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Abstract The formation control problem for a group
of first-order agents with model uncertainty and actu-
ator saturation is investigated in this manuscript. An
algorithm-and-observer-based formation controller is
developed to ensure the semi-global boundedness of
the formation tracking error with actuator saturation.
First, a fully local-error-related cooperativeweight tun-
ing procedure is proposed for the adaptive uncertainty
estimation of each agent. The effect of actuator satura-
tion on both the cooperative adaptive estimation and the
controller design part is then analysed and discussed. A
three-layer neural-based observer is further constructed
to achieve finite-time uncertainty approximation with
actuator saturation. Besides, the reverse effect led by
coupled and saturated control inputs is defined and a
new control input distribution algorithm is presented
to attenuate the potential oscillation in system states.
Finally, comparative simulations based on a multiple
omnidirectional robot system are conducted to illus-
trate the performance of the proposed formation con-
trollers and the new algorithm.
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1 Introduction

Recently, the cooperative control issue of multi-agent
systems has become one popular research area in con-
trol engineering and robotics [2,16,17,26,27,32]. As
an important subbranch of cooperative control [18,34],
the topic of formation control [6,21,22,24,25,33,39]
has received massive amount of attention due to its
close connection with practical applications such as
multi-quadcopter systems [3] and multi-rover systems
[30,36].

While completing different tasks, a cluster of agents
can be affected by factors like system uncertainties and
external disturbances [23,35,38] that influence their
performance negatively. Under the subject of adaptive
control, disturbance observers [7,37] and neural net-
works (NNs) [5,31] are usually employed for uncer-
tainty estimation to ensure the robustness of the sys-
tem. In most published results, the implemented NNs
are usually two-layer networks like Chebyshev NNs
[5], fuzzy wavelet NNs [29] and radial basis function
NNs [40].

Although two-layer networks are famous for their
simplicity, three-layer NNs are trusted more for the
approximation of unknown functions with strong non-
linearities. In [19], the dynamic programming approach
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was used along with a three-layer NN to achieve opti-
mised reference tracking. To estimate the uncertain
nonlinearities and external disturbances in each indi-
vidual agent, three-layer NNs were tuned based on the
formation tracking error to perform formation control
for a group of autonomous underwater vehicles [4].

However, the cooperative weight tuning law in [4]
is not fully error-related, leading to the potential diver-
gence of weight values. Hence, how to obtain a fully
local-error-related cooperative tuning law has become
a considerable challenge for multi-agent scenarios.

In the area of control engineering, it is also vital
to consider the actuator saturation phenomenon when
justifying the applicability of one control scheme. Cur-
rently, a convenient way to deal with the saturation
effect is to treat it as a bounded disturbance and make
corresponding compensation while designing the con-
troller [9,28]. The three-layer NN was first used in [9]
to approximate the effect of saturation phenomenon.
However, the network weight in the hidden layer is set
to be constant in [9], which leads to a lack of adaptive-
ness. The estimation accuracy is further improved in
[28] by constructing adaptive tuning law for the weight
matrix in the hidden layer.

Although the tracking-error-based weight tuning
approach in [28] is proved to be effective for both sat-
urated and unsaturated systems, the convergence time
of the neural estimation error will increase along with
the system’s initial tracking error.

Furthermore, the neural estimation errorwill not set-
tle before the tracking error converges. Such features
expose the drawbacks of employing variables related to
the reference tracking error as the weight tuning crite-
rion in systems with actuator saturation. Therefore, it is
necessary to develop a finite-time tuning approach that
adjusts the neural weights regardless of the reference
tracking error.

To ensure that the amplitude of the control input
is restricted within the saturation limitation, many
researchers choose to implement smooth and bounded
functions within the controller design [12,15,20]. Cur-
rently, plenty of results have been obtained for sys-
tems without input coupling effect [1,12]. An adaptive
reaching-law-based slidingmode control approachwas
developed for formation tracking of electromagnetic
systems in [12] to achieve finite-time and chattering-
free error convergence. In [1], one compensation term
was introduced along with an auxiliary system for a

class of discrete-time system to perform adaptive con-
trol based on reinforcement learning .

Similarly, saturated functions are also applied in the
controller design of coupled systems. For example, a
saturation function was added into the controller in [8]
to deal with the input saturation problem for a cluster of
marine surface vehicles. Additional control terms were
introduced in [15] to dealwith the input saturation issue
of underwater vehicles.

However, obvious oscillations of system states were
observed in [8], while chattering phenomenons were
recorded for control inputs in [15]. Such observations
indicate that the amplitude limitation of control input is
not the only concern for systems that have both coupled
and saturated actuators. Hence, it is essential to inves-
tigate the joint effect of actuator saturation and input
coupling effect.

Motivated by the aforementioned gaps and chal-
lenges, this paper focuses on the formation control
problem for a group of uncertain first-order agents with
coupled and saturated actuators. The contributions of
this article are:

1. In contrast to the partially error-related weight tun-
ing laws in [4,31], this study proposes a fully local-
error-related cooperative weight tuning method for
three-layer NN-based function approximators to
avoid the divergence of approximation error and fur-
ther construct an adaptive formation control scheme
for multi-agent systems.

2. To reduce the convergence time of the error states
within the neural-based observer structure proposed
in [19], a fractional-order term is employed to ensure
that the observation error is bounded within finite
time regardless of the reference tracking errors.

3. Motivated by [8], this paper derives a framework
for investigating the joint effect of input coupling
and actuator saturation, and further defines the cor-
related issue as the reverse effect. A new algorithm
is also proposed to attenuate the oscillation in error-
related states caused by the reverse effect.

Notation: In this paper, let‖M‖F denote theFrobenius
norm of matrixM. IfM is a square matrix, let σ(M)

and σ(M) denote the maximum eigenvalue and the
minimum eigenvalue of M, respectively. R+ denotes
the set of positive real numbers. ⊗ represents the Kro-
necker production. In stands for an n-dimensional iden-
tity matrix throughout this paper.
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2 Preliminaries

2.1 System model

Consider a distributed nonlinear multi-agent system
consists of N first-order agents, and the dynamics of
the i th agent is given as

ẋi = fi (xi ) + gi (xi ,Pi )Si (ui ) + w̄i , i = 1, 2, . . . , N
(1)

where xi ∈ R
n is the position information of the i th

agent, gi (xi ,Pi ) ∈ R
n×n is the nonlinear control gain

matrix, Pi represents the model parameter set, ui ∈ R
n

is the control input, fi (xi ) ∈ R
n is the unknowndynam-

ics of the system, w̄i ∈ R
n represents the external dis-

turbance, Si (·) is the actuator saturation phenomenon
and Si (ui ) ∈ R

n is the saturated control input. The j th
element of Si (ui ) is expressed as

Si (ui ( j)) =
{
ui ( j) |ui ( j)| ≤ UMi

sign(ui ( j))UMi |ui ( j)| > UMi
(2)

where ui ( j) is the j th element of ui and UMi ∈ R
+ is

the saturation limit. Obtaining the value of gi (xi ,Pi )

is necessary for controller design, but it is hard to
obtain the precise value of Pi with the existence of
measurement error. If define P̂i to be our measurement
of the parameter set, then the control gain matrix we
obtain through calculation is ĝi (xi , P̂i ) ∈ R

n×n , and
the parameter estimation error is given as P̃i = Pi −P̂i .
Define g̃i (xi , P̃i ) = gi (xi ,Pi )− ĝi (xi , P̂i ) to represent
the modelling error of the input coupling matrix, we
then have:

ẋi = ĝi (xi , P̂i )Si (ui ) + Ei (3)

where Ei = g̃i (xi , P̃i )Si (ui ) + w̄i + fi (xi ) represents
the combination of unknown factors. For simplicity, we
will use gi and ĝi to represent gi (xi ,Pi ) and ĝi (xi , P̂i ),
respectively, unless specially stated.

Thenwe have the dynamics of the cluster as follows:

ẋ = ĝS(u) + E (4)

where

x = [xT1 , xT2 , . . . , xTN ]T ∈ R
nN

ĝ = diag{ĝ1, ĝ2, . . . , ĝN } ∈ R
nN×nN

S(u) = [ST
1 (u1),ST

2 (u2), . . . ,ST
N (uN )]T ∈ R

nN

E = [ET
1 , ET

2 , . . . , ET
N ]T ∈ R

nN

Definition 1 [10] Consider a vector X , we have a cor-
related continuous Lyapunov function V (X). Then the
vector X is said to be semi-globally uniformly ulti-
mately bounded (SGUUB) if V (X) satisfies V (X) = 0
only when ‖X‖ = 0, and there exists a positive bound-
ary bX and a time tX (X (t0), bX ) such that ‖V (X)‖ ≤
bX for all t ≥ tX + t0 and X (t0) ∈ ΩV

X , where t0 is the
initial time, X (t0) is the initial value of X and ΩV

X is a
compact set of X .

Lemma 1 [10] Consider a vector X that satisfies
X (t0) ∈ ΩV

X and its correlated continuous Lyapunov
function V (X), if we have V̇ (X) < 0 when ‖X‖ > bX ,
then ‖X‖ is said to be SGUUB within the neighbour-
hood of [0, bX ].

The position and velocity references of the i th agent
are described by xdi ∈ R

n and ẋdi ∈ R
n , respectively.

The main purpose of the controller design is to ensure
the semi-global uniform ultimate boundedness of each
uncertain agent’s reference tracking errorwith the actu-
ator saturation (2), which is illustrated as

lim
t→∞ ‖xi (t) − xdi (t)‖ ≤ ρ, ∀xi (t0) ∈ Ωx ,

i = 1, 2, . . . , N (5)

where Ωx is a compact set of xi and ρ is a small and
positive constant.

Assumption 1 The state references xdi and ẋdi are
known and bounded when t ≥ t0. The parameter mea-
surement error P̃i is also bounded.

Assumption 2 There is a known positive constant τi
and a finite time ts for the i th agent such that the fol-
lowing inequality is satisfied when t ≥ ts

|g−1
i (t)(ẋdi (t) − fi (xi (t)) − w̄i (t))| ≤ τi1n×1

where τi < UMi and 1n×1 is an n-dimensional column
vector whose every entry is 1.

Remark 1 Notice that Assumption 2 is made to ensure
that the formation tracking process is feasible to the sat-
urated agents in (1) after a finite amount of time. In an
ideal situation where ui = g−1

i (t)(ẋdi (t)− fi (xi (t))−
w̄i (t)), we can have ẋi = ẋdi , meaning that the agent
can successfully track the velocity reference. However,
it is still necessary to have a residual amount of con-
trol input to reduce the value of ‖xi (t) − xdi (t)‖ when
‖xi (t0)−xdi (t0)‖ > ρ, where xi (t0) and xdi (t0) are the
initial system state and the initial position reference.
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Hence, we have τi < UMi to offer the redundancy in
the control input. The time ts is defined to mark the
time when the formation tracking task is feasible to
each agent in (4).

2.2 Graph theory

In this paper, the communication topology of the dis-
tributed multi-agent system is illustrated by a directed
graph G = {R, E,A}, where R = {r1, r2, . . . , rN }
represents the set of nodes, E ⊆ R × R stands for the
set of edges and A = [ai j ] ∈ R

N×N is the adjacency
matrix with nonnegative entries. An edge of the graph
G is illustrated as ei j = (ri , r j ), which stands for an
edge points from node ri to node r j . Self-loops are not
considered in this paper and a ji = 1 if and only if
ei j ∈ E . We define degin(ri ) = ∑N

j=1 ai j to be the in-
degree of the i th node and the degreematrix of the graph
is illustrated as D = diag{degin(ri ), i = 1, 2, . . . , N }.
The Laplacian matrix of the graph is defined as L =
D − A [14]. If there always exists a directed path
between a pair of distinguished nodes, then the directed
graph G is said to be strongly connected. In this paper,
the communication topology of the multi-agent system
(4) is chosen as a strongly connected directed graph.
The following lemma is useful for the stability analy-
sis of the proposed control scheme.

Lemma 2 [14] Define B ∈ R
n×n to be a nonnegative

diagonalmatrixwith at least one positive element. If the
graph G is strongly connected, then its corresponding
Laplacian matrix L satisfies that the matrix (L + B) is
an irreducible nonsingular M-matrix. Define

q = [q1 q2 . . . qN ]T = (L + B)−11N×1

then we obtain that P = diag{pi } = diag{1/qi } is a
positive definite matrix. If we define Q = P(L + B) +
(L+B)TP, then thematrix Q is symmetric and positive
definite.

2.3 Three-layer NN approximation

In this paper, three-layer NNs are implemented to
approximate the unknown nonlinear function Ei and
act as a part of the adaptive control law. According to
the work in [19], an m (m ≥ 3) layered NN is able
to estimate any unknown function with high precision

if the input vector of the NN is restricted to its com-
pact set. Define Ωu to be a compact set of ui , then the
three-layer NN estimation of Ei is written as

Ei = WT
i T (JTi yi ) + εi , ∀xi ∈ Ωx , ui ∈ Ωu,

i = 1, 2, . . . , n

where Ji ∈ R
2n×n̄ and Wi ∈ R

n̄×n are the optimal
weight matrices, yi = [xTi , uTi ]T ∈ R

2n is the input
vector of the NN, n̄ ∈ R is the number of neurons
in the hidden layer, εi ∈ R

n is the network bias and
T (·) is the hyperbolic tangent activation function of
the hidden layer. Define ȳ j as the j th element of the
vector JTi yi , then the j th element of T (JTi yi ) has the
following expression:

T (ȳ j ) = eȳ j − e−ȳ j

eȳ j + e−ȳ j

The estimation process of a three-layer NN is

Êi = ŴT
i T ( ĴTi yi ) (6)

where Ĵi and Ŵi are the estimated weight matrices.
The estimation error of the NN is given as

Ẽi = Ei − Êi = W̃T
i T ( ĴTi yi ) + ε̄i (yi )

where ε̄i (yi ) = WT
i [T (JTi yi ) − T ( ĴTi yi )] + εi and

W̃i = Wi − Ŵi .

Assumption 3 The approximation compact set Ωu

includes the neighbourhood of [−UMi ,UMi ] for each
individual agent.

Assumption 4 The weight matricesW , J and the esti-
mation error ε are bounded such that there are positive
constants WM , JM and εM that satisfy

‖W‖F ≤ WM , ‖J‖F ≤ JM , ‖ε‖ ≤ εM

where we have

ε = [εT1 , εT2 , . . . , εTN ]T ∈ R
nN

W = diag{W1,W2, . . . ,WN } ∈ R
n̄N×nN

J = diag{J1, J2, . . . , JN } ∈ R
2nN×n̄N

Lemma 3 [19] Based on the boundedness of the acti-
vation function T (·), the NN approximation error ε

and the optimal weight matrices W and J , there exist
positive constants TMi , ε̄Mi , TM and ε̄M such that:

‖T ( ĴTi yi )‖ ≤ TMi , ‖ε̄i (yi )‖ ≤ ε̄Mi

‖T ( ĴTy)‖ ≤ TM , ‖ε̄(y)‖ ≤ ε̄M

where ε̄(y) = [ε̄T1 (y1), ε̄T2 (y2), . . . , ε̄TN (yN )]T.
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3 Main results

3.1 Neural-based formation control for unsaturated
multi-agent systems

In this subsection, the saturation phenomenon is
removed by setting UMi = +∞. According to the
agent dynamics (3), we have

δxi = xi − xdi (7)

where δxi ∈ R
n is the position tracking error of the i th

agent.
Then we have the global form as follows:

δx = x − xd (8)

where

δx = [δTx1, δTx2, . . . , δTxN ]T ∈ R
nN

xd = [xTd1, xTd2, . . . , xTdN ]T ∈ R
nN

Define bi ∈ R
+ to be the i th diagonal element of

B, the local formation tracking error of the i th agent is
obtained as

exi =
N∑
j=1

ai j (δxi − δx j ) + biδxi =
N∑
j=1

li jδx j + biδxi

(9)

where li j is the element on the i th row and j th col-
umn of L . In (9), the practical meaning of bi is the i th
agent’s sensitivity on its own reference tracking error
δxi . Define ex = [eTx1, eTx2, . . . , eTxN ]T, we then have
the following global form:

ex = (L + B) ⊗ Inδx (10)

The time derivative of (10) is obtained as

ėx = (L + B) ⊗ In(ĝu + E − ẋd) (11)

To perform adaptive estimation, the weight tuning
law set of a three-layer NN is usually chosen as [4,31]:

˙̂Wi = Γ1GW (exi , Ĵi , Ŵi , yi ) − Γ2Ŵi

˙̂J i = Γ3GJ (exi , Ĵi , Ŵi , yi ) − Γ4 Ĵi

where Γi ∈ R
+(i ∈ [1, 4]) are the error-invariant tun-

ing gains, and GW and GJ represent the related tuning
functions that satisfy ‖GW‖F = ‖GJ‖F = 0 when
‖exi‖ = 0 (GW and GJ will no longer affect Wi when
there is no error).

In [4], parameters Γ2 and Γ4 are set to be static.
Although it is reasonable to include terms like −Γ2Ŵi

and−Γ4 Ĵi to attenuate the oscillation of neuralweights
when the value of ‖exi‖ is high, such terms will
also lead to contradictions that ˙̂Wi = −Γ2Ŵi and˙̂J i = −Γ4 Ĵi when ‖exi‖ = 0, meaning that a poten-
tial divergence of estimation error always exists unless
‖Wi‖F = ‖Ji‖F = 0 or Γ2 = Γ4 = 0.

To deal with the estimation error divergence issue,
the idea of selecting Γ2 and Γ4 as time-related expo-
nentially decreasing functions is proposed in [31].
Although such approach is found to be effective, it does
introduce the danger that the NN will lose the protec-
tion of −Γ2Ŵi and −Γ4 Ĵi after certain period of time,
leading to potential chattering or oscillation.

To maintain the protection of −Γ2Ŵi and −Γ4 Ĵi
while avoiding the divergence issue, a fully error-
related tuning approach was then proposed in [19].
However, this approach is never investigated in a coop-
erativeway formulti-agent systems. Therefore,we pro-
pose a set of fully local-error-related tuning laws of Ŵi

and Ĵi as the following equations, respectively:

˙̂Wi = η1T ( ĴTi yi )e
T
xi − η2‖exi‖Ŵi

˙̂J i = η3

2nN
sign(yi )e

T
xi Ŵ

T
i (In̄ − α( ĴTi yi )) − η4‖exi‖ Ĵi

(12)

where α( ĴTi yi ) = diag{T 2
j ( ĴTi yi )}, j ∈ [1, n̄] and

ηi ∈ R
+ (i = 1, 2, 3, 4). Then we have ‖ ˙̂Wi‖F =

‖ ˙̂J i‖F = 0 when ‖exi‖ = 0, while −η2‖exi‖Ŵi and
−η4‖exi‖ Ĵi remain to be the counter parts to reduce the
chattering in the network output without triggering the
divergence of theNNestimation error. Accordingly, we
have the global form as

˙̂W = η1T ( ĴTy)eTx − η2Δe ⊗ In̄ Ŵ

˙̂J = η3

2nN
sign(y)eTx Ŵ

T(In̄N − α( ĴTy)) − η4Δe ⊗ I2n Ĵ

(13)

where the following equations are applied:

Ŵ = diag{Ŵ1, Ŵ2, . . . , ŴN } ∈ R
n̄N×nN

Ĵ = diag{ Ĵ1, Ĵ2, . . . , ĴN } ∈ R
2nN×n̄N

Δe = diag{‖ex1‖, ‖ex2‖, . . . , ‖exN‖} ∈ R
N×N

y =
[
yT1 , yT2 , . . . , yTN

]T ∈ R
2nN×1

123



3698 Y. Fei et al.

Based on the NN estimation (6) and the weight tun-
ing law set (13), the cooperative formation controller
is designed as

ui = ĝ−1
i (ẋdi − Êi − ki exi ) (14)

Now we are ready to present the first main result in
this paper.

Theorem 1 Consider system (4) without actuator sat-
uration (UMi = +∞), and Assumptions 1 and 4 hold.
By the three-layer NN estimation (6), the weight tuning
law set (12), and the formation controller (14), the sys-
tem states ex , δx , W̃ and J̃ are SGUUB if the following
conditions are met:

1. The parameters η2, η3 and η4 in (12) and (13) satisfy
η2 > η3/2 and η4 > η3/2.

2. The compact set conditions of the NN hold such that
we have xi (t) ∈ Ωx and ui (t) ∈ Ωu when t ≥ t0.

Proof If we define W̃ = W − Ŵ and J̃ = J − Ĵ , we
construct the following Lyapunov function candidate:

V1 = 1

2
eTxPex + 1

2
tr{W̃TW̃ } + 1

2
tr{ J̃T J̃ } (15)

where P = P ⊗ In . By Lemma 2, we have

V̇1 = eTxP[(L + B) ⊗ In]δ̇x − tr{W̃T ˙̂W } − tr{ J̃T ˙̂J }
= 1

2
eTxQε̄ − 1

2
eTxQKex + η4tr{ J̃TΔe ⊗ I2n(J − J̃ )}

− tr

{
J̃T

η3

2nN
sign(y)eTx Ŵ

T(INn̄ − α( ĴTy))

}

+ tr

{
W̃TT ( ĴTy)eTx

(
1

2
Q − η1 ⊗ InN

)}
+ η2tr{W̃TΔe ⊗ In̄(W − W̃ )}

where we have K = diag{k1, k2, . . . , kN } ⊗ In and
Q = (P(L+B))⊗ In . With the following inequalities:

tr{W̃T(W − W̃ )} ≤ WM‖W̃‖F − ‖W̃‖2F
tr{ J̃T(J − J̃ )} ≤ JM‖ J̃‖F − ‖ J̃‖2F
Δe ≤ ‖ex‖ ⊗ IN ,

∥∥∥∥ 1

2nN
sign(y)

∥∥∥∥ ≤ 1

we further obtain that

V̇1 ≤ −1

2
σ(QK )‖ex‖2 + (r1‖W̃‖F + r2 − η2‖W̃‖2F

+ r3‖ J̃‖F + η3‖W̃‖F‖ J̃‖F − η4‖ J̃‖2F )‖ex‖
(16)

where we have r1 = σ(Q/2− η1 ⊗ InN )TM + η2WM ,
r2 = σ(Q)ε̄M/2 and r3 = η3WM + η4 JM .

With the parameters chosen as η2 > η3/2 and η4 >

η3/2, we can rewrite (16) into the following form:

V̇1 ≤ −1

2
σ(QK )‖ex‖2 + r4‖ex‖ (17)

where r4 = r23/(4η4 − 2η3) + r21/(4η2 − 2η3) + r2.
Hence, V̇1 will remain negative when ex belongs to the
following region:

Ωe =
{
ex

∣∣∣∣‖ex‖ >
2r4

σ(QK )

}
(18)

By (10), we also have that the reference tracking
error is SGUUB within the following neighbourhood:

Ωδ =
{
δx

∣∣∣∣‖δx‖ ≤ 2r4
σ(QK )σ (L + B)

}

By the Lyapunov theory extension in [13], both W̃
and J̃ are SGUUB, which completes the proof. ��

Although the cooperative tuning approach (12) can
guarantee the semi-global uniform ultimate bounded-
ness of the error states ex and δx , its performance is
questionable when there exists the actuator saturation
phenomenon (2).

Theoretically, the error-related weight tuning pro-
cedure (12) will not settle before ‖exi‖ converges to a
neighbourhood around 0. Correspondingly, the settling
time for theweight tuning process is expected to be pro-
longed along with the increment in each agent’s initial
local formation tracking error because of the actuator
saturation in (2). Hence, further investigation is essen-
tial to explore a more suitable way to implement three-
layer NNs when the system is saturated.

3.2 Observer-based formation control for uncertain
and saturated multi-agent systems

Now we consider the systems with saturated actuators.
In most of the previous research works like [8,12], the
only issue regarding saturation is considered as restrict-
ing the amplitude of each element in the control input
within the saturation limitation UMi . However, such
results are far from sufficient for a system that has cou-
pled and saturated control inputs like (3).

For example, consider a two-dimensional first-order
system that has two control inputs that are coupled and
suppose that the calculated nominal control input is
obtained as the two dotted vectorsU1 andU2 as shown
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Fig. 1 Saturation’s effect on coupled control input

in Fig. 1, where the circle with the radius of UMi rep-
resents the saturation limitation.

If the saturation phenomenon is ruled out, we can
then obtain the dotted vector Uc as the combined con-
trol input, which is expected to bring about a negative
speed in the X direction. However, the amplitude ofU2

will be reduced to Ū2 if the controller is saturated (as the
solid vector shows), which will further lead to a satu-
rated combined control input Ūc that imposes an oppo-
site result in the X direction. Such circumstances will
lead to elevations or fluctuations of the system’s for-
mation tracking error. To have further investigation, we
first define the aforementioned behaviour as the reverse
effect of coupled actuator saturation phenomenons.

Definition 2 For a saturated system whose control
input is coupled and saturated like (3), the control input
is said to be affected by the reverse effect of coupled
actuator saturation if the following equation stands:

sign(giui ) = sign(giSi (ui ))

Moreover, as we mentioned in Sect. 3.1, the satura-
tion phenomenon will also delay the cooperative neu-
ral tuning procedure (12) because the output of the NN
cannot be fully reflected by the control input due to the
saturation phenomenon. It is unreasonable to employ
a weight tuning process (12) that cannot guarantee the
semi-global uniform ultimate boundedness of W̃ and
J̃ before the convergence of ex and δx . As a result,
apart from the aim to make the control input bounded,
two more problems correlated with the saturation phe-
nomenon are worthy of further discussion:

Problem 1 How to have a finite-time NN-based esti-
mation of system uncertainties regardless of the refer-
ence tracking errors δxi and exi?

Problem 2 How to ensure that the coupled controller
can provide control inputs with correct combined con-
trol direction to attenuate the reverse effect?

Regarding the first problem, we reconstruct the pre-
vious three-layer NN into a finite-time observer as fol-
lows with the inspiration from [19]:

˙̂xi = ĝi ui + Êi + γidiag{sign(̃xi )}|̃xi |βi (19)

where x̃i = xi − x̂i , γi ∈ R
n×n is a positive definite

constant diagonal matrix and βi is a real number that
satisfies βi ∈ (0.5, 1).

The weight tuning law set of the NN is chosen as
follows:
˙̂Wi =η1T ( ĴTi yi )̃x

T
i − η2‖x̃i‖Ŵi

˙̂J i = η3

‖sign(yi )‖ sign(yi )̃x
T
i Ŵ

T
i (In̄ − α( ĴTi yi ))

− η4‖x̃i‖ Ĵi
(20)

Then the error dynamics of the neural-based observer
is obtained as

˙̃xi = Ẽi − γidiag{sign(̃xi )}|̃xi |βi + ĝi (Si (ui ) − ui )
(21)

The following assumption is made to ensure the
boundedness of the initial error in (19):

Assumption 5 The error states x̃i , W̃i and J̃i are all
bounded such that

x̃Ti (t0)̃xi (t0) + tr{W̃T
i (t0)W̃i (t0)}

+ tr{ J̃Ti (t0) J̃i (t0)} ≤ Ve

where Ve is a positive constant.

Before we present our result in the observer design,
we first recall one useful result:

Lemma 4 [11] For a continuous Lyapunov function
V (X) that satisfies:

V̇ ≤ −ρ1V
ρ̄ (t) + ρ2V

1/2(t)

the state X is globally finite-time UUB within the
region of ΩV = {X |V (X)ρ̄−1/2 < ρ2/ρ̄1}, where
ρ̄1 ∈ (0, ρ1), ρ̄ > 1/2, ρ1, ρ2 > 0. The settling time T
is bounded by:

T ≤ V 1−ρ̄ (t0)

(ρ1 − ρ̄1)(1 − ρ̄)
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Then we have the next result on the finite-time
observer design.

Theorem 2 Consider system (3) with actuator satu-
ration (2), where Assumptions 1, 3, 4 and 5 hold. By
the neural-based observer (19), and the weight tuning
law set (20), the semi-global uniform ultimate bound-
edness of x̃i , W̃i and J̃i is guaranteed if the following
conditions are met:

1. The control input satisfies |ui | ≤ UMi1n×1.
2. The parameters η2, η3 and η4 in (20) satisfy η2 >

η3/2 and η4 > η3/2.
3. The compact set conditions of the NN hold such that

we have xi (t) ∈ Ωx and ui (t) ∈ Ωu when t ≥ t0.

Furthermore, the observation error x̃i is semi-globally
finite-time UUB.

Proof Consider a Lyapunov candidate as follows:

V2 = η1

2
x̃Ti x̃i + 1

2
tr{W̃T

i W̃i } + 1

2
tr{ J̃Ti J̃i } (22)

With the control input satisfies |ui | ≤ UMi1n×1, we
have Si (ui ) = ui , which further leads to

V̇2 = η1 x̃
T
i

˙̃xi + tr{W̃T
i

˙̃Wi } + tr{ J̃Ti ˙̃J i }
= −γiη1 x̃

T
i diag{sign(̃xi )}|̃xi |βi + η1 x̃

T
i (W̃T

i T ( ĴTi yi )

+ ε̄i (yi )) − η1tr{W̃T
i T ( ĴTi yi )̃x

T
i }

− η3tr

{
J̃Ti

sign(yi )

‖sign(yi )‖ x̃
T
i Ŵ

T
i (In − α( ĴTi yi ))

}
+ η4tr{ J̃Ti ‖x̃i‖ Ĵi } + η2tr{W̃T

i ‖x̃i‖Ŵi }
≤ −σ(γi )η1‖x̃i‖1+βi + η3‖ J̃i‖F‖x̃i‖(WMi + ‖W̃i‖F )

− η2‖W̃i‖2F‖x̃i‖ − η4‖ J̃i‖2F‖x̃i‖ + η1‖x̃i‖ε̄Mi

+ η4 JMi‖ J̃i‖F‖x̃i‖ + η2WMi‖W̃i‖F‖x̃i‖

where ‖Wi‖ ≤ WMi and ‖Ji‖ ≤ JMi are applied based
on Lemma 3.

Similar to the proof of Theorem 1, if we define r5 =
η2WMi and r6 = η3WMi + η4 JMi , we obtain

V̇2 ≤ −‖x̃i‖
[
η1(σ (γi )‖x̃i‖βi − ε̄Mi ) − r25

2(2η2 − η3)

− r26
2(2η4 − η3)

]
Thenwe have the SGUUB region of ‖x̃i‖ as follows:

‖x̃i‖ ≤
[

1

2η1σ(γi )

(
r25

(2η2 − η3)
+ r26

(2η4 − η3)

+ 2η1ε̄Mi

)]1/βi (23)

By the Lyapunov theory extension in [13], both W̃
and J̃ are also SGUUB. Alternatively, if we select the
Lyapunov candidate as follows:

V3 = 1

2
x̃Ti x̃i

We can then obtain the time derivative of V3 as

V̇3 = x̃Ti ˙̃xi
= −γi x̃

T
i diag{sign(̃xi )}|̃xi |βi + x̃Ti (W̃T

i T ( ĴTi yi )

+ ε̄i (yi ))

≤ −σ(γi )‖x̃i‖βi+1 + ‖x̃i‖w̃M

where we have that w̃M is a positive constant that sat-
isfies ‖W̃T

i T ( ĴTi yi )+ ε̄i (yi )‖ ≤ w̃M due to the bound-
edness of the NN estimation error.

Define r7 = σ(γi )
√
2βi+1 and r8 = √

2w̃M , we
have

V̇3 ≤ −r7V
(βi+1)/2
3 + r8V

1/2
3 (24)

By Lemma 4, x̃i is finite-time UUB. However,
because the input of the NN needs to satisfy xi ∈ Ωx

andui ∈ Ωu , x̃i is considered to be semi-globallyfinite-
time UUB, and the finite-time characteristics of ‖x̃i‖
remains until it reaches the following neighbourhood:

Ωx̃ =
{
x̃i

∣∣∣∣‖x̃i‖ ≤
(

w̃M

σ(γi )

)1/βi }
(25)

which completes the proof. ��
After constructing the finite-time neural-based

observer (19), Problem 1 is solved. Next, we consider
Problem 2.

To attenuate the previously defined reverse effect of
saturation, we first decompose the previous controller
design (14) for our analysis:

ui = ut,i + ud,i + ue,i (26)

where ut,i = ĝ−1
i ẋdi is the control input to maintain

the velocity tracking behaviour, ud,i = −ĝ−1
i Êi is the

control input to compensate for the estimated system
uncertainties, and ue,i = −ki ĝ

−1
i exi (ki ∈ R

+) is the
control input for formation error reduction.

We know that both ut,i and ud,i are consistently
needed throughout the formation tracking process. By
Assumption 2, we also have

lim
t→ts

|̂g−1
i (t)(ẋdi (t) − Êi )| ≤ τi1n×1

which indicates that the combination of ut,i and ud,i is
bounded after ts .
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By Assumption 5 and Theorem 2, we have a finite
time to and three positive constants EM , ĒM and ẼM

that satisfy |Ei | ≤ EM1n×1, |Ei − Êi | ≤ ĒM1n×1

and limt→to |Ei (t) − Êi (t)| ≤ ẼM1n×1. Based on the
boundedness we obtained, we introduce the follow-
ing smooth projection function [5] S̄(V, τM , ψM ) to
improve the performance of our controller:

S̄(V( j), τM , ψM )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

τM + ψM (1 − e(τM−V( j))/ψM ),

if V( j) > τM

V( j), if |V( j)| ≤ τM

ψM (e(τM+V( j))/ψM − 1) − τM ,

if V( j) < −τM

(27)

where V( j) denotes the j th element of the column vec-
tor V , τM is a positive constant, and ψM denotes a
small positive constant. Then we define um,i ∈ R

n to
be the control input to maintain the velocity tracking
behaviour for the i th agent:

um,i = ĝ−1
i (ẋdi − S̄(Êi , EM , ψE )) (28)

where ψE is a small positive constant.
To attenuate the reverse effect of the saturation

phenomenon, we propose a control input distribu-
tion algorithm (CIDA) that generates a positive vari-
able ξi to shrink ue,i as shown in Algorithm 1. The
CIDA keeps monitoring if the nominal control input
uinom = um,i + ue,i triggers the reverse effect. If the
nominal control input does not exceed the saturation
limit, then the controller will run at its maximum effort
within the saturation limitation. Otherwise, a series of
calculation is performed to generate a shrinking factor
ξi ∈ (0, 1] for each agent to reduce the scenarios where
sign(ĝi ui ) = sign(ĝiSi (ui )). Based on the discussions
about the neural-based observer (19), the weight tuning
law set (20), the formation maintaining control input
(28), and Algorithm 1, we have the final design as

ūi = S̄(um,i , τi , ψu) + ξi ue,i (29)

where Si (ūi ) = ūi is guaranteed by Algorithm 1.
Based on the results of neural-based observer and the

CIDA, we obtain a system design as shown in Fig. 2.
Now we are ready to present our new saturated forma-
tion controller design:

Theorem 3 Consider system (4) with actuator satura-
tion (2), and Assumptions 1-5 hold. By the finite-time
neural-based observer (19), the weight tuning law set

Algorithm 1: Control Input Distribution Algo-
rithm
Input: S̄(um,i , τi , ψu),ue,i ,UMi
Output: ξi
ξmin = 1 ;
uinom = S̄(um,i , τi , ψu) + uei ;
uisat = S̄(uinom,UMi , 0) ;
if uinom = uisat then

uup = UMi1n×1 − S̄(um,i , τi , ψu) ;
ulo = −UMi1n×1 − S̄(um,i , τi , ψu) ;
for j = 1 : n do

if ue,i ( j) = 0 then
ξi = 1;

else
if ue,i ( j) > 0 then

ξi = uup( j)/ue,i ( j) ;
else

ξi = ulo( j)/ue,i ( j) ;
end

end
ξmin = min(ξi , ξmin) ;

end
end
ξi = ξmin ;
Return ξi ;

(20), the formation control law (29), and the CIDA
(Algorithm 1), the error states ex and δx are SGUUB
within the following regions, respectively:

‖ex‖ ≤ σ(Q)ẼMnN

k̄σ(Q)
, ‖δx‖ ≤ σ(Q)ẼMnN

k̄σ(Q)σ (L + B)
(30)

if the following conditions are met simultaneously:

1. η2, η3 and η4 in (20) satisfy η2 > η3/2 and η4 >

η3/2
2. ki in (29) satisfies ki = k̄ > 0(i = 1, 2, . . . , N )

3. ψu in (29) satisfies ψu < ŪMi − ẼM − εE
4. The compact set conditions of the NN hold such that

we have xi (t) ∈ Ωx and ui (t) ∈ Ωu when t ≥ t0.

Proof With the implementation of the shrinking factor
ξi generated by Algorithm 1, it is hard to use Lyapunov
functions to directly obtain a result for the stability anal-
ysis. Therefore, we need to first illustrate that the value
of ξi will converge to 1 within finite time for each indi-
vidual agent. Then we will use the Lyapunov stability
theory to prove that ex is SGUUB.

The formation tracking procedure of the i th agent is
divided into the following three stages:

1. When t ≤ t f = max(ts, to) and ξi ∈ [0, 1).
2. When t > t f = max(ts, to) and ξi ∈ [0, 1).
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Fig. 2 Robust controller based on CIDA and neural-based observer

3. When t > t f = max(ts, to) and ξi = 1.

To analyse the transformation from one stage to
another, we first construct a Lyapunov function regard-
ing the formation tracking error of system (4):

V4 = 1

2
eTx P ⊗ Inex

Then the time derivative is obtained as

V̇4 = eTx P(L + B) ⊗ In(ĝS(ū) + E − ẋd)

where ū = [ūT1 , ūT2 , . . . , ūTN ]T. Based on the knowl-
edge of Si (ūi ) = ūi , we have

V̇4 = eTx P(L + B) ⊗ In(ĝū + E − ẋd) (31)

For the first stage, we consider one extreme circum-
stance that equations ξi = 0 and |Ẽi | = ĒM1n×1

remain true until time t f , when the neural-based
observer is settled and the formation tracking task is
achievable. With |S̄(um,i , τi , ψu)| ≤ |um,i |, we obtain
the following equation from (31):

ėx = (L + B) ⊗ In(ĒM1nN×1)

With (L ⊗ In)ĒM1nN×1 = 0nN×1, we have |ėx | ≤
σ(B)ĒM1nN×1, which further leads to

|ex (t f )| ≤ |ex (t0)| + t f σ(B)ĒM1nN×1

where t0 is the initial time.
After the finite time t f , the system (4) is at the second

stage, where (31) is expressed as

V̇4 = eTx P(L + B) ⊗ In(Ẽ − k̄ξ ⊗ Inex )

where

ξ = diag{ξ1, ξ2, . . . , ξN }, Ẽ = [ẼT
1 , ẼT

2 , . . . , ẼT
N ]T

If we define ŪMi = UMi − τi to represent the mini-
mum amplitude of the accessible control input for error
reduction, it is reasonable to have ẼM < ŪMi for every
agent when t ≥ t f .

Define ex = min(|ex |) and ex = max(|ex |) to repre-
sent channels with the lowest and the highest amplitude
in vector ex , respectively. By ψu < ŪMi − ẼM , if we
define ŨMi = ŪMi − ẼM − ψu to represent the least
amount of residual control input for each agent, we
are confident to say that the available control input can
reduce the amplitude of ex with the speed of

d|ex |
dt

≤ −σ(L + B)ŨMi

For other channels, consider the extreme scenario
where ėxi ( j)exi ( j) > 0 when |exi ( j)| < |ex |. Because
the controller parameter ki is chosen as ki = k̄ for each
individual agent, |exi ( j)| will increase until |exi ( j)| =
|ex |, leading to{ ˙̇exi ( j) ≤ −σ(L + B)ŨMi , if ex > 0

˙̇exi ( j) ≥ σ(L + B)ŨMi , if ex < 0

Thus, the parameter ξi is expected to converge to 1
within the finite time of

tξ = |ex (t0)| + t f σ(L + B)ĒM − ŨMi/k̄

σ(L + B)ŨMi

Finally, every agent will achieve the third stage after
the finite time of t f + tξ to have the following results:

V̇4 = eTx P(L + B) ⊗ In(−k̄ex + Ẽ)

= − k̄

2
eTx Q ⊗ Inex + 1

2
eTx Q ⊗ In Ẽ

≤ − k̄

2
σ(Q)‖ex‖2 + 1

2
σ(Q)‖ex‖‖Ẽ‖

(32)
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Hence, V̇4 will remain negative unless the following
inequalities are satisfied:

‖ex‖ ≤ σ(Q)ẼMnN

k̄σ(Q)
, ‖δx‖ ≤ σ(Q)ẼMnN

k̄σ(Q)σ (L + B)

(33)

Note that the neural-based observer (19) only holds
semi-global stability. Hence, by Lemma 1, both ex and
δx are SGUUB, which completes the proof. ��

Remark 2 In (20), parameters η1 and η3 both act as the
NN’s sensitivity to the observation error x̃i . Hence, if
the values of η1 and η3 are increased, the convergence
neighbourhood of ‖x̃i‖ (23) will shrink in theory. How-
ever, if we set the values of η1 and η3 to be very high,
the NN in (6) will be oversensitive to errors, leading
to oscillations in its output. On the other hand, both
η2 and η4 act as the damper to stop the weight matrix
from changing rapidly. Hence, increasing the values of
η2 and η4 will decrease the amount of chattering in the
network output, but it will also extend the convergence
time of the observation error.

Remark 3 The constant matrix γi in (19) acts as the
observer’s sensitivity to term diag{sign(̃xi )}|̃xi |βi . By
both (23) and (25), we see that the convergence region
of‖x̃i‖will shrink ifwe increase the value ofσ (γi ). The
effect of βi is comparatively complex.When ‖x̃i‖ ≤ 1,
setting βi close to 0.5 will bring faster convergence
speed. However, due to the characteristics of the frac-
tional order, choosing βi close to 1 will lead to a faster
convergence when |̃xi | > 1n×1.

Remark 4 The purpose of employing the smooth pro-
jection law in (28) is to restrict the effect of Êi , which
will attenuate chattering in the control input ui and sys-
tem state xi if the states in the neural-based observer are
experiencing oscillation. Regarding the proportional
parameter ki in term ue,i , a rise in its value will result in
a decrease in the ultimate convergence region of both
δx and ex (see (33)).

Remark 5 The purpose of Assumption 5 is to ensure
that the initial estimation error of the neural-based
observer is bounded. Related parameters are also use-
ful to prove the finite-time convergence of observation
error x̃i and the shrinking factor ξi .

4 Simulation

To justify the performance of the proposed neural-
based observer (19), the CIDA (Algorithm 1) and the
distributed formation control law (29), simulations and
comparisons regarding a multi-robot system are pro-
vided.

Consider a multi-robot system that contains 6 omni-
directional robots [7], and the dynamics of the i th robot
is given as

ẋi = Ti (θi , Ri )ui + w̄i

where xi = [pxi , pyi , θi ]T denotes the state vector that
contains the position and orientation information of the
robot, ui = [u1i , u2i , u3i ]T represents the speed vector
of the robot’s motors, w̄i is the external disturbance
vector, and Ti (θi , Ri ) is the control gain matrix with
the following expression:

Ti (θi , Ri ) =
⎡
⎢⎣−sin(θi ) −sin(π/3 − θi ) sin(π/3 + θi )

cos(θi ) −cos(π/3 − θi ) −cos(π/3 + θi )

1/Ri 1/Ri 1/Ri

⎤
⎥⎦

where Ri ∈ R
+ is the radius of the robot.

With the existence of measurement error, it is hard
for us to get the precise value of Ri . Hence, the param-
eter value that is measured and employed in the con-
troller design process is illustrated as R̂i . The value
of Ri , R̂i and the initial state values are provided in
Table 1. The actuator saturation limit is set as UMi =
0.25 by Assumption 2.

The communication topology is chosen as Fig. 3
and bi = 2. The system uncertainties and formation
references are chosen as follows, respectively:

w̄i = [0.02cos(0.5t + π/2) + 0.03e−|pxi |−1,

0.03sin(0.2t) + 0.02tanh(pyi ),

0.04sin(0.1t + θi ) + 0.01tanh(θi )]T,

xdi = [2cos(−0.15t + π) + 2cos(iπ/3) − 1,

2sin(iπ/3) + 2sin(−0.15t + π), 0]T,

i = 1, 2, . . . , 6

(34)

To justify the effectiveness of our designs, simula-
tions based on the following four controller designs are
conducted:

1. The cooperatively tuned formation controller design
(CTFC) that uses (12) as the weight tuning law.
The control input is chosen as ui = S̄(uc,i , τ̄i , ψ̄i ),
where uc,i = ĝ−1

i (ẋdi − Êi − ki exi ), τ̄i = 0.24 and
ψ̄i = 0.01.
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Table 1 Model parameters and initial states

Robot number Model parameters Initial states

Ri (m) R̂i (m) pxi (m) pyi (m) θi (rad) p̂xi (m) p̂yi (m) θ̂i (rad)

1 0.24 0.21 −0.2 −0.7 −π/4 0 −0.3 −π/5

2 0.23 0.25 1.6 3.6 −π/5 1.4 3.3 −π/6

3 0.30 0.33 −4 −2.4 π/3 −3.7 −2.1 π/4

4 0.28 0.24 −1.9 −1.1 π/4 −1.6 −0.8 π/6

5 0.25 0.28 −1.6 −4.6 −π/3 −1.1 −4.1 −π/4

6 0.32 0.29 3.6 −1.5 −π/6 3.9 −1.9 −π/5

1

2 5

43

6

Fig. 3 Astrongly connected topology for themulti-robot system

2. The restricted cooperatively tuned formation con-
troller design (RCTFC) that uses (12) as the weight
tuning law. The control input is chosen as ui =
S̄(uc,i , τ̄i , ψ̄i ), where uc,i = um,i + ue,i , EM =
0.10, τ̄i = 0.24 and ψ̄i = ψE = 0.01.

3. The observer-based formation controller design
(OBFC) that implements the proposed neural-based
observer (19) and the weight tuning law (20). Algo-
rithm 1 is not applied and the controller is chosen as
ui = S̄(uo,i , τ̄i , ψ̄i ), where we have uo,i = ue,i +
S̄(um,i , τi , ψi ), τ̄i = 0.24, τi = 0.22, EM = 0.10
and ψi = ψE = ψ̄i = 0.01.

4. The algorithm-and-observer-based formation con-
troller design (AOBFC) that has the neural-based
observer (19) tuned by (20). Algorithm 1 is imple-
mented to generate the shrinking factor ξi and the
controller is designed as (29), where τi = 0.22,
EM = 0.10 and ψE = ψu = 0.01.

The tuning parameters of the NN are chosen as
η1 = 15, η2 = 0.1, η3 = 0.1 and η4 = 0.06 in all
simulations. Initially, Ĵi (0) is chosen as a random 6×5
matrix with elements whose norms are less than 1 and
Ŵi (0) is chosen as a 5× 3 zero matrix. For the designs

that employ the neural-based observer (19), the param-
eters are chosen as βi = 0.9 and γi = diag{12, 12, 18}.

The proportional parameter ki in ue,i is chosen as
ki = k̄ = 3 for every agent in each simulation. To com-
pare the performance of different designs, we define
the 2-norm calculation of an arbitrary column vector
V as Δ̄(V) = √

VTV . To illustrate the merits of using
the neural-based observer (Theorem 2) over using the
cooperative tuning approach (Theorem1),we have pro-
vided the trends of Δ̄(Ẽ), Δ̄(ex ), Δ̄(δx ) and Δ̄(u) in
Fig. 4. The SGUUB region and convergence time of
each method are recorded in Table 2.

Although the norm of ex and δx are both SGUUB for
CTFC, we can hardly say that the system error states
converged due to the high value of bẼ (over 1000).
Adding an extra smooth projection function to restrict
the amplitudes of the NN output can lead to a success
converge for both ex and δx in RCTFC, but the accuracy
of the NN is far from sufficient (Δ̄(Ẽ) ≥ 100). Further-
more, the control input of the RCTFC is also filled with
chattering (see Δ̄(u) in Fig. 4), which indicates that the
cooperative tuning method (12) is not suitable when
the actuators are restricted by saturation phenomenon.

On the contrary, Δ̄(Ẽ) of the neural-based observer
(19) inAOBFC is boundedwithin the region of 0.053 in
4.2 seconds, which proves the validity of the finite-time
characteristics claimed inTheorem2.Besides, the local
formation tracking error ex and the reference tracking
error δx are SGUUB within 0.015 and 0.005, respec-
tively. As a result, the existence of Problem 1 and the
validity of Theorem 2 are both illustrated. Hence, the
neural-based observer design (19) is a method more
suitable than the cooperative tuning design (12) for sys-
tems with actuator saturation.

To verify the existence of the reverse effect men-
tioned in Problem 2, the values of each agent’s local
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Fig. 4 Merits of using the neural-based observer over using the cooperative tuning design

Table 2 Performance comparison of four control schemes

Design SGUUB region Convergence time
bẼ bex bδx bu tẼ tex tδx tu

CTFC 1.4 × 103 8.5 3.1 1.1 – – – –

RCTFC 4.2 × 102 1.5 × 10−1 5.5 × 10−2 8.0 × 10−1 37.7 s 17.6 s 17.6 s 10.1 s

OBFC 4.8 × 10−2 1.5 × 10−2 5.0 × 10−3 6.5 × 10−1 13.2 s 16.0 s 17.8 s 17.0 s

AOBFC 5.3 × 10−2 1.5 × 10−2 5.0 × 10−3 6.5 × 10−1 4.2 s 14.0 s 14.3 s 10.0 s

formation tracking error exi in the first 20 seconds are
recorded and presented in Fig. 5. It is observed that
every agent with the OBFC design experiences oscil-
lation in the value of eθ and part of the agents have
fluctuated trends in ex (agents 1, 3, 4 and 6) and ey
(agents 2, 5 and 6), which indicates the existence of the
reverse effect. In comparison, most of the state fluctua-
tions are attenuated in the AOBFC design. To validate
that the CIDA is also capable to restrict the amplitudes
of the control input within the saturation limit to satisfy
Si (ūi ) = ūi , the curves of each agent’s control input
are shown in Fig. 6.

The evolution of the shrinking factor ξi in Algo-
rithm 1 is provided in Fig. 7, where we see that each ξi

converges to 1 within the finite time of 13.8 seconds,
illustrating the validity ofTheorem3.However, the pro-
posed CIDA design cannot completely avoid the state
fluctuation led by the reverse effect mentioned in Prob-
lem 2 (see agent 3 in Fig. 5). As we stated in the proof
of Theorem 3, the factor ξi is determined by both the
accessible control input amplitude ŪMi and the maxi-
mum error amplitude in exi . Hence, when one channel
(pyi channel in ex3) has a significant amount of error
over other channels (pxi channel in ex3), the channels
with small error amplitudes can be overshadowed due
to a low value of ξi , which leads to an increment of
ex . This circumstance is eased when the amplitude of
different channels in the error vector achieves similar
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Fig. 5 Illustration of the
reverse effect and the merits
of implementing CIDA

values or the shrinking factor ξi rises to higher values
(see agent 3 in Figs. 5 , 7 around 10 seconds).

To monitor the formation tracking behaviour of the
system (4), the trajectories of all agents are recorded in
Fig. 8. It is observed that the entire system is able to
track the desired time-varying circular formation (34)
(a circular formationwhose centre is moving in a circu-
lar trajectory) with the existence of model uncertainty,
external disturbances and actuator saturation, which
concludes the effectiveness of the proposed formation
control scheme (29) and the CIDA (Algorithm 1).

Remark 6 In all simulations, the system uncertainty is
chosen as (34), which is a function related to both the
system state xi and the task time t . In practice, the
relationship between the actual system state xi and the
task time t should be a continuous but unknown func-
tion xi = F(t). In theory, we can also express the task
time t with system state xi by an unknown function

t = G(xi ). Hence, both the system uncertainty w̄i and
the overall system uncertainty Ei can be treated as an
unknown function that use xi as the variable, which
indicates that the estimation process (6) is valid.

5 Conclusion

In this paper, we focused on the implementation of
three-layer NNs in the formation tracking problem of
uncertain and saturated first-ordermulti-agent systems.
First, a fully local-error-related cooperative tuning law
for unsaturated agents was proposed to avoid the diver-
genceof estimation error.After introducing the actuator
saturation phenomenon along with the input coupling
phenomenon into the system dynamics, two correlated
problems including the slow convergence of coopera-
tive neural estimation and the reverse effect were dis-
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Fig. 6 Evolution of control
inputs in AOBFC

Fig. 7 Shrinking factor ξi

cussed. The three-layer NN was further modified into
an observer to achieve semi-global finite-time conver-
gence regardless of each agent’s formation tracking
error. A control input distribution algorithm was then
developed to attenuate the reverse effect caused by cou-
pled and saturated control inputs. Simulation examples
are given to show the effectiveness and advantages of
the proposed newdesigns comparedwith some existing
results.
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Fig. 8 Trajectories of the multi-robot system
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