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Abstract: In this paper, we study p-tuples of bounded linear operators on a complex Hilbert space
with adjoint operators defined with respect to a non-zero positive operator A. Our main objective is
to investigate the joint A-numerical radius of the p-tuple.We established several upper bounds for it,
some of which extend and improve upon a previous work of the second author. Additionally, we
provide several sharp inequalities involving the classical A-numerical radius and the A-seminorm of
semi-Hilbert space operators as applications of our results.
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1. Introduction

In recent years, there has been growing interest in the study of operators on semi-
Hilbert spaces, as evidenced by works such as [1–6] and related literature. This area of
research is quite promising as a subfield of functional analysis. One reason for the renewed
interest in the semi-Hilbert analysis is that it provides a more general framework for
defining operators that represent physical observables in quantum mechanics (QM). In
standard QM, the physical states of a quantum system are represented on a Hilbert space
H with a given inner product 〈·, ·〉. Typically, operators representing physical observables
should be self-adjoint with respect to the given inner product, which is somewhat restrictive.
However, the theory of non-Hermitian QM offers a more general approach that defines
a new inner product using a metric operator A, such that

〈
ξ, η
〉

A =
〈

Aξ, η
〉

for any
ξ, η ∈ H , and the considered operators are self-adjoint with respect to this new inner
product. In quasi-Hermitian QM [7,8] and pseudo-Hermitian QM [9], the metric operator
A is invertible, self-adjoint, and positive, with respect to the reference inner product. In
contrast, in indefinite metric QM [10], the underlying operator is unitary and self-adjoint
but not necessarily positive. In the mathematical approach, the operator A is self-adjoint
and positive with respect to the usual inner product of H , but it is not necessarily invertible.

Motivated by the study of operators in the context of quantum mechanics, researchers
have recently been very interested in the joint A-numerical radius and related inequalities.
This concept extends the joint numerical radius of operators in Hilbert spaces. Specifi-
cally, when A = I, we obtain the definition of the joint numerical radius of operators in
Hilbert spaces.
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There are many other problems worth exploring in numerical ranges and radii for both
single and multivariable operators in Hilbert spaces. These include investigating topics,
such as operator convergence properties, functional equations, operator trigonometry,
model theory, robust stability, reduction theory, and factorization of matrix polynomials.
Additionally, intrinsic problems, such as the convexity of various types of generalized
numerical ranges, the realizability of certain sets (such as the numerical ranges of an
operator), the completability of partial matrices, and the classification of linear preservers
are of interest. For more information on some of these applications, interested readers
may refer to the following references, such as [11,12], and the references within. The
applications mentioned above have motivated us to explore the connection between the A-
joint numerical radius of operators and other areas of applied mathematics. This highlights
the significance of studying the A-joint numerical radius of operators.

Another crucial motivation for our current study involves recent research that has
focused on developing numerical radius inequalities for both single and multivariable
Hilbert space operators, including the joint numerical range and numerical radius. Devel-
oping such inequalities has broad implications for applications in functional analysis and
the operator theory (see, for example, [2], which contains a wealth of additional resources
on this topic). In particular, the study of the A-joint numerical radius of operators in
Hilbert spaces is a relatively new and important area of research that has gained increasing
interest among researchers in recent years. Mathematical inequalities involving the A-joint
numerical radius are essential tools for understanding the behaviors of these operators and
their applications, as seen in recent research (e.g., see [13] and its extensive reference list).

In this paper, our focus is on studying the joint A-numerical radius of bounded linear
operators on a complex Hilbert space, which is a generalization of the numerical radius of
operators in Hilbert spaces. This quantity is defined with respect to a non-zero positive
operator A. Our main objective is to establish upper bounds for the joint A-numerical
radius and provide several sharp inequalities that involve the classical A-numerical radius
and the A-seminorm of semi-Hilbert space operators. By doing so, we aim to contribute to
the existing body of knowledge in the field of functional analysis and operator theory.

2. Notations and Preliminary Results

In this section, we introduce the notations and preliminary results that will be used
throughout the article. To begin with, we denote by L (H ) the Banach algebra of all
bounded linear operators acting on a complex Hilbert space (H , 〈·, ·〉) with the identity

operator IH . The norm induced by
〈
·, ·
〉

is given by ‖ξ‖ =
√〈

ξ, ξ
〉

for all ξ ∈ H . The
range, the null space, and the adjoint of an operator X ∈ L (H ) are, respectively, denoted
by R(X), N (X), and X∗. By R(X), we mean the norm closure of the subspace R(X).
Further, we recall that the cone of every positive operator is defined as:

L +(H ) =
{

X ∈ L (H ) ;
〈

Xξ, ξ
〉
≥ 0, ∀ ξ ∈H

}
.

If X ∈ L +(H ), then we write X ≥ 0. By X
1
2 , we mean the square root of every X ∈

L +(H ). For the rest of the present paper, we retain the notation A for a non-zero operator
in L +(H ), which defines the following positive (semidefinite) sesquilinear form:〈

·, ·
〉

A : H ×H −→ C, (ξ, η) 7→
〈
ξ, η
〉

A =
〈

Aξ, η
〉
=
〈

A
1
2 ξ, A

1
2 η
〉
.

The seminorm induced by
〈
·, ·
〉

A is defined as ‖ξ‖A =
√〈

ξ, ξ
〉

A for all ξ ∈ H . Let SA
1

stand for the A-unit sphere of H , i.e.,

SA
1 =

{
ξ ∈H ; ‖ξ‖A = 1

}
.

Note that (H , ‖·‖A) is called a semi-Hilbert space, which is generally neither a normed
space nor a complete space (see [14]).
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We use the notation N∗ to represent the set of all positive integers. Let p be an element
of N∗. In accordance with [3], we introduce the joint A-numerical range and joint A-
numerical radius associated with the p-tuples of operators X =

(
X1, . . . , Xp

)
∈ L (H )(p),

where L (H )(p) denotes the direct sum of p copies of the operator space L (H ). The joint
A-numerical range, denoted by JtWA(X), is defined as

JtWA(X) :=
{(
〈X1ξ, ξ〉A, . . . , 〈Xpξ, ξ〉A

)
; ξ ∈ SA

1

}
.

Similarly, the joint A-numerical radius, denoted by ωe,A(X), is defined as

ωe,A(X) = sup

‖λ‖2 :=

(
p

∑
j=1
|λj|2

) 1
2

; λ = (λ1, . . . , λp) ∈ JtWA(X)


= sup

ξ∈SA
1

(
p

∑
m=1
|〈Xmξ, ξ〉A|2

) 1
2

, (1)

It is crucial to mention that ωA(X) may be equal to +∞ for certain p-tuples of operators
X ∈ L (H )(p) even if p = 1 (for instance, see [14]). Several interesting properties involving
the joint A-numerical radius ωA(·) of A-bounded operators were stated in [3,15]. A recent
investigation of ωA(·) for d = 2 was provided by the third author in [16]. By setting d = 1
in (1), we obtain the well-known A-numerical radius of an operator X ∈ L (H ), which
was firstly defined in [17]. Namely, we have

ωA(X) = sup
ξ∈SA

1

∣∣〈Xmξ, ξ〉A
∣∣.

Many fundamental characteristics of the A-numerical radius of operators can be discovered
in various sources, such as [2,3,6,18,19], and the related literature.

Recall from [20] that an operator Y ∈ L (H ) is called an A-adjoint of an operator
X ∈ L (H ) if

〈
Xξ, η

〉
A =

〈
ξ, Yη

〉
A for every ξ, η ∈H . In other words, Y is a solution in

L (H ) of the equation AZ = X∗A. Notice that an operator X ∈ L (H ) does not generally
admit an A-adjoint, and even if X has an A-adjoint Y, then Y is not generally unique. By
LA(H ), we denote the set of all bounded linear operators on H that admit A-adjoints.
The well-known Douglas theorem [21] assures the existence of such sets of operators. More
precisely, by the Douglas theorem [21], we have

LA(H ) = {X ∈ L (H ) ; R(X∗A) ⊆ R(A)}.

In addition, another application of the Douglas theorem [21] shows that if X ∈ LA(H ),
then the equation AZ = X∗A has a unique solution in L (H ), denoted by X]A , satisfying
R
(

X]A
)
⊆ R(A). The operator X]A may be computed via the following formula: X]A =

A†X∗A, where A† denotes the Moore–Penrose inverse of A (see [20]). The operator X]A

has similar but not identical properties to X∗ := X]I . In particular, if X ∈ LA(H ), then so
does X]A . Furthermore, we have

(X]A)]A = PR(A)
XPR(A)

and
(
(X]A)]A

)]A = X]A . (2)

Moreover, in view of [22], the following equalities

ωA(X]A) = ωA(X) = ωA
(

PR(A)
X
)
= ωA

(
XPR(A)

)
, (3)

hold for every X ∈ LA(H ). In addition, we mention that for X, Y ∈ LA(H ), we have
XY ∈ LA(H ) and (XY)]A = Y]A X]A . Now, let X ∈ LA(H ). The operator X is said to be
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A-self-adjoint if AX is self-adjoint, i.e., AX = X∗A. Note that the class of A-self-adjoint
operators does not cover the equality between X and X]A . However, according to [20], we
have X = X]A if and only if X is an A-self-adjoint operator andR(X) ⊆ R(A). Now, we
should note that X is A-positive and we simply write X ≥A 0 if AX ∈ L (H )+. Clearly, if
an operator X is A-self-adjoint, then X ∈ LA(H ). It is proved in [23] that if X ∈ L (H ) is
A-self-adjoint, then so is X]A , and the following property

(X]A)]A = X]A , (4)

holds. An operator X ∈ LA(H ) is referred to as an A-normal operator if and only if
XX]A = X]A X. While it is well-known that all self-adjoint operators in a Hilbert space
are normal, this fact may not hold true for A-self-adjoint operators. In other words, A-
self-adjoint operators may not necessarily be A-normal, as shown in [3] (Example 5.1)
or [14].

In the present work, we denote by

<A(Q) :=
Q + Q]A

2
and =A(Q) :=

Q−Q]A

2i
,

the A-real and A-imaginary parts of an operator Q ∈ LA(H ), respectively. It is clear that
for every X ∈ LA(H ), we have X = <A(X) + i=A(X).

If A ≥ 0, then obviously A
1
2 ≥ 0. Let L

A
1
2
(H ) stand for the set of all operators in H

that admit A
1
2 -adjoints. Again, the Douglas theorem [21] guarantees that

L
A

1
2
(H ) =

{
X ∈ L (H ) ; ‖Xξ‖A ≤ λ‖ξ‖A, for some λ > 0 and all ξ ∈H

}
.

Operators in L
A

1
2
(H ) are called A-bounded. We should note that the following inclusions

LA(H ) ⊆ L
A

1
2
(H ) ⊆ L (H )

hold. We should note that the above inclusions are generally strict. However, the equality
between the above sets holds if A is injective and has a closed range in H . Notice that
LA(H ) and L

A
1
2
(H ) are two subalgebras of L (H ). However, they are generally not

closed and not dense in L (H ) (see [20]).
If X ∈ L

A
1
2
(H ), then the A-seminorm of X is given by:

‖X‖A = sup
ξ∈R(A)

ξ 6=0

‖Xξ‖A
‖ξ‖A

= sup
ξ∈SA

1

‖Xξ‖A = sup
ξ,η∈SA

1

∣∣〈Xξ, η
〉

A

∣∣. (5)

If X ∈ L (H )\L
A

1
2
(H ), then it may happen that ‖X‖A = +∞ (see [14]). It follows from

(5) that the equality ‖X‖A =
∥∥∥X]A

∥∥∥
A

holds for every X ∈ LA(H ). If X is an A-self-adjoint
operator (in particular if X ≥A 0), then

ωA(X) = ‖X‖A, (6)

and
‖Xn‖A = ‖X‖n

A, (7)
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for every n ∈ N∗. It is useful to note that for every X ∈ LA(H ), we have X]A X ≥A 0 and
XX]A ≥A 0. Therefore, we can obtain the following result by applying (6) in conjunction
with the last equality in (5):∥∥∥X]A X

∥∥∥
A
=
∥∥∥XX]A

∥∥∥
A
= ‖X‖2

A =
∥∥∥X]A

∥∥∥2

A
. (8)

Baklouti et al. introduced in [3] an extension of (5) that applies to tuples of A-bounded
operators. Specifically, they defined the joint A-seminorm of the p-tuples of operators
X = (X1, . . . , Xp) ∈ L

(p)

A
1
2

as

‖X‖A = sup
ξ∈SA

1

(
p

∑
m=1
‖Xmξ‖2

A

) 1
2

. (9)

If Xm ∈ LA(H ) for all m ∈ {1, . . . , p}, then we remark that ∑
p
k=1 X]A

k Xk ≥A 0. Conse-
quently, by using (6), we can deduce that

‖X‖A =

∥∥∥∥∥ d

∑
k=1

X]A
k Xk

∥∥∥∥∥
1
2

A

.

It is convenient to note that ‖ · ‖A and ωe,A(·) defines two equivalent seminorms on L
(p)

A
1
2

.

More precisely, for X = (X1, . . . , Xp) ∈ L
A

1
2
(H )p, it was shown in [3] that

1
2
√

p
‖X‖A ≤ ωe,A(X) ≤ ‖X‖A. (10)

In particular, if X = (X1, . . . , Xp) ∈ LA(H )p, then we have

1
4p

∥∥∥∥∥ p

∑
k=1

X]A
k Xk

∥∥∥∥∥
A

≤ ω2
e,A(X) ≤

∥∥∥∥∥ p

∑
k=1

X]A
k Xk

∥∥∥∥∥
A

. (11)

Building upon the recent research of the third author in [16] and the work of the second
author in [24], this article establishes several new inequalities for the joint A-numerical
radius of semi-Hilbert space operators. To achieve this, we utilize extensions of the well-
known Bessel inequality developed by Bombieri, the third author, and Boas–Bellman.

The implications of our results extend beyond the specific context of semi-Hilbert
space operators. As a particular application, we present sharp bounds for the classical A-
numerical radius. These findings contribute to the ongoing research in operator theory and
functional analysis, and we expect that they will inspire further exploration of this topic.

3. Main Results

In this section, we will present the main findings of our study. We will start by
introducing a key lemma that plays a crucial role in the proof of our first result.

Lemma 1. Let y1, . . . , yp be vectors in H . Then, for all x ∈H , we have

p

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣2 ≤ ‖x‖2
A

(
p

∑
i,j=1

∣∣∣〈yi, yj
〉

A

∣∣∣2) 1
2

.
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Proof. Recall the following inequality from [25]:

p

∑
i=1

∣∣〈a, bi
〉∣∣2 ≤ ‖x‖2

(
p

∑
i,j=1

∣∣〈bi, bj
〉∣∣2) 1

2

, (12)

which holds for any a, b1, . . . , bp ∈ H . Now, let x, y1, . . . , yp be vectors in H . By letting

a = A
1
2 and bk = A

1
2 yk for all k ∈ {1, . . . , p} in (12), we see that

p

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣2 =
p

∑
i=1

∣∣∣〈A
1
2 x, A

1
2 yi
〉∣∣∣2

≤
∥∥∥A

1
2 x
∥∥∥2
(

p

∑
i,j=1

∣∣∣〈A
1
2 yi, A

1
2 yj
〉∣∣∣2) 1

2

= ‖x‖2
A

(
p

∑
i,j=1

∣∣∣〈yi, yj
〉

A

∣∣∣2) 1
2

.

So, we obtain the desired result.

We are pleased to introduce our first result, which gives an upper bound for the joint
A-numerical radius of operators. The result is stated as follows:

Theorem 1. Let X =
(
X1, . . . , Xp

)
∈ LA(H )(p). Then

ω2
e,A(X) ≤

[
ω2

e,A(Y) + ∑
1≤i 6=j≤n

ω2
A
(
X]A

j Xi
)] 1

2

≤
[∥∥∥∥∥ p

∑
i=1

(
X]A

i Xi

)2
∥∥∥∥∥

A

+ ∑
1≤i 6=j≤p

ω2
A

(
X]A

j Xi

)] 1
2

,

where Y =
(
X]A

1 X1, . . . , X]A
p Xp

)
.

Proof. Let ξ ∈ SA
1 . By applying Lemma 1, for x = ξ, and ym = Xmξ for all m ∈ {1, . . . , p},

we see that

p

∑
i=1

∣∣∣〈Xiξ, ξ
〉

A

∣∣∣2 ≤ [ p

∑
i=1
‖Xiξ‖4

A + ∑
1≤i 6=j≤p

∣∣∣〈Xiξ, Xjξ
〉

A

∣∣∣2] 1
2

=

[
p

∑
i=1

∣∣∣〈X]A
i Xiξ, ξ

〉
A

∣∣∣2 + ∑
1≤i 6=j≤p

∣∣∣〈Xiξ, Xjξ
〉

A

∣∣∣2] 1
2

=

[
p

∑
i=1

∣∣∣〈X]A
i Xiξ, ξ

〉
A

∣∣∣2 + ∑
1≤i 6=j≤p

∣∣∣〈X]A
j Xiξ, ξ

〉
A

∣∣∣2] 1
2

.

Let Y =
(
X]A

1 X1, . . . , X]A
p Xp

)
. One observes that

p

∑
i=1

∣∣∣〈Xiξ, ξ
〉

A

∣∣∣2 ≤ [ω2
e,A(Y) + ∑

1≤i 6=j≤n
ω2

A
(
X]A

j Xi
)] 1

2

.
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By taking the supremum over all ξ ∈ SA
1 in the above inequality, we reach the first inequality

in Theorem 1. On the other hand, it is clear that Yk ≥A 0 for all k ∈ {1, . . . , p}. This yields
that Yk is an A-self-adjoint operator for all k. Further, sinceR(Yk) ⊆ R(A) for all k, then

Y]A
k =

(
X]A

k Xk
)]A = X]A

k Xk, ∀ k ∈ {1, . . . , p}.

Therefore, we can conclude that the second inequality in Theorem 1 is a direct consequence
of the second inequality in (11). Hence, the proof is complete.

Based on the above result, we can derive several corollaries. The first corollary is
presented below.

Corollary 1. Let X =
(
X1, . . . , Xp

)
∈ LA(H )(p). Then

ω2
e,A(X) ≤

√√√√ p

∑
i=1
‖Xi‖4

A + ∑
1≤i 6=j≤p

ω2
A
(
X]A

j Xi
)
.

Proof. It follows from Theorem 1 that

ω4
e,A(X) ≤

∥∥∥∥∥ p

∑
i=1

(
X]A

i Xi

)2
∥∥∥∥∥

A

+ ∑
1≤i 6=j≤p

ω2
A

(
X]A

j Xi

)
≤

p

∑
i=1

∥∥∥(X]A
i Xi

)2
∥∥∥

A
+ ∑

1≤i 6=j≤p
ω2

A

(
X]A

j Xi

)
=

p

∑
i=1

∥∥∥X]A
i Xi

∥∥∥2

A
+ ∑

1≤i 6=j≤p
ω2

A

(
X]A

j Xi

)
,

where the last equality follows by applying (7) since X]A
i Xi is an A-self-adjoint operator for

all i ∈ {1, . . . , p}. Hence, we reach the desired inequality by taking (8) into account.

We can obtain another significant implication of Theorem 1 by deriving a sharp upper
bound for the classical A-numerical radius. This finding enhances our understanding of
the A-numerical radius under various conditions.

Corollary 2. Let X ∈ LA(H ). Then,

ω2
A(X) ≤ 1

4

√∥∥∥(X + X]A
)4

+
(
X− X]A

)4
∥∥∥

A
+ 2ω2

A

[(
X]A − X

)(
X]A + X

)]
.

Moreover, the above inequality is sharp.

Proof. Let X ∈ LA(H ). Since X = <A(X) + i=A(X), then we deduce that X]A =
[<A(X)]]A − i[=A(X)]]A . Further, one observes that

ω2
A(X]A) = sup

ξ∈SA
1

∣∣〈X]A ξ, ξ〉A
∣∣2

= sup
ξ∈SA

1

(∣∣〈[<A(X)]]A ξ, ξ〉A
∣∣2 + ∣∣〈[=A(X)]]A ξ, ξ〉A

∣∣2)
= ω2

e,A

(
[<A(X)]]A , [=A(X)]]A

)
.

This immediately yields that

ωA(X) = ωe,A

(
[<A(X)]]A , [=A(X)]]A

)
. (13)
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On the other hand, by letting d = 2 in the second inequality of Theorem 1, we infer that

ω4
e,A(X1, X2) ≤

∥∥∥(X]A
1 X1

)2
+
(
X]A

2 X2
)2
∥∥∥

A
+ ω2

A
(
X]A

1 X2
)
+ ω2

A
(
X]A

2 X1
)
.

By considering both (2) and (3), it becomes clear that

ω4
e,A(X1, X2) ≤

∥∥∥(X]A
1 X1

)2
+
(
X]A

2 X2
)2
∥∥∥

A
+ 2ω2

A
(
X]A

1 X2
)
, (14)

for any X1, X2 ∈ LA(H ). Now, let X ∈ LA(H ). By using (13) and then applying equality
(14) with X1 = [<A(X)]]A and X2 = [=A(X)]]A , we have

ω4
A(X) = ω4

e,A

(
[<A(X)]]A , [=A(X)]]A

)
≤
∥∥∥∥(([<A(X)]]A)]A [<A(X)]]A

)2
+
(
([=A(X)]]A)]A [=A(X)]]A

)2
∥∥∥∥

A

+ 2ω2
A

(
([<A(X)]]A)]A [=A(X)]]A

)
.

Furthermore, it may be checked that <A(X) and =A(X) are two A-self-adjoint operators.
Thus, in view of (4), we have

([<A(X)]]A)]A = [<A(X)]]A and ([=A(X)]]A)]A = [=A(X)]]A . (15)

Taking (15) into consideration, we have

ω4
A(X) ≤

∥∥∥∥(([<A(X)]]A
)2
)2

+
((

[=A(X)]]A
)2
)2
∥∥∥∥

A
+ 2ω2

A

(
[<A(X)]]A [=A(X)]]A

)
,

whence

ω4
A(X) ≤

∥∥∥([<A(X)]4
)]A +

(
[=A(X)]4

)]A
∥∥∥

A
+ 2ω2

A

(
[=A(X)][<A(X)]

)
,

where, in the inequality, we use the fact that ωA(T]A) = ωA(T) for all T ∈ LA(H ). Thus,
we have

ω4
A(X) ≤

∥∥∥[<A(X)]4 + [=A(X)]4
∥∥∥

A
+ 2ω2

A

(
[=A(X)][<A(X)]

)
.

This immediately shows the desired result.
To prove that the inequality in Corollary 2 is sharp, we consider an A-self-adjoint

operator T on H . If we choose X = T]A in Corollary 2 and then apply (4), we have∥∥∥∥(T]A +
(
T]A
)]A
)4

+
(

T]A −
(
T]A
)]A
)4
∥∥∥∥

A
+ 2ω2

A

[((
T]A
)]A − T]A

)((
T]A
)]A + T]A

)]
=

∥∥∥∥(2T]A
)4
∥∥∥∥

A
= 16

∥∥∥T]A
∥∥∥4

A
,

where, in the last part, we used equality (7) since T]A is also an A-self-adjoint operator.
Further, by (6), we have ωA(T]A) = ‖T]A‖A. Hence, we infer that both sides of the
inequality in Corollary 2 become ‖T]A‖A.

Additionally, Theorem 3 has a third application, which is presented in the follow-
ing corollary.

Corollary 3. Let X ∈ LA(H ). Then,

ω4
A(X) ≤ 1

4

∥∥∥(XX]A
)2

+
(
X]A X

)2
∥∥∥

A
+

1
2

ω2
A
(
X2). (16)
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Moreover, inequality (16) is sharp.

Proof. Let X ∈ LA(H ). We observe that

ωe,A
(
X, X]A

)
= sup

ξ∈SA
1

√∣∣〈Xξ, ξ〉A
∣∣2 + ∣∣〈X]A ξ, ξ〉A

∣∣2
=
√

2ωA(X).

This implies that

ω4
A(X) =

1
4

ω4
e,A

(
X]A ,

(
X]A

)]A
)

. (17)

Therefore, if we replace X1 and X2 in (14) with X]A and (X]A
)]A , respectively, and then we

make use of (2) and (17), we have

ω4
A(X) =

1
4

ω4
e,A

(
X]A ,

(
X]A

)]A
)

≤ 1
4

[∥∥∥∥((XX]A
)]A
)2

+
((

X]A X
)]A
)2
∥∥∥∥

A
+ 2ω2

A

([(
X]A

)]A
]2)]

.

By using the fact that ‖T]A‖A = ‖T‖A and ωA(T]A) = ωA(T) for all T ∈ LA(H ), we
immediately deduce that

ω4
A(X) ≤ 1

4

(∥∥∥(XX]A
)2

+
(
X]A X

)2
∥∥∥

A
+ 2ω2

A
(
X2)).

Hence, we obtain the desired inequality (16). To prove the sharpness of inequality (16), we
consider an A-normal operator S. By [17], we have S2, which is also A-normal. Furthermore,
in view of [14], we deduce that the following properties

ωA(T) = ‖T‖A , ωA(Tn) = ωn
A(T) and ‖Tn‖A = ‖T‖n

A, ∀ n ∈ N∗ (18)

hold for any A-normal operator T. Thus, by using (18), we see that

1
4

∥∥∥(SS]A
)2

+
(
S]A S

)2
∥∥∥

A
+

1
2

ω2
A
(
S2) = 1

2

∥∥∥(S]A S
)2
∥∥∥

A
+

1
2

ω4
A(S)

=
1
2

∥∥∥S]A S
∥∥∥2

A
+

1
2
‖S‖4

A

=
1
2
‖S‖4

A +
1
2
‖S‖4

A

= ‖S‖4
A = ωA(S).

Therefore, the desired results are achieved.

The following lemma will be useful in proving our next result. To prove this lemma,
we apply the Boas–Bellman type inequality established by the second author (see [26]) and
use the same argument as in the proof of Lemma 1.

Lemma 2. Let y1, . . . , yp be vectors in H . Then, for all x ∈H , we have

p

∑
i=1

∣∣∣〈x, ym
〉

A

∣∣∣2 ≤ ‖x‖2
A

(
max

1≤m≤p
‖ym‖2

A + (p− 1) max
1≤m 6=k≤p

∣∣∣〈ym, yk
〉

A

∣∣∣).

Our preparation has led us to achieve the following outcome:
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Theorem 2. Let X =
(
X1, . . . , Xp

)
∈ LA(H )(p). Then

ωe,A(X) ≤
√

max
1≤m≤p

‖Xm‖2
A + (p− 1) max

1≤m 6=k≤p
ωA
(
X]A

k Xm
)
.

Proof. Let x ∈ SA
1 . By letting x = ξ and ym = Xmξ, for all m ∈ {1, . . . , p} in Lemma 2,

we have

p

∑
m=1

∣∣∣〈Xmξ, ξ
〉

A

∣∣∣2
≤ ‖ξ‖2

A

[
max

1≤m≤p
‖Xmξ‖2

A + (p− 1) max
1≤m 6=k≤p

∣∣∣〈Xmξ, Xkξ
〉

A

∣∣∣]
≤ ‖ξ‖2

A

[
max

1≤m≤p
‖Xmξ‖2

A + (p− 1) max
1≤m 6=k≤p

∣∣∣〈X]A
k Xmξ, ξ

〉
A

∣∣∣]

≤ ‖ξ‖2
A

 sup
ξ∈SA

1

(
max

1≤m≤p
‖Xmξ‖2

A

)
+ (p− 1) sup

ξ∈SA
1

(
max

1≤m 6=k≤p

∣∣∣〈X]A
k Xmξ, ξ

〉
A

∣∣∣)


≤ ‖ξ‖2
A

[
max

1≤m≤p
‖Xm‖2

A + (p− 1) max
1≤m 6=k≤p

ωA
(
X]A

k Xm
)]

.

Taking the supremum over all ξ ∈ SA
1 in the last inequality, we have

ω2
e,A(X) ≤

[
max

1≤m≤p
‖Xm‖2

A + (p− 1) max
1≤m 6=k≤p

ωA
(
X]A

k Xm
)]

.

Hence, we have reached the desired inequality.

Remark 1. (1) If we set p = 2 in Theorem 2, a recent result established in [16] can be obtained.
This result provides sharp inequalities for any X1, X2 ∈ LA(H ), given by:

ωe,A(X1, X2) ≤
√

max
(
‖X1‖2

A, ‖X2‖2
A
)
+ ωA

(
X]A

2 X1
)
. (19)

(2) Theorem 2.5 in [24] can be derived as a special case of Theorem 2 when weight A is chosen to
be the identity operator I.

Moving forward, we introduce a natural generalization of the widely recognized
Boas–Bellman inequality (refer to [27–29] (Section 4) for more information) in the following
lemma. The proof follows a similar approach as the previous one and will be skipped.

Lemma 3. Let y1, . . . , yp be vectors in H . Then, for all x ∈H , we have

p

∑
m=1

∣∣∣〈x, ym
〉

A

∣∣∣2 ≤ ‖x‖2
A

 max
m∈{1,...,p}

‖ym‖2
A +

(
∑

1≤m 6=k≤p

∣∣∣〈ym, yk
〉

A

∣∣∣2) 1
2
.

The theorem below introduces a new upper bound for the joint A-numerical radius of
operators that have A-adjoint operators.

Theorem 3. Let X =
(
X1, . . . , Xp

)
∈ LA(H )(p), then

ωe,A(X) ≤

 max
m∈{1,...,p}

‖Xm‖2
A +

[
∑

1≤m 6=k≤p
ω2

A
(
X]A

k Xm
)] 1

2


1
2

. (20)
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Proof. Let x ∈ SA
1 . By letting x = ξ and ym = Xmξ, for all m ∈ {1, . . . , p} in Lemma 3,

we have

p

∑
m=1

∣∣∣〈Xmξ, ξ
〉

A

∣∣∣2 ≤ max
m∈{1,...,p}

‖Xmξ‖2
A +

(
∑

1≤m 6=k≤p

∣∣∣〈X]A
k Xmξ, ξ

〉
A

∣∣∣2) 1
2

≤ sup
ξ∈SA

1

[
max

m∈{1,...,p}
‖Xmξ‖2

A

]
+ sup

ξ∈SA
1

(
∑

1≤m 6=k≤p

∣∣∣〈X]A
k Xmξ, ξ

〉
A

∣∣∣2) 1
2

≤ max
m∈{1,...,p}

‖Xm‖2
A +

(
∑

1≤m 6=k≤p
ω2

A
(
X]A

k Xm
)) 1

2

.

Taking the supremum over all ξ ∈ SA
1 in the last inequality, we have

ω2
e,A(X) ≤ max

m∈{1,...,p}
‖Xm‖2

A +

(
∑

1≤m 6=k≤p
ω2

A
(
X]A

k Xm
)) 1

2

.

Hence, we have reached the desired inequality.

Remark 2. Theorem 3 provides a new upper bound for the joint A-numerical radius of operators
X1 and X2 that have A-adjoints. Setting p = 2 in this theorem yields the inequality

ωe,A(X1, X2) ≤
√

max
(
‖X1‖2

A, ‖X2‖2
A
)
+
√

2ωA
(
X]A

2 X1
)
, (21)

which is valid for all X1, X2 ∈ LA(H ). However, it is important to note that inequality (19)
obtained from Theorem 2 is sharper than (21). This highlights the importance of Theorem 2 in
producing more accurate estimates for the A-joint numerical radius of semi-Hilbert space operators.

We can establish the following useful lemma by utilizing a Boas–Bellman type inequal-
ity, which is well-known and was proven in [29] (p. 132) (also refer to [26]).

Lemma 4. Let y1, . . . , yp be vectors in H . For all x ∈H , we have

p

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣2 ≤ ‖x‖A max
1≤i≤p

∣∣∣〈x, yi
〉

A

∣∣∣
√√√√ p

∑
i=1
‖yi‖2

A + ∑
1≤i 6=j≤p

∣∣∣〈yi, yj
〉

A

∣∣∣.
Using the above lemma, we can derive the following result.

Theorem 4. Let X =
(
X1, . . . , Xp

)
∈ LA(H )(p), then

ω2
e,A(X) ≤ max

1≤i≤p
ωA(Xi)

√√√√∥∥∥∥∥ p

∑
i=1

X]A
i Xi

∥∥∥∥∥
A

+ ∑
1≤i 6=j≤p

ωA

(
X]A

j Xi

)
. (22)

In particular, if AX]A
j Xi = 0 for all i, j ∈ {1, . . . , p} with i 6= j, then

ωe,A(X) ≤
√

max
1≤i≤p

ωA(Xi) ‖X‖A. (23)
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Proof. Let ξ ∈ SA
1 . By letting x = ξ and yk = Xkξ for all k ∈ {1, . . . , p} in Lemma 4, we

see that

p

∑
i=1

∣∣∣〈Xiξ, ξ
〉

A

∣∣∣2 ≤ max
1≤i≤p

∣∣∣〈Xiξ, ξ
〉

A

∣∣∣
√√√√ p

∑
i=1
‖Xiξ‖2

A + ∑
1≤i 6=j≤p

∣∣∣〈Xiξ, Xjξ
〉

A

∣∣∣
= max

1≤i≤p

∣∣∣〈Xiξ, ξ
〉

A

∣∣∣
√√√√ p

∑
i=1
‖Xiξ‖2

A + ∑
1≤i 6=j≤p

∣∣∣〈X]A
j Xiξ, ξ

〉
A

∣∣∣
≤ max

1≤i≤p
ωA(Xi)

√
‖X‖2

A + ∑
1≤i 6=j≤p

ωA
(
X]A

j Xi
)
.

By taking the supremum over all ξ ∈ SA
1 , we have

ω2
e,A(X) ≤ max

1≤i≤p
ωA(Xi)

√
‖X‖2

A + ∑
1≤i 6=j≤p

ωA
(
X]A

j Xi
)
. (24)

Therefore, the desired inequality (22) is achieved by applying (9). Finally, since AX]A
j Xi = 0

for all i, j ∈ {1, . . . , p} with i 6= j, then ωA
(
X]A

j Xi
)
= 0 for every i, j ∈ {1, . . . , p} with i 6= j,

and inequality (23) is achieved by taking (24) into account. This completes our proof.

Remark 3. By letting p = 2 in Theorem 4, we obtain a recent result proved in [16]. Namely, for
every X1, X2 ∈ LA(H ), we have

ωe,A(X1, X2) ≤
√

max
{

ωA(X1), ωA(X2)
}√∥∥X]A

1 X1 + X]A
2 X2

∥∥
A + 2ωA

(
X]A

2 X1
)
.

If we apply (10) for p = 1, we have

ωe,A(X1, X2) ≤
√

max
{
‖X1‖A, ‖X2‖A

}√∥∥X]A
1 X1 + X]A

2 X2
∥∥

A + 2ωA
(
X]A

2 X1
)
. (25)

The following corollary provides an upper bound for ωA(·) using (25), which follows
as an application of the previous result.

Corollary 4. Let X ∈ LA(H ). Then

ω2
A(X) ≤

√
2

4
max

{
γA(X), ΓA(X)

}√∥∥X]A X + XX]A
∥∥

A + ωA

(
(X + X]A)(X− X]A)

)
,

where γA(X) =
∥∥X + X]A

∥∥
A and ΓA(X) =

∥∥X − X]A
∥∥

A. Moreover, the above inequality
is sharp.

Proof. Let X ∈ LA(H ). First, note that a short calculation shows that

(
[<A(X)]]A

)2
+
(
[=A(X)]]A

)2
=

(
XX]A + X]A X

2

)]A

. (26)

By applying (25) for X1 = [<A(X)]]A and X2 = [=A(X)]]A and then using (15) together
with (13), we observe that

ω2
A(X) ≤ max

{∥∥[<A(X)]]A
∥∥

A,
∥∥[=A(X)]]A

∥∥
A

}
ζA(X),
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where

ζA(X) =

√∥∥∥([<A(X)]]A
)2

+
(
[=A(X)]]A

)2
∥∥∥

A
+ 2ωA

(
[=A(X)]]A [<A(X)]]A

)
.

This implies that

ω2
A(X) ≤ max

{∥∥<A(X)
∥∥

A,
∥∥=A(X)

∥∥
A

}
ζA(X)

=
1
2

max
{∥∥X + X]A

∥∥
A,
∥∥X− X]A

∥∥
A

}
ζA(X).

On the other hand, by using (26), we see that

ζA(X) =

√
1
2

∥∥∥(XX]A + X]A X
)]A
∥∥∥

A
+ 2ωA

(
<A(X)=A(X)

)
=

√
1
2

∥∥XX]A + X]A X
∥∥

A +
1
2

ωA

(
(X + X]A)(X− X]A)

)
=

√
2

2

√∥∥XX]A + X]A X
∥∥

A + ωA

(
(X + X]A)(X− X]A)

)
.

The sharpness of the given inequality can be demonstrated by considering any A-self-
adjoint operator T and applying the same approach as in Corollary 2.

We now state a lemma that can be proved using the Bombieri inequality (see [30]
(p. 394), [31], or [29] (p. 134)), along with a similar argument to the one used in the proof of
Lemma 1. The statement of the lemma is as follows:

Lemma 5. Let y1, . . . , yp be vectors in H . Then, for all x ∈H , we have

p

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣2 ≤ ‖x‖2
A max

1≤i≤p

{
p

∑
j=1

∣∣∣〈yi, yj
〉

A

∣∣∣}. (27)

Our next result is as follows (and we will provide a proof for it now):

Theorem 5. Let X =
(
X1, . . . , Xp

)
∈ LA(H )(p). Then

ω2
e,A(X) ≤ max

1≤i≤p

{
p

∑
j=1

ωA
(
X]A

j Xi
)}

. (28)

Proof. Let ξ ∈ SA
1 . By applying (27) for x = ξ and ym = Xmξ for all m ∈ {1, . . . , p}, we

see that
p

∑
i=1

∣∣∣〈Xiξ, ξ
〉

A

∣∣∣2 ≤ max
1≤i≤p

{
p

∑
j=1

∣∣∣〈Xiξ, Xjξ
〉

A

∣∣∣}

≤ max
1≤i≤p

{
p

∑
j=1

∣∣∣〈X]A
j Xiξ, ξ

〉
A

∣∣∣}

≤ max
1≤i≤p

{
p

∑
j=1

ωA
(
X]A

j Xi
)}

.

By taking the supremum over all ξ ∈ SA
1 in the last inequality, we reach the desired

inequality.
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Remark 4. By letting p = 2 in Theorem 5, we deduce that for every X1, X2 ∈ LA(H ), we have

ω2
e,A
(
X1, X2

)
≤ max

{
ωA
(
X]A

1 X1
)
+ ωA

(
X]A

2 X1
)
, ωA

(
X]A

1 X2
)
+ ωA

(
X]A

2 X2
)}

.

By applying the second inequality in (10) for p = 1, together with (8), we have

ωA
(
X]A

1 X1
)
≤ ‖X1‖2

A and ωA
(
X]A

2 X2
)
≤ ‖X2‖2

A.

Hence, we have

ω2
e,A
(
X1, X2

)
≤ max

{
‖X1‖2

A + ωA
(
X]A

2 X1
)
, ωA

(
X]A

1 X2
)
+ ‖X2‖2

A

}
.

On the other hand, by applying (3), we see that

ωA
(
X]A

2 X1
)
= ωA

(
X]A

1 PR(A)
X2PR(A)

)
= ωA

(
X]A

1 X2PR(A)

)
= ωA

(
X]A

1 X2
)
.

Hence, we deduce that

ω2
e,A
(
X1, X2

)
≤ max

{
‖X1‖2

A + ωA
(
X]A

2 X1
)
, ωA

(
X]A

1 X2
)
+ ‖X2‖2

A

}
= max

{
‖X1‖2

A + ωA
(
X]A

2 X1
)
, ωA

(
X]A

2 X1
)
+ ‖X2‖2

A

}
,

whence

ω2
e,A
(
X1, X2

)
= max

{
‖X1‖2

A, ‖X2‖2
A

}
+ ωA

(
X]A

2 X1
)
.

Therefore, we obtain inequality (19).

We can easily derive the following lemma by applying a result proved by the second
author in [24] and using the same argument as above.

Lemma 6. Let y1, . . . , yp be vectors in H . Then, for all x ∈H , we have

p

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣2 ≤ ‖x‖A min
{

Γ̃A, γ̃A, δ̃A

}
,

where

Γ̃A :=



max
k∈{1,...,p}

∣∣∣〈x, yk
〉

A

∣∣∣( p

∑
i,j=1

∣∣∣〈yi, yj
〉

A

∣∣∣) 1
2

;

or

max
k∈{1,...,p}

∣∣∣〈x, yk
〉

A

∣∣∣ 1
2

(
p

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣r) 1
2r
[

p

∑
i=1

(
p

∑
j=1

∣∣∣〈yi, yj
〉

A

∣∣∣)s] 1
2s

,

where r, s > 1 and 1
r +

1
s = 1;

or

max
k∈{1,...,p}

∣∣∣〈x, yk
〉

A

∣∣∣ 1
2

(
p

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣) 1
2

max
i∈{1,...,p}

[
p

∑
j=1

∣∣∣〈yi, yj
〉

A

∣∣∣] 1
2

;
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γ̃A :=



(
p

∑
k=1

∣∣∣〈x, yk
〉

A

∣∣∣l) 1
2l

max
i∈{1,...,p}

∣∣∣〈x, yi
〉

A

∣∣∣ 1
2

[
p

∑
i=1

(
p

∑
j=1

∣∣∣〈yi, yj
〉

A

∣∣∣)m] 1
2m

,

where l > 1 and 1
l +

1
m = 1;

or(
p

∑
k=1

∣∣∣〈x, yk
〉

A

∣∣∣l) 1
2l
(

p

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣t) 1
2t
 p

∑
i=1

(
p

∑
j=1

∣∣∣〈yi, yj
〉

A

∣∣∣m) u
m
 1

2u

,

where l > 1, 1
l +

1
m = 1 and 1

t +
1
u = 1 for t > 1;

or(
p

∑
k=1

∣∣∣〈x, yk
〉

A

∣∣∣l) 1
2l
(

p

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣) 1
2

max
i∈{1,...,p}


(

p

∑
j=1

∣∣∣〈yi, yj
〉

A

∣∣∣m) 1
m
,

where l > 1 and 1
l +

1
m = 1;

and

δ̃A :=



(
p

∑
k=1

∣∣∣〈x, yk
〉

A

∣∣∣) 1
2

max
i∈{1,...,p}

∣∣∣〈x, yi
〉

A

∣∣∣ 1
2

p

∑
i=1

[
max

j∈{1,...,p}

∣∣∣〈yi, yj
〉

A

∣∣∣] 1
2

;

or(
p

∑
k=1

∣∣∣〈x, yk
〉

A

∣∣∣) 1
2
(

p

∑
i=1

∣∣∣〈x, yi
〉

A

∣∣∣m) 1
2m
[

p

∑
i=1

[
max

j∈{1,...,p}

∣∣∣〈yi, yj
〉

A

∣∣∣l]] 1
2l

,

where m > 1 and 1
m + 1

l = 1;
or

p

∑
k=1

∣∣∣〈x, yk
〉

A

∣∣∣ max
i,j∈{1,...,p}

∣∣∣〈yi, yj
〉

A

∣∣∣ 1
2 .

An upper bound for ωA(·) can be obtained by applying Lemma 6. The resulting
bound is stated as follows.

Theorem 6. Let X =
(
X1, . . . , Xp

)
∈ LA(H )(p). Then

ω2
e,A(X) ≤ min

{
ΓA, γA, δA

}
,

where

ΓA :=



max
k∈{1,...,p}

{
ωA(Xk)

}√√√√ p

∑
i,j=1

ωA
(
X]A

j Xi
)
;

or

max
k∈{1,...,p}

(√
ωA(Xk)

)( p

∑
i=1

[
ωA(Xi)

]r
) 1

2r
[

p

∑
i=1

(
p

∑
j=1

ωA
(
X]A

j Xi
))s] 1

2s

,

where r, s > 1 and 1
r +

1
s = 1;

or

max
k∈{1,...,p}

(√
ωA(Xk)

)√ p

∑
i=1

ωA(Xi) max
i∈{1,...,p}

√√√√ p

∑
j=1

ωA

(
X]A

j Xi

);
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γA :=



(
p

∑
k=1

[ωA(Xk)]
l

) 1
2l

max
k∈{1,...,p}

(√
ωA(Xk)

)[ p

∑
i=1

(
p

∑
j=1

ωA
(
X]A

j Xi
))m] 1

2m

,

where l > 1 and 1
l +

1
m = 1;

or(
p

∑
k=1

[
ωA(Xk)

]l
) 1

2p
(

p

∑
i=1

[
ωA(Xi)

]t
) 1

2t
 p

∑
i=1

(
p

∑
j=1

[
ωA
(
X]A

j Xi
)]m

) u
m
 1

2u

,

where l, t > 1, 1
l +

1
m = 1 and 1

t +
1
u = 1;

or(
p

∑
k=1

[
ωA(Xk)

]l
) 1

2p
√

p

∑
i=1

ωA(Xi) max
i∈{1,...,p}


(

p

∑
j=1

[
ωA
(
X]A

j Xi
)]m

) 1
2m
,

where l > 1 and 1
l +

1
m = 1;

and

δA :=



√
p

∑
k=1

ωA(Xk) max
i∈{1,...,p}

(√
ωA(Xi)

) p

∑
i=1

[
max

j∈{1,...,p}

{√
ωA
(
X]A

j Xi
)}]

;

or√
p

∑
k=1

ωA(Xk)

(
p

∑
i=1

[
ωA(Xi)

]m
) 1

2m p

∑
i=1

[
max

j∈{1,...,p}

[
ωA
(
X]A

j Xi
)]l
] 1

2l

,

where m > 1 and 1
m + 1

l = 1;
or

p

∑
k=1

ωA(Xk) max
i,j∈{1,...,p}

{√
ωA
(
X]A

j Xi
)}

.

The above theorem has various practical applications, one of which we will state
without proof. This is because the proof employs techniques that have already been utilized
in this work.

Corollary 5. Let X ∈ LA(H ). Then

ω2
A(X) ≤ 1

4

(∥∥∥X + X]A
∥∥∥

A
+
∥∥∥X− X]A

∥∥∥
A

)
max

{∥∥∥X + X]A
∥∥∥,
∥∥∥X− X]A

∥∥∥, θA(X)
}

,

where

θA =

√
ωA

((
X]A − X

)(
X]A + X

))
.

The constant 1
4 is also sharp.

4. Conclusions

In this paper, we made significant progress in the study of p-tuples of bounded linear
operators on a complex Hilbert space with adjoint operators defined with respect to a non-
zero positive operator A. Our focus was on investigating the joint A-numerical radius of
the p-tuple, which was introduced in [3]. Our main contribution was in establishing several
upper bounds for the joint A-numerical radius, some of which extended and improved
upon previous work [24]. Our results have far-reaching implications beyond the specific
context of semi-Hilbert space operators. As an application of our findings, we presented
sharp bounds for the classical A-numerical radius. These results not only contribute to the
ongoing research in operator theory and functional analysis but will also pave the way
for further exploration of this topic. Our work builds upon the recent research presented
in [16,24], utilizing extensions of the well-known Bessel inequality developed by Bombieri,
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the third author, and Boas–Bellman. By combining these results, we were able to derive
new insights into the joint A-numerical radius of semi-Hilbert space operators.

Our paper represents a significant advance in the study of operator theory and func-
tional analysis. It has far-reaching implications and could serve as a starting point for future
research in this area. One potential avenue for future research is to explore the possibility of
extending our results to the study of the joint A-numerical radius for p-tuples of operator
matrices with entries belonging to LA(H ) or are A-bounded operators. This would require
deeper exploration to determine if such a generalization is feasible. Moreover, our findings
could inspire further investigation into other related topics, such as the joint A-spectral
radius and the joint A-numerical range, which may have significant applications.

Since the joint numerical radius has several applications in applied mathematics,
we expect to study the applications of the A-joint numerical radius in other sciences. In
particular, the A-joint numerical radius may be relevant in the study of quantum mechanics
and quantum computing. These applications, however, require further exploration and
will be left for future research.
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