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Abstract: The understanding of the effects of multidirectional loadings imposed on major load bear-
ing elements such as reinforced concrete (RC) columns by seismic actions for collapse prevention is of
utmost importance, and a few simplified models are available in the literature. In this study, the dis-
tinguishing features of two machine-learning (ML) methods, namely, multi expression programming
(MEP) and adaptive neuro-fuzzy inference system (ANFIS) are exploited for the first time to develop
eight novel prediction models (M1-to M4-MEP and M1-to M4-ANFIS) with different combinations of
input parameters to predict the biaxial shear strength of RC columns (V). The performance of the
developed models was assessed using various statistical indicators and by comparing them with
the experimental values. Based on the statistical analysis of the developed models, M1-ANFIS and
M1-MEP performed very well and exhibited the best overall efficiency of the studied ML methods.
Simple mathematical formulations were also provided by the MEP algorithm for the prediction of V,
using which the M1-MEP model was finalized based on its performance, accuracy, and generalization
capability. A parametric analysis was also performed for the model to show that the mathematical
formulation provided by MEP accurately represents the system under consideration and is imperative
for prediction purposes. Based on its performance, the model can thus be recommended to update
the current code provisions and engineering practices.

Keywords: evolutionary algorithms; predictive modelling; biaxial shear strength; RC columns

1. Introduction

Studying the structural behavior of RC columns subjected to biaxial seismic conditions
is of great importance. Damage caused by bidirectional seismic loading is very dangerous
in comparison to unidirectional seismic loading, as demonstrated by various investigations
carried out on earthquakes and experimental studies for collapse prevention. Shear failure
can occur in columns (especially in short columns) due to seismic loading, which can even
trigger progressive collapse in structures [1]. Thus, prediction models are necessary to
accurately predict the shear strength of RC columns and assist in the improvement of
design methodologies and the evolution of codes.
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Numerous experimental studies have been conducted to study the cyclic behavior of
RC columns under biaxial cyclic loading with constant and variable axial loads. Recently,
Shi et al. [2] investigated the responses of seven high-strength RC column specimens
subjected to both reversed cyclic flexure and constant axial compressive loads with a new
arrangement of high-grade transverse reinforcement. An improvement in the confined
specimens’ ductility along with a change in the failure mode of columns (i.e., from brittle to
ductile) was reported as compared to unconfined specimens. Lee and Han [3] investigated
lightly reinforced old columns retrofitted with deficient lap splices that were subjected to
unidirectional and bidirectional loadings. The effects of the type of loading and the level of
axial load were evaluated in detail. It was concluded that with an increase in the level of
axial load, the bidirectional specimens received more damage. Pham and Li [4] carried out
experimental and numerical studies on RC columns with lightly transverse reinforcement
with stress on the effects of the directions of seismic loading on the failure mechanism of the
specimens. They also concluded that the loading direction significantly affect the seismic
failure mechanisms of RC columns. Rodrigues et al. [5] demonstrated that the nonlinear
behavior and shear capacity of columns is greatly affected by the variation in axial load
in combination with biaxial loading. Similarly, other researchers [6] also reported that the
inelastic response of RC columns highly depends upon the axial load coupled with the
horizontal cycle actions.

Some researchers proposed various modeling strategies to estimate the bidirectional
shear strength of columns. In the inelastic behavior of RC elements in member-type mod-
eling, a one-to-one correspondence between structural members and the elements exist.
As for the simplest case of non-shear critical structural members subjected to uniaxial
bending with no axial load, a 1-component lumped, or inelasticity form reached a level of
maturity. Based on Classical/Bounding Surface Plasticity/Multi-Surface, comparatively
better models have been developed to date for biaxial bending with a varying axial load in
the literature. Nevertheless, a few unsolved numerical problems and the high number com-
putations limit the applications of such methods. Mark [7] presented a revised truss model
by considering a spatial distribution that permits the consideration of stresses in concrete,
transverse, and longitudinal reinforcements with variations in the shear load inclination. A
generalized formula for biaxial shear was also proposed. Galal and Ghobarah [8] presented
a global element to model/simulate the biaxial shear and flexure behavior of columns
subjected to varying axial loads based on the plasticity theory. The model accounted for
stiffness degradation upon load reversals. The model was verified using experimental
results. It was shown that it can be used to predict the behavior of axially loaded RC
columns subjected to variable axial loads. Based on the analysis of the literature [9–11],
it can be noted that there are difficulties in formulating simple and consistent models
for the bidirectional shear strength of RC columns. Hence, simple and accurate models
based on soft-computing techniques are required to predict the biaxial shear strength (V) of
RC columns.

Recently, Murad [12] developed two models (with different input parameters) to
predict the biaxial shear strength of RC columns based on a Gene Expression Programming
(GEP) algorithm. The models were evaluated via a comparison with the experimental data
using various statistical indicators. It was shown that the models can be used to predict
the shear strength of RC columns; however, the GEP technique has certain limitations.
A previous study concluded that GEP is highly dependent on the range of the datasets.
The deviating datasets had to be excluded to avoid negative impacts on the final model
efficacy [13]. Moreover, the evolutionary algorithm (EA) can consider a single expression
while modelling. This limitation tends to make it suitable only for problems with a simple
correlation between the input and output [14]. To cater to these issues, Multi Expression
Programming (MEP), with the capability to encode multiple chromosomes in a single
program, was implemented in the present study to model the biaxial shear strength of
RC columns. MEP is advantageous to GEP, since it does not require the final form of
the expression to be specified at the initial stage. This feature makes it suitable to model
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complex engineering phenomena with high accuracy [15,16]. Moreover, it can eliminate
errors, the decoding process is simple and practical expressions are developed as a final
modelling result.

In this study, prediction models for estimating the biaxial shear strength of RC columns
were developed by using the MEP and ANFIS algorithms with various combinations of
input parameters, including the following: compressive strength of concrete, column cross-
sectional area, longitudinal and shear reinforcement percentages, yield strength of rebars,
column axial load, column height, width of column web, and depth of column. Based
on the MEP algorithm, validated empirical equations were established and the suitability
of ANFIS was also investigated for the first time. The performance of the models was
evaluated using various statistical indicators. Coupled with parametric and in-depth
statistical analyses, a model was finalized. The developed models were then validated
with the experimental data for predicting the uniaxial shear strength of RC columns. The
development of such reliable models will by-pass the need for complex experiments and
can be beneficial in the pre-design stage. Further, the methodology presented in this study
will pave the way for accurately predicting analogous complex engineering phenomena.

1.1. MEP

In this section, an overview of the MEP and ANFIS algorithms is presented. Based on
the Darwinian principle of natural selection, an extension of the genetic algorithm (GA)
was proposed by Koza [17]. The difference between the two techniques was the utilization
of non-linear parse tree in genetic programming (GP) as opposed to fixed length strings
in GA. However, the basic functioning of these genetic algorithm remained the same, i.e.,
reproduction, mutation, and crossover, with minor modifications in each process. The
modelling process initiates by specifying fitness functions, process parameters and terminal
conditions. A random population of parse tree was developed to ensure the models were
diverse and to consider as many scenarios as possible [18]. The trees with poor fitness were
excluded at the implementation stage. The best fit individuals were selected as parents
to reproduce new individuals based on pre-defined criteria. The process developed is
cyclic and continues until the best model is achieved. Although the GP-based models
serve the primary purpose of empirically correlating different parameters, there are certain
drawbacks associated with using this technique. The process is time consuming since only
the tree cross-over operator is utilized, resulting in the development of a large population.
The proposed expressions are often complex for practical applications since the GP works
simultaneously as the genotype and phenotype. The complexity of output must be pre-
specified irrespective of the nature of correlation among parameters. Moreover, a high fit
model can be achieved as the number of genes increases up to a certain extent. Afterwards,
it becomes impossible to increase the number of chromosomes without compromising the
simplicity of the final expression.

To address the shortcomings of these GAs, MEP was proposed [14] in which the
individuals can be represented as linear variable length entities enabling it to distinguish
between genotype and phenotype [19]. MEP has the ability to search for a greater number
of solutions due to its capability of encoding multiple solutions in a single chromosome.
This feature makes the technique effective, particularly as the complexity of the problem is
unknown. A common problem in genetic algorithms is their inability to manage mathe-
matical exceptions. For instance, division by zero, invalid expressions, exceeding storage
capacity. However, as the exception is generated by a gene, it mutates into a randomly
chosen terminal symbol due to which no infertile individuals enter the next generation
in MEP. This allows for a margin of change in the chromosome structure during evalua-
tion [14]. The modelling process of MEP involves the random generation of a population
of chromosomes, selection using the binary procedure, recombining, generation, mutation,
and the replacement of worst-fit individuals. The process continues until the solution
converges based on fitness criteria [20]. The process is summarized in Figure 1.
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Figure 1. Schematic diagram of MEP algorithm.

It should be noted that MEP is decoded in a similar manner as the C and Pascal
compilers, which translate an empirical relationship to the machine coding [21]. The
output from MEP simulation can be defined as a linear string of instructions which are a
combination of variables (terminal) or mathematical operators (functions). The number
of genes per chromosomes governs the length of chromosomes, while the elements in the
terminal and function set are encoded by the gene. The structure of the chromosome is such
that the first symbol is the terminal symbol. A function gene has pointers towards function
arguments, and function parameters have indices of values smaller than the position of the
function in the chromosomes [20]. A better understanding of MEP can be achieved with
the example described below using a set of mathematical functions F = {+, ×, ˆ} and a set
of terminals T = {Z1, Z2, Z3, Z4}. The combination of chromosomes in the example is as
follows [22]:

0: Z1
1: Z2
2: + 0,1
3: Z3
4: × 2,3
5: Z4
6: ˆ 4,5
To decode the chromosome, it should be read from the top node to the bottom node. It

can be seen from the above example that the genes 0, 1, 3 and 5 encode a simple expression
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with a single terminal, i.e., Z1, Z2, Z3 and Z4, respectively [22]. The expressions for these
genes are shown in Equation (1).

G0 = Z1; G1 = Z2; G3 = Z3; G5 = Z4 (1)

Gene 2 (G2) shows the operator + on the operands located at the position 0 and 1 on
the chromosomes. Similarly, Gene 4 (G4) and Gene 6 (G6) represent the operator × and ˆ on
the operands located at positions 2, 3 and 4, 5, respectively [22]. The expressions encoded
by these genes are shown in Equations (2)–(4).

G2 = Z1 + Z2 (2)

G4 = (Z1 + Z2) Z3 (3)

G6 = [(Z1 + Z2) Z3]
Z4 (4)

Each MEP chromosomes is encoded with several expressions specified by the length
of the chromosomes.

Therefore, each MEP chromosome is viewed as a forest of tree rather than a single
tree. Figure 2 shows the forest of expressions encoded by the above-mentioned MEP
chromosome. It is pertinent to mention that each of these expressions can be a possible
solution to the problem. Furthermore, the fitness of a particular expression in an MEP
chromosome is defined as the fitness of best expression in that chromosome [14,20].
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1.2. ANFIS

ANFIS is a widely used soft-computing technique that is based on the principles of
the artificial neural network (ANN) and Sugeno-type rules of if–then, which can combine
itself and human expertise. It blends the Fuzzy Inference System (FIS) and the learning
ability of ANN. Identical to ANNs, ANFIS learns with training data by utilizing complex
mathematical models. The results are projected into a FIS [23]. It is a group of multi-layer
feedforward adaptive networks that estimates continuous functions accurately. This is
because the algorithm is composed of five layers, wherein the nodes of every layer are
connected to another layer by direct links. Thus, to produce the output for a single node,
every node performs a specific function for the incoming signals.

The primary aim of the ANFIS is to ascertain the optimum values of the equivalent FIS
parameters by employing a learning algorithm. Figure 3 depicts the architecture of ANFIS.
There are five layers in ANFIS, namely, fuzzification, product, normalized, de-fuzzification,
and the output layer.
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Layer 1 is an adaptive layer as the parameters involved need to be adjusted in the
training process. In this layer, every node “i” represents an adaptive node with a node
membership function as shown in Equations (5) and (6) below [24]:

Oi
1 = µAi(x1), i = 1, 2, . . . , n (5)

Oi
1 = µBi−2(x2), i = 3, 4, . . . , n (6)

Layer 2 calculates the firepower of the predetermined fuzzy rules via ∏ operator. It is
a non-adaptive layer [24]. For the ANFIS network shown in Figure 3, we have:

Oi
2 = wi = µAi(x1) × µBi(x2), i = 1, 2, . . . , n (7)

Layer 3 is also a non-adoptive layer, which calculates the firepower of a rule from
layer 2. Every node in this layer is a fixed node labelled as ‘N’ [24]. The outputs are the
normalized firing power of the rules expressed, as given in Equation (8) below:

Oi
3 = wi =

wi

∑ wi
, i = 1, 2, . . . , n (8)

Layer 4 is an adaptive layer in which each node represents a consequent part of the
fuzzy rule. The outputs are the products of the weights (normalized) into the node’s
function, which can be represented as given below [24]:

O4
i = wi fi = wi{pk(x1) + qk(x2) + rk}, i = 1, 2, . . . , n (9)

Layer 5 is a non-adaptive layer whose output is the final output of the ANFIS network.
For the network shown in Figure 3 with one output, defuzzification is performed by the
node (∑), which is shown below [24]:

Oi
5 = f = ∑n

i=1 wi fi = ∑n
i=1 wi{pk(x1) + qk(x2) + rk} (10)

Generally, GEP or ANN are utilized for machine-learning-based modelling in the
realm of civil engineering [13,25–33]. The obvious advantages of MEP and ANFIS over
other EA’s and ANNs would result in the development of accurate models. They have
been utilized in a very few studies to predict the mechanical properties of concrete, classify
soils, constitutive models for the deformation modulus of soil, design models for columns,
and the uplift capacity of suction caissons [16,34–37]. Due to their ability to create accurate
models when the complexity of target expression is unknown (common phenomena in
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the field of structural engineering) and the ability to search in wider space to predict the
output, they can be used to model complex structural behavior. In this study, MEP and
ANFIS were utilized to develop models for predicting the shear strength of biaxial-loaded
columns. The efficacy of the developed models was assessed based on a rigorous statistical
analysis. These studies also ensured that the models apprehended the underlying physical
phenomena of the problem in hand. Moreover, a comparative study was performed based
on the published experimental and modelling results to verify the universality of the
proposed models.

2. Methodology
2.1. Fitting Parameters

Several trials were performed in this study and the final settings for each model were
selected based on the overall high performance and lowest statistical errors of the models.
The fitting parameters for the MEP- and ANFIS-based models based on the distribution of
data and required accuracy are given below:

2.1.1. MEP Parameters

The settings of the four finalized models are summarized in Table 1. The number and
size of the subpopulation are highly sensitive parameters that control the overall complexity
and the accuracy of the models. A run with a larger value of these two parameters would
require significant time to converge and would produce an accurate model. However,
the issue of over-fitting may arise, and the model may not perform well on the un-seen
data. The number of generations in the M1-MEP were selected by monitoring the fitness
function. It was noted that no significant improvement was observed in the model beyond
1000 generations. Therefore, it was considered as an optimal value. However, M2-MEP,
M3-MEP, and M4-MEP showed significant improvement in the correlation coefficient
beyond 1000 generations. Therefore, 2000, 5000 and 3000 were selected as the optimal
number of generations for these models, respectively. The mutation and crossover rate
were kept as 0.01 and 0.9, respectively, to ensure the probability of offspring to undergo
these operations while modelling [34]. Additionally, the code length was kept at 45, 35,
30, and 35 for M1-MEP, M2-MEP, M3-MEP, and M4-MEP, respectively. However, the final
model was simplified by applying the basic rules of mathematics. Several combinations of
these settings were implemented on the training data and the final settings for each model
are summarized in Table 1.

Table 1. Parameter settings for MEP algorithm.

Parameters
Settings

M1-MEP M2-MEP M3-MEP M4-MEP

Number of sub-population 30 30 30 30
Size of subpopulation 200 200 200 200

Code length 45 35 30 35
Crossover probability 0.9 0.9 0.9 0.9

Mathematical operators +, −, ×, ÷,
√

+, −, ×, ÷,
√

+, −, ×, ÷,
√

+, −, ×, ÷,
√

Mutation probability 0.01 0.01 0.01 0.01
Tournament size 4 4 2 2

Operators 0.5 0.5 0.5 0.5
Mutation probability 0.5 0.5 0.5 0.5

Number of generations 1000 2000 5000 3000

2.1.2. ANFIS Parameters

The ANFIS modeling limits the response to one parameter (output), similarly to the
MEP algorithm. Similar input parameters were considered for ANFIS modelling as well as
for all four of the models. Moreover, a uniform distribution of the dataset was ensured in
the training and testing tests. The ANFIS modelling begins with the creation of an FIS that
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is developed based on the grid population considering the complexity and variable range
of input parameters in the four models [38,39]. A hybrid optimization methodology (back
propagation and root mean square error was evaluated) was employed in the modelling. It
is important to mention that the structuring triangular membership function (trimf) was
used to train the models to ensure the models were accurate. The error goal was kept as 0
for all the models, whereas the number of linear and non-linear parameters, and fuzzy rules
were pre-set based on the modeling technique. For instance, the fuzzy rules were kept as
729, 243, 243, and 729 for M1-ANFIS, M2-ANFIS, M3-ANFIS, and M4-ANFIS, respectively.
Table 2 below presents a summary of the parameter settings for the four ANFIS models.

Table 2. Parameter settings for ANFIS algorithm.

Parameters
Settings

M1-ANFIS M2-ANFIS M3-ANFIS M4-ANFIS

Linear parameters 729 243 243 729
Non-linear parameters 54 45 45 54

Fuzzy rules 729 243 243 729
Nodes 1503 524 524 1503
Epochs 50 50 50 50

Error goal 0 0 0 0
Type of MF Trimf Trimf Trimf Trimf

Structure of fuzzy Sugeno Sugeno Sugeno Sugeno
Type of FIS Grid Partition Grid Partition Grid Partition Grid Partition

Optimization technique Backpropagation and
least square

Backpropagation and
least square

Backpropagation and
least square

Backpropagation and
least square

Type of output function Linear Linear Linear Linear

2.2. Performance Evaluation of Models

Several statistical error measures were implemented to assess the accuracy and pre-
diction capability of the developed models. An issue of concern in AI-based modelling is
that a model may satisfy one error measure while it fails another. Moreover, to limit the
overfitting of data, an objective function (OF) and a performance index (ρ) were utilized and
minimized for the developed models to ensure that the models performed equally well on
all three datasets, i.e., training, validation, and testing. These two parameters consider the
number of datapoints in each three sets and the simultaneous impact of multiple statistical
measure to check the validity of the models. The expressions and the criteria of these
parameters are summarized in Table 3, where ei, mi, ei, and mi are the ith experimental,
predicted, mean experimental, and mean predicted values, respectively, while n is the total
number of data points used for modelling. The subscripts nL and nT represent the number
of learning (training and validation) and testing datapoints, respectively. The ρL and ρT
denote the performance index of learning and testing sets, respectively.

Table 3. Statistical measure and evaluation criteria.

Parameter Expression Criteria

Correlation coefficient (R) ∑n
i=1(ei−ei)(mi−mi)√

∑n
i=1(ei−ei)

2 ∑n
i=1(mi−mi)

2
>0.8 [40]

Mean absolute error (MAE) ∑n
i=1|ei−mi |

n Minimum [41]

Root mean square error (RMSE)
√

∑n
i=1(ei−mi)

2

n
Minimum

Relative root mean square error (RRMSE) 1
|e|

√
∑n

i=1(ei−mi)
2

n
0–0.1 (Excellent) or 0.11–0.2 (Good) [42]

Performance index (ρ) ρ = RRMSE
1+R <0.2 [34]

Objective function (OF)
( nL−nT

n
)
ρL + 2

( nT
n
)
ρT Close to zero [25]
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2.3. Modelling

The most influential input parameters were identified based on the original sources
where data were collected for the purpose of modeling. As discussed above, by utilizing
the MEP and ANFIS algorithms, prediction models (four each) for V were developed in
this study. The basic form of V for all the models is given as:

Model 1:
V = f

(
f ′c , Ag, ρl , ρw, fy, N

)
(11)

Model 2:
V = f

(
f ′c , Ag, ρw, N, H

)
(12)

Model 3:
V = f

(
f ′c , Ag, ρw, fy, N

)
(13)

Model 4:
V = f

(
f ′c , bw, d, ρw, fy, N

)
(14)

where,
f ′c = concrete compressive strength (MPa)
Ag = gross sectional area of column (mm2)
ρl = longitudinal reinforcement percentage (%)
ρw = shear reinforcement percentage (%)
fy = yield strength of longitudinal reinforcement (MPa)
N = axial load of column (kN)
bw = width of column web (mm)
d = depth of column (mm)
H = column height (mm)
Table 4 shows the descriptive statistics and limits of the input parameters used in the

four models, while Table 5 shows the R values between the input parameters to check the
parameters’ independency as various parameters may be dependent. Interdependency,
also known as multi-collinearity, leads to obstructions in the explanation of a model. If the
value of R > 0.80, then there exists a strong correlation between two of the input parameters.
For a better model, the value of R (both negative and positive) should be less than 0.80.
From Table 5, it can be noted that all the values of R were less than 0.80, showing no risk of
interdependency in the models.

Commercial MEPX software was used for the application of the MEP algorithm, while
MATLAB was used for ANFIS. Several initial runs were performed on the database for
the optimization of the empirical models. It should be noted that the whole database was
randomly divided into training, validation, and testing sets. Overall, 70% of the data were
used for training while 30% of the data were used in the validation and testing sets.

Table 4. Descriptive statistics of the input parameters involved in modeling.

Parameter f′c(MPa) N (kN) bw (mm) d (mm) Ag (mm2) ρl (%) fy (MPa) ρw (%) H (mm)

Mean 19.23 8.44 × 105 1.85 28.05 1.16 × 105 1.568 440.93 0.25 1493.86
Standard Error 0.694 8.02 × 104 0.070 0.693 6.77 × 103 0.115 10.82 0.03 79.38

Median 23 1.00 × 106 1.755 27 1.20 × 105 1.056 400.00 0.13 1700.00
Mode 23 1.00 × 106 2.06 38.2 9.00 × 104 2.547 400.00 0.11 1700.00

Standard Deviation 6.13 7.08 × 105 0.615 6.12 4.34 × 104 0.739 69.30 0.18 508.28
Sample Variance 37.60 5.02 × 1011 0.378 37.51 1.88 × 109 0.546 4801.83 0.03 258,343.76

Kurtosis −1.1036 1.30 × 101 −0.556 −0.572 5.57 −1.312 0.45 −0.58 −0.69
Skewness −0.710 2.83 0.379 0.120 1.37 0.724 0.08 0.94 −0.62
Minimum 8.85 1.00 × 105 0.7 15.92 4.00 × 104 0.848 276.00 0.09 570.00
Maximum 25.7 4.29 × 106 3.35 38.2 2.92 × 105 2.777 575.60 0.63 2438.40
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Table 5. Correlation coefficients (R) between the input parameters.

Parameter f′c
(MPa) N (kN) bw (mm) d (mm) Ag (mm2) ρl (%) fy (MPa) ρw (%) H (mm)

f ′c (MPa) 1.00 0.22 −0.32 0.21 −0.11 −0.30 −0.07 −0.20 0.03
N (kN) 0.22 1.00 0.10 0.17 0.14 0.24 0.29 −0.04 0.49

bw (mm) −0.32 0.10 1.00 0.16 0.76 0.05 0.51 −0.28 0.36
d (mm) 0.21 0.17 0.16 1.00 0.73 −0.26 −0.32 −0.52 0.49

Ag (mm2) −0.11 0.14 0.76 0.73 1.00 −0.11 0.11 −0.43 0.51
ρl (%) −0.30 0.24 0.05 −0.26 −0.11 1.00 0.34 0.67 −0.22

fy (MPa) −0.07 0.29 0.51 −0.32 0.11 0.34 1.00 0.14 0.25
ρw (%) −0.20 −0.04 −0.28 −0.52 −0.43 0.67 0.14 1.00 −0.47

H (mm) 0.03 0.49 0.36 0.49 0.51 −0.22 0.25 −0.47 1.00

In the case of ANFIS modelling, the selection of the number of epochs is a primary
parameter during the modelling process. The higher the number of epochs, the longer the
run time and the higher the complexity of the model and vice versa. Therefore, plenty of
initial trial runs were initiated to optimize the epochs for the final models. For instance, the
number was kept as 50 to ensure sufficient accuracy was achieved in the final optimized
models. In addition to the built-in back propagation optimization, an external statistical
error analysis was performed for each trial model. It is quite common for a model to
perform well on one of the error measures and fail on other criteria. Therefore, multiple
errors were calculated for each developed model and models with high accuracy for each
criterion were selected as the final models.

In the case of MEP, the models were initially run after considering the basic mathe-
matical operators (addition, multiplication, and subtraction). However, the range of the
experimental values of V was large. Therefore, the models were unable to incorporate the
impact of the deviating datasets. To counteract this issue, additional operators (such as
square root and division) were incorporated. As discussed above, there are different pa-
rameters that need to be specified in MEPX. These include the number of sub-populations,
sub-population size, code length, cross-over probability, and the error measure. For the
developed models, a trial and error-based approach was adopted to optimize the results.
For instance, the code length varied in the range of 30–50. The final lengths were selected
as 45, 35, 30, and 35 for Model 1, 2, 3, and 4, respectively.

It is pertinent to mention that the number of sub-populations varied from 30 to 50.
Based on the statistical checks, a population size of 30 was found to be optimal for providing
mathematical formulations with a high accuracy and relation among the parameters. The
number of generations varied from 100 to 10,000 depending on the complexity of the
dataset for each combination. Mean absolute error and correlation co-efficient were selected
as the measure of error. As a rule of thumb, the minimization of these error measures
was considered as a first accuracy check for the developed models. It should be noted
that for each combination of the parameters, data were imported into the software. The
software ran for 5 h or until there was no change in the correlation for a period of one hour.
Additionally, for the four finalized models, excel sheets are provided as Supplementary
Materials with this manuscript, where the derived equations for the models were applied
explicitly. For every developed model, mathematical formulations were developed and
parametric analyses were conducted to compare the correlation of inputs and outputs with
the actual physical phenomenon. The outputs for the prediction of V obtained in the form
of C++ code were decoded and expressed in terms of an empirical formulation such as
Equations (15)–(18).

M1-MEP:

V (kN) = 2
√

ρl
ρw
− ρw −

√
ρw +

√
Ag −

√
a + fy + f ′c

N −
√

a
− b′ + d′

√
ρw +

ρl
ρw
− e (15)
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where,
a = [(ρw + ρl)(ρw +

√
ρw)]

2( fy + ρw
)

b′ =
√

Ag − a + fy + f ′c(
ρl
ρw

)2

c =
√

a + N + f ′c(√
Ag − fy − f ′c

)
+
[
(ρw + ρl)

(
ρw +

√
ρw
)]2

d′ = (ρw + ρl)

[
ρl
ρw
− ρw −

√
ρw

]
+ c2 +

√
Ag −

√
a

e =

(√
Ag − fy − f ′c

)
+
[
(ρw + ρl)

(
ρw +

√
ρw
)]2 − fy

(ρw + ρl)
2(√a + N

)
− c2 −

√
Ag +

√
a

M2-MEP:
V (kN) = f + 2h− g + i (16)

where,

f =
2 fy − 2ρw − Ag + 2Agρw

N −
√

Ag − Agρw
+ 2 fy − 2ρw − Ag + 3Agρw + 2N −

√
Ag − Agρw

g = f ′c
2 fy − 2ρw − Ag + 3Agρw

Ag

h =
2N −

√
Ag − Agρw

f ′c
−

2 fy − 3ρw

2N −
√

Ag − Agρw

i =
N
(

fy − ρw
)
+ Ag − Agρw

2 fy − 2ρw − Ag + 2Agρw

M3-MEP:
V (kN) =

4N
f ′c
− 4N

H
+
√

Agρw + H + 6N − j− k (17)

where,

j =
Agρw + H + 6N

2H − 2N
+

ρw
(

Agρw + H + 6N
)

H

k =
(H − N)(2H − 2N)2

Agρw
(

Agρw + H + 6N
)

M4-MEP:

V (kN) =
f ′c
l
+ k (18)

where,

l =
2d− 2 f ′c + N − fy

fy − b

m =
8b + 4N

fy − b
+
√

ρw
(
d− f ′c

)
k = m + 2

d
fy − b

−
√

fy −
(

fy − b
)
(2d− 2 f ′c + N − l)
8b + 4N

3. Results Analysis and Discussion
3.1. ANFIS Modeling Results

Figure 4a–d shows the results of the ANFIS modeling for the training, validation,
and testing datasets while Table 6 shows the statistical performance of the models. It can
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be noted that the performance of the models was generally satisfactory in every stage.
Multiple statistical parameters were selected to measure the performance of the models,
since some parameters such as R, MAE, and RMSE are sensitive to multiplication and
division, allot higher weightage to low error values, and higher weightage to high error
values, respectively [23].
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From Figure 4 and Table 6, it can be noted that the R values approached 1 for all the
models, clearly indicating the high prediction ability of the ANFIS algorithm. However, as
discussed above, R cannot be considered as a sole parameter with which to judge a model’s
performance. From the table, it can be noted that the performance of the M1-ANFIS model
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stands out for all the three datasets, as it displays the highest generalization capability
as compared to the remaining three models. The values of all the statistical parameters
were close to each other in every dataset. The RRMSE values indicate that the M1-ANFIS
model is in the ‘excellent’ range, as its values were in the range [0.05, 0.07] (vid. Table 3).
Meanwhile, for the remaining three models, the RRMSE values were >0.10 for at least one
of the sets, which falls into the ‘good’ range. The values of ρ were minimal and approached
zero for all three datasets of all the models. Similarly, the values of OF were minimal, and
in the range [0.015, 0.04] for all the models.

Table 6. Statistical parameters of the four ANFIS models.

Model Dataset R MAE RMSE RSE RRMSE ρ OF

M1-ANFIS
Training 0.992 3.94 11.50 0.01 0.07 0.03

0.026Validation 0.999 4.83 9.46 0.011 0.05 0.02
Testing 0.994 3.16 5.83 0.016 0.05 0.02

M2-ANFIS
Training 0.983 11.55 25.25 0.03 0.12 0.06

0.015Validation 0.996 3.45 4.89 0.009 0.04 0.02
Testing 0.999 1.01 1.75 0.001 0.01 0.01

M3-ANFIS
Training 0.961 13.34 26.48 0.08 0.15 0.08

0.03Validation 0.997 2.54 3.97 0.006 0.03 0.01
Testing 0.999 0.83 1.33 0.0005 0.01 0.01

M4-ANFIS
Training 0.991 8.27 15.90 0.03 0.09 0.05

0.04Validation 0.999 1.88 3.08 0.0003 0.01 0.01
Testing 0.989 12.25 28.21 0.027 0.11 0.06

3.2. MEP Modeling Results

A comparison of the training, validation, and testing sets of the experimental data
with the MEP models is provided in Figure 5. The datasets used in the ANFIS modeling
were used for MEP modeling. The values of the statistical parameters are also shown
for the three datasets of each model. From the figure and the analysis of the statistical
parameters, we can note that the M1-MEP model exhibited the highest accuracy of all the
models as the value of R was very close to 1, while the values of other parameters were
low in comparison to other models. M3- and M4-MEP also exhibit excellent correlation
for training, validation, and testing datasets; however, the values of other indicators such
as MAE and RMSE were very high. Hence, a higher value of the correlation coefficient
does not ensure that a model is good. A combination of different statistical indicators is
recommended to check the performance of a model, as discussed above.

In comparison to ANFIS models, the values of R are very low for all the MEP models
except M1-MEP, while the values of MAE and RMSE are very high. The M1-MEP model
performed well as compared to the remaining three models. Hence, this model is dis-
cussed in detail below. Additionally, empirical equations and a parametric analysis were
performed for this model.

Figure 6 presents a comparison of the experimental and predicted values of V for
M1-MEP. It can be seen from the figure that the finalized model accurately incorporated
the influence of all six parameters for the prediction of V. For all three datasets, a strong
correlation was achieved as depicted by the slope of regression lines (1 for the ideal model),
i.e., 0.9923, 0.9953, and 0.989 for training, validation, and testing, respectively.
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As explained in Section 3, a rigorous statistical analysis was performed to assess the
efficacy of the developed models. The results of the statistical analysis for the training,
validation, and testing sets for M1-MEP are shown in Table 7. It can be inferred from
the results that the model possesses the highest correlation among the predicted and the
experimental values, as evident by values for R of 0.98, 0.97, and 0.96 for the training,
validation, and testing sets, respectively. The values of MAE and RMSE were low and
close to each other for all three sets, thereby indicating a high prediction and generalization
capability. The MAE values were 9.20, 8.76, and 8.34 while the RMSE was recorded as 12.49,
10.95, and 10.64, respectively, for the three datasets. The RRMSE values were 0.06, 0.06,
and 0.09, respectively, for the three sets. Based on these RRMSE values, the model can be
categorized as being in the excellent range since the values were less than 0.10 (vid. Table 3).
The values of ρ lie in the range of 0.03–0.04, indicating that the model satisfies the combined
impact of multiple statistical checks (i.e., R and RRMSE). The value of OF was calculated as
0.059, which is very close to zero. This parameter validated the overall performance of the
model and addressed the issue of overfitting of the data, which arises due to the superior
performance on the training set and inferior performance on the testing or un-seen data.
An issue of concern in the machine-learning-based modeling is that the model satisfies the
statistical checks, however, the absolute errors may still be significantly large.

Table 7. Statistical indicators for training, validation and testing sets of M1-MEP.

Model Dataset R MAE RMSE RSE RRMSE ρ OF

Biaxial
shear

strength

Training 0.993 9.20 12.49 0.01 0.06 0.03
0.059Validation 0.995 8.76 10.95 0.014 0.06 0.03

Testing 0.977 8.35 10.64 0.054 0.09 0.04

To study the absolute errors, the results of the M1-MEP are graphically represented
in Figure 7. It can be seen from the figure that the mean error in the predicted values
was approximately 5% with an absolute error for most of the dataset of less than 10 kN.
Moreover, only two datapoints presented an error of greater than 10 kN which accounts
for 4% of the total database used for modelling. The frequency of occurrence of maximum
errors was significantly low. For instance, 90% of the datapoints had error of less than 6 kN,
which is a testimony of the accuracy of the proposed formulation. The amount of data
used for modelling is also an indicator of reliability and generalization of the model. It is
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recommended in the literature that the number of datapoints should be greater than five
times the number of input variables for the development of an effective model [43]. In this
study, the number was 7.83, thereby meeting the stated criteria.
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ACI-318 [44] proposed formulations for the prediction of unidirectional shear strength
of columns. A comparative study was conducted by Murad et al. [12], wherein the results
of the two GEP-based models for predicting the bi-directional shear strength predictions
were compared with those predicted using ACI formulations. It was concluded that the R
for the shear strength predicted by the ACI formulation was low, i.e., 0.592. The values of R
were reported to be 0.932 and 0.854 for the two proposed GEP models. As shown above,
M1-ANFIS and M1-MEP exhibited superior performance in this study. The values of R
for the learning, validation, and testing datasets of M1-ANFIS and M1-MEP were 0.993,
0.995, 0.977, and 0.992, 0.999, 0.994, respectively, while the values of the other parameters
such as MAE, RMSE, RRMSE, and ρ for the both the models were also lower as compared
with the other models available in the literature. Therefore, it can be concluded that ANFIS
and MEP are superior in performance compared to GEP and ACI-318. However, one of
the drawbacks of the ANFIS algorithm is that since it belongs to the category of black-box
models, its interpretation is not easy as compared to the MEP algorithm, which belongs
to the grey-box category [45]. As for the MEP algorithm, the equations are lengthy as
compared to GEP. For this purpose, excel sheets are provided, which can help the readers
to apply the models with ease.

4. Parametric Analysis of MEP-Based Models

A parametric analysis was carried out to show that the proposed model represents the
physics of the problem under consideration well and that it is not merely a combination
of the independent variables. The procedure presented in [13,25] was adopted to carry
out the analysis. The results of the analysis are shown in Figure 8. It must be noted that a
parametric analysis was performed for all the models. Similar trends were observed for the
common input variables among all the models. Hence, the trend of the six parameters of
the best model, i.e., M1-MEP, is shown along with the remaining variables (H, bw, and d)
used in the other models in Figure 8. From the figure, it can be noted that V increased with
an increase in all the input parameters for the four models. From Figure 8a,b, we can see
that V increased linearly with an increase in f ′c and N, respectively. An increase in f ′c and
N proved to be beneficial to the shear strength of the RC columns, and the observations
are valid from an engineering viewpoint and conforms with the conclusions obtained
by [4,46]. Similarly, V increased due to an increase in the percentage of both longitudinal
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and transverse reinforcement in the specimens (vid. Figure 8d,e). This can be attributed
to the fact that an increasing ρl allows the specimens to sustain greater damage in the
core, while an increasing ρw confines the longitudinal reinforcement and prevents it from
buckling [47,48]. Lastly, the biaxial shear strength increased due to increasing Ag and fy,
which is also correct from an engineering viewpoint. Hence, the results of the parametric
analyses of the models show that the MEP algorithm accurately presents the system under
consideration. The results of the parametric study of the common parameters in this study
agree well with the results of Murad et al. [12].
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5. Conclusions

In this paper, we adopted new machine-learning methods to develop novel models
to formulate the biaxial shear strength of RC columns. For this purpose, a total of eight
prediction models using ANFIS and MEP algorithms were developed to model the biaxial
shear strength with different combinations of input parameters and mathematical functions
in the architecture of the models. The performance of the developed models was assessed
by calculating various statistical measures such as R, MAE, RMSE, RSE, RRMSE, ρ, and
OF. It is concluded that the M1-ANFIS and M1-MEP models had the highest statistical
reliability and accuracy as they performed well in the three datasets compared to the other
models since the R values were higher while the other statistical indicators were very low.
All the models were also validated against independent experimental data by checking
their performance on unseen data. This also demonstrated their robustness/generalization
capability. Thus, from the study based on the two algorithms, it can be concluded that
the biaxial shear strength of RC columns can be well predicted by using the following
parameters as input: f ′c , Ag, ρl , ρw, fy, N.

One of the main advantages of the MEP algorithm over the ANFIS algorithm is that it
belongs to the grey-box category of models. The accuracy of the ANFIS-based models was
higher; however, they cannot provide a mathematical structure of the developed model,
which makes them inferior as compared to MEP. In this study, empirical equations were
also derived for M1-MEP and other MEP-based models. A parametric analysis of the
proposed equations was also performed for M1-MEP, which showed that the proposed
model accurately considered the system under consideration. Additionally, the proposed
empirical equations can ensure an effective and accurate foundation with which to improve
the utilization of machine-learning techniques to predict the biaxial shear strength of RC
columns. Based on a comparison of the developed models with the other models available
in the literature, it was shown that the model possesses the highest accuracy, since it duly
considers the effect of bidirectional lateral loading.
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Nomenclature

RC Reinforced Concrete
MEP Multi Expression Programming
V Biaxial Shear Strength
GEP Gene Expression Programming
GA Genetic Algorithm
GP Genetic Programming
G2 Gene 2
G4 Gene 4
G6 Gene 6
x1 & x2 Sample inputs in ANFIS
µAi & µBi−2 Weights obtained while connecting fuzzy membership functions
wi Firing strength
fi Linear function
pk, qk & rk Linear function parameters for particular rule ‘k’
OF Objective Function
ρ Performance Index
ei ith Experimental
mi ith Predicted
ei ith Mean Experimental
mi ith Mean Predicted
nL Number of learning (training and validation) data
nT Number of testing dataset
ρL Performance index of learning dataset
ρT Performance index of testing dataset
R Correlation coefficient
MAE Mean Absolute Error
RMSE Root Mean Square Error
RRMSE Relative Root Mean Square Error
f ′c Concrete Compressive Strength
Ag Gross Sectional Area of Column
ρl Longitudinal Reinforcement Percentage
ρw Shear Reinforcement Percentage
fy Yield Strength of Longitudinal Reinforcement
N Axial Load Of Column
bw Width Of Column Web
d Depth Of Column
H Column Height
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