having potential roles in EV maintenance and rearrangement [39]. Although
this protein has a physiological role in normal neuronal activity, it has been found to play an essential role in
PD pathology [40–43]. Wild-type (WT) and mutated forms of α-synuclein will misfold and aggregate into a
range of oligomeric species, protofibrils, and mature amyloid fibrils [44,45]. These amyloid aggregates form
integral components of Lewy bodies in the cell soma and Lewy neurites in the axons of surviving neurons
[45–48]. The familial mutations such as A30P, A53T, E46K, H50Q, G51D, and A53E which are localised in the
N-terminal region, have been found to alter the association of α-synuclein with lipid membranes and contrib-
ute to changes in the aggregation processes [49]. Studies that have previously compared the toxicity of mono-
meric, oligomeric, and fibrillar forms of α-synuclein showed oligomeric conformations displayed greater
toxicity to cell lines than fully formed fibrils and monomers implicating them as an important pathological
agent in PD [50–52]. These oligomeric aggregates are able to induce cell death [53] through compromising cel-
lular proteasome activity [54], impeding mitochondrial respiration [55], inducing cell membrane permeabil-
ization [56], causing oxidative [57], and/or endoplasmic reticulum stress [58] and seeding intracellular
aggregation of endogenous α-synuclein [59]. This ability to bring about intracellular aggregation imparts a
prion-like mechanism involving the oligomeric forms of α-synuclein. As such, the spread of oligomeric forms
of α-synuclein between cells is thought to play a central role in the pathology of the disease. Specific fibrillar
aggregates known as preformed fibrils (PFFs) have been highlighted as neurotoxic and are assumed to form in
neuronal cells due to amyloid fibril fragmentation [60–62]. Fragmentation is believed to be caused by chaper-
one proteins, lysosomal proteases, and endosomes/lysosomes inducing acidic conditions [60–62].
Experimentally, PFFs are produced via the sonication of amyloid fibrils forming aggregates approximately
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50 nm in length. These assemblies exhibit a propensity to recruit endogenous α-synuclein inducing the seeding
of further aggregation in neurons in both cellular and animal models [63,64].

The prion-like nature of α-synuclein in the context of PD
Prions are misfolded proteins that undergo propagation involving a structural transitional process from a native
morphology to a misfolded conformation [65]. In humans, there are a range of rare disease states such as
Creutzfeldt–Jakob disease (CJD) in which the native cellular prion protein, PrPC, undergoes a structural conver-
sion from an α-helical structure to a β-sheet rich conformation. This transformation forms the toxic and prote-
asome clearance resistant PrPSc (scrapie isoform of the prion protein). PrPSc can further aggregate through the
recruitment of PrPC and the templated conversion to PrPSc. Ultimately the presence of these aggregates induces
rupturing of cells causing the shedding of PrPSc proteins. Studies have reported the presence of PrPc and PrPSc

in neuronally derived exosomes indicating the potential role of exosomes in cell-to-cell transmission and the
propagation of prion disease pathology [66–68]. The existence of proteins that exhibit similar characteristics in
structure and activity to that of prions are referred to as ‘prion-like’ proteins (PrLPs). PrLPs are thought to con-
tribute to the pathology of neurodegenerative conditions such as AD, PD, and amyotrophic lateral sclerosis [3].
The concept of α-synuclein as a PrLP arises from insights in both in vitro and in vivo models. Studies have
highlighted that exposure to aggregated α-synuclein in the form of oligomers or PFFs results in the propensity
of endogenous α-synuclein to misfold and induce further aggregate formation in recipient cells [63,69].
Further, α-synuclein aggregates, with the ability to provide a template for further aggregation, have been
detected in EVs, giving a potential mechanism by which the cell-to-cell propagation of PD pathology can be
mediated [33,70].

Factors influencing extracellular vesicle packaging and
release in Parkinson’s disease
The role of SNCA mutations in extracellular vesicle packaging and processing
The connection between EVs and PD pathology has become more established [16]. However, a full understand-
ing of the processes and conditions that allows EVs to mediate the spread of pathology is unclear and are
required for a full understanding of neurodegeneration in PD. Mutations in the SNCA gene have been asso-
ciated with increased α-synuclein aggregation and early onset PD [71,72]. Interestingly, these mutant forms of
α-synuclein have also been shown to impact the packaging of this protein into EVs. Enzyme-linked immuno-
sorbent assay showed that the A53T mutation, when present in SH-SY5Y neuroblastoma cells was more likely
to show an increased association of α-synuclein to EVs. This is thought to be due to the increased rate at
which the fibrillar aggregates are formed [16]. Which supports the concept that increased aggregation alters the
packaging of α-synuclein into EVs. Comparable results were identified in human iPSCs expressing aggregation-
prone A53T and E46K mutations, where an increase in phosphorylated α-synuclein was also observed in EVs
encapsulated in MVBs [73]. Further, when α-synuclein was incubated with exosomes derived from mouse
neuroblastoma cells expressing the mutations A53T, E46K, or A30P there were subsequent observations of
accelerated rates of aggregation into fibrils [74].

The role of SUMOylation in extracellular vesicle packaging
In addition, to genetic mutations and increased aggregation, post-translational modifications of α-synuclein can
be integral to its packaging in EVs. The organisation and packaging of α-synuclein into EVs have been docu-
mented to be influenced by SUMOylation, a process which also serves to act as a sorting signal for EV release
[75]. This process involves proteins called SUMOs which are small-ubiquitin-like modifiers [76,77].
SUMOylation involves SUMO-specific proteases processing SUMO proteins ultimately allowing the
SUMO-conjugating enzyme Ubc9 to bind to the consensus site, ψ-K-x-D/E. A mechanism which is important
in DNA repair and organisation of nuclear components [75]. This process is sensitive to cellular stressors as
seen when rotenone was injected into the brains of mice leading to an increase in SUMO1 expression coincid-
ing with increased α-synuclein levels [78]. Similarly, in oxidative stress conditions, DJ-1, a protein implicated
in PD that is key in preventing cell death through antioxidation, is modified by SUMOylation at its lysine-130
residue [79]. Evidence has shown α-synuclein undergoes SUMOylation in the presence of an E3 ligase and
SUMO conjugation has been observed to occur between α-synuclein and SUMO2 in the brains of mice [80].
In vitro SUMOylation has been shown to prevent amyloid fibril formation and promote protein solubility [80].
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However, α-synuclein mutants, A53T, A30P, and E46K which are prone to aggregation, are also more suscep-
tible to PIAS2-dependent SUMOylation. Consequentially, this inhibits ubiquitination of α-synuclein aggregates
resulting in their accumulation within the cell. The overexpression of PIAS2 also results in increased levels of
α-synuclein extracellularly [77]. SUMOylation has been shown to result in increased levels of extracellular
α-synuclein [77] plus EVs have been shown to contain SUMO2, which is dependent on the endosomal sorting
complex required for transport [75]. Which suggests SUMOylation may be connected to extracellular release.
When N2a cells were transfected with Myc-α-synuclein mutants which interferes with SUMOylation of the
protein, EV fractions were found to contain less of the mutant proteins [75]. Additionally, use of a small inter-
fering RNA (siRNA) to silence of Ubc9 reduced α-synuclein release via EVs [75]. Further, studies have indi-
cated that SUMOylation may increase ubiquitination or compete at target lysine sites at which both
SUMOylation and ubiquitination can occur [77,80]. It may be reasonable to consider that SUMOylation is a
potential explanatory post-translational event for the altered packaging and release of α-synuclein in patho-
logical stress conditions.

The role of cellular stress in extracellular vesicle packaging
Cellular stress in general is known to influence EV production and cargo contents [81,82]. The release of EVs
into the extracellular space is also governed by the cellular environment and cell stress, and has been shown to
be influenced by adiponectin [83], leptin, radiation, inflammation, hyperglycaemia, and hypoxia [84]. Cellular
stress may participate in neuropathology as patients diagnosed with PD have been shown to express high levels
of cerebrospinal fluid stress markers compared to control participants, including ferritin, 8-OhdG, nitrite, and
malondialdehyde [82]. Treatment of cells with thapsigargin, which induces endoplasmic reticulum stress and
increases the cytosolic calcium concentration results in the increased secretion of α-synuclein via EVs [70].
Similarly, when cells were treated with the calcium ionophore ionomycin, there was an increase in α-synuclein
transport to the extracellular space via exosomal vesicles [70]. This increased association of α-synuclein to EVs
has been demonstrated to be linked to the increased levels of calcium which enhances the ability of α-synuclein
to bind to lipid membranes via its C-terminus [85].
Like exosomes, MVs shedding/release into the extracellular space is also affected in the conditions of stress

such as hypoxia, dysfunctional calcium ion homeostasis, and compromised actomyosin coordination [25].
Moreover, the release of exosomes and MVs are regulated by cellular stresses such as excess reactive oxygen
species which consequently alters the type and amount of cargo carried within these vesicular subtypes [81].
This was demonstrated with mouse mast cells, where oxidative stress (induced by hydrogen peroxide treatment)
caused alterations in exosomal mRNA [86]. In addition, the induction of oxidative stress in red blood cells
with tert-Butyl hydroperoxide caused a subsequent increase in MV production [87]. In the context of PD, cor-
tical neurons were found to secrete EVs containing both aggregates and phosphorylated S129 α-synuclein.
When cortical neurons were treated with the lipid peroxidation product 4-hydroxynoneal, increased amounts
of α-synuclein oligomers and fibrils were detected in EVs compared to EVs released from the control cortical
neurons [88]. Therefore, external stressors may be necessary when assessing the potential causes of α-synuclein
neuron-to-neuron propagation via EVs.
When α-synuclein accumulates or aggregates in the cell, it has been found to result in the inhibition of lyso-

somal function through the reduction in the activity of hydrolases [89]. Dysfunction of the lysosomal system
has also been shown to be implicated in PD pathology [90,91]. The connection between the inhibition of the
autophagy-lysosomal pathway (ALP) and higher levels of α-synuclein cargo in EVs has also been shown [92].
Endocytosis, of α-synuclein fibrils can induce lysosomal stress and induce autophagic responses that lead to the
release of α-synuclein from the cell [93]. Furthermore, it has been found that the secretion of α-synuclein in
the context of impeded lysosomal function is mediated by LGALS3, which codes for the protein galectin
3. Following treatment with lysosomal acidification inhibitors, Baf-A1, and Chloroquine, EVs were found to
contain α-synuclein as well as galectin 3, a process that is increased when disturbance of the ALP occurs [93].
Treatment with α-synuclein fibrils resulted in observations of endogenously expressed SNCA and exogenous
SNCA fibrils colocalising with galectin-positive intracellular vesicles and, ultimately, in EVs released from cells.
Galectin 3 depletion, in the event of α-synuclein fibrillar treatment, was also shown to lead to autophagic
impairment due to a reduction in the formation of autophagosomes [93]. Together this data suggests that
LGALS3 (galectin 3) in conjunction with other proteins is important in the regulation of aspects of ALP, and
for cellular secretion of α-synuclein.
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The implications associated with extracellular vesicle cargo
internalisation in Parkinson’s
The processes involved in extracellular vesicle internalisation
The internalisation of neurotoxic aggregates via EVs and release of cargo into the recipient cells is integral to
cell-to-cell transmission of α-synuclein induced PD pathology [94,95]. EVs can be taken into the cell through
the endocytic processes, which encompasses but is not limited to clathrin-mediated endocytosis, caveolin-
mediated endocytosis, macropinocytosis, lipid-rafts, and phagocytosis [96]. In addition, other internalisation
processes involve cell surface membrane fusion, and cell-specific EV uptake through ligand–receptor interac-
tions, and are discussed in the following review [96]. Following internalisation, the release of cargo has been
shown to occur through EV fusion with the late endosome and lysosome which may indicate the mode of
entry into the cell [97].
Cell surface proteins appear to be intrinsic in the internalisation process with receptors such as lymphocyte

activation gene 3 (LAG3) and heparan sulphate proteoglycan (HSPG) mediating the endocytosis of aggregated
α-synuclein [98]. Purified LAG3 D1 domain (L3D1) was found to preferentially bind to PFFs compared to
monomeric α-synuclein as demonstrated using a bio-layer interferometry assay to measure binding affinity
[18]. The exact molecular processes involved in such preferential binding are not completely understood
however, L3D1 has been found to directly bind to the C-terminus of α-synuclein, which is known to be
exposed in the aggregated fibrillar structure, potentially explaining LAG3’s preferential association [18,99–101].
Deletion of the C-terminus prevents binding of monomeric α-synuclein and PFFs to L3D1 [18] indicating the
C-terminal’s importance in the cellular internalisation of α-synuclein. The phosphorylation of S129, a patho-
logical indicator of Lewy bodies and Lewy neurites, has also been found to be important in the binding of
fibrils to L3D1 [18,71]; S129E which mimics phosphorylated S129 increases the ability of α-synuclein, both
monomer and PFFs, to bind to L3D1 [18].
The uptake of fibrils into the cell can also be guided by glycosaminoglycan (GAG) chains found on the cell

surface which interact with amyloid structures via their positively charged regions [32]. Using B103 neuroblast-
oma cells, α-synuclein fibrils as opposed to oligomers were able to co-localize with the GAG heparan sulphate
[32], expressed on cellular surfaces, the extracellular matrix and basement membrane [102]. This co-localisation
has been demonstrated to occur in the endosomal/lysosomal pathway and is dependent on Rab5A (a GTPase
protein) suggesting that heparan sulphate plays a key role in the cellular uptake of α-synuclein fibrils once
exported [32]. Exposure of SH-SY5Y neuronal and KH1C oligodendrocytic cell lines to extracellular oligomeric
forms α-synuclein results in the formation of large intracellular inclusions and small aggregates positive for
α-synuclein when compared to control cells in a clathrin-dependent manner [103]. Dynamin 1 is one of the
main dynamin proteins involved in clathrin-mediated endocytosis. It is expressed extensively on dopaminergic
neurons, whereas dynamin 2, also involved in clathrin-mediated endocytosis, can be found on all cell types.
Sertraline, a selective serotonin reuptake inhibitor (SSRI), can inhibit dynamin GTPase activity and prevent the
uptake of α-synuclein. Further, the addition of sertraline to the cell culture medium prevents α-synuclein trans-
mission and uptake between co-cultured SH-SY5Y (donor) and PC12 co-cultured neuronal cells (recipient)
[103] which indicates that clathrin-mediated endocytosis is involved in α-synuclein cellular uptake.

The role of post-translational modifications in EV internalisation of α-synuclein
in Parkinson’s disease
In addition to cell surface receptors, the internalisation process of α-synuclein aggregates is affected by post-
translational modifications. O-linked N-acetyleglucosamine (O-GlcNAc), a post-translational modification in
the form of protein glycosylation where N-acetyleglucosamine are attached to serine and threonine hydroxyl
groups. This process is regulated by O-GlcNAcase (OGA), an enzyme intrinsic in removing this modification.
When Thiamet-G was utilised to inhibit OGA, after 96 h, α-synuclein PFFs uptake into SK-N-SH cells was
reduced by 35% [104]. This indicates increasing the levels of O-GlcNAc protein glycosylation post-translational
modification prevents uptake of α-synuclein PFFs into SK-N-SH cells [104].
Phosphorylation is believed to be crucial in the neuropathological characteristics exhibited by α-synuclein.

Aggregated α-synuclein has been shown to have extensive phosphorylation at S129 [47,105] and more recently
discoveries of phosphorylation at tyrosine-39 have been found to alter the morphology of amyloid fibrils, spe-
cifically increasing the size of the fibril core, in rat cortical neurons contributing to neuropathology through its
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ability to seed fibrillization of WT α-synuclein [106]. However, S129 phosphorylation of α-synuclein has been
more frequently observed in LBs in PD pathology and it is believed this post-translational modification height-
ens α-synuclein’s ability to form β-sheet structures [107]. Further, S129 phosphorylation has been found to
increase the ability of the A30P mutant α-synuclein to bind to lipid membranes which may be an important
mechanism in the EV-mediated transport of α-synuclein between neurons [107]. Additionally, it has also been
demonstrated in primary-culture mouse cells and mouse brains that exposure of cells to exogenous fibrils
induced abnormal α-synuclein phosphorylation allowing for retrograde axonal transport of α-synuclein as well
as subsequent aggregation in the cell body [108].

The cellular implications of extracellular vesicle-associated internalisation of
α-synuclein aggregates
The uptake of EVs containing α-synuclein aggregates induces dysfunction in recipient neurons, including
axonal transport dysfunction, hindering mitochondrial transportation, and disrupting the mitochondria’s
overall activity (Figure 1) [109]. Disruption of the mitochondria is seen to occur following cellular exposure to
exogenous α-synuclein resulting in mislocalisation of the protein to the mitochondria and compromised cell
viability [109]. Treatment of cells with exogenous α-synuclein has been demonstrated to impair mitochondrial
membrane potential (MMP), increase the levels of mitochondria reactive oxygen species, and diminish ATP
levels through the downregulation and silencing of Parkin as observed in PC12 neuronal cell lines [110].
Lentiviral infection was used to introduce either WT, E46K or E57K human α-synuclein into control
iPSC-derived neurons. Levels of α-synuclein were found to increase in cells containing the mutant α-synuclein
compared to cells expressing WT human α-synuclein. Size exclusion chromatography showed an increased
presence of oligomeric aggregates in α-synuclein mutant cells [111]. Consequently, α-synuclein oligomers were
found to reduce anterograde transport, leading to observations of clustered mitochondria leading to a reduction
in ATP levels within the cells [111]. Neurons expressing mutant α-synuclein were treated with NPT-100-18A, a
cyclic peptidomimetic compound that targets the C-terminus of α-synuclein. NPT-100-18A functions in dis-
placing a-synuclein from the cell membrane, reducing aggregate formation [112]. NPT-100-18A treatment was
also found to ameliorate the neurotoxic effects of the α-synuclein oligomers which was concurrent with the
observation of increased mitochondria within axons and increased anterograde cellular transport [111].
Exosome-associated oligomers have also been shown to be associated with an increase in caspase3/7 activity,

indicative of apoptotic cellular events, compared to exosome-free α-synuclein [33]. It is assumed that oligomers
are encapsulated during the invagination process and then released in exosomes potentially due to the cell per-
ceiving them as toxic, releasing the aggregated protein for self-preservation [33]. This notion was supported
when autophagy-related gene 5 (ATG5), which is essential in autophagosome formation, was silenced in
LUHME cells overexpressing α-synuclein, resulting in the increased release of α-synuclein into the extracellular
space via exosomes. It appears the mechanism of secreting α-synuclein into the extracellular space is an
attempt to reduce cell toxicity associated with α-synuclein accumulation caused by the failure of macroauto-
phagy [113]. Altogether, the internalisation of α-synuclein via EV transport may act as a pre-requisite patho-
logical event that induces α-synuclein seeding and subsequent neuronal dysfunction.

Future directions and concluding thoughts
Further research into EVs as a therapeutic target and biomarker in
Parkinson’s and neurodegeneration
Given the potential central role of EVs in the transmission of PrLPs, they have become an attractive target for
pharmacological therapeutics. Pramiprexole is a pharmacological agent, that stimulates dopamine receptors and
is assumed to have neuroprotective abilities through a reduction in capase-3 activity [114]. Exosomes isolated
from the serum of patients diagnosed with PD who underwent treatment with pramipexole showed a decrease
of α-synuclein in serum exosomes [115]. Additionally, when identifying exosomes in conditions of PD com-
pared to multiple system atrophy (MSA), α-synuclein levels in EVs released from neurons were higher than
that in EVs released from oligodendrocytes in patients diagnosed with PD. Whereas, in patients diagnosed with
MSA, levels of α-synuclein are higher in exosomes released from oligodendrocytes compared to neurons [116].
The accumulating research surrounding the role of EVs in PD pathology presents them as a valuable thera-
peutic target and biomarker in distinguishing neurodegenerative conditions during patient diagnoses.
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Figure 1. Extracellular vesicles mediate the transfer of aggregated α-synuclein.

α-Synuclein aggregates present in the donor neuron interacts with the lipid membranes of EVs which allows its packaging and

subsequent release into the extracellular space. Once in the extracellular space, α-synuclein is internalised into the recipient

neuronal cells via EVs causing α-synuclein aggregate formation in the recipient neuronal cell due to its prion-like nature. The

increased presence of neurotoxic aggregate species induces ER stress, compromised axonal transport, and mitochondrial

activity dysfunction.
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Concluding thoughts
Current thinking suggests that small EVs are intrinsic to the propagation of the cellular pathology observed in
PD. However, numerous factors such as SNCA mutations, post-translational modifications and cell stressors are
essential in controlling the processing, packaging, and release of aggregated pathological α-synuclein.
Furthermore, EVs themselves may pose as sites for the acceleration of α-synuclein aggregation, and successful
uptake of aggregated neurotoxic α-synuclein. The consequences of exogenous a-synuclein aggregates uptake via
EVs may be particularly detrimental to the functioning of the neuron, particularly pertaining to axonal trans-
port and mitochondrial activity, potentially forming the basis for explaining the progressive cellular death
observed in PD.

Perspectives
• PD is associated with the misfolding and aggregation of the protein alpha-synuclein. EVs have

been shown to play a role in the transfer of misfolded α-synuclein between cells and poten-
tially mediate neuronal dysfunction.

• Targetting the loading of misfolded α-synuclein into EVs may be a potential therapeutic
approach for PD and also offer potential diagnostic insights into this neurodegenerative
disease.

• The mechanisms by which misfolded α-synuclein is associated with EVs and contribute to
disease pathology are similar to other proteins which misfold and are associated with other
neurodegenerative disorders such as Alzheimer’s and prion diseases.
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