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Editorial

Editorial for the Special Issue “Advances in Object and Activity
Detection in Remote Sensing Imagery”

Anwaar Ulhaq 1,2,* and Douglas Pinto Sampaio Gomes 1

1 School of Computing, Mathematics, and Engineering, Charles Sturt University,
Port Macquarie, NSW 2444, Australia; dgomes@csu.edu.au

2 The Institute for Sustainable Industries and Liveable Cities (ISILC), College of Engineering and Science,
Victoria University, Melbourne, VIC 8001, Australia

* Correspondence: aulhaq@csu.edu.au

Advances in data collection and accessibility, such as unmanned aerial vehicle (UAV)
technology, the availability of satellite imagery, and the increasing performance of deep
learning models, have had significant impacts on solving various remote sensing problems
and proposing new applications ranging from vegetation and wildlife monitoring to crowd
monitoring. This Special Issue contains seven high-quality papers [1–7] approaching prob-
lems relating to object detection, semantic segmentation, and multi-modal data alignment.
In terms of the methods utilized, it is not surprising that six of the seven papers on this issue
involve the application of deep learning. The papers also attest to the powerful aspect of
the field where researchers can collaborate and validate their work on open-source models
and datasets.

The first paper [1] addresses the problem of animal population estimation via thermal
images, which often face the challenge of being low-resolution. The authors propose
a modification to a popular object detection framework, naming it Distant-YOLO. The
improved model, trained on a dataset containing low-resolution aerial images of rabbits,
kangaroos, and pigs, was capable of detecting such animals, thus being potentially relevant
for wildlife researchers and managers that previously relied on manual annotations.

The second paper [2] focuses on the detection of ships from synthetic-aperture radar
images. The addressed problem relates to the fact that the accuracy of detection systems
is often negatively affected by the complex background interference and the multi-scale
features of ships. The authors propose the Quad-FPN architecture, a combination of four
feature pyramid networks, which are all individually validated with extensive ablation
studies. The work is potentially relevant for extremely important problems such as marine
surveillance, traffic control, and fishery management. Likewise, the third paper [3] proposes
an innovative architecture for the detection of objects through satellite optical imagery
such as ships, but in a generalized manner. The authors address the problem that arbitrary
objects in satellite imagery still pose a serious challenge for object detection models due to
their diverse patterns in orientation, scale, and aspect ratio. The resulting model composed
of such an active feature map realignment achieves higher performance, validated by the
achievement of state-of-the-art results in two public datasets.

Semantic-segmentation-centered problems were also addressed with two papers pre-
senting innovative enhancements. One semantic segmentation paper [4] aimed at urban
vegetation cover estimation while addressing a problem often present in similar works
given by an over-reliance on image color attributes. The improvement proposed is com-
posed of a Multiview Semantic Vegetation Index (MSVI), which is implemented by a
segmentation model (FCN and U-net) and with a proposed color mask adjustment. Given
its multiview capability and ability to be applied to images such as those from Google
panoramic cameras, the method has potential implications for real-time vegetation moni-
toring. In the second semantic segmentation paper [5], the subject approached was tidal
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flat waterbody estimation. Such a problem suffers from particular challenges where water-
bodies differ little between their background while also contemplating blurry boundaries,
which are difficult to detect accurately. As such a task represents one of the main ways to
estimate waterbodies, it is increasingly relevant to aspects such as ecosystem protection
and restoration, pollution control, and infrastructure construction.

The other two papers proposing novel solutions addressed the problems of crowd
estimation and multi-camera space alignment. The innovative solution, presented by the
paper [6] on crowd estimation by UAVs, aims at improving challenges in the form of the
large requirement for the data required and onerous labeling by existing methods to obtain
significant accuracy. Lastly, a paper [7] tackles the challenging task of aligning multiple
cameras into a united coordinate system. In particular, the authors address the task of
obtaining a cross-view between UAV deployed cameras and ground ones, creating an
air-to-ground correspondence. The proposed solution is composed of methods that can
create elaborate spatiotemporal feature maps and their cross-view space matching. This
capability allows multiple cameras in a large-scale environment to be aligned into one
coordination system with UAV auxiliary linkage. Therefore, such a development represents
the relevant potential to enhance fields such as security surveillance, automatic control,
and intelligent transportation.
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Abstract: Detecting animals to estimate abundance can be difficult, particularly when the habitat is
dense or the target animals are fossorial. The recent surge in the use of thermal imagers in ecology
and their use in animal detections can increase the accuracy of population estimates and improve the
subsequent implementation of management programs. However, the use of thermal imagers results
in many hours of captured flight videos which require manual review for confirmation of species
detection and identification. Therefore, the perceived cost and efficiency trade-off often restricts the
use of these systems. Additionally, for many off-the-shelf systems, the exported imagery can be
quite low resolution (<9 Hz), increasing the difficulty of using automated detections algorithms to
streamline the review process. This paper presents an animal species detection system that utilises
the cost-effectiveness of these lower resolution thermal imagers while harnessing the power of
transfer learning and an enhanced small object detection algorithm. We have proposed a distant
object detection algorithm named Distant-YOLO (D-YOLO) that utilises YOLO (You Only Look
Once) and improves its training and structure for the automated detection of target objects in thermal
imagery. We trained our system on thermal imaging data of rabbits, their active warrens, feral pigs,
and kangaroos collected by thermal imaging researchers in New South Wales and Western Australia.
This work will enhance the visual analysis of animal species while performing well on low, medium
and high-resolution thermal imagery.

Keywords: invasive species; thermal imaging; habitat identification; deep learning; drone

1. Introduction

Recent advances in remotely piloted aircraft (RPA; a.k.a. drones, unmanned aerial
vehicles) and imaging technologies have enabled a marked increase in non-invasive moni-
toring of animals in recent years [1–4]. The addition of thermal imaging technology offers
an opportunity to not only improve the detection of target species, but, in the case of
fossorial animals, their habitats as well [5–7]. However, manual detection of animals,
habitat identification, and estimation of population size are cumbersome as they require
frame-by-frame analysis of hours of video data. Some automated approaches have been
proposed recently [8–13]. However, they often lack usability due to low accuracy, ineffec-
tiveness against occlusion, visible spectrum limitations, and low detection speed. Thus
there is a need for an intelligent, fully automated detection system.

Two main factors affect the success of automated approaches: target animal size
and thermal image quality. Large mammals (≥350 kg) are typically obvious with strong
thermal signatures and many pixels per animal (Figure 1a). Medium-bodied mammals

Remote Sens. 2021, 13, 3276. https://doi.org/10.3390/rs13163276 https://www.mdpi.com/journal/remotesensing
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(15–350 kg) can also be readily identified in an automated process, provided image quality
is good, and the signature is not obscured by vegetation (Figure 1b). For smaller mammals,
(≤15 kg) automated identification can be difficult even with high-quality thermal imagery
in ideal conditions. Thermal signatures are often weaker, and there are fewer pixels per
animal (Figure 1c). As object size becomes very small, even manual identification and
tagging of correct thermal signatures is problematic. As lower altitude flights often disturb
animals, high altitude flights are preferred among the research community. This poses
further detection quality challenges.

Figure 1. Larger animals ((a) cattle, (b) goats) have stronger thermal imagers and greater pixels per animal than much
smaller animals ((c) rabbits—two individuals top left of the image). (Image (a,b) taken from footage collected on the
VayuHD. Image (c) taken from footage collected on the Jenoptik VarioCamHD).

Deep learning has revolutionised object detection, and various deep object detection
approaches exist in the literature. Some of the notable techniques include Region-based
Convolutional Neural Networks (RCNN) [14], Fast-RCNN [15], Faster-RCNN [16], Mask-
RCNN [17], Feature Pyramid Network (FPN) [18], Single-shot multibox Detector (SSD) [19],
and You Only Look Once (YOLO) [20]. The RCNN family of detectors comprises two-
stage detectors based on the concept of region proposals requiring considerable processing
time and unsuitable for fast and real-time object detection. SSD [19] and YOLO [20] are
one stage or one-shot detectors. SSD is very slow for detection tasks due to the sliding
window approach, while YOLO outperforms these in terms of accuracy and processing time
approaches. As YOLO initially is trained on the MS COCO dataset [21], its performance
suffers if objects are tiny and the receptive field is limited. YOLOv3 [22] uses DarkNet-
53 for feature extraction and introduces the Feature Pyramid to detect small objects at
different scales. FPN predicts small-scale objects in the shallower layers with low semantic
information, which might not be sufficient to classify small objects.

Our work is related to YOLO [20] and its improved versions [22,23]. Some recent
work on small object detection from a distance is related to our work. An improved version
of YOLO for UAV called UAV-YOLO [24] tried to improve small object detection through
YOLO. It included a few more convolution layers and shortcut connections to improve the
model. However, the basic limitations of subsampling remain unaddressed. In this work,
we addressed the major weakness of convolution operation and aggressive subsampling
and proposed a better YOLO; we called it Distant-YOLO (D-YOLO) as we detect animals
from a distance.
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Due to striding and pooling, the small-scale objects disappear in the deep convolution
layers. Therefore, the removal of pooling and striding can improve the existing YOLO
scheme to detect smaller objects. Meanwhile, YOLOv4 [23] presents new findings. How-
ever, its scope is to increase the overall speed and accuracy of the MS COCO dataset using
a different bag of features and bot to increase small object detection in thermal imaging.
In this work, we address the above weaknesses by introducing the proposed D-YOLO for
small object detection. It enables us to propose an animal detection system with improved
accuracy on imagery captured from consumer-level thermal cameras mounted on an aerial
platform.

We claim the following contributions in this paper:

• We introduce animal detection from a high altitude with improved accuracy and
speed using a deep learning-based object detection approach.

• We improve traditional YOLO by considering model training and structure optimisa-
tion to detect smaller and more distant objects.

• We validate our process on an extensive thermal video dataset collected by thermal
imagery researchers. This dataset was very challenging as it included low resolution
imagery of small animals like rabbits, and imagery of animals that, under certain
conditions, can have similar thermal signatures, such as pigs and kangaroos.

2. Materials and Methodology

This section will present our data collection, data pre-processing, the proposed system
architecture, and methodology. The details about each step are as follows:

2.1. Data Collection

Target species: We selected three target species for this work: the European rabbit
(Oryctolagus cuniculus), feral pigs (Sus scrofa), and kangaroos (Macropodidae). Rabbits and
pigs were selected due to the large datasets of existing thermal imagery available for
use. Kangaroos were chosen as they are found in almost all habitats in Australia and are
regularly captured on thermal imaging surveys for other species. To perform this study,
we first established an image database. The imagery in this database was collected by the
Department of Primary Industry, New South Wales (NSW), and the Department of Primary
Industries and Regional Development, Western Australia.

In the proposed work, we used the deep neural network-based object detection
method for animal detection in thermal imaging data.

Thermal imager types and specifications: Thermal imagery was collected via several
platforms with a range of thermal imagers (Table 1). The imagers used range in price and
quality of exported imagery (please see Cox et al. [7] for a discussion on the effect of these
specifications on image output).These imagers were not selected to collect imagery, rather,
these are the imagers that the imagery used in this research was collected with.

Table 1. The types and specifications of the thermal imagers that collected the footage that was used for this study.

Imager Platform
View
(Hz)

Export
(Hz)

Sensor
(w × h) (mm)

Lens (mm)
Pixel
Pitch

Target Animal
Species

FLIR Zenmuse DJI Innspire-1
RPA 30 9 12.38 × 9.68 640 × 512 17μ

Rabbit and
rabbit warren

Janoptik Vario
CAM HD

DJI S1000+
RPA/Ground based

survey
30 30 17.4 × 9.68 1024 × 800 17μ Rabbit

Sierra Olympic
Vayu HD DJI M600 RPA 60 >30 24 × 14.5 1920 × 1200 12μ

Rabbit, rabbit
warren, pigs

and kangaroo

FLIR Zenmuse
XT 640 DJI Matrice 210 RPA 9 9 12.38 × 9.68 640 × 512 17μ

Pigs and
Kangaroo

5
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2.2. Data Pre-Processing

From the thermal footage obtained, we extracted frames to prepare the training dataset.
As the video frame rate from the Vayu (used for the training dataset) is 60 fps, we had a
huge number of extracted frames. However, most frames have no evidence of any animals;
therefore, we used only those frames that had confirmed the presence of targeted animals
while discarding the rest of the frames in feeding our training model for robust results.

For supervised training, we manually labelled the dataset. We used the python-based
library open-source annotation tool “Labelme”, a graphical image annotation tool inspired
by MIT, Computer Science and Artificial Intelligence Laboratory [25]. We also observed
that target objects were very small in some of the frames collected from a high altitude
(67 m). Similarly, some of the targets were obscure, and even manual classification of their
thermal signatures was challenging. We had to magnify such frames/images to label them
accurately. Some sample shots of the manual annotation of our thermal dataset are shown
in Figure 2, whereas Table 2 illustrates the dataset details.

Figure 2. An example of data annotation/labelling performed for different animal species in our dataset.

Table 2. Dataset used for training purpose.

Class Name Labelled Total Images

Rabbit Rabbit 1246

Kangaroos Kangaroo 4211

Pigs Pig 6000

2.3. Data Annotation, Model Training and Detection

Our footage library was extensive; thus, we divided it into three datasets: training
dataset, evaluation dataset, and testing dataset. First, we annotated target animals of
interest in our training dataset using a Python-based annotation tool. We then trained our
proposed D-YOLO model on the training dataset. A detailed description of D-YOLO is
provided below.

During data collection, we took both far and nearer footage of animals using different
camera zoom. Therefore, to improve the performance of YOLOv3 for small object detection,
we divided our dataset into two categories named “zoom-out” and “zoom-in” groups
by taking the distance and receptive field into consideration, as shown in Figure 3. We
also used data augmentation to balance their sizes. K-means [26] was then used to cluster
different numbers of anchor boxes to find the optimised number and size for better results.
Finally, the model was retrained using the “zoom-out” category data.

6
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Figure 3. Dataset sample of zoom-in and zoom-out.

A brief introduction to YOLO: YOLOv3 is a more established one-shot detector that
is an incremental model of the former YOLO [27], and YOLO9000 [20]. The YOLOv3
backbone known as DarkNet-53 includes 53 convolution layers and Resnet [28] short cut
connections. The prediction stage uses FPN that uses three scale feature maps, where small
feature maps provide semantic information and large feature maps provide finer-grained
information. Darknet (conv2D BN Leaky, short as DBL) comprises one convolution layer,
one batch normalisation layer, and one leaky relu layer displayed as DBL. YOLOv3 uses
independent logistic classifiers rather than softmax with binary cross-entropy loss for
the class predictions in the training stage. FPN uses three detection scales with different
receptive fields, where the 32-fold down-sampling is suitable for large objects, the 16-fold
for middle-sized objects, and the 8-fold for small size objects.

7
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Figure 4. YOLOv3 architecture with the input image and three types of feature map as output. The basic element of
YOLOv3 is called Darknet conv2D BN Leaky (DBL), which is composed of one convolution layer, one batch normalization
layer, and one leaky relu layer. Other important components of the structure are explained in the text.

An architectural diagram of YOLOv3 is shown in Figure 4. It takes an input image
of size 416 × 416 pixels and calculates three types of feature map (13 × 13 × 3, 26 × 26
× 3, and 52 × 52 × 3) bounding boxes as output. Darknet (conv2D BN Leaky, shortened
to DBL) comprises one convolution layer, one batch normalisation layer, and one leaky
relu layer displayed as DBL. It also includes ResUnit that includes two “DBL” structures
followed by one “add” layer. It leads to the residual-like unit, “ResBlock”. “ResBlock” is
the module element of Darknet 53.

The proposed D-YOLO Scheme:
One of the problems with traditional CNN networks is their inability to handle low

resolution and receptive field at both pooling and striding may cause loss of small targets.
The semantic information about the small objects will vanish or weaken with a decreased
spatial resolution of feature maps in subsequent layers. Low semantic information may
not be enough to recognise the small object category in thermal images.

A region of the input on which a pixel value in the output depends is called the recep-
tive field. CNN’s pooling (progressively reducing resolution and removing sub-sampling)
can help, but it reduces the receptive field. On the other hand, dilated convolutions [29]
can increase the explanation of the output feature maps without harming the receptive
field of individual neurons. Dilated convolution is also called “convolution with a dilated
filter”, as it is a similar filter used for wavelet transformation. This concept is explained in
Figure 5.

Let F : Z2 → R be a discrete function, Φn = �−n, n�2 and let f = Φn → R be another
discrete function; the convolution operator ∗ can be defined as :

(F ∗ f )(x) = ∑
s+t=x

F(s) f (t) (1)

Let us define d as a dilation factor and let ∗d be defined as:

(F ∗d f )(x) = ∑
s+dt=x

F(s) f (t) (2)

where ∗d is a d-dilated convolution, the traditional CNN convolution is simply the 1-dilated
convolution. Dilated convolution supports an exponential expansion of the receptive field
without loss of resolution. Figure 5 illustrated the outcome of dilated convolution. F1,

8
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F2 are the larger grid showing original discrete functions and f1, f2 are the green colour
discrete filters. Figure 5A on the left shows output generated from convolving F1 by a
1-dilated convolution f1; where F is the larger grid and f is the green colour filter. Each
element in this representation has a receptive field of 3 × 3. Figure 5B on the right shows
the output generated from F2 convolved with a 2-dilated convolution f2; Each element in
this representation has a receptive field of 7 × 7.

Therefore, to increase the receptive field of YOLO to handle small objects, we inte-
grated dilated convolutions in its architecture. For this purpose, we replaced the DDL block
with a DDDL block that uses dilated convolution followed by batch normalisation and
leaky Relu. Likewise, RES block is replaced with DRN (Dilated Residual Network) [30].
Similarly, for multiscale spatial pooling, we use different dilation rates and replace upsam-
pling with dilation filtering. Finally, semantic information from three scales is concatenated
to detect objects and their categories. The proposed D-YOLO architecture is shown in
Figure 6.

Figure 5. Dilated Convolutions: The figure (A) on the left shows the output generated from convolv-
ing F1 by a 1-dilated convolution f1; F1, F2 are the larger grid showing original discrete functions
and f1, f2 are the green colour discrete filters. Each element in this representation has a receptive
field of 3 × 3. Figure (B) on the right shows the output generated from F2 convolved with a 2-dilated
convolution f2; Each element in this representation has a receptive field of 7 × 7.

Figure 6. D-YOLO architecture with input image size 416 × 416 pixels and 3 types of feature map (13 × 13 × 3, 26 × 26 × 3,
and 52 × 52 × 3) as output; DDBL stands for Darknet dilated conv2D BN Leaky, composed of one convolution layer, one
batch normalisation layer, and one leaky relu layer.; DRN (Dilated Residual Network) provides residual-like connection
with dilated convolutions. Similarly, for multiscale spatial pooling, we use different dilation rates and replace upsampling
with dilation filtering.
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2.4. Geo-Tagging and Visualizing of Detected Targets

Finally, geo-tagging of detected animals is done by embedding a Google maps API
platform on the acquired flight GPS data for locating and visualising targets in process-
ing real-time. It provides precise tracking of target locations and visualisation of their
movement within the surrounding. Such information is key to monitor animal movement
patterns and gain valuable insights about their activities. Figure 7 illustrates the process of
geo-tagging of detected animals from aerial data and also provides visualisation of their
movements during the time of flight.

(A) (B)

Figure 7. (A) The geo-tagging of detected animals from drone data that points out their detection location and (B) visualisa-
tion of animal movements that display the area of their activity.

2.5. Experiments and Results

The majority of classifiers assume that output labels are mutually exclusive. If the
output consists of mutually exclusive object classes, this is true. As a result, YOLO uses a
softmax function to transform scores into one-to-one probability. At this point, the total
output can be larger than one. The algorithm substitutes the softmax algorithm with
independent logistic classifiers to assess the likelihood that an input belongs to a certain
label. The algorithm calculates the classification loss for each tag using binary cross-entropy
loss rather than mean square error. Omitting the softmax function also reduces processing
complexity.

The algorithm uses logistic regression to estimate an objectness score for each bound-
ing box. The matching objectness score should be one of the bounding boxes prior (anchor)
overlapping a ground truth object more than others. Only one boundary box prior is linked
with each ground truth item. There is no classification or localisation loss if a bounding
box prior is not assigned; nonetheless, there is a confidence loss on objectness. To compute
the loss, we utilise tx and ty (rather than bx and by).

bx = σ(tx) + cx

by = σ(ty) + cx

bw = ρwetw

bh = ρheth

Precision, recall, accuracy, and the f1-score are some of the ways used to examine the
performance of neural networks. The precision tells us about the correct predictions made
out of false-positives, while recall tells us about the correct predictions made out of false
negatives. The accuracy is the number of correct predictions out of both false positives and
false negatives. All the performance metrics for our trained model have been determined
using the formulas listed in Equations (3)–(6).

10
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Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Accuracy =
TP + TN

TP + TN + FN + FP
(5)

F1 − Score = 2 ∗ precision ∗ recall
precision + recall

(6)

where true positives are TP, true negatives are TN, false positives are FP, and false negatives
are FN. The TP and TN are the right predictions, whereas the FP and FN are our model’s
wrong predictions.

We carried out the training process for our deep model experiments both on Windows
and Ubuntu operating systems. We used the deep learning framework PyTorch and related
Python libraries for system training and testing. Training and testing were performed on
both windows and ubuntu operating systems workstations. They had an Intel ninth gen i9
CPU, i.e., 9900 k, 64 GB RAM and Nvidia dual RTX 2080 Ti 11 GB VRAM GPUs. Table 3.
shows the system specifications.

Table 3. System Specifications for Training/Testing.

System Hardware/Software (Operating System) Specifications

RAM 64 GB RAM
CPU Intel 9th Gen i9 9900K

GPU(s) 2x NVIDIA RTX 2080 Ti 11 GB VRAM
Operating System Windows 10 Professional and Ubuntu 18.04

The experimental dataset was divided into training and validation as 85% and 15%,
respectively, as shown in Table 4 to get the optimised results and overcome the issue of
over-fitting.

Table 4. Data Split for Testing/Training & Accuracy Obtained.

Dataset (Train/Test)
Split in %

Accuracy (%)

10 Epochs 20 Epochs 30 Epochs 40 Epochs 50 Epochs

85–15 92.31 95.84 96.86 97.39 98.38

We first tried to establish the baseline by training a YOLOv3 based detection; for this
purpose, we used the size of input frames as an integer multiple of 32 (416 × 416), with five
steps for downsampling operation leading to the largest stride size of 32. As this version
used multi-scale analysis, y1, y2, and y3 lead to three different feature maps. Information
for the detection of final bounding boxes comes from the combination of all three scales.

We fine-tuned a pre-trained YOLOv3 model for training, with a mini-batch size of 32,
10,500 batches, subdivisions of 15 on 1 GPU, a momentum of 0.8, and a weight decay of
0.0004. We adopted the multistep learning rate with a base learning rate of 0.0001 and the
learning rate scales of [0.1, 0.1].

We then designed the proposed D-YOLO algorithm by replacing convolutions with
dilated versions. For this purpose, we used the size of input frames as an integer multiple
of 32 (416 × 416), without a downsampling operation, and introduced dilation rates of
6, 12, and 18 at different levels. The rest of the design remains the same. Information
for the detection of final bounding boxes comes from the combination of all three scales.
However, the original model size remains the same as of YOLOv3. We used similar training
specifications for our baseline model.
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The average of numerous intersections over union (IoU) is referred to as the average
precision (AP) (the minimum IoU to consider a positive match). For example, AP@[.5:.95]
represents the average AP for IoU with a step size of 0.05 from 0.5 to 0.95. In our experi-
ments, the mAP0.5 is 0.871, as shown in Figure 8a. We achieved an average accuracy of
98.33% for the D-YOLO during the testing phase, compared to 92.33% accuracy for the base-
line YOLO model. For Pig class accuracy = 97.34%, recall = 96.89%, precision = 96.37%, and
f1-score = 96.35%. Kangaroo class accuracy = 99.48%, recall = 96.96%, precision = 97.30%,
and f1-score = 98.60%. Rabbit class accuracy = 98.17%, recall = 96.70%, precision = 96.48%,
and f1-score = 97.48%. Figure 8b visualizes the above results. Hence, kangaroo signatures
are bigger and differentiable, and therefore achieved better accuracy for this class. For
warren detection, we achieved (accuracy = 93.34%, recall = 96.89%, precision = 96.37%, and
f1-score = 96.3%).

(a) (b)

Figure 8. (a) Mean Average Precision (mAP) for all the classes. (b) System performance metrics for each class of animal.

Training and test accuracy was calculated for our training and validation set. Figure 9a,b
displays our training and validation loss for each epoch. These graphs were generated for
a data split of 85–15%. The accuracy graph visually shows that both training and testing
accuracy increases gradually and then converges on a specific point. It also shows that
after 40 epochs, the accuracy reduction reduces as the validation accuracy appears to be
equivalent to training accuracy. Similarly, the right graph shows how the loss decreases
gradually as the model learns on a given dataset. The loss of validation data becomes
stable after 43 epochs and thus tends towards a specific value.

We tested our approach on the data that was not part of our training or validation
set. We first detected all bounding boxes and used them for counting the number of
detected animals. Then, to remove double counting, we sustained our count until the
10th frame. This value was found empirically based on manual inspection of frames and
detected animals. Finally, we counted ground truth detections and compared them with
the automated population count of animals for verification purposes. This process also
verified our detection results accuracy.
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Figure 9. (a). Training and validation loss plot and (b). Training and validation accuracy plot. Both
the plots show consistency in decreasing loss and increasing accuracy on the given dataset. Training
is shown in blue colour, and validation is shown in red colour.

Some of the sample detection results are shown in Figure 10. Detected labels and their
sizes are intentionally made small to show small bounding boxes.

Figure 10. Sample Results: the first row includes input images, while the second row shows respective output images. Both
bounding boxes and labels are shown.

Similarly, we also trained our model for automated identification of habitats specifi-
cally rabbit warrens. Where rabbit numbers are high, warren entrances tend to be visible
on thermal imagery, Cox et al. [7]. Figure 11 and so could be included in the automated
detection with confidence.
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Figure 11. Identification of rabbits and their warren is shown with their respective labels found by our model. Yellow colour
labels belong to rabbits, while purple colour labels are their warrens.

3. Dicussion

Our system enabled detection of small animals in low-resolution video sequences
from thermal imagery. As thermal imagery is used more widely in wildlife management
programs, the ability to accurately identify animals within the footage in timely manner will
only become more important. Our work enhances the existing object detection algorithm,
YOLO, to work with low resolution thermal imagery on a select number of animals. Future
work will see the current model extended to include several other species of animal to
make this system more broadly applicable.

We successfully detected all animals with D-YOLO that were detected manually.
However, it is not yet known whether D-YOLO is better at detecting animals in thermal
imagery than manual detection. Manual detection relies on observers, and observers
can be subject to biases and other factors, including fatigue, interest, skill level, training,
eyesight etc. These factors are essentially removed in automated detection, so automated
detection may be more effective at identifying target species than manual review. Further
investigation of how D-YOLO performs compared to manual detection is required.

The comparison of automated and manual review has flow-on effects for how au-
tomated detection algorithms are used in wildlife research programs. For pest animal
management, the cost of missing or underestimating the number of animals in the land-
scape can be more than relying on manual detection. In these cases, there needs to be high
confidence in the accuracy and precision of the algorithm compared to manual review.
However, in conservation scenarios, this level of accuracy and precision may be less impor-
tant. Therefore, not detecting every animal available does not have a negative cost impact
on the land manager.

While we successfully developed this algorithm to identify these three species correctly,
an aspect requiring further development is removing double counts. Although we didn’t
report on this here, the same animal was counted twice in some instances as animals
were identified. Future work will focus on developing robust strategies to manage this
problem so that accurate counts of species can also be provided. Nevertheless, it is an
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important element of automation and will provide wildlife researchers and managers with
a functional and valuable tool for reviewing thermal imaging footage.

4. Conclusions

This paper proposed a robust detection system to identify animals, and in the case of
rabbits, their habitat, from aerial thermal imaging data. Our dataset had several challenges
as the size of target animals was cryptic and small, but the resolution of our cameras was
also low. This project aimed to develop a robust system for the identification of animals
using consumer-level cameras. For this purpose, we introduced the distant object detection
algorithm named D-YOLO (Distant-You Only Look Once) [20] for remote detection of
small targets. Our system, trained on the massive data collected from New South Wales
and Western Australia, can detect animals (rabbits, kangaroos, and pigs) with a probablity
comparable to that of manual detection. This work will facilitate wildlife researchers to
monitor the activities of animals across the landscape.
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Abstract: Ship detection from synthetic aperture radar (SAR) imagery is a fundamental and signifi-
cant marine mission. It plays an important role in marine traffic control, marine fishery management,
and marine rescue. Nevertheless, there are still some challenges hindering accuracy improvements
of SAR ship detection, e.g., complex background interferences, multi-scale ship feature differences,
and indistinctive small ship features. Therefore, to address these problems, a novel quad feature
pyramid network (Quad-FPN) is proposed for SAR ship detection in this paper. Quad-FPN con-
sists of four unique FPNs, i.e., a DEformable COnvolutional FPN (DE-CO-FPN), a Content-Aware
Feature Reassembly FPN (CA-FR-FPN), a Path Aggregation Space Attention FPN (PA-SA-FPN),
and a Balance Scale Global Attention FPN (BS-GA-FPN). To confirm the effectiveness of each FPN,
extensive ablation studies are conducted. We conduct experiments on five open SAR ship detection
datasets, i.e., SAR ship detection dataset (SSDD), Gaofen-SSDD, Sentinel-SSDD, SAR-Ship-Dataset,
and high-resolution SAR images dataset (HRSID). Qualitative and quantitative experimental results
jointly reveal Quad-FPN’s optimal SAR ship detection performance compared with the other 12 com-
petitive state-of-the-art convolutional neural network (CNN)-based SAR ship detectors. To confirm
the excellent migration application capability of Quad-FPN, the actual ship detection in another two
large-scene Sentinel-1 SAR images is conducted. Their satisfactory detection results indicate the
practical application value of Quad-FPN in marine surveillance.

Keywords: synthetic aperture radar (SAR); ship detection; convolutional neural network (CNN);
deep learning (DL); feature pyramid network (FPN); quad feature pyramid network (Quad-FPN)

1. Introduction

Synthetic aperture radar (SAR) is an advanced active microwave sensor for the high-
resolution remote sensing observation of the Earth [1]. Its all-day and all-weather working
capacity makes it play an important role in marine surveillance [2]. As a fundamental
marine mission, SAR ship detection is of great value in marine traffic control, fishery
management, and emergent salvage at sea [3,4]. Thus, up to now, the topic of SAR ship
detection has received continuous attention from an increasing number of scholars [5–15].

In earlier years, a standard solution is to design ship features by manual ways, e.g.,
constant false alarm rate (CFAR) [1], saliency [2], super-pixel [3], and transformation [4].
Yet, these traditional methods are always complex in algorithm, weak in migration, and
cumbersome in manual design, leading to their limited migration applications. Moreover,
they often use limited ship images for theoretical analysis to define ship features, but
these features cannot reflect the characteristics of ships with various sizes under different
backgrounds. This causes their poor multi-scale and multi-scene detection performance.

Fortunately, in recent years, with the rise of deep learning (DL) and convolutional
neural networks (CNNs), current state-of-the-art DL-based/CNN-based SAR ship detec-
tors have helped solve the above-mentioned problems, to some degree. Compared with
traditional methods, CNN-based ones have significant advantages, i.e., simplicity, high-
efficiency, and high-accuracy, because they can enable computational models with multiple
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processing layers to learn data representations with multiple-level abstractions. This can
effectively improve detection accuracy. Thus, nowadays, many scholars [5–15] in the SAR
ship detection community are starting to pay much attention to CNN-based methods.

For instance, based on Fast R-CNN [16], Li et al. [9] proposed a binarized normed
gradient-based method to extract SAR ship-like regions. Based on Faster R-CNN [17],
Lin et al. [14] designed a squeeze and excitation rank mechanism to improve detection
performance. Based on you only look once (YOLO) [18], Zhang et al. [10] integrated the
multi-scale mechanism, concatenation mechanism, and anchor box mechanism for small
ship detection. Based on RetinaNet [19], Yang et al. [11] tried to suppress ship detections’
false alarms by loss weighting means. Based on single shot multi-box detector (SSD) [20],
Wang et al. [7] proposed an optimized version to enhance small ship detection while
improving detection speed. Based on Cascade R-CNN [21], Wei et al. [12] designed a robust
SAR ship detector named HR-SDNet for multi-level ship feature extraction.

Since the feature pyramid network (FPN) was proposed by Lin et al. [22], it has
been a standard solution for multi-scale SAR ship detection. For different resolutions,
incident angles, satellites, etc., SAR ships possess various sizes. FPN can detect ships with
different sizes at different resolution levels based on more reasonable semantic features
from backbone networks. This enables better detection performance. Thus, it has received
a wide range of attention, e.g., Wei et al. [12] optimized its structure to present a high-
resolution FPN for better multi-scale detection. Cui et al. [13] adopted a convolutional
block attention module to improve its performance. Lin et al. [14] added a squeeze-
and-excitation module at the top of FPN to activate important features. Zhao et al. [15]
designed an attention receptive pyramid network to detect ships with various sizes and
complex backgrounds.

However, SAR ship detection is still a challenging issue due to complex background
interferences (e.g., port facilities, sea clutters, and volatile sea states), multi-scale ship
feature differences, and indistinctive small ship features. Thus, this paper proposes a
novel quad feature pyramid network (Quad-FPN) for SAR ship detection. Figure 1 shows
Quad-FPN’s structure. From Figure 1, four FPNs constitute it, i.e., a DEformable COnvo-
lutional FPN (DE-CO-FPN), a Content-Aware Feature Reassembly FPN (CA-FR-FPN), a
Path Aggregation Space Attention FPN (PA-SA-FPN), and a Balance Scale Global Attention
FPN (BS-GA-FPN). Their implementation shows a pipeline, meaning gradually enhancing
detection performance. We conduct extensive ablation studies to confirm each FPN’s
effectiveness. Experimental results on five open SAR ship detection datasets (i.e., SSDD [5],
Gaofen-SSDD [6], Sentinel-SSDD [6], SAR-Ship-Dataset [7], and HRSID [8]) reveal that
Quad-FPN can offer the most superior detection accuracy compared with the other 12 com-
petitive state-of-the-art CNN-based SAR ship detectors. Finally, we also perform the actual
ship detection in another two large-scene SAR images from the Sentinel-1 satellite. The
satisfactory detection results confirm the excellent migration application capability of
Quad-FPN. The software is available online on our website [23].

Figure 1. Pipeline structure of Quad-FPN.

The main contributions of this paper are as follows:

1. Quad-FPN is proposed for SAR ship detection.
2. DE-CO-FPN, CA-FR-FPN, PA-SA-FPN, and BS-GA-FPN are designed to improve

SAR ship detection performance.
3. Quad-FPN offers the most superior detection accuracy compared with the other

12 competitive state-of-the-art CNN-based SAR ship detectors.
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The rest of this paper is arranged as follows. Section 2 introduces Quad-FPN. Section 3
introduces our experiments. Results are shown in Section 4. Ablation studies are presented
in Section 5. Finally, a summary of this paper is made in Section 6.

2. Quad-FPN

Quad-FPN is the basis of classical Faster R-CNN [17] and FPN [22], which are both
important solutions to handle mainstream detection tasks. Figure 2 shows Quad-FPN’s
overview. Four basic FPNs, i.e., DE-CO-FPN, CA-FR-FPN, PA-SA-FPN, and BS-GA-FPN,
constitute its network architecture. Their implementation presents a pipeline that improves
SAR ship detection performance progressively.

Figure 2. Network architecture of Quad-FPN. (a) DE-CO-FPN; (b) CA-FR-FPN; (c) PA-SA-FPN; and (d) BS-GA-FPN.

The overall design idea of Quad-FPN is as follows.

(1) The overall structure of the first two FPNs (DE-CO-FPN and CA-FE-FPN) keeps
the same as that of the raw FPN [22], including the sequence of DE-CO-FPN and
CA-FE-FPN. In other words, the raw FPN also has two basic sub-FPNs, but they are
replaced by our proposed DE-CO-FPN and CA-FE-FPN. Differently, the first sub-FPN
in the raw FPN uses the standard convolution, but DE-CO-FPN uses the deformable
convolution; the second sub-FPN in the raw FPN uses the simple up-sampling to
achieve a feature fusion, but CA-FE-FPN proposes a CA-FR-Module to achieve a
feature fusion. DE-CO-FPN’s feature maps are from the backbone network, so it
is located at the input-end of Quad-FPN. From Figure 2a, DE-CO-FPN realizes the
information flow from the bottom to the top. According to the findings in [22], the
pyramid top (A5) has stronger semantic information than its low levels. The semantic
information can improve detection performance. Therefore, a top-to-bottom branch in
CA-FR-FPN is added to achieve the downward transmission of semantic information.
Finally, DE-CO-FPN and CA-FE-FPN form an information interaction loop in which
spatial location information and semantic information complement each other.

(2) The design idea of the third FPN (PA-SA-FPN) is inspired from the work of PANET
They found that the low-level location information of the pyramid bottom (B5) was not
considered to be transmitted to the top. This might lead to an inaccurate positioning of
large objects, so the detection performance of large objects is reduced. Therefore, they
added an extra bottom-to-top branch to address this problem. This branch is called
PA-FPN in their original reports. Differently, our proposed PA-SA-FPN adds a PA-SA-
Module to achieve the feature down-sampling so as to focus on more important spatial
features. Finally, CA-FE-FPN and PA-SA-FPN form another information interaction
loop in which spatial location information and semantic information complement
each other again. Therefore, the overall sequence of DE-CO-FPN, CA-FE-FPN, and
PA-SA-FPN is fixed.

(3) The basic outline of Quad-FPN has been determined. BS-GA-FPN is designed to
further refine features at each feature level to solve the feature level imbalance of
different scale ships. Thus, it is arranged at the output-end of Quad-FPN.
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2.1. DEformable COnvolutional FPN (DE-CO-FPN)

The core idea of DE-CO-FPN is that we use the deformable convolution [24] to extract
ship features. It contains more useful ship shape information, meanwhile alleviating
complex background interferences. Previous work [5–15] mostly adopted the standard
or dilated convolutions [25] to extract features. However, the two have limited geometric
modeling ability due to their regular kernels. This means that their ability to extract the
shape features of multi-scale ships is bound to become poor, causing poor multi-scale
detection performance. For inshore ships, the standard and dilated convolutions cannot
restrain interferences of port facilities; for ships side-by-side parking at ports, they also
cannot eliminate interferences from the nearby ship hull. Thus, to solve this problem, the
deformable convolution is used to establish DE-CO-FPN. Figure 3 shows their intuitive
comparison. From Figure 3, it is obvious that the deformable convolution can extract ship
shape features more effectively; it can suppress the interference of complex backgrounds,
especially for more complex inshore scenes. Finally, ships are likely to be separated
successfully from complex backgrounds. Thus, this deformable convolution process can
be regarded as an extraction of salient objects in various scenes, which plays a role of
spatial attention.

Figure 3. Different convolutions. (a) Standard convolution; (b) dilated convolution; and (c) de-
formable convolution.

In the deformable convolution, the standard convolution kernel is augmented with
offsets Δpn that are adaptively learned in training to model targets’ shape features, i.e.,

y(p0) = ∑
pn∈	

w(pn)× x(p0 + pn + Δpn) (1)

where p0 denotes each location, 	 denotes the convolution region, w denotes the weight
parameters, x denotes the input, y denotes the output, and Δpn denotes the learned
offsets at the n-th location. It should be noted that compared with standard convolutions,
deformable ones’ training is in fact time-consuming; it needs more GPU memory. This is
because the learned offsets add extra network parameters, increasing networks’ complexity.
A reasonable fitting of these offsets must be time-consuming. Yet, in this paper, to obtain
better accuracy of ships with various shapes, we have not studied this issue deeply for the
time being. This problem will be considered with due attention in our future work.

In Equation (1), Δpn is typically fractional. Thus, we use the bilinear interpolation to
ensure the smooth implementation of convolutions, i.e.,

x(p) = ∑
q

G(q, p)× x(q) (2)

where p denotes the fraction location to be interpolated, q denotes all integral spatial
locations in the feature map x, and G( ) denotes the bilinear interpolation kernel defined by

G(q, p) = g(qx, px)× g
(
qy, py

)
, where g(a, b) = max(0, 1 − |a − b|) (3)

In experiments, we add another one convolution layer to learn the offsets Δpn. Then,
the standard convolution combining Δpn is performed on the input feature maps. Finally,
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ship features with rich shape information (A1, A2, A3, A4, and A5 in Figure 2a) will be
transferred to subsequent FPNs for more operations.

2.2. Content-Aware Feature Reassembly (CA-FR-FPN)

The core idea of CA-FR-FPN is that we design a CA-FR-Module (marked by circle
in Figure 2b) to enhance feature transmission benefits when performing the up-sampling
multi-level feature fusion. Previous work [5–15] added a feature fusion branch from top to
bottom to via feature up-sampling. This feature up-sampling is often completed by the
nearest neighbor or bilinear interpolations, but the two means merely consider sub-pixel
neighborhoods, which cannot effectively capture the rich semantic information required by
dense detection tasks [26], especially for densely distributed small ships. That is, features
of small ships are easily diluted because of their poor conspicuousness, leading to feature
loss. Thus, to solve this problem, we propose a CA-FR-Module in the up-sampling feature
fusion branch from top to bottom to achieve a feature reassembly. It can be aware of
important contents in feature maps, and attach importance to key small ship features,
thereby improving feature transmission benefits. Figure 2b shows the network architecture
of CA-FR-FPN. From Figure 2b, for five-scale levels (B1, B2, B3, B4, and B5), four CA-
FR-Modules are used for feature reassembly. In practice, CA-FR-Module will complete
the task that is similar to the 2× up-sampling operation in essence. Figure 4 shows the
implementation process of CA-FR-Module. From Figure 4, there are two basic steps in
CA-FR-Module: (1) kernel prediction, and (2) content-aware feature reassembly.

Figure 4. Implementation process of CA-FR-Module in CA-FR-FPN. (a) Kernel prediction; (b) content-aware feature reassembly.

Step 1: Kernel Prediction

Figure 4a shows the implementation process of the kernel prediction. In Figure 4,
the feature maps F’s dimension is L × L × C, where L denotes its size and C denotes its
channel width. Overall, the process of the kernel prediction (denoted by ψ) is responsible
for generating adaptive feature reassembly kernels Wl at the original location l, according
to the k × k neighbors of feature maps Fl through a content-aware manner, i.e.,

Wl = ψ(N(Fl , k)) (4)
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where N(·) means the neighbors and Wl denotes the reassembly kernel.
To enhance the content-aware benefits of the kernel prediction, we first design a

convolution layer to amplify the inputted feature maps F by α times (from C to α·C).
This convolution layer’s kernel number is set to α·C, where α is an experimental hyper-
parameter that will be studied in Section 5.2.2. Then, we adopt another convolution layer
to encode the content of input features so as to obtain reassembly kernels. Here, we set
the kernel width as 22 × k × k where 2 is from the requirement of the 2× up-sampling
operation. The purpose is to enlarge the size of feature maps to 2L. Moreover, k × k is
from the k × k neighbors of feature maps Fl. Afterwards, the content encoded features are
reshaped to a 2L × 2L × (k × k) dimension via the pixel shuffle means [27]. Finally, each
reassembly kernel is normalized by a soft-max function spatially to reflect the weight of
each sub-content.

In summary, the above operations can be described by:

Wl = so f t − max
{

shu f f le[ fencode( fampli f y(Fl))]
}

(5)

where famplify denotes the feature amplification operation, fencode denotes the content encode
operation, shuffle denotes the pixel shuffle means, soft-max denotes the soft-max function
defined by eXi / ∑j eXj , and Wl denotes the generated reassembly kernel.

Step 2: Content-Aware Feature Reassembly

Figure 4b shows the implementation process of the content-aware feature reassembly.
Overall, the process of the content-aware feature reassembly (denoted by φ) is responsible
for generating the final up-sampling feature maps F′

l′ , i.e.,

F′
l′ = φ(N(Fl , k), Wl) (6)

where k denotes the k × k neighbors and Wl denotes the reassembly kernel in Equation (4)
that corresponds to the l’ location of feature maps after up-sampling from the original l
location. For each reassembly kernel Wl, this step will reassemble the features within a local
region via the function φ in Equation (6). Similar to the standard convolution operation, φ
can be implemented by a weighted sum. Thus, for a target location l’ and the corresponding
square region N(Fl, k) centered at l = (i, j), the reassembly output is described by

F′
l′ = ∑

n∈	,
∑

m∈	
Wl,(n,m) × F(i+n,j+m) (7)

where 	 denotes the corresponding square region N(Fl, k). Moreover, k is set to 5 in our
work that is an optimal value followed by [26].

With the reassembly kernel Wl, each pixel in the region 	 of the original location l
contributes to the up-sampled pixel l′ differently, based on the content of features rather
than location distance. Semantic features from the pyramid top will be transferred into the
bottom, bringing better transmission benefits. Finally, the pyramid top’s features will be
fused into the bottom to enhance the feature expression ability of small ships.

2.3. Path Aggregation Space Attention FPN (PA-SA-FPN)

The core idea of PA-SA-FPN is that we add an extra path aggregation branch with a
space attention module (PA-SA-Module) (marked by circle in Figure 2c) from the pyramid
bottom to the top. Previous work [5–15] often transmitted high-level strong semantic
features to the bottom to improve the whole pyramid expressiveness. Yet, the low-level
location information from the pyramid bottom was not considered to be transmitted to the
top. This can lead to inaccurate positionings of large ship bounding boxes, so the detection
performance of large ships is reduced. Thus, we add an extra path aggregation branch
(bottom-to-top) to handle this problem. Moreover, to further improve path aggregation
benefits, we design a PA-SA-Module to concentrate on important spatial information to
avoid interferences of complex port facilities. Figure 2c shows PA-SA-FPN’s architecture.
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From Figure 2c, the location information of the pyramid bottom is transmitted to the top
(C1 → C2 → C3 → C4 → C5) by the feature down-sampling. In this way, the top semantic
features will be enriched with more ship spatial information. This can improve feature
expression ability of large ships. Moreover, before the down-sampling, the low-level feature
maps are refined by a PA-SA-Module to improve path aggregation benefits [28].

Figure 5 shows the implementation process of PA-SA-Module. In Figure 5, the input
feature maps are denoted by Q and the output ones are denoted by Q’. First, a global
average pooling (GAP) [29] is used to obtain the average response in space; a global
max pooling (GMP) [29] is used to obtain the maximum response in space. Then, their
implementation results are concatenated as the synthetic feature maps, denoted by S.
Unlike the previous convolutional block attention module [28], we design a space encoder
fspace-encode to encode the space information. It is used to represent the spatial correlation.
This can improve spatial attention gains because features in the coding space are more
concentrated. Then, the output of fspace-encode is activated by a sigmod function to represent
each pixel’s importance-level in the original space, i.e., an importance-level weight matrix
WS. Finally, an elementwise multiplication is conducted between the original feature maps
Q and the importance-level weight matrix WS to obtain the output Q′.

Figure 5. Implementation process of PA-SA-Module in PA-SA-FPN.

In short, the above can be described by

Q
′
= Q � WS (8)

where Q denotes the input feature maps, Q′ denotes the output feature maps, � denotes
the elementwise multiplication, and WS denotes the importance-level weight matrix, i.e.,

WS = sigmod
{

fspace−encode(GAP(Q)(c)GMP(Q))
}

(9)

where GAP denotes the global average-pooling, GMP denotes the global max-pooling,
fspace-encode denotes the space encoder, © denotes the concatenation operation, and sigmod is
an activation function defined by 1/(1 + e−x).

Finally, the feature pyramid will be stronger when possessing both the top-to-bottom
branch and bottom-to-top branch. Each level has rich spatial location information and
abundant semantic information, which help improve large ships’ detection performance.

2.4. Balance Scale Global Attention FPN (BS-GA-FPN)

The core idea of BS-GA-FPN is that we further refine features from each feature level
in the pyramid, to address the feature level imbalance of different scale ships. SAR ships
often present different characteristics at different levels in the pyramid, i.e., the existence of
multi-scale ship feature differences. Due to the difference of resolutions, the difference of
satellite shooting distances, and different slicing methods, there are many scales of ships in
the existing SAR ship datasets. E.g., for SSDD, the smallest ship pixel size is 7 × 7 while
the biggest one is 211 × 298. Such huge size gap results in large ship feature differences,
which makes it very difficult to detect them. In the computer vision community, Pang
et al. [30] found that such feature level imbalance may weaken the feature expression
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capacity of FPN, but previous work [5–15] in the SAR ship detection community was not
aware of this problem. Thus, to handle this problem, we design a BS-GA-Module to further
process pyramid features to recover a balanced BS-GA-FPN. Implementation process of
BS-GA-Module consists of four steps: (1) feature pyramid resizing, (2) balanced multi-scale
feature fusion, (3) global attention (GA) refinement, and (4) feature pyramid recovery, as in
Figure 6.

Figure 6. Implementation process of BS-GA-Module. (a) Feature pyramid resizing; (b) balanced multi-scale feature fusion;
(c) GA refinement; and (d) feature pyramid recovery.

Step 1: Feature Pyramid Resizing

Figure 6a shows the graphical description of the feature pyramid resizing. In Figure 6a,
in the PA-SA-FPN, features maps at different levels are denoted by C1, C2, C3, C4, and C5.
To facilitate the fusion of balanced features to preserve their semantic hierarchy at the same
time, we resize each detection scale (C1, C2, C3, C4, and C5) to a unified resolution, by a
max-pooling or up-sampling. Here, C3 is selected as this unified resolution level because
it locates in the middle of the pyramid. It can maintain a trade-off between top semantic
information and bottom spatial information. Finally, the above can be described by

H1 = MaxPool4×(C1), H2 = MaxPool2×(C2), H3 = C3, H4 = UpSampling2×(C4), H5 = UpSampling4×(C5) (10)

where H1, H2, H3, H4, and H5 are the resized feature maps from the original ones,
UpSamplingn× denotes the n times up-sampling, and MaxPooln× denotes the n times max-
pooling.

Step 2: Balanced Multi-Scale Feature Fusion

Figure 6b shows the graphical description of the balanced multi-scale feature fusion.
After obtaining feature maps with the same unified resolution, the balanced multi-scale
feature fusion is executed by

I(i, j) =
1
5

5

∑
k=1

Hk(i, j) (11)

where k denotes the k-th detection level, (i, j) denotes the spatial location of feature maps,
and I denotes the output integrated features. From Equation (11), the features from each
scale (H1, H2, H3, H4, and H5) are uniformly fused as the output I (a mean operation). Here,
the average operation fully reflects the balanced idea of SAR ship scale feature fusion.

Finally, the output I with condensed multi-scale information will contain balanced
semantic features of various resolutions. In this way, big ship features and small ones can
complement each other to facilitate the information flow.

Step 3: GA Refinement

To make features from different scales become more discriminative, we also propose
a GA refinement mechanism to further refine balanced features in Equation (11). This
can enhance their global response ability. That is, the network will pay more attention to
important spatial global information (feature self-attention), as in Figure 6c.
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The GA refinement can be described by

Oi =
1

ξ(I)
× ∑

∀j
f
(

Ii, Ij
)× g

(
Ij
)

(12)

where Ii denotes the input at the i-th location, Oi denotes the output at the i-th location, f (·)
is a function used to calculate the similarity between the location Ii and Ij, g(·) is a function
to characterize the feature representation at the j-th location, and ξ(·) denotes a normalized
coefficient (the input overall response). The i-th location information denotes the current
location’s response, and the j-th location information denotes the global response.

In Equation (12), g(·) can be regarded as a linear embedding,

g
(

Ij
)
= Wg Ij (13)

where Wg is a weight matrix to be learned, and we use a 1 × 1 convolutional layer to obtain
this weight matrix during training.

Furthermore, one simple extension of the Gaussian function is to compute similarity
f (·) in an embedding space,

f (Ii, Ij) = eθ(Ii)
Tφ(Ij) (14)

where θ(Ii) = WθIi and φ(Ij) = WφIj are two embeddings. Wθ and Wφ are the weight matrixes
to be learned that are both achieved by other two 1 × 1 convolutional layers.

As above, the normalized coefficient ξ(·) is set to

ξ(I) = ∑
∀j

f (Ii, Ij) (15)

Finally, the whole GA refinement is instantiated as:

Oi =
(

eθ(Ii)
Tφ(Ij) × Wg Ij

)
/∑

∀j
eθ(Ii)

Tφ(Ij) (16)

where eθ(Ii)
Tφ(Ij)/ ∑

∀j
eθ(Ii)

Tφ(Ij) can be achieved by a soft-max function.

Figure 6c shows the graphical description of the above GA refinement. From Figure 6c,
two 1 × 1 convolutional layers are used to compute φ and θ. Then, by the matrix multiplica-
tion θTφ, the similarity f is obtained. One 1 × 1 convolutional layer is used to characterize
the representation of the features g. Finally, f with a soft-max function multiplies by g to
obtain the feature self-attention output O = {Oi | i in I}. Finally, the feature self-attention
output O is further processed by one 1 × 1 convolutional layer (marked in a dotted
box). The purpose is to make O match the dimension of the original input I to facilitate
follow-up element-wise adding. This is similar to the residual/skip connections of ResNet.
Consequently, the refined features I′ combining the feature self-attention information are
achieved, which will be further processed in the subsequent steps, i.e.,

I
′
= WOO + I (17)

where WO is also a weight matrix to be learned, and another 1 × 1 convolutional layer can
be used to obtain it during training.

In essence, the GA refinement can directly capture long-range dependence of each
location (global response) by calculating the interaction between two different arbitrary
positions. It is equivalent to constructing a convolutional kernel with the same size as
the feature map I, to maintain more useful ship information, making feature maps more
discriminative. More detailed theories about this global attention can be found in [31].

Step 4: Feature Pyramid Recovery
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Figure 6d shows the graphical description of the feature pyramid recovery. From
Figure 6d, the refined features I′ are resized again through using the similar but reverse
procedure of Equation (10) to recover a balanced feature pyramid, i.e.,

D1 = UpSampling4×(I
′
), D2 = UpSampling2×(I

′
), D3 = I

′
, D4 = MaxPool2×(I

′
), D5 = MaxPool4×(I

′
) (18)

where D1, D2, D3, D4, and D5 denote the recovered feature maps at different levels after
ship scale balance operations. They reconstruct the final network architecture of BS-GA-
FPN. Ultimately, D1, D2, D3, D4, and D5 in BS-GA-FPN will possess more multi-scale
balanced features that will be used to be responsible for the final ship detection.

3. Experiments

Our experiments are run on a personal computer with i9-9900K CPU and RTX2080Ti
GPU based on Pytorch. Quad-FPN and the other 12 competitive SAR ship detectors are
implemented under the MMDetection toolbox [32] to ensure the comparison fairness.

3.1. Experimental Datasets

(1) SSDD: SSDD is the first open SAR ship detection dataset, proposed by Li et al. [5]
in 2017. There are 1160 SAR images with 500 × 500 average image size in SSDD
from Sentinel-1, TerraSAR-X, and RadarSat-2. SAR ships in SSDD are provided with
various resolutions from 1m to 10m, and HH, HV, VV, and VH polarizations. We set
the ratio of the training set and the test set to 8:2. Here, image names with the index
suffix of 1 and 9 are selected as the test set, and the others as the training set.

(2) Gaofen-SSDD: Gaofen-SSDD was constituted in [6] to make up for the shortcoming
of insufficient samples in SSDD. There are 20,000 images with 160 × 160 image size in
Gaofen-SSDD from Gaofen-3. SAR ships in Gaofen-SSDD are provided with various
resolutions from 5 m to 10 m, and HH, HV, VV, and VH polarizations. Same as [6], the
ratio of the training set, validation set, and the test set is 7:2:1 by a random selection.

(3) Sentinel-SSDD: Sentinel-SSDD was constituted in [6] to make up for the shortcoming
of insufficient sample number in SSDD. There are 20,000 images with 160 × 160 image
size in Sentinel-SSDD from Sentinel-1. SAR ships in Sentinel-SSDD are provided with
resolutions from 5 m to 20 m, and HH, HV, VV, and VH polarizations. Same as [6], the
ratio of the training set, validation set, and the test set is 7:2:1 by a random selection.

(4) SAR-Ship-Dataset: SAR-Ship-Dataset was released by Wang et al. [7] in 2019. There
are 43,819 images with 256 × 256 image size in SAR-Ship-Dataset from Sentinel-1 and
Gaofen-3. SAR ships in Sentinel-SSDD are provided with resolutions from 5 m to
20 m, and HH, HV, VV, and VH polarizations. Same as their original reports in [7], the
ratio of the training set, validation set, and the test set is 7:2:1 by a random selection.

(5) HRSID: HRSID was released by Wei et al. [8] in 2020. There are 5604 images with 800
× 800 image size in HRSID from Sentinel-1 and TerraSAR-X. SAR ships in HRSID
are provided with resolutions from 0.1 m to 3 m, and HH, HV, and VV polarizations.
Same as its original reports in [8], the ratio of the training set and the test set is 13:7
according to its default configuration files.

3.2. Experimental Details

ResNet-50 with pretraining on ImageNet [33] serves as Quad-FPNs’ backbone network.
Images in SSDD, Gaofen-SSDD, Sentinel-SSDD, SAR-Ship-Dataset, and HRSID are resized
as the 512 × 512, 160 × 160, 160 × 160, 256 × 256, and 800 × 800 image size for training.
We train Quad-FPN for 12 epochs with a batch size of 2, due to the limited GPU memory.
Stochastic gradient descent (SGD) [34] serves as the optimizer with a 0.1 learning rate,
a 0.9 momentum, and a 0.0001 weight decay. Moreover, the learning rate is reduced
by 10 times per epoch from 8-epoch to 11-epoch to ensure an adequate loss reduction.
Followed by Wei et al. [12], a soft non-maximum suppression (Soft-NMS) [35] algorithm
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is used to suppress duplicate detections with an intersection over union (IOU) threshold
of 0.5.

3.3. Loss Function

Followed by Cui et al. [13], the cross entropy (CE) serves as the classification loss Lcls,

Lcls = − 1
N

N

∑
i=1

pi log(p∗i ) + (1 − pi) log(1 − p∗i ) (19)

where pi denotes the predictive class probability, pi
* denotes the ground truth class label,

and N denotes the prediction number. The smoothL1 serves as the regression loss Lreg,

Lreg =
1
N

N

∑
i=1

p∗i smoothL1(ti − t∗i ), where smoothL1(x) =
{

0.5x2 i f
∣∣x∣∣< 1

|x|−0.5 otherwise
(20)

where ti denotes the predictive bounding box and ti
* denotes the ground truth box.

3.4. Evaluation Indices

Evaluation indices from the PASCAL dataset [5] are adopted by this paper, including
the recall (r), precision (p), and mean average precision (mAP) [36], i.e.,

r = TP/(TP + FN), p = TP/(TP + FP), mAP =
∫ 1

0
p(r)× dr (21)

where TP denotes the number of true positives, FN denotes that of false negatives, FP
denotes that of false positives, and p(r) denotes the precision-recall curve. In this paper,
mAP measures the final detection accuracy because it considers both precision and recall.

Moreover, the frames per second (FPS) is used to measure the detection speed, which
is defined by 1/t, where t refers to the time to detect an image, whose unit is the second (s).

4. Results

4.1. Quantitative Results on Five Datasets

Tables 1–5 show the quantitative comparison with the other 12 competitive state-of-
the-art CNN-based SAR ship detectors, on SSDD, Gaofen-SSDD, Sentinel-SSDD, SAR-Ship-
Dataset, and HRSID. From Tables 1–5, one can clearly find that:

1. On SSDD, Quad-FPN offers the best accuracy (95.29% mAP on the entire scenes). The
second-best one is 92.27% mAP in the entire scenes from DCN [24], but it is still lower
than Quad-FPN by ~3% mAP, showing the best detection performance of Quad-FPN.

2. On Gaofen-SSDD, Quad-FPN offers the best accuracy (92.84% mAP on the entire
scenes). The second-best one is 91.35% mAP in the entire scenes from Free-Anchor, but
it is still lower than Quad-FPN by ~1.5% mAP, showing the best detection performance
of Quad-FPN.

3. On Sentinel-SSDD, Quad-FPN offers the best accuracy (95.20% mAP on the entire
scenes). The second-best one is 94.31% mAP in the entire scenes from Free-Anchor, but
it is still lower than Quad-FPN by ~1% mAP, showing the best detection performance
of Quad-FPN.

4. On SAR-Ship-Dataset, Quad-FPN offers the best accuracy (94.39% mAP on the entire
scenes). The second-best one is 93.70% mAP in the entire scenes from Free-Anchor, but
it is still lower than Quad-FPN by ~1% mAP, showing the best detection performance
of Quad-FPN.

5. On HRSID, Quad-FPN offers the best detection accuracy (86.12% mAP on the en-
tire scenes). The second-best one is 83.72% mAP in the entire scenes from Guided
Anchoring, but it is still lower than Quad-FPN by ~3.5% mAP.
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6. Furthermore, for Quad-FPN and the other 12 methods, the detection accuracies of
inshore scenes are all lower than that of offshore scenes. This is in line with common
sense because the former has more complex backgrounds than the latter.

7. For the more complex inshore scenes, the detection accuracy advantage of Quad-FPN
is more obvious than the other 12 methods. Specifically, Quad-FPN offers an accuracy
of 84.68% mAP on the SSDD’s inshore scenes, superior to the second-best DCN [24]
by ~10% mAP; it offers an accuracy of 85.68% mAP on the Gaofen-SSDD’s inshore
scenes, superior to the second-best Free-Anchor by ~4% mAP; it offers an accuracy of
84.68% mAP on the Sentinel-SSDD’s inshore scenes, superior to the second-best Free-
Anchor by ~5% mAP; it offers an accuracy of 83.93% mAP on the SAR-Ship-Dataset’s
inshore scenes, superior to the second-best Double-Head R-CNN by ~2% mAP; and
it offers an accuracy of 70.80% mAP on the HRSID’s inshore scenes, superior to the
second-best Guided Anchoring by ~7% mAP. Thus, Quad-FPN seems to be robust
for background interferences because the deformable convolution can suppress the
interference of complex backgrounds, especially for inshore scenes.

8. The r values of the other 12 methods are lower than Quad-FPN, perhaps from their
poor small ship detection performance. The p values of Quad-FPN are sometimes
lower than others. Thus, an appropriate score threshold can be further considered in
the future to make a trade-off between missed detections and false alarms.

9. To be honest, Quad-FPN sacrifices speed due to the network’s high-complexity. Yet, it
is also important to further improve the accuracy, e.g., the precision strike of military
targets. In the future, we will make a trade-off between accuracy and speed.

4.2. Qualitative Results on Five Datasets

Figures 7–11 show the qualitative results on SSDD, Gaofen-SSDD, Sentinel-SSDD,
SAR-Ship-Dataset, and HRSID. Here, we only compare Quad-FPN with the second-best
detector, due to limited pages.

Figure 7. SAR ship detection results on SSDD. (a) Ground truths; (b) detection results of the second-best DCN [24]; and
(c) detection results of the first-best Quad-FPN. Missed detections are marked by red boxes; false alarms are marked by
orange boxes.
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Figure 8. SAR ship detection results on Gaofen-SSDD. (a) Ground truth; (b) detection results of the second-best Free-
Anchor [41]; and (c) detection results of the first-best Quad-FPN. Missed detections are marked by red boxes; false alarms
are marked by orange boxes.

Figure 9. SAR ship detection results on Sentinel-SSDD. (a) Ground truths; (b) detection results of the second-best Free-
Anchor [41]; and (c) detection results of the first-best Quad-FPN. Missed detections are marked by red boxes; false alarms
are marked by orange boxes.
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Figure 10. SAR ship detection results on SAR-Ship-Dataset. (a) Ground truths; (b) detection results of the second-best
Free-Anchor [41]; and (c) detection results of the first-best Quad-FPN. Missed detections are marked by red boxes; false
alarms are marked in orange.

Figure 11. SAR ship detection results on HRSID. (a) Ground truths; (b) detection results of the second-best Guided
Anchoring [40]; and (c) detection results of the first-best Quad-FPN. Missed detections are marked by red boxes; false
alarms are marked by orange boxes.

Taking SSDD in Figure 7 as an example, we can draw the following conclusions:

1. Quad-FPN can successfully detect various SAR ships with different sizes under
various backgrounds. This shows its excellent detection performance with excellent
scale-adaptation and scene-adaptation. Compared with the second-best CNN-based
ship detector DCN [24], Quad-FPN can improve the detection confidence scores. For
example, in the first detection sample of Figure 7, Quad-FPN increases the confidence
score from 0.96 to 1.0. This can show Quad-FPN’s higher credibility.
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2. Quad-FPN can suppress some false alarms from complex inshore facilities. For
example, in the second detection sample of Figure 7, one land false alarm is removed
by Quad-FPN. This shows Quad-FPN’s better scene-adaptability.

3. Quad-FPN can avoid some missed detections of densely arranged ships and small
ships. For example, in the second sample of Figure 7, small ships densely parked
at ports are detected again by Quad-FPN. This is because the adopted deformable
convolution in DE-CO-FPN can alleviate the negative influence from the hull of
a nearby ship. In the fourth sample of Figure 7, many small ships are detected
successfully again by Quad-FPN, but DCN failed most of them. This is because
CA-FR-FPN can transmit more abundant semantic information from the pyramid top
to the bottom, to improve the expression capacity of small ship features. This shows
Quad-FPN’s better detection capacity of both inshore ships and small ones.

4. Moreover, from the third sample of Figure 7, ships with different scales on the same
SAR image are detected at the same time. This is because the proposed BS-GA-GPN
can balance the feature differences of different sizes of ships, showing Quad-FPN’s
excellent scale-adaptability.

Moreover, from the detection results of the second sample on Gaofen-SSDD in Figure 8,
Quad-FPN can remove false alarms from ship-like man-made facilities, meanwhile success-
fully detecting the ship moored at port, even under the strong speckle noise interference,
or rather low signal to noise ratio (SNR). This shows Quad-FPN has both keen judgment
merits and robust anti-noise performance. Similarly, the detection results of the first three
samples on SAR-Ship-Dataset in Figure 10 can also reveal its excellent anti-noise perfor-
mance. Finally, from the detection results of the third sample on SAR-Ship-Dataset in
Figure 10, a large ship parking at port is detected by Quad-FPN again. This is because
PA-SA-FPN can transmit the low-level location information from the pyramid bottom
to the pyramid top, which can bring more accurate positionings of large ship bounding
boxes. Correspondingly, the feature learning benefits of large ships are enhanced, thereby
avoiding their missed detections. Given the above, Quad-FPN offers state-of-the-art SAR
ship detection performance.

4.3. Large-Scene Application in Sentinel-1 SAR Images

We conduct the actual ship detection in another two large-scene Sentinel-1 SAR images
to confirm the good migration capability of Quad-FPN. Figure 12 shows the coverage areas
of the two large-scene Sentinel-1 SAR images. The two areas are both the world’s major
shipping routes, so they are selected. Table 6 shows their descriptions. From Table 6,
the VV polarization SAR images are selected given that ships generally exhibit higher
backscattering values in VV polarization [42]. In addition, the interferometric wide-swath
(IW) mode of Sentinel-1 is selected specifically because it is the main mode to acquire data
in areas of maritime surveillance interest [42]. The ship ground truths are annotated by
SAR experts using the automatic identification system (AIS) and Google Earth. This can
provide a more reliable performance evaluation. These two SAR images are resized as
24,000 × 16,000 image size, respectively. Then, followed by [43], they are cut into 800 × 800
small sub-images directly for training and testing because of the limited GPU memory.
Finally, they are inputted into Quad-FPN for the actual SAR ship detection. After that, the
detection results of these sub-images are integrated to the original large-scene SAR image.
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Figure 12. Coverage areas of two large-scene Sentinel-1 SAR images. (a) Singapore Strait; (b) Gulf of Cadiz.

Table 6. Descriptions of two large-scene Sentinel-1 SAR images.

No. Place Time Polarization Mode Resolution (Range × Azimuth) Image Size

Image 1 Singapore Strait 6 June 2020 VV IW 5 m × 20 m 25,650 × 16,786
Image 2 Gulf of Cadiz 18 June 2020 VV IW 5 m × 20 m 25,644 × 16,722

Figure 13 shows the visualization SAR ship detection results of Quad-FPN on the
two large-scene SAR images. From Figure 13, most ships can be detected by Quad-FPN
successfully, which shows its good migration application capability in ocean surveillance.

Figure 13. Cont.
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Figure 13. Detection results in two large-scene Sentinel-1 SAR images. (a) Image 1; (b) Image 2. Detections are marked by
blue boxes.

4.3.1. Quantitative Comparison with State-of-The-Art

Tables 7 and 8 show their quantitative comparison with the other 12 competitive
CNN-based SAR ship detectors. To be clear, in Tables 7 and 8, the GPU time is selected to
compare their speed (tGPU) because modern CNN-based detectors are always run on GPUs.
From Tables 7 and 8, one can find that Quad-FPN achieves the best detection accuracy on
the two large-scene SAR images, showing its good migration capability.

On the Image 1, Quad-FPN offers an accuracy of 83.96% mAP, superior to the second-
best PANET [37] (83.96% mAP > 80.51% mAP); on the Image 2, Quad-FPN offers an
accuracy of 87.03% mAP, superior to the second-best PANET [37] (87.03% mAP > 84.33%
mAP). To be honest, we find that Quad-FPN’s detection speed is relatively modest in con-
trast to others; thus, further detection speed improvements can be performed in the future.

4.3.2. Quantitative Comparison with CFAR

Finally, we perform an experiment to compare performance with a classical and
common-used two-parameter CFAR detector. Following the standard implementation
process from Deng et al. [44], we obtain the CFAR’s detection results in the Sentinel-1
toolbox [45]. Tables 9 and 10 show their quantitative detection results.
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Table 9. Quantitative evaluation indices comparison with CFAR on Image 1.

Method GT Detections TP FP FN r (%) p (%) F1 tCPU (s)

CFAR 760 863 603 260 157 79.34 69.87 0.74 884.00
Quad-FPN (Ours) 760 904 662 242 98 84.34 83.79 0.84 223.15

Table 10. Quantitative evaluation indices comparison with CFAR on Image 2.

Method GT Detections TP FP FN r (%) p (%) F1 tCPU (s)

CFAR 351 556 314 242 37 89.46 56.47 0.69 735.00
Quad-FPN (Ours) 351 403 310 93 41 88.32 80.31 0.84 226.08

In Tables 9 and 10, the traditional CFAR usually does not use mAP from the DL
community to measure accuracy, so F1 is used to represent accuracy, defined by:

F1 = 2 × p × r
p + r

(22)

Moreover, in Tables 9 and 10, CFARs are usually run on CPUs, whereas modern
DL-based methods are always run on GPUs; to ensure a reasonable comparison, the CPU
time is selected for their speed comparison (tCPU). From Tables 9 and 10, Quad-FPN is
greatly superior to CFAR in terms of the detection accuracy, i.e., 0.74 F1 of CFAR on Image
1 << 0.84 F1 of Quad-FPN on Image 1, and 0.69 F1 of CFAR on Image 2 << 0.84 F1 of
Quad-FPN on Image 2. The detection speed of Quad-FPN is also greatly superior to CFAR,
i.e., 223.15 s CPU time of Quad-FPN on Image 1 << 884.00 s CPU time of CFAR on Image 1,
and 226.08 s CPU time of Quad-FPN on Image 2 << 735.00 s CPU time of CFAR on Image 2.
Therefore, Quad-FPN might still meet the needs of practical applications.

5. Ablation Study

In this section, ablation studies are conducted to verify the effectiveness of each FPN.
We also discuss the advantages of each innovation. Here, we take the SSDD dataset as
an example to show the results, due to limited pages. Table 11 shows the effectiveness of
the Quad-FPN pipeline (DE-CO-FPN→CA-FR-FPN→PA-SA-FPN→BS-GA-FPN). From
Table 11, the detection accuracy is improved step by step from left to right in the Quad-FPN
pipeline architecture (89.92% mAP→93.61% mAP→94.58% mAP→95.29% mAP). This can
show each FPN’s effectiveness from the perspective of the overall structure.

Table 11. Effectiveness of the Quad-FPN pipeline.

DE-CO-FPN CA-FR-FPN PA-SA-FPN BS-GA-FPN r (%) p (%) mAP (%)

� � � � 91.18 82.12 89.92
� � � � 94.30 84.38 93.61
� � � � 95.04 86.89 94.58
� � � � 95.77 89.52 95.29

To be clear, the sequence of the four FPNs is better kept unchanged; otherwise, the
final accuracy cannot reach the best level according to our experiments. Some detailed
analysis can be found in Section 2 (i.e., the overall design idea of Quad-FPN).

5.1. Ablation Study on DE-CO-FPN

We make two experiments with respect to DE-CO-FPN. Experiment 1 in Section 5.1.1
is used to confirm the effectiveness of DE-CO-FPN, directly. Experiment 2 in Section 5.1.2
is used to confirm the advantage of the deformable convolution.
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5.1.1. Experiment 1: Effectiveness of DE-CO-FPN

Table 12 shows the ablation study results on DE-CO-FPM. In Table 12, “�” denotes
removing DE-CO-FPN (the other three FPNs are reserved) and “�” denotes using DE-CO-
FPN. From Table 12, DE-CO-FPN improves the accuracy by ~3% mAP, which shows its
effectiveness. Combined with it, SAR ship features extracted by networks will contain
useful shape information; moreover, they can alleviate complex background interferences.

Table 12. Effectiveness of DE-CO-FPN.

DE-CO-FPN r (%) p (%) mAP (%)

� 94.49 94.06 92.36
� 95.77 89.52 95.29

5.1.2. Experiment 2: Different Types of Convolutions

Table 13 shows the ablation study results on different convolution types. In Table 13,
“Standard” denotes the traditional regular convolution in Figure 3a, “Dilated” denotes the
dilated convolution in Figure 3b, and “Deformable” denotes the deformable convolution in
Figure 3c. From Table 13, the deformable convolution achieves the best detection accuracy
because it can more effectively model various ships’ shapes by its adaptive kernel offset
learning. This adaptive kernel offset learning can extract the shape and edge features of
ships accurately, to suppress the interference of complex backgrounds, especially for the
complex inshore scenes. In this way, ships can be separated successfully from complex
backgrounds. Thus, this deformable convolution process can be regarded as an extraction
of salient objects in various scenes, which plays a role of spatial attention. Accordingly, the
accuracy on the overall dataset is improved.

Table 13. Different types of convolutions.

Convolution Type r (%) p (%) mAP (%)

Standard 94.49 94.06 92.36
Dilated 94.12 91.59 93.87

Deformable (Ours) 95.77 89.52 95.29

5.2. Ablation Study on CA-FR-FPN

With respect to CA-FR-FPN, we will make two experiments. Experiment 1 in Section 5.2.1
is used to confirm the effectiveness of CA-FR-FPN, directly. Experiment 2 in Section 5.2.2
is used to determine the appropriate feature amplification factor α in CA-FR-Module.

5.2.1. Experiment 1: Effectiveness of CA-FR-FPN

Table 14 shows the ablation study results on CA-FR-FPN. In Table 14, “�” denotes
removing CA-FR-FPN (i.e., not using the CA-FR-Module, but the other three FPNs are
reserved.); “�” denotes using the CA-FR-FPN. From Table 14, CA-FR-FPN improves the
detection accuracy by ~1% mAP because it can be aware of more valuable information
for feature up-sampling. Its adaptive content-aware kernel can improve the transmission
benefits of information flow, to improve the detection performance. This is because it
can effectively capture the rich semantic information required by dense detection tasks,
especially for densely distributed small ships. This can avoid the feature loss because of
small ship features’ poor conspicuousness. Accordingly, the accuracy on the overall dataset
is improved.
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Table 14. Effectiveness of CA-FR-FPN.

CA-FR-FPN r (%) p (%) mAP (%)

� 95.22 74.78 94.74
� 95.77 89.52 95.29

5.2.2. Experiment 2: Different Feature Amplification Factors

Table 15 shows the ablation study results on feature amplification factor α in CA-FR-
Module. In Table 15, “�” denotes not amplifying features. From Table 15, when features are
amplified no matter what the value of α is, the detection accuracy can obtain improvements,
compared with not amplifying features. Therefore, the feature amplification can indeed
enhance the content-aware benefits of the kernel prediction, no matter what the value of α
is. This is because in the embedded feature amplification space, the amount of information
of feature maps will be effectively increased, promoting the better correctness of the kernel
prediction. Finally, in our Quad-FPN, to obtain a better detection accuracy (95.29% mAP),
α is set to an optimal or saturated value 8.

Table 15. Different feature amplification factors.

α r (%) p (%) mAP (%)

� 93.20 82.57 92.25
2 94.12 82.45 93.12
4 94.49 90.49 94.08
6 95.04 88.98 94.61
8 95.77 89.52 95.29
10 94.67 90.51 94.36
12 94.67 88.34 94.05
14 95.22 90.40 94.79
16 94.85 90.21 94.56
18 95.04 87.78 94.54

5.3. Ablation Study on PA-SA-FPN

We make three experiments with respect to PA-SA-FPN. Experiment 1 in Section 5.3.1
is used to confirm the effectiveness of PA-SA-FPN, directly. Experiment 2 in Section 5.3.2 is
used to confirm the effectiveness of PA-SA-Module. Experiment 3 in Section 5.3.3 is used
to confirm the advantage of PA-SA-Module.

5.3.1. Experiment 1: Effectiveness of PA-SA-FPN

Table 16 shows the ablation study results on PA-SA-FPN. In Table 16, “�” denotes
removing PA-SA-FPN (the other three FPNs are reserved); “�” denotes using PA-SA-FPN.
From Table 16, PA-SA-FPN improves the detection accuracy by ~1.5% mAP because the
low-level spatial location information in the pyramid bottom has been transmitted to the
top in PA-SA-FPN. In this way, the positionings of large ship bounding boxes will become
more accurate. Accordingly, the accuracy on the overall dataset is improved.

Table 16. Effectiveness of PA-SA-FPN.

PA-SA-FPN r (%) p (%) mAP (%)

� 94.49 80.19 93.88
� 95.77 89.52 95.29

5.3.2. Experiment 2: Effectiveness of PA-SA-Module

Table 17 shows the ablation study results on PA-SA-Module. From Table 17, PA-SA-
Module can effectively enhance the detection accuracy by ~1% mAP because it can enable
more pivotal spatial information in the pyramid bottom be effectively transmitted to the
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top. This can improve path aggregation benefits. In this way, the features of large ships
might become richer and more discriminative. Accordingly, the accuracy on the overall
dataset is improved.

Table 17. Effectiveness of PA-SA-Module.

PA-SA-Module r (%) p (%) mAP (%)

� 94.49 83.44 94.00
� 95.77 89.52 95.29

5.3.3. Experiment 3: Different Attention Types

Table 18 shows the ablation study results on different attention types. In Table 18,
“SE” denotes the squeeze-and-excitation mechanism [36] and “CBAM” denotes the convo-
lutional block attention module [28]. From Table 18, PA-SA-Module is superior to others
because it can cause key spatial global information to be transmitted more efficiently, which
means that it is more suitable for PA-SA-FPN. Moreover, different from the previous CBAM,
our designed space encoder fspace-encode can encode the space information. It is can represent
the spatial correlation more effectively. This can improve spatial attention gains because
the features in the coding space are more concentrated.

Table 18. Different attention types.

Attention Type r (%) p (%) mAP (%)

SE [36] 94.85 91.49 94.47
CBAM [28] 95.04 84.07 94.04

PA-SA-Module (Ours) 95.77 89.52 95.29

5.4. Ablation Study on BS-GA-FPN

We conduct three experiments with respect to BS-GA-FPN. Experiment 1 in Section 5.4.1
is used to confirm the effectiveness of BS-GA-FPN, directly. Experiment 2 in Section 5.4.2
is used to confirm the effectiveness of GA. Experiment 3 in Section 5.4.3 is used to confirm
the advantage of GA.

5.4.1. Experiment 1: Effectiveness of BS-GA-FPN

Table 19 shows the ablation study results on BS-GA-FPN. In Table 19, “�” denotes
removing BS-GA-FPN (the other three FPNs are reserved); “�” denotes using BS-GA-
FPN. From Table 19, BS-GA-FPN can play an important role in ensuring higher detection
accuracy because it can improve the accuracy by ~1% mAP. In this way, ship multi-scale
features can be effectively balanced, which can achieve a stronger feature expression
capacity of the final FPN. Accordingly, the accuracy on the overall dataset is improved.

Table 19. Effectiveness of BS-GA-FPN.

BS-GA-Module r (%) p (%) mAP (%)

� 95.04 86.89 94.58
� 95.77 89.52 95.29

5.4.2. Experiment 2: Effectiveness of GA

Table 20 shows the ablation study results on GA. From Table 20, GA can improve
the detection accuracy because when various ship multi-scale features are refined by it,
they can become more discriminative. This feature self-attention might amplify important
global information and suppress tiresome interferences, which can enhance the feature
expressiveness of FPN. Essentially, GA is able to directly capture long-range dependence
of each location (global response) through calculating the interaction between two different
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arbitrary positions. The whole GA refinement is essentially equivalent to construct a
convolutional kernel with the same size as the feature map, to maintain more useful ship
information. Accordingly, the accuracy on the overall dataset is improved.

Table 20. Effectiveness of GA.

GA r (%) p (%) mAP (%)

� 95.22 90.24 94.80
� 95.77 89.52 95.29

5.4.3. Experiment 3: Different Refinement Types

Table 21 shows the ablation study results of different refinement types. In Table 21,
we compare three refinement types, including a convolutional layer, an SE [36], and a
CBAM [28]. From Table 21, GA offers the best detection accuracy because it can directly
capture long-range dependence of each location (global response) to maintain more useful
ship information that makes feature maps more discriminative. Different from the tradi-
tional convolution refinement types, its receptive field is wider, i.e., the whole input feature
map’s size, resulting in a better spatial correlation learning. Accordingly, the accuracy on
the overall dataset is improved.

Table 21. Different refinement types.

Refinement Type r (%) p (%) mAP (%)

Convolution 94.30 89.06 93.90
SE [36] 94.85 91.49 94.43

CBAM [28] 95.04 87.48 94.48
PA-SA-Module (Ours) 95.77 89.52 95.29

6. Conclusions

Aiming at some challenges in SAR ship detection, e.g., complex background interfer-
ences, multi-scale ship feature differences, and indistinctive small ship features, a novel
Quad-FPN is proposed for SAR ship detection in this paper. Quad-FPN consists of four
unique FPNs that can guarantee its excellent detection performance, i.e., DE-CO-FPN,
CA-FR-FPN, PA-SA-FPN, and BS-GA-FPN. In DE-CO-FPN, we adopt the deformable con-
volution to extract SAR ship features that will contain more useful ship shape information,
meanwhile alleviating complex background interferences. In CA-FR-FPN, we design a
CA-FR-Module to enhance feature transmission benefits when performing the up-sampling
multi-level feature fusion. In PA-SA-FPN, we add an extra path aggregation branch with a
space attention module from the pyramid bottom to the top. In BS-GA-FPN, we further
refine features from each feature level in the pyramid to address feature level imbalance of
different scale ships. We perform extensive ablation studies to confirm the effectiveness
of each FPN. Experimental results on five open datasets jointly reveal that Quad-FPN
can offer the most superior SAR ship detection performance compared with the other
12 competitive state-of-the-art CNN-based SAR ship detectors. Moreover, the satisfactory
detection results in two large-scene Sentinel-1 SAR images showing Quad-FPN’s excellent
migration capability in ocean surveillance. Quad-FPN is an excellent two-stage SAR ship
detector. Four FPNs’ internal implementations are different from previous work. They are
well-designed improvements to ensure the state-of-the-art detection performance, without
bells and whistles. They can exactly enable Quad-FPN’s excellent ship scale-adaptability
and detection scene-adaptability.

Our future work is as follows:

1. We will consider the cost of deformable convolutions, in the future.
2. We will consider optimizing the detection speed of Quad-FPN, in the future.
3. We will further study the effect of four FPNs’ sequence on performance, in the future.
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4. We will consider the challenges within SAR data, e.g., the azimuth ambiguity, side-
lobes, and the sea state, to optimize Quad-FPN’s detection performance, in the future.

5. We will consider making efforts to combine modern deep CNN abstract features and
traditional concrete ones to further improve detection accuracy, in the future.
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Abstract: The detection of arbitrary-oriented and multi-scale objects in satellite optical imagery
is an important task in remote sensing and computer vision. Despite significant research efforts,
such detection remains largely unsolved due to the diversity of patterns in orientation, scale, aspect
ratio, and visual appearance; the dense distribution of objects; and extreme imbalances in categories.
In this paper, we propose an adaptive dynamic refined single-stage transformer detector to address
the aforementioned challenges, aiming to achieve high recall and speed. Our detector realizes
rotated object detection with RetinaNet as the baseline. Firstly, we propose a feature pyramid
transformer (FPT) to enhance feature extraction of the rotated object detection framework through a
feature interaction mechanism. This is beneficial for the detection of objects with diverse patterns
in terms of scale, aspect ratio, visual appearance, and dense distributions. Secondly, we design
two special post-processing steps for rotated objects with arbitrary orientations, large aspect ratios
and dense distributions. The output features of FPT are fed into post-processing steps. In the first
step, it performs the preliminary regression of locations and angle anchors for the refinement step.
In the refinement step, it performs adaptive feature refinement first and then gives the final object
detection result precisely. The main architecture of the refinement step is dynamic feature refinement
(DFR), which is proposed to adaptively adjust the feature map and reconstruct a new feature map for
arbitrary-oriented object detection to alleviate the mismatches between rotated bounding boxes and
axis-aligned receptive fields. Thirdly, the focus loss is adopted to deal with the category imbalance
problem. Experiments on two challenging satellite optical imagery public datasets, DOTA and
HRSC2016, demonstrate that the proposed ADT-Det detector achieves a state-of-the-art detection
accuracy (79.95% mAP for DOTA and 93.47% mAP for HRSC2016) while running very fast (14.6 fps
with a 600 × 600 input image size).

Keywords: arbitrary-oriented object detection in satellite optical imagery; adaptive dynamic refined
single-stage transformer detector; feature pyramid transformer; dynamic feature refinement

1. Introduction

In the past few decades, Earth observation satellites have been monitoring changes
in the Earth’s surface and the amount and resolution of satellite optical images have been
greatly improved. The task of object detection in satellite optical images is to localize
interest objects (such as vehicles, ships, aircraft, buildings, airports, ports) and identify
their categories. This has numerous practical applications in satellite remote sensing and
computer vision, warning of natural disasters, Earth surveying and mapping, and surveil-
lance and traffic planning. Much progress in general-purpose horizontal detectors has been
achieved by advances in deep convolutional neural networks (DCNNs) and the emergence
of large datasets [1]. However, unlike natural images that are usually taken from horizontal
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perspectives, satellite optical images are taken with a bird’s eye view, which often leads to
the arbitrary orientation of objects in satellite images [2], as shown in Figure 1. Moreover,
as mentioned in [2–4], the following significant challenges further increase the difficulty of
object detection in satellite optical images:

• Large-scale difference. Objects in satellite images vary in size hugely [5]. There
are small objects such as cars, ships, aircraft, and small houses in satellite images,
as well as large objects such as ports, airports, ground track fields, bridges, and large
buildings. In addition, the size of objects within the same category (such as large
aircraft and small aircraft) in the same image also varies greatly.

• Dense distribution. There are many densely distributed objects in satellite optical
images, such as cars and ships [5].

• Large aspect ratio. There are lots of objects with large aspect ratios, such as large
vehicles, ships, harbors, and bridges in satellite optical images. The mismatch between
the ground truth bounding box and the predicted bounding box of these objects is
very sensitive to the rotation angle of objects [4].

• Category imbalance. Satellite optical imagery datasets are long-tailed, and the number
of instances in each category varies greatly. For example, the amount of small vehicles
is about 105 times larger than that of soccer ball fields in satellite optical imagery.

Figure 1. Examples of objects with various orientations in satellite optical imagery.

Recent research [6–9] has focused on the design of rotation detectors, which apply
rotated regions of interest (RRoI) instead of horizontal regions of interest (HRoI). To meet
the above challenges, a framework for rotated object detection consisting of a rotation
learning stage and a feature refinement stage is proposed to improve the detection accuracy.
Despite the fact that some newly developed rotated object detection methods [10–14] have
made some progress in this area, their performance still falls considerably below that
required for real-world applications. A main reason for their low detection performance is
improper feature extraction for instances with arbitrary orientations, large aspect ratios,
and dense distributions. As shown in Figure 2a, the general receptive field of deep neural
network-based detectors is axis-aligned and square, representing a mismatch with the
actual shape of the instances, and this usually produces false detections. Thus, our goal is to
design a special feature pyramid transformer and feature refinement module which can be
adjusted adaptively according to the angle and scale of the instance, as shown in Figure 2b.
Then, we introduce the above methods into the rotated object detection framework to help
extract more accurate features.
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(a) (b)

Figure 2. Comparison of receptive fields between (a) an axis-aligned neuron and (b) an adaptive
neuron. The green rectangle represents the boundary of the instance, and the gray rectangle represents
the boundary of the receptive field.

In this paper, we propose an adaptive dynamic refined single-stage transformer
detector to address the aforementioned challenges, aiming to achieve a high recall and
speed. Our detector realizes rotated object detection with RetinaNet as the baseline. Firstly,
the feature pyramid transformer (FPT) is introduced into the traditional feature pyramid
network (FPN) to enhance feature extraction through a feature interaction mechanism.
This is beneficial for the detection of multi-scale objects and densely distributed objects.
Secondly, the output features of FPT are fed into two post-processing steps. In the first
step, the preliminary regression of locations and angle anchors for the refinement step is
performed. In the refinement step, adaptive feature refinement is performed first and then
the final object detection result is given precisely. The main architecture of the refinement
step is the dynamic feature refinement (DFR), which is proposed to adaptively adjust the
feature map and reconstruct a new feature map for arbitrary-oriented object detection
to alleviate the mismatches between rotated bounding boxes and axis-aligned receptive
fields. Experiments are carried out on two challenging satellite optical imagery public
datasets, DOTA and HRSC2016, to demonstrate that our method outperforms previous
state-of-the-art methods while running very fast.

The contributions of this work are three-fold:
(1) We propose a feature pyramid transformer for the feature extraction of the rotated

object detection framework. This is beneficial for detecting objects with diverse patterns in
terms of scale, aspect ratio, and visual appearance, and helps with the handling of challeng-
ing scenes with densely distributed instances through a feature interaction mechanism.

(2) We propose a dynamic feature refinement method for rotated objects with arbitrary
orientations, large aspect ratios, and dense distributions. This can help to alleviate the
bounding box mismatch problem.

(3) The proposed ADT-Det detector outperforms previous state-of-the-art detectors in
terms of accuracy while running very fast.

2. Related Studies

Along with the wide application of satellite remote sensing and unmanned aerial
vehicles, the amount of satellite optical imagery is increasing tremendously and object
detection in satellite optical imagery has received increasing attention in the computer
vision and remote sensing communities. Researchers have introduced DCNN-based
detectors for object detection in satellite optical imagery, and oriented bounding boxes
have been used instead of horizontal bounding boxes to reduce the mismatch between
the predicted bounding box and corresponding objects. DCNN-based detectors are now
reported as state-of-the-art.

In this section, we briefly review some previous well-known object detection methods
in satellite or aerial optical images. In Section 2.1, we review the current mainstream
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detectors used for satellite optical image detection. In Section 2.2, we summarize some
classical designs of DCNN-based detectors that can improve the detection performance.

2.1. The Mainstream Detectors for Object Detection in Satellite Optical Imagery

The current mainstream detectors for satellite optical image detection are rotation
detectors. Existing rotation detectors are mostly employed as alternatives to horizontal
bounding boxes. Generally, these detectors can be organized into two main categories:
multi-stage detectors and single-stage detectors.

The framework of multi-stage detectors includes a pre-processing stage for region
proposal and one or more post-processing stages to regress the bounding box of an object
and identify its category. In the pre-processing stage, classification-independent region
proposals are generated from an input image. Then, CNNs with a special architecture are
used to subsequently extract features from these regions, and regression and classification
are performed over the next several stages [3,4]. In the last stage, the final detection results
are generated by non-maximum suppression (NMS) or other methods. To the best of our
knowledge, RoI-Transformer [2] and SCRDet [15] are state-of-the-art multi-stage rotated
objects detectors. The RoI-Transformer is a two-stage rotated object detector. Its first stage
is a RRoI Learner that generates a transformation from a horizontal bounding box to an
oriented bounding box by learning from the annotated data. One important task in the
second stage is RoI alignment, which extracts rotation-invariant features from the oriented
RoI for subsequent object regression and classification. SCRDet introduced SF-Net [16]
and MDA-Net into Faster-RCNN [17] to detect small and densely distributed objects.
By introducing the Intersection over Union (IoU) factor into the traditional smooth L1
loss function, the IoU-Smooth L1 Loss enables the angle regression to be more concise.
Generally, the numerous redundant region proposals make multi-stage detectors more
accurate than anchor-free detectors. However, they rely on a more complicated structure,
which greatly reduces their speed.

Single-stage object detectors drop the complex and redundant region proposal net-
work, directly regress the bounding box, and identify the category of objects. YOLO [18–20]
treats object detection as a regression task. Image pixels are regressed to spatially separate
bounding boxes and associate them with class probabilities using the GoogLeNet network.
Its improved versions are YOLOv2 and YOLO9000, in which GoogLeNet is replaced by a
simpler Dark-Net19 and some special strategies (e.g., batch normalization) are introduced.
Liu et al. [21] proposed SSD to preserve the real-time speed while keeping the detection
accuracy as high as possible. Just like YOLO, a fixed number of bounding boxes and scores
are predicted for the presence of object category in these boxes, followed by a NMS [22]
step to generate the final detection result. As observed in [5], the detection performance
of general single-stage methods is considerably lower than that of multistage methods.
Recently, R3Det [4] and R4Det [3] demonstrated high performance in detecting rotated
objects in satellite optical images. R3Det adopts RetinaNet [23] for the baseline and adds
refinement to the network. The focal loss alleviates any imbalance between positive and
negative samples. R4Det proposed a single-stage object detection framework by intro-
ducing the recursive feature pyramid (RFP) into RetinaNet to integrate feature maps of
different levels.

2.2. General Designs for DCNN-Based Object Detection in Satellite Optical Imagery
2.2.1. Feature Pyramid Networks (FPN)

In many DCNN-based object detection frameworks, FPN is a basic component used
to extract multi-level features for detecting objects at different scales. Low-level features
represent less semantic information but the resolution is higher; on the contrary, high-level
features represent more semantic information but the resolution is lower. In order to
make full use of low-level features and high-level features at the same time, Lin et al. [24]
proposed a generic FPN approach to fuse a multi-scale feature pyramid with a top-down
pathway and lateral connections. This has become the benchmark and performs well in
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feature extraction. Using a feature pyramid transformer [25] is an effective way to perform
feature interaction between different scales and spaces. The transformed feature pyramid
has a richer context than the original pyramid while maintaining the same size. In this
paper, we introduce an FPT to enhance feature interaction in the feature fusion step.

2.2.2. Spatial Transformer Network

Atrous convolution [26] is an initial spatial transformer network. It increases the
reception field by injecting holes into the standard convolution. Many improvements in
dilated convolution have been proposed in recent years. Atrous spatial pyramid pooling
(ASPP) [27] and denseASPP [28] obtained better results by cascading convolutions with dif-
ferent dilated rates in various forms. The Deformable Convolutional Network (DCN) [29]
provides new ideas for spatial transformer networks. DCN can adjust the convolution
kernels to make the receptive field more suitable for the feature map. General convolution
is mostly horizontal and square. DCN can dynamically adjust according to the feature
shape. We expect that it can improve the detection performance by introducing DCN into
the feature extraction for rotated object detection.

2.2.3. Refined Object Detectiors

The research in [30] indicates that a low IoU threshold usually produces noisy de-
tections. However, due to the mismatch between the optimal IoU of the detector and the
IoU of the input hypothesis, detection performance tends to degrade as the IoU thresh-
olds increase. To address these problems, Cascade RCNN [30] uses multiple stages with
sequentially increasing IoU thresholds to train detectors. The main idea of RefineDet [31]
is to coarsely adjust the locations and sizes of anchors using an anchor refinement module
first. This is then followed by a regression branch to obtain more precise box information.
Unlike two-stage detectors, the currently single-stage detector with a refinement stage is
not well resolved in this respect. Feature misalignment is still one of the main reasons for
the poor performance of refined single-stage detectors.

In this paper, we propose an adaptive dynamic refined single-stage transformer detec-
tor to address the aforementioned challenges, aiming to achieve a high recall and speed.
Our detector realizes rotated object detection with RetinaNet as the baseline to achieve the
detection of multi-scale objects and densely distributed objects. Firstly, the feature pyramid
transformer (FPT) is introduced into the traditional feature pyramid network (FPN) to
enhance feature extraction through a feature interaction mechanism. Secondly, the output
features of FPT are fed into two post-processing steps considering the mismatch between
the rotated bounding box and the general axis-aligned receptive fields of CNN. Dynamic
Feature Refinement (DFR) is introduced to the refinement step. The key idea of DFR is to
adaptively adjust the feature map and reconstruct a new feature map for arbitrary-oriented
object detection to alleviate the mismatches between the rotated bounding box and the
axis-aligned receptive fields. Extensive experiments and ablation studies show that our
method can achieve state-of-the-art results in the task of object detection.

3. Methodology

In this section, we first describe our network architecture for arbitrary rotated object
detection in Section 3.1. We then propose the feature pyramid transformer and dynamic
feature refinement, which are our main contributions, in Sections 3.2 and 3.3, respectively.
Finally, we show the details of our RetinaNet-based rotation detection method and the loss
function in Section 3.4.

3.1. Network Architecture

The overall architecture of the proposed ADT-Det detector is sketched in Figure 3.
Our pipeline improves upon RetinaNet and consists of a backbone network and two post-
processing steps. The FPN network is utilized as the backbone and a feature pyramid
transformer is proposed to enhance feature extraction for densely distributed instances.
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Then, the backbone is attached in the post-processing steps. These consist of two sub-
steps: first, a sub-step and a refinement sub-step, which will be described in detail in
Sections 3.3 and 3.4. In the first sub-step, the preliminary regression of locations and angle
anchors for the refinement sub-step is performed. In the refinement sub-step, adaptive
feature refinement is performed first and then the final object detection result is given
precisely. The main architecture of the refinement sub-step is the dynamic feature refine-
ment (DFR), which is proposed to adaptively adjust the feature map and reconstruct a
new feature map for rotated object detection (the detailed architecture of DFR is shown in
Section 3.3). In the refinement sub-step, the feature fusion module (FFM) is considered as
an important step to dynamically counteract the mismatch between the rotating object and
the axis-aligned receptive fields of neurons. The overall framework is end-to-end trainable
with a high efficiency.

Figure 3. The framework of the proposed ADT-Det detector. Our pipeline consists of a backbone network and two
post-processing steps. An FPN network is used as backbone network and a feature pyramid transformer is proposed to
enhance the feature extraction. Then, the backbone is attached in the post-processing steps, which consist of two sub-steps:
first, a sub-step and a refinement step. In the first sub-step, the preliminary regression of locations and angles for the
refinement sub-step is performed. In the refinement sub-step, adaptive feature refinement is performed first and then the
final object detection result is given precisely.

3.2. Feature Pyramid Transformer

We introduce a feature pyramid transformer (FPT) and add it between the backbone
FPN network and the post-processing network to produce features with stronger semantic
information. Its architecture is shown in Figure 4. Firstly, the features from FPN are
transformed and re-arranged. Then, the output features are concatenated with the original
feature map to obtain the concatenated features. Finally, the Conv3×3 operation is carried
out to reduce the channel and obtain the transformed feature pyramid.

The FPT is a light network that enhances features through feature interaction with
multiple scales and layers. It allows features of different levels to interact across space
and scale. The FPT consists of three transformer steps: a self-transformer, a grounding
transformer, and a rendering transformer. The self-transformer is introduced to capture
objects that appear simultaneously on the same feature map. The grounding transformer
is a up-bottom non-local interaction transformer that is used to enhance shallow features
with different levels of features. As shown in Figure 5a,b, the inputs of the self-transformer
and the grounding transformer are qi, kj, and vj, where qi = fq(Xi) represents the i-th
query; kj = fk(Xj) represents the j-th key; vj = fv(Xj) represents the j-th value; and fq(.),
fk(.), and fv(.) are used to perform queries, keys, and values operations on the feature
map, respectively. The self-transformer adopts dot products as similarity function Fsim
to capture co-occurring features in the same feature map. The output of Fsim is fed to the
normalization function Fnorm to generate weights w(i,j). Lastly, we multiply vj and w(i,j) to
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obtain the transformed feature X. Unlike the self-transformer, the grounding transformer
is a top-down non-local interaction that is used to strengthen shallow features with deep
features. It uses Euclidean distance to measure the similarity of deep features and shallow
features. The rendering transformer works with a bottom-up transformer to interact with
the entire feature map, presenting higher-level semantic features in lower-level features.
The transformation process is shown in Figure 5c. First, we calculate the weight w of
Q through global average pooling from the shallow feature K. Then, the weights of
Q (Qatt) and V are refined by Conv3×3 to reduce the size of the feature map. Finally,
the refined Qatt and down-sampled V (Vdown) are summed and processed by another
Conv3×3 for rendering.

Figure 4. Three transformer steps: (a) self-transformer, (b) grounding transformer, (c) rendering
transformer. qi = fq(Xi) represents the i-th query, kj = fk(Xj) represents the j-th key, and vj = fv(Xj)

represents the j-th value, where fq(.), fk(.), and fv(.) are used to perform queries, keys, and values
operations on the feature map, respectively.

V

Stride conv

GAP(K) Qv v

(a) (b) (c)

Figure 5. Architecture of the proposed feature pyramid transformer: (a) self-transformer, (b) ground-
ing transformer, (c) rendering transformer. Firstly, the features from FPN are transformed and
re-arranged. Then, the output features are concatenated with the original feature map to obtain the
concatenated features. Finally, the Conv3×3 operation is carried out to reduce the channel and obtain
the transformed feature pyramid.

3.3. Dynamic Feature Refinement

When detecting instances with arbitrary orientations, large aspect ratios, and dense
distributions, the main reason for low detection performance is the feature misalignment
problem, which is caused by differences in the scale and rotation between the orientated
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bounding box and the axis-aligned receptive fields. To alleviate the feature misalignment
problem, we introduce dynamic feature refinement (DFR) to obtain the refined accurate
bounding box. The architecture of DFR is shown in the bottom of Figure 6.

Figure 6. Architecture of the post-processing step. This consists of two sub-steps: the first sub-step
and the refinement sub-step. Top: the first sub-step, which performs the preliminary regression of
angle anchors for the refinement sub-step. Bottom: the refinement sub-step, which performs feature
fusion and adaptive feature refinement and then gives the final object detection result precisely.
On the left of the refinement sub-step is the feature fusion module, followed by the feature refinement
module. On the right are two subnetworks, which perform object classification and regression.

We adopt a feature fusion module (FFM) to counteract the mismatches between
arbitrary-orientation objects and axis-aligned receptive fields. This can dynamically and
adaptively aggregate the features extracted by various kernel sizes, shapes (aspect ratios),
and angles. The FFM takes the i-th stage feature map X ∈ R

H×W×C as an input and
consists of two branches. In one branch, X ∈ R

H×W×C is connected to the classification
and regression subnetworks to decode the location feature information. This is a normal
network introduced from RetinaNet. The task of this branch is to generate initial location
information and decode the angle feature information. In the other branch, we compress
X ∈ R

H×W×C with a Conv1×1 layer and aggregate the improved information using
batch normalization and ReLU. In order to further deal with the mismatches between
rotated objects and axis-aligned receptive fields, we introduce the adaptive convolution
(AdaptConv) into our DFR.

The AdaptConv is inspired by [32], and the implementation details are illustrated in
Figure 7. Similar to DCN in [29], 	 denotes the regular grid receptive field and dilation.
For a 3 × 3 kernel, we have:

	 = {(−1,−1), (−1, 0), ..., (0, 1), (1, 1)} (1)

The output of AdaptConv is:

Xi(p0) = ∑
pn∈	

w(pn) · Xc(p0 + pn + δpn) (2)

where pn represents the locations in 	, w denotes the kernel weights, and δpn is the offset
field for each location pn. In our method, we redefine the offset field δpn so that DCN can
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be transformed into a regular convolution with angle information. The offset of AdaptConv
is defined as follows:

δpi = Mr(θ) · pi − pi (3)

where Mr(θ) ∈ R
H×W×1 is the angle feature information that is split and resized from the

location feature information.

Figure 7. The overall process of AdaptConv. Decoded angle feature map θ is used to generate
the offset. The special offset causes the DCN to have a receptive field with regular shape and
angle information.

As shown in the bottom of Figure 6, in order to cope with objects with large aspect
ratios, we use a three-split AdaptConv with 3 × 3, 1 × 3, and 3 × 1 kernels, which are

denoted as Xi ∈ R
H×W×C

′
(i ∈ {1, 2, 3}), to extract multiple features from Xc ∈ R

H×W×C
′
.

In order to cause the receptive fields of neurons to adjust features dynamically, we adopt
an attention mechanism to integrate features from the above three-split process. Let the
attention map be Ai ∈ R

H×W×1(i ∈ 1, 2, 3) and the computation be as follows:
Firstly, Xi is fed into the attention block, which is composed of Conv1×1 and the

batch normalization operation. Secondly, Ai(i = 1, 2, 3) is sent to SoftMax to obtain the
normalized selection weight A

′
i:

A
′
i = So f tMax([A1, A2, A3]) (4)

Here, the SoftMax can be described as follows. Suppose v is a vector and vi represents the
i-th element in v. In this case, the SoftMax value of this element is formulated by:

p =
evi

∑j=1 evj (5)

where the calculation result is between 0 and 1 and the sum of the SoftMax values of all
elements is 1.

Thirdly, the feature map Y is obtained by implementing a ReLU operation on:

Y = ∑
i

A
′
i · Xi, (6)

where Y ∈ R
H×W×C is the output feature.

The adjusted feature map Y is then sent to the feature refinement module (as shown in
the middle of Figure 6) to reconstruct the features and achieve feature alignment. The fea-
ture alignment details are illustrated in Figure 8. For each feature map, the aligned feature
vectors are obtained through interpolation, according to the five coordinates (orange points)
of the refined bounding box. Following the method described in [4], we use feature bilinear
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interpolation to generate more accurate feature vectors and replace the original feature
vectors, as illustrated in Figure 8b. The bilinear interpolation is formulated as follows:

val = vallt × arearb + valrt × arealb

+ valrb × arealt + vallb × areart,
(7)

where val denotes the result of bilinear interpolation. vallt, valrt, valrb, and vallb denote the
values of the top-left, top-right, bottom-right, and bottom-left pixel, respectively. arealt,
areart, arearb, and arealb denote the area of the top-left, top-right, bottom-right, and bottom-
left rectangles, respectively.

(a) (b)

Figure 8. Feature refinement. (a) Refine the bounding box with aligned features. (b) Feature
bilinear interpolation.

3.4. RetinaNet-Based Rotation Detection and Loss Function

We achieve rotated bounding box detection by using the oriented rectangle repre-
sentation method proposed in [4]. For the completeness of the content, let us introduce
the method briefly. We use a vector with five parameters (x, y, w, h, θ) to represent an
arbitrarily oriented bounding box, where (x, y) denotes the coordinates of the bounding
box center, w and h denote the width and height of the bounding box, and θ denotes the
rotation angle of the bounding box relative to the horizontal direction. Compared to the
horizontal bounding box, an additional angular offset must be predicted in the regression
subnet, for which the rotation bounding box is described as follows:

tx = (x − xa)/ωa, ty = (y − ya)/ha

tω = log(ω/ωa), th = log(h/ha), tθ = (θ − θa)
(8)

t
′
x = (x − xa)/ωa, t

′
y = (y

′ − ya)/ha

t
′
ω = log(ω

′
/ωa), t

′
h = log(h

′
/ha), t

′
θ = (θ

′ − θa)
(9)

where (x, xa, x′) correspond to the ground-truth box, the anchor box, and the predicted
box, respectively (likewise for y, w, h, θ).

The definition of the multi-task loss function is as follows:

L =
λ1

N

N

∑
n=1

t
′
n ∑

j∈{x,y,w,h,θ}

Lreg

(
v
′
nj, vnj

)
∣∣∣Lreg

(
v′

nj, vnj

)∣∣∣ |− log(IoU)|

+
λ2

h × w

h

∑
i

w

∑
j

Latt

(
u
′
nj, unj

)
+

λ3

N

N

∑
n=1

Lcls(pn, tn)

(10)

54



Remote Sens. 2021, 13, 2623

where N denotes the anchor number and t′n denotes a binary value (t′n = 1 for the fore-
ground and t′n = 0 for the background). v′nj denotes the predicted offset vectors, and vnj
denotes the vector of the ground truth, tn denotes the instance label, and pn denotes the
probability of the categories calculated by the sigmoid function. The hyperparameters λ1,
λ2, and λ3 control the trade-off and are set to 1 by default. The classification loss Lcls is
implemented using focal loss. In [23], the authors noticed that the imbalance of instances
categories results in a low accuracy for a single-stage detector compared with that of a
two-stage detector. They proposed focal loss to address this problem. Thus, we use focal
loss to optimize our classification loss, whereby our detector maintains single-stage speed
while improving the detection accuracy.

Equation (11) shows the cross-entropy loss function that produces focal loss:

CE(pt, y) = − log(pt), pt =

{
p i f y = 1

1 − p otherwise
(11)

where y ∈ {±1} specifies the ground-truth class and pt ∈ [0, 1] is the model’s estimated
probability for the class with the label y = 1.

Furthermore, a weighting factor αt ∈ [0, 1] and a modulating factor (1 − pt)γ (γ ≥ 0)
are introduced (as shown in Equation (12)) to control the weights of positive and negative
instances, meaning that the training is relatively more focused on positive samples.

FL(pt) = −αt(1 − pt)
γ log(pt) (12)

In the rotated object detection task, the loss is very large due to the periodicity of the
angle. Therefore, the model has to be regressed in other complex forms, increasing the
difficulty of regression. Yang [15] proposed a loss function by introducing the IoU constant
factor in the traditional smooth L1 loss. The smooth L1 loss is expressed by:

SmoothL1(x) =
{

0.5x2 |x| < 1
|x| − 0.5 x < 1 or x > 1

(13)

The new regression loss can be divided into two parts, as shown in Equation (10),

where
Lreg

(
v′nj ,vnj

)
∣∣∣Lreg

(
v′nj ,vnj

)∣∣∣ determines the direction of gradient propagation and |− log(IoU)|
determines the magnitude of the gradient.

4. Experiments and Analysis

4.1. Benchmark Datasets

Extensive experiments and ablation studies were conducted. We compared our detec-
tor with 8 other well-known detectors through experiments on two challenging satellite
optical image benchmarks: DOTA [5] and HRSC2016 [33].

DOTA is the largest and most challenging dataset with both horizontal and oriented
bounding box annotations for object detection in satellite or aerial optical images. It contains
2806 satellite images, whose sizes range from 800 × 800 to 4000 × 4000. DOTA contains
objects with a wide variety of scales, orientations, and appearances. These images have
been annotated by experts using 15 common object categories. The object categories include
plane (PL), ship (SP), large vehicle (LV), small vehicle (SV), helicopter (HC), tennis court
(TC), bridge (BR), ground track field (GTF), basketball court (BC), baseball diamond (BD),
soccer field (SBF), storage tank (ST), roundabout (RA), harbor (HA), and swimming pool
(SP). Among them, there are huge numbers of densely distributed objects, such as small
vehicles, large vehicles, ships, and planes. There are many object categories with large
aspect ratios, such as large vehicles, ships, harbors, and bridges. Two detection tasks with
horizontal bounding boxes and orientated bounding boxes can be performed on DOTA. In
our experiment, we chose the task of detecting objects with an orientated bounding box.
An official website (https://captain-whu.github.io/DOTA/dataset.html (accessed on 1
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January 2018) is provided for the submission of the results. DOTA contains 1403 training
images, 468 verification images, and 935 testing images, which are randomly selected from
the original images.

HRSC2016 [33] is a challenging satellite optical imagery dataset for ship detection.
It contains 1061 images collected from Google Earth and over 20 categories of ship instances
with different shapes, orientations, sizes, and backgrounds. The images with the scenario
of ships close to the shore in HRSC2016 were collected from six famous harbors, while
the other images show the scenario of ships on the sea. The image size ranges between
300 × 300 and 1500 × 900. HRSC2016 contains 436 training images, 181 validation images,
and 444 testing images. During the training and testing, we resized the images to 800 × 800.
In our experiment, we chose the task of detecting ships with an orientated bounding box.

4.2. Implementation Details

We adopted ResNet101 FPN as the backbone of the experiment. The hyperparameters
of the multi-task loss function were set to λ1 = 4, λ2 = 1, and λ3 = 2. The hyperparameters
of the focal loss were set to α = 0.25 and γ = 2.0. SGD [34] was adopted as an optimizer.
The initial learning rate was set at 0.04 and the learning rate was divided by 10 at each
decay step. The momentum and weight decay were set to 0.9 and 0.0001. The learning rate
warmup was set to 500 iterations. We adopted mmdetections [35] as training schedules
and trained all the models in 12 epochs for DOTA and 36 epochs for HRSC2016. We used a
sever with 4 NVIDIA TITAN Xp GPUs and 4 GPUs with a total batch size of 8 for training
and a single GPU for inference.

4.3. Ablation Study

In order to evaluate the impact of DFR, FPT, and data augmentation on our detector,
we conducted some ablation studies on the DOTA and HRSC2016. ResNet-50 pretrained on
ImageNet was used as a backbone in the experiments. The weight decay and momentum
were set to 0.0001 and 0.9, respectively. Detectors were trained using 4 GPUs with a total of
8 images per mini batch (two images per GPU).

4.3.1. Ablation Study for DFR

In this subsection, we present the ablation study results for the original feature refine-
ment module (FRM) and the proposed DFR. As shown in Table 1, RetinaNet has a 62.22%
accuracy. By introducing FRM, R3Det (RetinaNet with refinement) obtained a 71.69% accu-
racy under ResNet101-FPN as a backbone with no multi-scale. FRM improved the accuracy
by 9.47%. In this study, we introduced DFR to achieve feature misalignment instead of
FRM. The accuracy with DFR was 73.10%, which is 1.41% higher then the accuracy with
FRM. As shown in Table 2, the accuracy for some hard instance categories, such as BR, SV,
LV, SH, and RA, increased by 2.06%, 7.71%, 2.8%, 9.42%, and 2.84%, respectively. We can
see that the proposed DFR has a significant effect on improving the performance.

Table 1. Ablation study of DFR, FPT, and data augmentation.

Methods mAP FRM DFR FPT Data Aug.

RetinaNet [23] 62.22 × - - -
R3Det [4] 71.69

√
- - -

73.10 -
√ × ×

ADT-Det (ours) 73.77 -
√ √ ×

76.89 -
√ √ √

Table 2. Ablation study of FRM and the proposed DFR, where FRM is the original feature refinement module proposed
by R3Det.

Methods PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP

FRM 89.54 81.99 48.46 62.52 70.48 74.29 77.54 90.80 81.39 83.54 61.79 59.82 65.44 67.46 60.05 71.69
DFR 88.99 79.42 50.52 68.62 78.19 77.09 86.96 90.85 79.82 85.45 58.99 62.66 66.01 67.56 55.45 73.10
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4.3.2. Ablation Study on FPT

As shown in Table 1, the accuracy was 73.10% without FPT and 73.77% with FPT.
It can be seen that the proposed FPT has a slight effect on improving the performance.

4.3.3. Ablation Study for Data Augmentation

A previous study showed that data augmentation is a very effective way to improve
detection performance by enriching training datasets. In this subsection, we study the
impact of data augmentation on the detection accuracy of our detector. The data augmen-
tation methods used in the experiment includes horizontal and vertical flipping, random
graying, multi-scales, and random rotation. As shown in Table 1, the detection accuracy
was improved from 73.77% to 76.89% by data augmentation.

4.4. Comparison to State of the Art
4.4.1. Results on DOTA

We compared our proposed detector with some state-of-the-art detectors using the
DOTA dataset. The results reported here were obtained by submitting our detection re-
sults to the official DOTA evaluation server. All the detectors involved in this experiment
can be divided into three groups: multi-stage, anchor-free, and single-stage detectors.
As shown in Table 3, the latest multi-stage detectors, such as SCRDet [15], Gliding Ver-
tex [10], and APE [36], achieved values of 69.56%, 72.61%, 75.02%, and 75.75% mAP,
respectively. The anchor-free method DRN [32] achieved a 73.23% mAP. The single-stage
detectors R3Det and R4Det with ResNet-152 had 73.73% and 75.84% accuracies. Our ADT-
Det with ResNet-152 achieved the highest accuracy of 77.43%, which is 1.59% higher than
the previous best result.

The research of R4Det [3] showed that feature recursion is a good method to im-
prove the detection accuracy. We also adopted feature recursion in our pipeline, and it
outperformed state-of-art methods and achieved a 79.95% accuracy.

The visualization of some of the detection results of our detector is shown in Figure 9.
The results demonstrate that our detector can accurately detect most objects with arbitrary
orientations, large aspect ratios, huge scale differences, and dense distributions.
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Figure 9. Visualization of some detection results on DOTA. Different colored bounding boxes represent instances of different
categories (best viewed in color).
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4.4.2. Result on HRSC2016

HRSC2016 contains many ship instances with large aspect ratios and arbitrary orienta-
tions. RRPN was originally developed for orientation scene text detection. RoI-Transformer
and R3Det are advanced satellite optical imagery detection methods. We performed com-
parative experiments with these methods, and the results are shown in Table 4. We can
see that the scene text detection methods have competitive results for satellite optical im-
agery datasets; RRPN [13] achieved a 79.08% mAP. Under the PASCAL VOC2007 metrics,
the famous multi-stage rotated object detector RoI-Transformer [2] could achieve an 86.20%
accuracy. The state-of-art single-stage methods, R3Det [4] and R4Det [3], could achieve
89.26% and 89.56% accuracies, respectively. Meanwhile, the proposed ADT-Det detector
achieved the best detection performance, with an accuracy of 89.75%. This accuracy is
close to the accuracy for ship detection in the DOTA experiment (88.94%), which further
proves the advantage of using DFR to reduce the mismatch between arbitrarily oriented
objects and axis-aligned receptive fields. Evaluated under the PASCAL VOC2012 metrics,
the anchor-free method DRN achieved a 92.7% accuracy, while the proposed ADT-Det
detector (with ResNet-152) achieved the best detection result, with an accuracy of 93.47%.

4.4.3. Speed Comparison

Comparison experiments for detection speed and accuracy were carried out on
HRSC2016. In the experiment, our ADT-Det detector was compared with eight other
well-known methods. The detailed results are illustrated in Table 4 and the overall com-
parison results are also visualized in Figure 10. It can be seen that the multi-stage detector
RoI-Transformer could achieve an 86.2% accuracy and a 6 fps speed when using ResNet101
as the backbone and when the input image size was 512 × 800. The single-stage R3Det
detector could achieve a 89.26% accuracy and a 10 fps speed. The existing state-of-art
single-stage R4Det could achieve an 89.5% accuracy, but the detection speed was slower
than that of R3Det. Our ADT-Det detector could achieve an 89.75% accuracy when evalu-
ated under the PASCAL VOC2007 metrics and a 12 fps speed when the input image size
was 800 × 800. Furthermore, we could achieve a 14.6 fps speed when the input image size
was 600 × 600. The results demonstrate that our ADT-Det detector can achieve the highest
accuracy of all the investigated detectors while running very fast.

Table 4. Evaluation results with the accuracy and speed of some well-known detectors on HRSC2016. All models were
evaluated under ResNet-152. * indicates that the result was evaluated under the PASCAL VOC2012 metrics.

Methods RC1&RC2 [39] RRPN [13] RRD [40] RoI-Trans. [2] DRN [32] CenterMap-
Net [41] R3Det [4] R4Det [3] ADT-Det

Input size 300 × 300 800 × 800 384 × 384 512 × 800 768 × 768 768 × 768 800 × 800 800 × 800 600 × 600 80 0× 800
AP 75.7 79.08 84.3 86.20 92.7 * 92.8 * 89.26 89.56 88.96 89.75/93.47 *

Speed Slow(<1 fps) 3.5fps Slow(<1 fps) 6 fps - - 10 fps 6.5 fps 14.6 fps 12 fps
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Figure 10. Detection performance (mAP) and speed comparison of our ADT-Det detector and 5 other
famous detectors on HRSC2016. Our ADT-Det detector achieved the highest accuracy of all the
investigated detectors while running very fast. Detailed results are listed in Table 4.

5. Conclusions

In this work, we identify inappropriate feature extraction as the primary obstacle
preventing the high-performance detection of instances with arbitrary directions, large
aspect ratios, and dense distributions. To address this, we proposed the use of an adaptive
dynamic refined single-stage transformer detector to address the aforementioned chal-
lenges, aiming to achieve a high recall and speed. Our detector realizes rotated object
detection with RetinaNet as the baseline to achieve the detection of multi-scale objects and
densely distributed objects. Firstly, the feature pyramid transformer (FPT) was introduced
into the traditional feature pyramid network (FPN) to enhance feature extraction through
a feature interaction mechanism. Secondly, the output features of FPT were fed into two
post-processing steps, considering the mismatch between the rotated bounding box and
the general axis-aligned receptive fields of CNN. Dynamic Feature Refinement (DFR) was
introduced in the refinement step. The key idea of DFR was to adaptively adjust the feature
map and reconstruct a new feature map for arbitrary-oriented object detection to alleviate
the mismatches between the rotated bounding box and the axis-aligned receptive fields.
Extensive experiments and ablation studies were carried out to test the proposed detector
based on two challenging satellite optical imagery public datasets, DOTA and HRSC2016.
The proposed detector could achieve a 79.95% mAP accuracy for DOTA and 93.47% mAP
for HRSC2016, and the running speed was 14.6 fps with an 600 × 600 input image size.
The results show that our method achieved state-of-the-art results in the task of object
detection in these optical imagery datasets.
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Abstract: Urban vegetation growth is vital for developing sustainable and liveable cities in the
contemporary era since it directly helps people’s health and well-being. Estimating vegetation cover
and biomass is commonly done by calculating various vegetation indices for automated urban
vegetation management and monitoring. However, most of these indices fail to capture robust
estimation of vegetation cover due to their inherent focus on colour attributes with limited viewpoint
and ignore seasonal changes. To solve this limitation, this article proposed a novel vegetation index
called the Multiview Semantic Vegetation Index (MSVI), which is robust to color, viewpoint, and
seasonal variations. Moreover, it can be applied directly to RGB images. This Multiview Semantic
Vegetation Index (MSVI) is based on deep semantic segmentation and multiview field coverage and
can be integrated into any vegetation management platform. This index has been tested on Google
Street View (GSV) imagery of Wyndham City Council, Melbourne, Australia. The experiments and
training achieved an overall pixel accuracy of 89.4% and 92.4% for FCN and U-Net, respectively.
Thus, the MSVI can be a helpful instrument for analysing urban forestry and vegetation biomass
since it provides an accurate and reliable objective method for assessing the plant cover at street level.

Keywords: multiview semantic vegetation index; urban forestry; green view index (GVI); semantic
segmentation; urban vegetation; RGB vegetation index

1. Introduction

The changing land use patterns and population growth have had a significant impact on
the vegetation composition in the world [1–3] which is essential for better living conditions
of city dwellers. As indicated by Wolf, K.L. [4], a city’s vegetation cover (i.e. street woods,
lawns, etc.) has long been acknowledged as a key component of urban landscape planning.
According to Appleyard [5], the instrumental role of street vegetation is to absorb airborne
pollutants through carbon sequestration and oxygen production, to mitigate noise pollution
in urban heat islands [6], and to reduce storm waters [7,8]. In addition, the life of vegetation
generally raises the aesthetic evaluation of people in urban settings [9,10]. For this purpose,
it is critical to document changes in vegetation so that land management professionals may
work to improve the urban environment. Furthermore, changes in the type of land cover
(such as building developments) have been found to have a strong correlation with the
changes of vegetation in the urban environment.

Moreover, changes in an urban environment are generally very important. Food, energy,
water, and land used by urban residents have a significant impact on the environment.
Therefore, automated detection of vegetation cover is often done through calculations of
various vegetation indexes [11] that hold important information regarding vegetation cover
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of a particular location. In the past, various algorithms were employed for the calculation of
the vegetation index using various image modalities. However, existing approaches have
highly focused on spectral analysis and color variations. For instance, Normalized Difference
Vegetation Index (NDVI) tends to amplify atmospheric noise in the Near Infrared Reflectance
(NIR) and Red bands and becomes very sensitive to background variation. Therefore, it
does not work well for RGB images for street-level vegetation analysis. Remote sensing data
collected from above by sensors (aircraft, space) misses the glimpse of urban flora at street
level. Thus, profile views of urban greenery from the road level are insufficiently assessed,
even though green indices derived from remotely sensed image data might help quantify
urban greenery. There is a distinction between vegetation view through ground experience
and the view captured by remote sensing systems [12]. Li et al. [13,14] discovered that
people had unequal access to distinct types of urban greenery (street vegetation, private
yard total vegetation, private yard trees and shrubs, and urban parks), providing the
groundwork for subsequent research into urban greenery inequity.

On the other hand, RGB based vegetation indexes are prone to wrong estimations due
to reliance on green color and ineffectiveness to capture seasonal variations. Rencai et al. [15]
utilise the green view index (GVI) as a quantitative indicator to determine how much green-
ery can be seen by pedestrians and then apply an image segmentation algorithm to figure
out how much greenery can be seen by pedestrians in street view images. Zhang et al. [16]
used an extensive street view image data set, as well as a horizontal green view in-
dex (HGVI), to calculate the quantity of greenery visible from the street in their research.
Long et al. [17] analysed 245 Chinese cities, calculating the GVI values of their central
regions and comparing them to the overall GVI conditions of the respective cities. As
a result, they discovered that more affluent and well-run cities have longer and greener
streets. Several visual qualities of streets such as salient region saturation, visual entropy, a
green view index, and a sky-openness index were measured by Cheng et al. [18].

Kendal et al. [19] used color threshold for extraction of the vegetation index. The
technique proved to be promising, but only using color features for segmentation is not
an efficient model as any clutter information in the image can match the vegetation color.
Further, in recent years, Bawden et al. and Kattenborn et al [20,21] used convolutional
neural network (CNN) for two studies: In the first approach, they used a CNN-based
approach to train data acquired from unmanned aerial vehicle (UAV)-based high-resolution
RGB imagery visual interpretation, a fine-grained map for two species of vegetation. In
the second approach, they mapped species of trees or plants cover in different vegetation
UAV RGB imagery. However, these approaches suffer due to reliance on color and specific
image features and are unable to handle large variations in vegetation characteristics.

Recent advancements in deep learning have introduced a new level of accuracy
in identifying objects of interest through semantic segmentation. Jonathan et al. [22]
introduced a fully convolutional neural network (FCN), and Dvornik et al. [23] proposed
BlitzNet for object segmentation. Yi et al. [24] constructed an instance aware based
semantic segmentation model, which utilized the advantages of FCN for segmentation
and classification. As a result of the development, the model was capable of simultaneously
recognizing and segmenting the object instances. Liang-Chieh et al. [25] applied fully
convolutional neural networks (FCN) to a multi-scale input image in order to achieve the
required results.

Motivated with the success of deep semantic segmentation, the conducted research
proposes a semantic vegetation index (SVI) for RGB images with robustness against color
changes and seasonal variations. To deal with the limitation of single image coverage, its
extension, called multiview semantic vegetation index (MSVI), is also introduced, which
can estimate vegetation cover from multiple views. The overall framework of this study is
presented graphically in Figure 1.
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Figure 1. A data flow diagram for the MSVI, which highlights the process of calculating the proposed
vegetation index.

The contribution: According to the literature, the semantic vegetation index (SVI) is
one of the first approaches to integrate deep semantic segmentation into the process of
vegetation index estimation. Although there are a variety of vegetation indexes in the
literature, they are limited to a specific image modality and color feature, or they overlook
essential flora semantic information. It makes them more susceptible to noise, resulting
in erroneous estimation. The proposed index is robust to color and seasonal variations
and works for any imaging modality. Furthermore, it can be extended to multiple views to
expand exposure and reliable calculation. The segmentation approach is not claimed to
have made a contribution in this study. Nonetheless, it compares many ways to determine
which are the most appropriate for this aim.

The rest of the paper is organized as follows: Section 2 explains the materials and meth-
ods taken into account, Section 3 presents detailed information regarding the experiments
and results achieved by the proposed methodology, Section 4 presents the comparative
analysis with the previous work , Section 5 presents a detailed discussion of the proposed
work, while Section 6 is the conclusion section of this paper.

2. Materials and Methods

2.1. Study Area

Figure 2 shows the municipal council of Wyndham (VIC, Australia), as the selected
area for this study. It lies on the western outskirts of Melbourne (VIC, Australia) and covers
an area of 542 km2. According to the 2019 census, its estimated population is 270,478.
Wyndham is the third fastest-growing council in the state of Victoria. The population
of Wyndham is diverse, and the community development projects suggest that by 2031
more than 330,000 people are expected to come and live. Wyndham is home to 16 suburbs
(Cocoroc, Eynesbury, Hoppers Crossing, Laverton North, Laverton RAAF, Little River,
Mambourin, Mount Cottrell, Point Cook, Quandong, Tarneit, Truganina, Williams Landing,
Manor Lakes, Quandong and Werribee South). The City Council of Wyndham is committed
to improving residents’ environment and livelihoods. Every year, thousands of new trees
and vegetation are planted in response to this commitment to increase Wyndham’s tree
canopy cover through the street tree planting program [26].
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Figure 2. The research area in Victoria, Australia, which was chosen for this study. (a) Victoria
(Australia); (b) Wyndham City Council, Victoria, Australia; (c) one sample site and (d) a sample street
view from a sample site.

2.2. Input Data Set/Google Street View Image Collection

In this research work, Google street view images (GSV) [27] is used for the multiview
semantic vegetation index (MSVI) estimation. A sample GSV image of a Wyndham Council
in Melbourne, Victoria, is shown in Figure 3. The GSV panorama view is identical to
the real-world view. The process of producing a 360° GSV panorama is to sequentially
capture horizontal X-number (X = 6) images and vertical Y-numbers (Y = 3) images of the
camera [28]. The GSV Image API (Google) [27], together with the position and travelling
direction of the GSV car, can be used to obtain every accessible GSV image in an HTTP
URL form, for example (https://maps.googleapis.com/maps/api/streetview?parameters
(accessed on 15 August 2021). The static GSV image, as shown in Figure 4, can be retrieved
for every point where the GSV is available by establishing URL parameters supplied via a
specific HTTP request utilising the GSV Image API (Google) [27].

Figure 3. A sample panorama image of a selected study site from Google street view imagery.

The GSV images for each sample site in six directions were collected as illustrated in
Figure 5a, and in three vertical angles to determine the green areas visible to pedestrians as
presented in Figure 5b. Therefore, 0°, 60°, 120°, 180°, 240°, and 300° were set as the heading
parameters whereas 45°, 0°, and −45° as pitch parameters. As a result, a total of eighteen
images are captured for a specific location, ensuring that no vegetation area is left out of
the index calculation. A Python programming language script is executed on all the GSV
images to read and download them from each example site by automatically parsing the
GSV URL.

66



Remote Sens. 2022, 14, 228

Figure 4. A static image of a research site taken from Google Street View imagery.

Figure 5. (a) Sample of images taken from pedestrian view in six different angles and (b) from
pedestrian view, three images taken from three vertical angles (45°, 0°, −45°).

2.3. Deep Semantic Segmentation

The act of grouping sections of an image in such a way that each pixel in a group
correlates to the object class represented by the group as a whole can be defined as semantic
segmentation for images in this manner [29,30]. The object classes in the current work
correspond to trees and green vegetation terrain. Images can be segmented by allocating
each pixel of an input image to a label class object, which is referred to as semantic
image labelling [31]. Image segmentation is also known as semantic image labelling.
This method often combines image segmentation with object identification techniques to
produce a final result. Various deep learning-based segmentation models, such as FCN [32],
DeepLabv3+ [33], and Mask R-CNN [34], are being developed for use in a variety of
applications and environments. For the purpose of semantic vegetation segmentation
and to calculate the vegetation index from GSV imagery in this research work, FCN [22]
and U-Net [35] semantic segmentation models are used. Their selection was based on
their high precision and excellent performance in medical imaging area. The results of the
experiments demonstrate that deep learning-based segmentation models are effective at
segmenting vegetation images using semantic attributes.

2.3.1. Fully Convolutional Network (FCN)

Fully Convolutional Network (FCN) [22] uses locally connected layers, such as up-
sampling, pooling, and convolution, to achieve segmentation. The architecture does not
include any dense layers in order to reduce the amount of time it takes to compute and
the number of parameters it requires. A segmentation map uses two paths to obtain
output: the first is a down-sampling road, which is used to collect semantic/contextual
information, and the second is an up-sampling path, which is used to recover spatial
features. The architecture of FCN is depicted in Figure 6. Fully convolutional network
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architecture (FCN) was presented by Long et al. [22] for robust segmentation by adopting
fully convolutional layers in place of the last fully linked layers. This approach allows
the network to generate a dense pixel-wise prediction as a result of the advancement.
The combination of up-sampled outputs with high-resolution activation maps results
in improved localisation performance, which is then passed to the convolution layers
to produce the correct output. The performance of FCN motivated to employ it as an
important component of the proposed approach.

Figure 6. The architecture of fully convolution network (FCN) showing network processes. The
masks for trees and vegetation are shown as RGB color codes.

2.3.2. U-Net

The second model employed in this work is U-Net [35], which has a similar encoder-
decoder architecture to that of FCN but has two significant traits that distinguish it from
the former. Since U-Net is symmetric, it bypasses the connections between the up-and
down-sampling paths, which is useful when employed as a concatenation operator. Using
the color variable, models assign a color to an item after they have been trained. The U-Net
network (Figure 7) is built on an encoder-decoder architecture [35]. The encoder consists
of a stack of convolutions and max-pooling layers that work together. The decoder is a
symmetric expanding path that up-samples the feature maps with the use of learnable
deconvolution filters, which can be learned. The major innovation brought about by
this network is the way in which the so-called skip connections are utilised. To be more
specific, they enable the concatenation of the output of the transposed convolution layers
with the corresponding feature maps from the encoder stage during the convolution
stage [36]. The main objective of this step is to get all the fine characteristics that were
learned throughout the contracting stages in order to restore the spatial resolution of the
original input image [35].

Figure 7. The architecture of U-Net showing network processes. The masks for trees and vegetation
terrain are shown as RGB color codes.
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According to standard practice, in the U-Net approach, the input image is initially
processed by an encoder path, which is comprised of convolutional and pooling layers that
degrade the spatial resolution of the input image. It is then followed by a decoder path that
restores the original spatial imagery resolution by adopting up-sampling layers followed
by convolutional layers, which is a technique known as “up-convolution”. Apart from
that, the network makes use of so-called skip connections, which connect the output of the
relevant layers in the encoder path to the inputs of the decoder path by adding them to the
inputs of the decoder path, whereas FCN allows pixel-wise classification performed for
segmentation where features from initial convolutional layers are upsampled to develop
deconvolution layers. These deconvolution layers develop the same size image, which is
segmented on the basis of learnt features. Fine-tuning was performed to allow the network
to learn efficient features of the vegetation region.

2.4. Vegetation Index Calculation from RGB Images

Various approaches are adopted in the literature for vegetation index calculation. Some
of those are listed in Section 2.4.1. However, most of them used either color, threshold, or
green area segmentation that might lead to promising results. To achieve robustness in
vegetation index calculation, a semantic approach based on the unique color for each class
of plants is proposed in this article. RGB color codes (107, 142, 35 and 152, 251, 152) for trees
and vegetation terrain were assigned, respectively. After segmentation of the vegetation
(trees and vegetation terrain), the respective masks are applied to calculate an accurate
vegetation index as discussed in Section 2.4.2. For a better understanding of the RGB color
space, the 3D data distribution in the RGB domain in Figure 8 is shown.

Figure 8. A sample image is presented in 3D color spaces for better understanding of data distribution:
(a) sample image and (b) data distribution in RGB color space. As data in different color channels is
tightly correlated, it provides inherent difficulties to differentiate color and semantic information in
RGB domain.

2.4.1. Green View Index (GVI)

Mohamed et al. [37] explored extracting green vegetation from remotely sensed mul-
tispectral images. It has been identified that both, i.e., near-infrared and red bands, are
being utilised quite often for vegetation detection. One of the primary reasons is that on red
bands, the vegetation shows less absorption, and on infrared, they show great reflection.
However, GSV images cover only the blue, red, green, and near-infrared bands. It was
established by Yang et al. [12] that the GVI value was affected by two factors: the size of
a tree’s crown and the distance between the camera and the subject. A non-supervised
classification methodology was used by Li et al. [13] to extract green vegetation from GSV
images, which was justified by the fact that a significant number of GSV images were
not available in the near-infrared band. According to their findings, green vegetation is
significantly less reflective in red and blue bands. The red bands, on the other hand, are
extremely reflective. As a result of this phenomenon, they developed extracting green
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vegetation from GSV images based on the natural hues of the images. There are a number
of steps involved in the workflow.

Step-1: First of all, the subtraction of red band from green band generates Diff 1, and
subtraction of blue band from green band gives Diff 2.

Step-2: Then the two images Diff 1 and Diff 2 were multiplied to create one Diff image.
Normally, the green vegetation has greater reflectance values in the green band
than the other two red and blue bands, and hence, the Diff image has positive green
vegetation pixels.

Step-3: The pixels that have lower values in the green band as compared to the red and
blue bands exhibit negative values in the Diff image

Step-4: As a result, an additional criterion was added stating that pixel values in the green
band must be greater than those in the red band.

Usually, there were multiple spark points in the resulting images, after the initial
classification images utilising the pixel-based classification approach were obtained as
described in the steps above (Steps 1–4) [38]. The spectral vegetation variation has led to
classifying individual pixels differently from their surrounding areas, leading to sparks in
the classed image.

Green View Index =
Number o f green pixels segmented
Total Number o f pixels in an image

(1)

The above equation gives information regarding the available greenery in the image.
Yang et al. [12] proposed the Green View Index (GVI), which measures the visibility of
urban woods in terms of greenery. Its GVI was defined as the relationship between the
total green space and four image(s) taken at the intersection of the road and the sum of the
four images taken at the intersection as shown in the following equation:

Green View Index =
∑4

i=1 Areag−i

∑4
i=1 Areat−i

∗ 100% (2)

where the Areag−i presents the green pixels of the images taken in the direction of ith out
of the four images taken in the (north, east, south, and west) directions. Areat−i represents
the total number of pixels in the image in the direction of ith. According to Li et al. [13],
in this scenario, some surrounding vegetation may be missed from the calculation of the
GVI since only four images cannot be seen in the fields of vision from the pedestrian view.
Therefore, they modified the Equation (2) as below:

Green View Index =
∑6

i=1∑3
j=1 Areag−ij

∑6
i=1∑3

j=1 Areat−ij
∗ 100% (3)

where Areag−ij denotes the number of green pixels in one of these images, which were
taken in six directions with three vertical view angles for each sample site and were then
averaged over all six directions. As a result, Areat−ij represents the total amount of pixels
included within each one of the eighteen GSV images.

2.4.2. The Proposed Semantic Vegetation Index (SVI)

For robust calculation of the vegetation index of each sample location on the road or
street, the approach of semantic pixels (SP) is used, which is based on the unique color
pixels assigned to vegetation’s specific class (Vegetation terrain and trees) and are extracted
based on the deep features through the use of a deep neural network. For index calculations,
Google street view (GSV) images were used as such dataset is readily available. Therefore,
in this investigation, a single image was used to calculate the vegetation index accurately
based on the semantic pixels, so to cover all the vegetation area in the image. Hence, in
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each sample image, the number of semantic pixels will be determined as SPa, with the area
being the total semantic pixel numbers in one GSV image. The original Equation (1) has
been updated and is now referred to as the semantic vegetation index (SVI).

SVI =
∑n

i=1 SPa−i

∑n
i=1 Areat−i

∗ 100% (4)

where SVI stands for semantic vegetation index, n is the total number of images, SPa−i
denotes the amount of semantic pixel area representing greenery in an image, and Areat−i
denotes the total amount of pixels in an image.

Similarly, to calculate the multiview semantic vegetation index, a total of six images
covering the 360° horizontal environment with three vertical angles of, i.e., 45°, 0°, and −45°
are used. The process is shown in Figure 5b to calculate the vegetation index accurately
based on the semantic pixels so that to cover all vegetation area. Hence, in each sample site,
the number of semantic pixels will be determined as SPa−ij, with the Area being the total
semantic pixel numbers in one of the 18 GSV images. Equation (3) has been modified to
utilise semantic pixels for calculating the multiview semantic vegetation index (MSVI).

MSVI =
∑6

i=1∑3
j=1 SPa−ij

∑6
i=1∑3

j=1 Areat−ij
∗ 100% (5)

where MSVI stands for multiview semantic vegetation index, SPa−ij presents semantic
pixels area of vegetation in input images which are taken from different pitch angles (45°,
0° and −45°) vertically as well as six horizontal direction covering 360° area, and Areat−ij
represents the sum of pixels in an image from the eighteen images of GSV.

3. Results

3.1. Preparation and Annotation of Data Set

For the experiments and implementation of the proposed model, first, a total of 3000
Google street view (GSV) images were downloaded using a python script. The next step
was the pre-processing of the dataset so that the images could be used for training and
testing phases. For the annotation of the training data, a cloud-based tool known as
“Apeer”, a ZEISS initiative [39], has been used. Image annotation generates labels that serve
as the basis for machine learning training. Machine learning accuracy is determined by the
amount of training data as well as the accuracy of annotations. The process of Annotation
is summarised in Figure 9.

3.2. Experimental Environment Configuration

For the experiments and results, the hardware and software resources used are listed
in Table 1.

Table 1. Configuration of experimental environment.

Item Name Parameter

Central processing unit (CPU) Intel i7 9700k

Operating system MS Windows 10

Operating volatile memory 32GB RAM

Graphic processing unit (GPU) Nvidia Titan RTX

Development environment configuration Python 3.8 + TensorFlow 2.5 + CUDA 11.2 +
cuDNN V8.1.0 + Visual Studio 2019
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Figure 9. The process of data annotation shown in this figure: (a) a data annotation cloud based
platform known as “Apeer”, (b) sample image for annotation, (c) after completion of annotation, and
(d) area zoomed for annotation in (c) and pointed with arrow.

3.3. Training of Deep Semantic Segmentation Models

The complete data set was split up into three distinct sections: training, validation, and
testing sets, each comprising 80%, 15%, and 5% of the total, respectively. Before starting the
training, hyperparameters were set to avoid the overfitting and underfitting issues of the
model. The hyper-parameters used for the training of semantic segmentation model were
the following: batch size kept as 16, learning rate as 0.0001, loss function as categorical
cross-entropy, number of iteration/epochs as 200, NMS threshold as 0.45, and an optimiser
as stochastic gradient descent “SGD”. The training loss, validation loss, training accuracy
and validation accuracy curve graphs are presented in Figures 10a,b and 11a,b for the FCN
Model and the U-Net Model, respectively. The accuracy curve for the U-Net beats the
accuracy curve for the FCN, as shown in the graph in Figure 11.

Figure 10. FCN segmentation model trend graphs for (a) training and validation loss and (b) training
and validation accuracy.
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Figure 11. The U-Net segmentation model trend graphs for (a) training, validation loss and (b) train-
ing and validation accuracy.

Some of the sample results using FCN and U-Net segmentation models are shown in
Figure 12, and vegetation index values are computed using Equation (4). The vegetation
index values calculated from FCN for the test input images are 43%, 30% and 32%, while
vegetation index values calculated from U-Net for the test input images are 41.4%, 33%,
and 37%. The results show that the U-Net segmentation model gives comparatively more
accurate and promising results than the FCN segmentation model. The ground truth
results are computed manually to compare the results after masking manually and then
calculating the pixel values of the vegetation, using Adobe Photoshop application software.
The computed results are in percentage, as evident from Equation (4). Thus, on the basis of
the ground truth data, U-Net vegetation index results are quite promising and are more
close to the ground truth results.

Figure 12. Segmentation and extraction of vegetation results from test input images: (a) input images,
(b) results generated using FCN and (c) results generated using the U-Net model.

3.4. Performance Evaluation of Semantic Segmentation Networks

The performance of the semantic segmentation technique is evaluated using the
metrics of precision, recall, F1-score, pixel accuracy (PA), intersection over union (IoU),
and mean intersection over union (mIoU). Figure 13 shows the results of FCN and U-Net.
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The accuracy of object contour segmentation is measured using the PA method, while the
accuracy of an object detector on a particular dataset is measured using the IoU metric. The
mIoU is the average of IoU and is defined to show the overall enhancement of semantic
segmentation accuracy.

3.4.1. Precision, Recall, and F1-Score

FCN and U-Net segmentation models were compared in terms of precision, recall,
and F-measure. The results of the comparison are shown in Table 2.

Precision is defined as the relationship between the number of accurately segmented
vegetation pixels and the total number of pixels segregated as a vegetation region by the
technique. The recall is the ratio between the number of successfully segmented vegetation
pixels and the total number of vegetation pixels in the labelled image.

Precision =
tp

tp + f p
(6)

Recall =
tp

tp + f n
(7)

The equation of F1-score is shown below,

F1 − score =
2 ∗ Precision ∗ Recall

Precision + Recall
(8)

3.4.2. Pixel Accuracy (PA)

In the evaluation of segmentation models, the pixel accuracy metric is the most
commonly employed. It is defined as the accuracy of the pixel-wise prediction, given as

PA =
∑k

i=0 pii

∑k
i=0 ∑k

j=0 pij
(9)

where k represents the total number of pixels in a test image, and pii is used to present the
true positive predicted pixels as of class i, while pij presents the ground class i pixels as the
number of pixels of class j.

3.4.3. Intersection Over Union (IoU)

Intersection over Union (IoU) is also known as the Jaccard Index [40], and it is a
typically used assessment statistic for segmentation models that is used to calculate their
overall performance. As shown below, it is commonly defined as the ratio of intersection
and union areas between the projected segmentation map and ground truth.

IoU =
pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(10)

where k indicates the total number of classes, pii represents the number of true positives,
and pij and pji represent the number of false positives and false negatives, respectively.

3.4.4. Mean-IoU (mIoU)

mIoU is yet another matrix that is commonly used in segmentation models. It is
calculated as the average value of all IoU label classes taken as a whole. This type of report
is commonly used to summarise the performance of segmentation models, given as

mIoU =
1

k + 1

k

∑
i=0

pii

∑k
j=0 pij + ∑k

j=0 pji − pii
(11)
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where k indicates the total number of classes, pii represents the number of true positives,
and pij and pji represent the number of false positives and false negatives, respectively.

Figure 13 and Table 2 show the results achieved by different segmentation models
used for vegetation index calculation on the basis of semantic pixels in an image. The
U-Net model showed really promising results.

Figure 13. Performance evaluation of FCN and U-Net segmentation models.

Table 2. Performance evaluation results.

Segmentation Model Precision Recall F1-Score Pixel Accuracy IoU mIoU

FCN 93.2 87.3 90.1 89.4 82.3 80

U-Net 95 90.8 92.3 92.4 86.5 83

4. Comparative Analysis

The extraction of green vegetation from street view images is a difficult task because
of a variety of factors, including the presence of shadows and spectral confusion between
vegetation and other artificial green features (green walls, windows, shadows, signboards,
etc.) Two studies are most relevant to this research: Yang et al. [12] used four GSV images
in their work. As a result, Li et al. [13] modified the Green View Index (GVI) calculation,
and they subsequently conducted a case study assessment of street vegetation using GSV
images in the East Village of Manhattan District, New York City. They assert that the
modified GVI may be a relatively objective measure of street-level greenery and that the
use of GSV in conjunction with the modified GVI may be particularly effective in directing
urban landscape planning and management practices.

For the purpose of comparison with the literature, sample images containing green
vegetation, as well as green walls, signboards, and décor, were segmented and extracted for
vegetation index calculation. Sample images segmentation results based on Li et al. [13] and
Rencai et al. [15] are presented in Figure 14 and Table 3. From the results, it can be seen that
the results of segmentation also included other green objects as vegetation because both
the studies are principally based on green color. Both of the studies have mentioned this
drawback in their studies and results, thus yielding an inaccurate vegetation index because
of the inclusion of other green color objects. Hence, the vegetation index calculated values
are higher as compared to our results. However, this study’s results included vegetation
only while ignoring other green color objects for calculating the index because it is based
on semantic segmentation, thus giving an accurate vegetation index value.
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Figure 14. A sample of images and their segmentation (vegetation extraction) results using different
approaches: (a) Sample input images, (b) Li et al. [13], and (c) Rencai et al. [15] and (d) SVI (proposed).

Table 3. Comparison table for vegetation segmentation and their vegetation index calculation using
various vegetation extraction and index calculation approaches.

S.No. GVI [13] GVI [15] SVI [Ours]

1 57.50% 55.91% 47.55%

2 46.62% 43.12% 35.44%

3 52.68% 51.25% 40.33%

4 43.08% 40.55% 27.42%

The multiview semantic vegetation index calculation for panoramic images taken at
different angles horizontally (a) and with varying angles of pitch vertically (b), as shown in
Figure 5, and the respective calculated vegetation index values are presented in Table 4. In
the table, it is clear that the results of Li et al. [13] and Rencai et al. [15] are quite similar as
both studies rely on the green color; hence, there are chances that during the calculation
of the vegetation index, most of the time other objects of green color were included as
mentioned before in the sample segmentation result shown in Table 3. Therefore, the results
are inaccurate, and the vegetation index percentage indicated is larger than ours because
both comparison studies employed the green area index, and the tram in the image was
also used to compute green color in those studies shown in Figure 5. On the other hand,
the proposed model extracted only vegetation index. The input image on the second row in
the Figure 14 is taken from the paper by Li et al. [13] only for comparison purposes. There,
they mentioned that their algorithm is based on the green color, thus including another
green object during the calculation of the green view index.

Table 4. Comparative analysis of vegetation index calculation through various approaches.

Li et al. [13] Rencai et al. [15] MSVI [Proposed]

63.40% 62.9% 56.19%
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5. Discussion

Based on the research study, the semantic segmentation leads to accurate index calcu-
lation. The publicly available GSV imagery of the urban areas was used to quantify street
greenery, i.e., SVI of the urban streets. GSV are freely available to the public and can be
used in machine learning/computer vision in an efficient way to perform multiple activities
automatically. The SVI can be utilised as useful information/data for a better assessment of
urban greenery by considering people’s envisioned vegetation on a street scale for urban
planners and others. To assess the greenery of street vegetation, GSV images captured from
the ground should be similar to those of pedestrians.

A single vertical point of view is insufficient to express correctly the surrounding
vegetation index that pedestrians may observe; two vertical points of view are required.
Therefore, the multiview semantic vegetation index (MSVI) is employed for six GSV images
in this experiment to calculate the vegetation index, each spanning a 360° horizontal and
three vertical angles of 45°, 0° and −45°, to calculate the vegetation index appropriately on
the basis of the semantic pixels.

According to the findings of this study, GSV images are qualified for assessing street
greenery, and the modified GVI may be a more objective measurement of street-level green-
ery. The multiview semantic vegetation index (MSVI) took advantage of the characteristics
of GSV images, used 18 GSV images taken from different viewing angles, making the
index more efficient for evaluating street greenery in urban areas. Because it measures the
amount of visible urban greenery on the ground, the SVI formula is simpler to understand
for the general public. As a result, it can give a monitoring tool to analyze gains or losses in
urban vegetation. It may serve to help urban planners select the sites, sizes and varieties of
greenery for best effect in the planning stage of an urban greening program. It, therefore,
seems to be a promising instrument, not a mere gadget for users, for future urban planning
and urban environmental management.

The strength of SVI lies in its robustness to color variations and viewpoint constraints.
The limitation of the approach is its reliance on captured viewpoints and attributes of the
captured image, like its zoom level and image quality. Therefore, if SVI is utilised for
long-term vegetation monitoring, it is proposed that proper dataset normalisation and
image registration scale or affine invariant [41] be used before SVI estimation.

6. Conclusions

This research paper proposes a robust vegetation index based on semantic segmenta-
tion called a multiview semantic vegetation index (MSVI). The Google Street View (GSV)
imagery dataset is used for calculating and indexing the vegetation cover of an urban area
of the Wyndham City Council in Melbourne, Australia. The MSVI is based on the deep
features learned from a deep neural network to calculate the vegetation index of each sam-
ple location in the urban area. For vegetation segmentation, different deep learning-based
semantic segmentation models, such as FCN and U-Net, were tried. Using the GSV data set,
both segmentation models were trained and tested to improve their overall performance.

The proposed method for segmenting urban vegetation areas has yielded promising
results. Generally speaking, U-Net shows better results than FCN. FCN and U-Net models
achieve Precision of 93.2% and 95%, Recall of 87.3% and 90.8%, F1-score of 90.1% and 92.3%,
pixel accuracy (PA) of 89.4% and 92.4%, IoU of 82.3% and 86.5%, and mIoU of 80% and 83%,
respectively. The proposed MSVI index measures the broad visible urban greenery on the
ground, which can assist urban planners and strategists in better understanding urban
green spaces.

We intend to use this approach in the future for real-time vegetation index calculation
using Google panoramic cameras such as Pilot Era 360°, Insta360 pro, and Insta360 pro2,
which will be of great help in the quest for ecological improvement.
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Abstract: The tidal flat is long and narrow area along rivers and coasts with high sediment content,
so there is little feature difference between the waterbody and the background, and the boundary
of the waterbody is blurry. The existing waterbody extraction methods are mostly used for the
extraction of large water bodies like rivers and lakes, whereas less attention has been paid to tidal flat
waterbody extraction. Extracting tidal flat waterbody accurately from high-resolution remote sensing
imagery is a great challenge. In order to solve the low accuracy problem of tidal flat waterbody
extraction, we propose a fine-grained tidal flat waterbody extraction method, named FYOLOv3,
which can extract tidal flat water with high accuracy. The FYOLOv3 mainly includes three parts:
an improved object detection network based on YOLOv3 (Seattle, WA, USA), a fully convolutional
network (FCN) without pooling layers, and a similarity algorithm for water extraction. The improved
object detection network uses 13 convolutional layers instead of Darknet-53 as the model backbone
network, which guarantees the water detection accuracy while reducing the time cost and alleviating
the overfitting phenomenon; secondly, the FCN without pooling layers is proposed to obtain the
accurate pixel value of the tidal flat waterbody by learning the semantic information; finally, a
similarity algorithm for water extraction is proposed to distinguish the waterbody from non-water
pixel by pixel to improve the extraction accuracy of tidal flat water bodies. Compared to the other
convolutional neural network (CNN) models, the experiments show that our method has higher
accuracy on the waterbody extraction of tidal flats from remote sensing images, and the IoU of our
method is 2.43% higher than YOLOv3 and 3.7% higher than U-Net (Freiburg, Germany).

Keywords: tidal flat water; YOLOv3; similarity algorithm for water extraction

1. Introduction

Water resources are closely related to human survival and development, and many
researchers focus on how to obtain water resource information quickly and accurately.
The extraction and detection of the water bodies from remote sensing images is one of
the main ways to obtain water resource information. It can be widely applied in ecosys-
tem protection and restoration, river supervision, pollution control, and infrastructure
construction [1,2]. In recent years, with the rapid development of remote sensing satellite
technology, obtaining water resource information from remote sensing images [3] has
gradually replaced manual measurement, and the images are widely applied in water
resource surveys and flood predictions.

At present, scholars have proposed a variety of water extraction methods for different
satellite imagery, which can be summarized into three categories: visual interpretation
methods [4], extraction methods based on spectral bands [5–9], and machine learning
methods [10–12]. However, these methods are mainly applied to extract large water bodies
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like rivers and lakes, and there are few waterbody extraction methods for tidal flats. The
tidal flat area [13] refers to the tidal invasion area between the high tide level and the low
tide level along rivers and coasts, etc. The water bodies in this kind of area are relatively
long and narrow, with high sediment content. Due to the influence of tides, there is little
feature difference between the waterbody and the background, and the boundary of the
waterbody is blurry. Meanwhile, the mixture of water and sand makes the spectral band
characteristics of the water in the tidal flat area different from the water in the other areas.
Therefore, the methods based on spectral bands are not suitable for tidal flat waterbody
extraction. The machine learning method used for water extraction is usually based on
supervised learning, so the training dataset is necessary. However, there is not public
training dataset for tidal flat waterbody extraction. Hence the machine learning methods
usually have poor ability and do not learn effectively due to the limited training dataset
and have an accuracy bottleneck in the water extraction as a result.

The boundary of the waterbody is blurry in tidal flat area, in order to solve the
low accuracy problem of its waterbody extraction caused by little feature difference be-
tween the waterbody and the background, this paper proposes a fine-grained tidal flat
waterbody extraction method, named FYOLOv3. The FYOLOv3 mainly includes three
parts: an improved object detection network based on YOLOv3 (Seattle, WA, USA), a
fully convolutional network (FCN) without pooling layers, and a similarity algorithm for
water extraction.

In this paper, our contributions are as follows:

(1) An improved object detection network was introduced, which contains two modules,
one is a 13-layer convolutional neural network (CNN) as the backbone network, and
the other is the feature pyramid network for multi-scale water detection.

(2) A FCN without pooling layers is proposed to obtain the accurate pixel value of
the tidal flat waterbody by learning the semantic information, complete the initial
extraction of the waterbody and realize cross-channel information fusion.

(3) A similarity algorithm for water extraction is proposed to distinguish the waterbody
from non-water pixel by pixel to improve the extraction accuracy of tidal flat wa-
terbodies, in which a standard water pixel valued and similarity between the water
pixels and the standard water pixels are introduced, respectively.

The rest of this paper is organized as follows. In Section 2, we introduce some classical
methods and analyze the YOLO models. In Section 3, a fine-grained tidal flat waterbody
extraction method FYOLOv3 is described in detail. The experiments and analysis are
presented in Section 4. Finally, the conclusion of this paper with some discussions and
future work are given in Section 5.

2. Related Work

2.1. Water Extraction Methods

Spectral band analysis methods are the earlier methods for waterbody extraction
from remote sensing images [5–9] by analyzing the differences of absorption and reflection
of different ground objects for each band spectrum, then obtaining the water region in
the remote sensing images. There are three methods based on spectral analysis: single
band threshold method [14], multi-band spectral relationship method [15], and water
index method [8]. Xu et al. [8] proposed an improved normalized difference water index
(MNDWI) based on the band combination of the normalized water index. The experiments
show that the method is efficient for the extraction of urban water bodies, and effectively
solves the influence of urban building shadow. Guo et al. [7] proposed a weighted nor-
malized difference water index (WNDWI) to solve the influence of turbid water, small
water bodies and shadow areas on water extraction. The method was tested on Landsat
images and achieved good results. Methods based on spectral analysis usually only use the
spectral information of remote sensing images, which does not effectively use the texture,
space, surrounding background, and other information, so its extraction ability has certain
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limitations. These methods have specific requirements for the band of remote sensing
images and have low applicability as a result.

Some machine learning methods, such as support vector machine (SVM) and max-
imum likelihood classification [10–12] try to balance the learning effectiveness and the
interpretability of the models and provide a solution framework for the classification prob-
lem of limited samples. This kind of method improves the accuracy of target extraction in
a certain range by learning the distribution characteristics of the training data. However,
they have poor ability and do not learn effectively due to the limited training dataset and
have an accuracy bottleneck in the water extraction.

With the concept of deep learning proposed by Hinton et al. [16] in 2006 and the
outstanding achievements of deep convolution neural network proposed by Alex [17] in
natural images recognition in 2012, deep learning ushered in a new research phase. Many
experts and scholars began to apply deep learning technology to obtain object extraction
from remote sensing images. Zhong et al. [18] used convolution neural network model to
extract waterbody from remote sensing images, and the experiments showed that convo-
lution neural network is more efficient to extract waterbody from remote sensing images
than normalized water index. Liang et al. [19] introduced dense connection structure in the
full convolution network to reduce the shallow feature loss, get more detailed information
from the remote sensing images, and achieve better water extraction. Song et al. [20] used
the self-learning ability of deep learning to construct a modified Mask R-CNN method
which integrates bottom-up and top-down processes for water recognition. Yu et al. [21]
presented a novel deep learning framework for waterbody extraction from Landsat images
considering both its spectral and spatial information, which is a hybrid of CNN and logistic
regression classifier. Li et al. [22] adopted a fully convolutional network (FCN) to extract
water bodies in the case of limited training data, which consists of an encoder for extracting
multiscale features and a decoder for recovering spatial contexts. Wang et al. [23] pro-
posed an end-to-end trainable model named the multi-scale lake water extraction network
(MSLWENet) to extract lake water from Google remote sensing images. Yu et al. [24]
developed a novel self-attention capsule feature pyramid network (SA-CapsFPN) to extract
water bodies from remote sensing images. Li et al. [25] built a deep learning model for
water extraction based on the EfficientNet-B5 (Perdriel, Argentina).

2.2. YOLO Models

The excellent performance of deep convolution neural network [17] has been demon-
strated in computer vision. Recently, YOLO models such as YOLOv1 (Seattle, WA,
USA) [26], YOLOv2 [27], and YOLOv3 [28], were proposed one after another. The YOLOv1
model is based on GoogLeNet (Mountain View, CA, USA) [29], which is mainly composed
of convolutional layers and fully connected layers to achieve the object detection fast. The
model transforms the object detection problem into coordinate regression problem and
carries out the classification and regression of target objects. Because the two prediction
frames generated in YOLOv1 (Seattle, WA, USA) for each lattice in the images can only
predict one target object, the detection accuracy of adjacent objects whose center point falls
in the same lattice is reduced as a result. In view of the above shortcomings, YOLOv2
(Seattle, WA, USA) proposes a variety of strategies to improve the network framework,
which significantly improves the speed and accuracy of object detection. In order to further
optimize the YOLO models, the DarkNet-53 network is used as the object feature extractor
in YOLOv3 (Seattle, WA, USA) model, and the output module uses the feature pyramid
structure to achieve three-way outputs to complete the accurate detection of the targets
with different sizes [28].

3. Methodology

To solve the low accuracy problem of water extraction for tidal flats, this paper
proposes a fine-grained tidal flat waterbody extraction method for high-resolution remote
sensing images, named FYOLOv3. The key parts of our method are as follows, firstly, the
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improved object detection network based on YOLOv3 (Seattle, WA, USA) is proposed and
used to locate the tidal flat waterbody, and the frame coordinates of the corresponding
waterbody are obtained; secondly, four images with size of 32 × 32 are clipped from the
obtained border region, which are used as the input of the FCN without pooling layers to
get the initial waterbody extraction; finally, the similarity algorithm for water extraction is
used to judge all pixels in the obtained initial waterbody region to optimize and improve
the initial waterbody extraction. We list the steps of our method as follows:

1. Construction of training dataset: This part mainly includes the data preprocessing,
data augmentation and waterbody labeling of remote sensing images.

2. Model construction: Based on the YOLOv3 (Seattle, WA, USA) model, this paper
constructs an improved network model for water detection. It uses 13 convolutional
layers as the model backbone network to meet the accuracy requirement of water
detection, while reducing the time cost and alleviating the overfitting phenomenon; it
also uses two branch structures as the output module to avoid the problem of missing
extraction in the waterbody extraction caused by the small prior box. FCN without
pooling layers followed the improved object detection network to obtain the semantic
information of waterbody in a tidal flat area.

3. Model training: The cross entropy is used as the loss function, and the backpropaga-
tion algorithm is used to train the internal parameters of the network model.

4. Detection and initial extraction: The trained network models are used to detect the
water from the remote sensing images to locate the waterbody area and obtain the
initial waterbody extraction, respectively.

5. Similarity algorithm for water extraction: This algorithm is used to optimize and
improve the initial waterbody extraction by similarity judgment.

The architecture of our method is shown in Figure 1, where the 13-layer CNN is
constructed for water feature extraction and mainly composed of convolutional layers,
pooling layers, and batch standardization layers. The multi-scale feature pyramid net-
work uses the different feature maps to get the narrow and long waterbodies and small
waterbodies in the tidal flat area, respectively. Hence, our object detection network can
guarantee the water detection accuracy while reducing the time cost and alleviating the
overfitting phenomenon.

Figure 1. Fine-grained tidal flat waterbody extraction method.
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3.1. Construction of Training Dataset
3.1.1. Preprocessing

The GF-2 remote sensing satellite is the first civil high-resolution satellite in China,
and it was successfully launched in 2014. GF-2 satellite has high spatial resolution, accurate
positioning, and strong maneuverability. The remote sensing images used in this paper
are the Level-1 product data. Therefore, it is necessary to preprocess the remote sensing
images first. The preprocessing of GF-2 remote sensing images used in this paper mainly
includes radiometric calibration [30], atmospheric correction [31], orthorectification [32],
and image fusion [33].

1. Radiometric correction and orthorectification of multispectral images

Radiometric correction includes two parts: radiometric calibration and atmospheric
correction. Radiometric calibration refers to convert the brightness value of pixels into ab-
solute radiance value, which helps researchers to compare remote sensing images acquired
from different types of sensors at different times. Atmospheric correction refers to the pro-
cess of eliminating the radiation error caused by atmospheric influence and obtaining the
true reflectance of surface objects. Orthorectification is to correct the geometric distortion of
remote sensing images and the plane orthophotos are obtained at last. The preprocessing
example of the multispectral images is shown in Figure 2.

  
(a) (b) 

Figure 2. Comparison of multispectral images before and after preprocessing. (a) Multispectral
image before preprocessing; (b) multispectral image after preprocessing.

2. Orthorectification of panchromatic images

Different from multispectral images, the band range of panchromatic images in GF-
2 is 0.45–0.90 μm, which includes multiple wavelength ranges. The attenuation of the
atmosphere is selective for the lights with different wavelengths, and each wavelength
is affected by the atmosphere differently. Therefore, it is usually impossible to carry out
an atmospheric correction for panchromatic images. The number and distribution of
controlled points in a remote sensing image influence the error of the orthorectification
and the mean square error is used to evaluate the accuracy of orthorectification. Fan et al.
made the accuracy analysis of GF-2 satellite image according to the mentioned evaluation
indexes [34], and the RPC orthorectification was proved better to correct the geometric
distortion in panchromatic images. Hence, we use the RPC orthorectification to deal with
the panchromatic images in this paper, and the experiment is shown in Figure 3.
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(a) (b) 

Figure 3. Comparison of panchromatic images before and after orthorectification. (a) Panchromatic
image before orthorectification; (b) panchromatic image after orthorectification.

3. Image fusion

Image fusion is often used to enrich the image information. It fuses the images of
the same area from different channels and finally obtains the fused images with more
information and higher quality.

In this paper, the NNDiffuse Pan Sharpening [35] method is used to fuse the multi-
spectral images and panchromatic images. The multispectral images and the panchromatic
images are obtained synchronously by different sensors installed in the GF-2, and the
former has higher resolution but less spectral information, and the latter has more spectral
information and lower resolution. If we fuse them, we could get the fused image with high
resolution and more spectral information, as shown in Figure 4.

  
(a) (b) 

Figure 4. Comparison of multispectral images before and after fusion. (a) Original multispectral
image; (b) image after fusion.

4. Band combination selection

GF-2 multispectral images contain redundant data because of the close correlation
between different bands. In order to make full use of the features of GF-2 multispectral
images, reduce data redundancy and maintain the original characteristics of the images,
we need to make the optimal band combination for GF-2 multispectral images.

There are three principles to choose the optimal band combination: the information
in a single band should be as much as possible; the information intersection between two
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bands should be less; the spectral differences of different types of ground objects after
the band combination should be getting clearer [18]. Because the spectral bands of GF-2
multispectral images are the same as the GF-1 multispectral images, according to the above
three principles, it is appropriate to use the standard deviation and Optimum Index Factor
(OIF) [36] to study the best band combination of GF-2 images. Finally, we get band 2,
band 3, and band 4 as the combined bands to generate the original image in our study. The
remote sensing image after band combination is shown in Figure 5.

 

Figure 5. Image after band combination.

3.1.2. Data Labeling and Augmentation

1. Data labeling

The data labeling mainly includes two parts: one is to label a region in which the
waterbody is located to get the training dataset for our proposed object detection network
model and the other is to label the waterbody to get the training dataset for our FCN
without pooling layers.

(a) Labeling a region: We use the LabelImg (Barcelona, Spain) to label the region in which
the waterbody is located. The water area is labeled by a rectangular frame, and a xml
file is generated finally. As shown in Figure 6, the label in the file records the name,
path, water area category and coordinates of the frame.

 

Figure 6. Example of labeling a region.
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(b) Waterbody labeling: The Labelme is used to label the waterbody. The labeled image
is shown in Figure 7. In the labeled image, the labeled information of the waterbody
is saved in the index dataset. Because the extraction of waterbody is essentially
binary classification, the black area in the labeled image is the background area and
represented by 0. The red area is the waterbody and is represented by 1.

  
(a) (b) 

Figure 7. Remote sensing image and regional waterbody labeled image. (a) Remote sensing image;
(b) regional waterbody labeled image.

2. Data augmentation

Compared with public images dataset like ImageNet, there is no remote sensing
image training dataset, and it is difficult to get much more data by ourselves, so we
enlarge the dataset by data augmentation [37,38] to expand the training data and avoid
the overfitting phenomenon. The remote sensing images are clipped, and the size of the
images is 256 × 256, which is feasible to complete the construction of the training dataset.
The geometric transformation operations used in this paper include rotation operations
of 90◦, 180◦, and 270◦ of the original images, horizontal flip operation, and vertical flip
operation. We use the OpenCV (Intel, Santa Clara, CA, USA) based on python for data
augmentation. The operation examples are shown in Figure 8.

We labeled the data at first, and then achieve the data augmentation operations. To
meet the training requirement of FCN without pooling layers, we clip the size of waterbody
labeled images into 32 × 32. Now we have 6000 waterbody labeling data with size of
32 × 32, and 6000 waterbody region labeled data with size of 256 × 256. We choose 70%
of them as the training set to train the improved water detection network and the FCN
without pooling layers, respectively, and 30% are used as test data.

3.2. Improved Water Detection Network Based on YOLOv3

As shown in Figure 9, the improved water detection network based on YOLOv3
mainly includes two parts. The first part is the feature extraction module, in which we
use 13 convolutional layers to obtain the water features. The second part is the feature
pyramid network structure for multi-scale waterbody detection, which uses feature fusion
for multi-scale waterbody detection.
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(a) (b) 

  
(c) (d) 

 
(e) 

Figure 8. Example of remote sensing images by data augmentation. (a) 90◦ rotation; (b) 180◦ rotation;
(c) 270◦ rotation; (d) horizontal flip; (e) vertical flip.

Figure 9. The network structure of the improved water detection network.

3.2.1. Improved Feature Extraction Module

The Darknet-53 network structure used in the feature extraction module of YOLOv3
(Seattle, WA, USA) easily leads to the overfitting phenomenon in the case of limited
training data. In order to solve this problem, a 13-layer CNN is constructed for water
feature extraction in the feature extraction module. The module is mainly composed of
convolutional layers, pooling layers, and batch standardization layers. The parameters are
shown in Table 1.
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Table 1. Network structure and parameters of improved feature extraction module.

Type/Parameter Number of Convolution Kernels Convolution Kernel Size Step Padding

Conv1 16 1 × 1 1 same
Conv2 16 3 × 3 1 same
Conv3 256 1 × 1 1 same

BN
Max Pooling

Conv4 128 3 × 3 1 same
Conv5 128 1 × 1 1 same
Conv6 512 3 × 3 1 same

BN
Max Pooling

Conv7 256 3 × 3 1 same
Conv8 256 1 × 1 1 same
Conv9 512 3 × 3 1 same

BN
Max Pooling

Conv10 256 3 × 3 1 same
Conv11 256 1 × 1 1 same
Conv12 512 3 × 3 1 same

Max Pooling
Conv13 1024 3 × 3 1 same

In the improved feature extraction module, the convolutional layers with a convolution
kernel of 3 × 3 is used to extract the water features of a tidal flat area, and the convolutional
layers with a convolution kernel of 1 × 1 is used to realize cross-channel information fusion.
In order to ensure the generalization ability of our waterbody detection model in a tidal flat
area, this paper uses pooling layers to keep the main characteristic data of water. To solve
the slow convergence and gradient explosion, the improved feature extraction module
used in this paper adds batch standardization layers. This operation normalizes the data
before it passes through the activation function to reduce the change data amplitude and
make it follow the Gaussian distribution and speed up the convergence of the network
model as a result.

3.2.2. Feature Pyramid Network Structure for Multi-Scale Water Detection

Inspired by the design of the feature pyramid, three branches are used in YOLOv3
(Seattle, WA, USA) to obtain feature maps with sizes of 13 × 13, 26 × 26 and 52 × 52
respectively. The feature maps of different sizes correspond to different receptive fields.
The larger the size of the feature map is, the smaller the corresponding receptive field is.
The correspondence between feature graph size and prior box is shown in Table 2. Based
on the size and characteristic of the tidal flat water, we design two branches in our model.
One of the branches, used for the detection of narrow and long waterbodies in the tidal flat
area, is to get a 13 × 13 feature map through three convolutional layers after the improved
feature extraction module; the other branch, used for the detection of small waterbodies in
tidal flat areas, is to up-sample the output of the 14th convolutional layer in the network,
and then fuse it with the features obtained by the 13th convolutional layer, and finally get
the feature map with size of 26 × 26 through two convolutional layers.

Table 2. Corresponding between feature graph size and prior box.

Size of Feature Map Receptive Field Prior Box

13 × 13 large 116 × 90 156 × 198 373 × 326
26 × 26 middle 20 × 61 62 × 45 59 × 119
52 × 52 small 10 × 13 16 × 30 33 × 23

3.3. FCN without Pooling Layers

The improved object detection network based on YOLOv3 (Seattle, WA, USA) is a
water object detection model, so it cannot extract the water edge. In order to solve this
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problem, we design the FCN without pooling layers to complete the initial waterbody
extraction and obtain the feature information of waterbody in a tidal flat area. The network
structure of the FCN without pooling layers is shown in Figure 10.

Figure 10. Fully convolutional network without pooling layers.

In general, the pooling layers of CNN have two main functions: one is to compress the
extracted features to reduce the computational time of the model. The second is to enlarge
the receptive field of the model so that each point in the feature map corresponds to a
larger area in the original image. Because the receptive field represents the receptive range
of different neurons in the network to image, the enlargement of receptive field means
the enlargement of receptive range of different neurons in the network. So, each point in
the feature map corresponds to a larger area in the original image when we enlarge the
receptive field of the model. The FCN without pooling layers we proposed in this paper
aims at the initial extraction of waterbodies from 32 × 32 remote sensing images, so the
receptive field is not required and the water extractions based on the network still work in
our method.

The FCN without pooling layers uses six convolutional layers to extract waterbodies
from 32 × 32 remote sensing images, and the convolution kernel sizes of convolutional
layers are 3 × 3 and 1 × 1, respectively. All the parameters in the network can be seen in
Table 3. Compared with the convolution kernels with sizes 7 × 7 and 5 × 5, we use the
convolution kernel with size 3 × 3 in the model to improve the network depth and the
nonlinear expression ability of the model with the same receptive field. The convolution
kernel with size 1 × 1 realizes cross-channel information fusion.

Table 3. Parameters of FCN without pooling layers.

Layer Number of Convolution Kernels Convolution Kernel Size Step Padding

Conv1 64 3 × 3 1 same
Conv2 64 1 × 1 1 same
Conv3 256 3 × 3 1 same
Conv4 256 1 × 1 1 same
Conv5 512 3 × 3 1 same
Conv6 512 3 × 3 1 same
Conv7 2 3 × 3 1 same

3.4. Similarity Algorithm for Water Extraction

To reduce the false extraction caused by the high similarity between the waterbody
and background in a tidal flat area, a similarity algorithm for water extraction is proposed.
The steps of the algorithm are as follows:
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1. Firstly, we obtain the detection results of the improved water detection network based
on YOLOv3 and the initial water extraction results of the FCN without pooling layers.

2. Secondly, we compute the average pixel value of the initial water extraction informa-
tion obtained from the FCN without pooling layers and take it as the standard water
pixel value in the tidal flat area. The formula is:

r, g, b =
n

∑
i

Lr,g,b/n (1)

where r, g, b represents the average water pixel value, Lr,g,b represents the pixel value of
the water extraction results, and n is the number of waterbody pixels.

3. Thirdly, we traverse every pixel in the detection information, and calculate the simi-
larity between the water pixels and the standard water pixels. The formula is:

Y =
√
(Lr − r)2 + (Lg − g)2 + (Lb − b)2 (2)

where Lr, Lg and Lb represent the pixel values of the detection results in the red, green and
blue channels, respectively.

4. Finally, we set a similarity threshold and finish the water extraction. We set 34 based
on the experiments. If the similarity between a water pixel in the water detection
results and a standard water pixel is greater than the threshold, the pixel point is
considered as water, otherwise it is not water.

The similarity algorithm for water extraction proposed in this paper effectively solves
the accuracy problem of waterbody extraction caused by the blurry boundary between the
waterbody and background.

The similarity algorithm for water extraction is as Algorithm 1:

Algorithm 1. Similarity Algorithm for Water Extraction.

Input: Output results of improved water detection network based on YOLOv3 and FCN
without pooling layers
Output: Pixel is waterbody or non-waterbody
1. Procedure Similarity-Water-Extraction (n: integer);
2. begin

3. for i: = 1 to n do
4. begin

5. sumLr = sumLr + Lri ;
6. sumLg = sumLg + Lri ;
7. sumLb = sumLb + Lbi ;
8. end;

9. r: = sumLr/n;
10. g: = sumLg/n;
11. b: = sumLb/n;
12. while (pixel is the result of waterbody target detection) do

13. begin

14. Y = sqrt ((Lr−r)2+ (Lg −g)2 + (Lb −b)2);
15. if (Y > 34) then

16. pixel is waterbody;
17. else then

18. pixel is non-waterbody;
19. end;

20. end;

4. Experiment and Analysis

4.1. Experimental Configuration

All experiments are implemented on a system with NVIDIA GeForce GTX1070 (Santa
Clara, CA, USA) and Intel(R) Core (TM) i7 (Santa Clara, CA, USA), and the operating
system is Windows 10 (Redmond, WA, USA). The software environment of the system
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is ENVI 5.3 (Boulder, CO, USA), Python 3.6 (Wilmington, DE, USA), TensorFlow 1.12.0
(Mountain View, CA, USA) and Keras 2.2.4 (Cobham, UK).

4.2. Evaluation Criterion

To accurately analyze the experiments, this paper selects three indicators to quan-
titatively evaluate the model: Intersection over Union (IoU), pixel accuracy, and Kappa
coefficient. The overlap ratio describes the overlap degree between the extracted object
and the ground truth; the pixel accuracy is used to measure the proportion coefficient of
the correct part of the detection result; the Kappa coefficient is used to measure the pixel
classification accuracy. The calculation formulas of the three indicators are as follows:

IoU =
Area(P) ∩ Area(T)
Area(P) ∪ Area(T)

(3)

where Area(P) represents the prediction result and Area(T) represents the ground truth.

P =
TP

TP + FP
(4)

where P represents the pixel accuracy, TP represents the number of samples that are
positive and identified as positive by the network model, and FP represents the number of
samples that are incorrectly classified as positive.

k =
p0 − pe

1 − pe
(5)

where k represents the value of Kappa coefficient, p0 represents the proportion of the correct
cells, and pe represents the proportion of misinterpretations caused by chance.

pe = TP ∗ FN
n ∗ n

(6)

where TP represents the number of samples that are positive and identified as positive by
the network model, n represents the number of ground feature types, and FN represents
the number of samples that are incorrectly classified as negative.

4.3. Parameter Setting

In this paper, the waterbody detection network plays an important role for the final
water extraction. To study the influence of learning rate parameters on the accuracy of
water detection, we compare and analyze the decline curve of the loss function under
different learning rates and take the optimal learning rate as the model parameter at
last. The values of learning rate are set as 0.0001, 0.005, 0.001 and 0.01 respectively. The
convergence curve of the loss function is shown in Figure 11.

 

Figure 11. Loss function curve of the water detection model with different learning rates.
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As shown in Figure 11, when the learning rates are 0.0001 and 0.005, the network
model converges slowly, and the loss function value of the final convergence result is
higher. When the learning rates are 0.001 and 0.01, the network performs better, and
its convergence speed and final convergence result are significantly improved compared
with other learning rates. Based on the above analysis of learning rate, as well as many
experiments and model debugging, the training parameters of the water detection model
are obtained. In this paper, we set the learning rate to be 0.001, the batch training sample
size 64, the impulse 0.9, the weight attenuation 0.0005, and the epoch 500 for the improved
water detection network based on YOLOv3 (Seattle, WA, USA). The network also uses two
IoU thresholds during training. If a prediction overlaps the ground truth by 0.7 it is as a
positive example, by 0.5–0.7 it is ignored, less than 0.5 for all ground truth objects it is a
negative example. We set the learning rate to be 0.01, the batch training sample size 32, the
impulse 0.9, the weight attenuation 0.0001 and the epoch 150 for the FCN without pooling
layers in our experiments.

4.4. Performance Analysis
4.4.1. Influence of Threshold of Similarity Algorithm for Water Extraction

We set 31, 32, 33, 34, 35, 36, 37, 38 and 39 as thresholds, respectively, and use the
extraction accuracy to study the influence of thresholds. The experiments are shown in
Figure 12.

Figure 12. Comparison of the pixel accuracy with different thresholds.

We calculated the pixel accuracy of water extraction with different thresholds, and
the experiments show that the pixel accuracies increasing at first and decreasing after 34,
as shown in Figure 12. When the threshold is getting 34, the pixel accuracy is the highest
in our experiments. When the threshold is lower than 34, the phenomenon of missing
extraction begins to appear in the water extraction, which makes the accuracy of the water
extraction continue to decrease. When the threshold is higher than 34, water extraction
begins to appear the false extraction, and the accuracy of water extraction decreases with
the increase of the threshold as well. This is likely caused by the definition of the standard
water pixel value. To sum up, this paper selects 34 as the threshold of similarity algorithm
for water extraction in the tidal flat area.

4.4.2. Qualitative Analysis

To verify the effectiveness of this method, we compare the following methods: NDWI,
support vector machine (SVM), maximum likelihood classification, U-Net (Freiburg, Ger-
many) [39], YOLOv3 (Seattle, WA, USA) and FYOLOv3. The tidal flat remote sensing
images from the GF-2 satellite are selected as the sample, and the experiments are shown
in Figure 13.
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(g) (h) 

Figure 13. Cont.
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(i) (j) 

  
(k) (l) 

  
(m) (n) 

Figure 13. Comparison of different methods for water extraction in a tidal flat area. (a) Small water
bodies; (b) water bodies with blurry boundaries; (c,d) NDWI; (e,f) SVM; (g,h) maximum likelihood
classification; (i,j) U-Net; (k,l) YOLOv3; (m,n) FYOLOv3.

The experiments of NDWI, SVM, maximum likelihood classification, U-Net (Freiburg,
Germany), YOLOv3 (Seattle, WA, USA) and FYOLOv3 for small waterbodies and water-
bodies with blurry boundaries are shown in Figure 13, respectively.

As shown in Figure 13, the NDWI method effectively extracts the waterbody in the
remote sensing images, but there are a lot of noises in the extraction results. The water
extractions by SVM and maximum likelihood classification method are relatively good, but
they cannot effectively solve the problem of high similarity between water and background,
and there are a lot of false extractions in the experiments. From the experiments of U-Net,
we can see that the water extraction is not good for small waterbodies, and there are lots of
false extraction and missing extraction. Compared to NDWI, SVM, maximum likelihood
classification, and U-Net (Freiburg, Germany), the experiments of YOLOv3 (Seattle, WA,
USA) and FYOLOv3 have better extraction. However, in the experiments of YOLOv3
(Seattle, WA, USA), there are some missing extractions in the densely small water areas
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due to the prior frames, and FYOLOv3 is able to check each pixel in the detection area
based on the similarity algorithm for water extraction, which solves the false and missing
extraction, so it is superior to YOLOv3 (Seattle, WA, USA).

4.4.3. Accuracy Analysis

We take IoU, pixel accuracy (P) and Kappa (k) coefficient as the evaluation indexes to
compare six methods: NDWI, SVM, maximum likelihood classification, U-Net (Freiburg,
Germany), YOLOv3 (Seattle, WA, USA), and FYOLOv3. We set the image size to be
256 × 256, the learning rate 0.001, the decay 0.0005, the momentum 0.9 and we use the
optimizer Adam for YOLOv3. We set the learning rate to be 0.001, the decay 0.0001 the
momentum 0.9 and the optimizer Adam for U-Net (Freiburg, Germany). The threshold of
NDWI is 0.19 and the parameter of maximum likelihood is 2.1. The experiment results of
six methods are shown in Table 4.

Table 4. Accuracy comparison of six methods for water extraction in tidal flat area.

Method IoU P k

NDWI 0.9351 0.9665 0.9303
SVM 0.8925 0.9432 0.8821

Maximum likelihood classification 0.9041 0.9496 0.8952
U-Net 0.9309 0.9642 0.9251

YOLOv3 0.9436 0.9710 0.9394
FYOLOv3 0.9679 0.983 0.9613

As shown in Table 4, IoU, P and k of the FYOLOv3 method for water extraction in a
tidal flat area on remote sensing images are the highest, followed by the YOLOv3 network,
NDWI, U-Net, maximum likelihood classification, and SVM. The method proposed in this
paper has higher extraction accuracy than other methods and has a better effect for water
extraction in tidal flat with fuzzy boundaries and small waterbodies in a tidal flat area.
This proves that this method has more advantages for small waterbody extraction in a tidal
flat area.

Table 5 shows the model training time and water extraction time of the three convo-
lutional neural network methods. Although the FYOLOv3 method is divided into three
parts, its speed of water extraction is the highest. The method proposed in this paper not
only improves the accuracy of water extraction, but also reduces the model training time
and water extraction time due to the improvement of YOLOv3 (Seattle, WA, USA).

Table 5. Comparison of the model training time and water extraction time.

Method Training Time (h) Water Extraction Time (s/Sheet)

U-Net 8 0.18
YOLOv3 + FCN + Similarity algorithm (10 + 3) 0.24 × (0.11 + 0.08 + 0.05)

FYOLOv3 (6 + 3) 0.16 × (0.03 + 0.08 + 0.05)

5. Conclusions

The tidal flat is long and narrow with high sediment content, so there is little feature
difference between the waterbody and the background, and the boundary of the waterbody
is blurry. Extracting tidal flat waterbody accurately from high-resolution remote sensing
imagery is a great challenge. In order to solve the low accuracy problem of tidal flat
waterbody extraction, in this paper, a FYOLOv3 is proposed to solve the above problems
and extract waterbody in tidal flat with high accuracy. The FYOLOv3 mainly includes three
parts: Firstly, according to the characteristics of tidal flat water extraction, an improved
object detection network based on YOLOv3 (Seattle, WA, USA) is proposed to ensure the
accuracy of water detection, reduce the computational time of the model and alleviate the
overfitting phenomenon; secondly, a FCN without pooling layers follows the improved
object detection network to obtain the initial water extraction; at last, a similarity algorithm
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for water extraction is proposed, which distinguishes the waterbody and non-water pixel
by pixel in order to improve the extraction accuracy of tidal flat waterbody. Compared
to the other models, the experiments show that our method has higher accuracy on the
waterbody extraction of tidal flats or small areas, and the IoU of our method is 2.43%
higher than YOLOv3 (Seattle, WA, USA) and 3.7% higher than U-Net (Freiburg, Germany).
However, this method also has some limitations, which needs to manually select the
similarity threshold, and different thresholds need to be set for different data, which affects
the robustness of the method. Therefore, our future research will consider how to determine
the threshold intelligently in order to improve the robustness of the method.
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Abstract: Crowd size estimation is a challenging problem, especially when the crowd is spread over
a significant geographical area. It has applications in monitoring of rallies and demonstrations and
in calculating the assistance requirements in humanitarian disasters. Therefore, accomplishing a
crowd surveillance system for large crowds constitutes a significant issue. UAV-based techniques
are an appealing choice for crowd estimation over a large region, but they present a variety of
interesting challenges, such as integrating per-frame estimates through a video without counting
individuals twice. Large quantities of annotated training data are required to design, train, and test
such a system. In this paper, we have first reviewed several crowd estimation techniques, existing
crowd simulators and data sets available for crowd analysis. Later, we have described a simulation
system to provide such data, avoiding the need for tedious and error-prone manual annotation. Then,
we have evaluated synthetic video from the simulator using various existing single-frame crowd
estimation techniques. Our findings show that the simulated data can be used to train and test crowd
estimation, thereby providing a suitable platform to develop such techniques. We also propose an
automated UAV-based 3D crowd estimation system that can be used for approximately static or
slow-moving crowds, such as public events, political rallies, and natural or man-made disasters. We
evaluate the results by applying our new framework to a variety of scenarios with varying crowd
sizes. The proposed system gives promising results using widely accepted metrics including MAE,
RMSE, Precision, Recall, and F1 score to validate the results.

Keywords: crowd estimation; 3D simulation; unmanned aerial vehicle; synthetic crowd data

1. Introduction

Crowd estimation refers to the practice of calculating the total number of people
present in a crowd. Manual crowd estimation and automated crowd estimation are the two
most common broad approaches to measuring crowd size, but the method varies according
to the crowd size. Manually monitoring and estimating a small crowd by splitting people
into groups is a traditional way that still exists. However, manual estimation of a large
crowd is not possible and may be very expensive and time-consuming. It has prompted
scientists and researchers from various disciplines across the globe to develop automated
crowd estimation systems that calculate the number of people in a large crowd. In the
last five years, the domain has expanded rapidly. The introduction of deep learning
methods, coupled with easy availability of powerful GPU based systems, has provided a
step change in computer vision algorithms across a range of problem domains, starting
with classification, but it has quickly moved on to other areas such as crowd estimation.
A number of well-publicized crowd-related incidents and gatherings have drawn the
attention of researchers and the computer vision community; it has prompted them to
develop accurate crowd surveillance systems.
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An example application is for use in major disasters. In such a scenario, a crowd
estimation system would give a more accurate picture of the crowd and number of affected
people and their geographical spread. This would enable proper coordination of the
disaster teams, leading to more efficient relief-aid work.

Crowd estimation systems using Unmanned Aerial Vehicles (UAVs) is an emerging
research area, due to its potential to cover a wide area in a short period. However, it
presents automated estimation issues. Both the camera and the crowd are likely to be
moving, so there is a risk of multiple counting of the same person. Most of the existing
automated methods focus on individual frames from a single static camera. Recently, there
has been some promising research conducted in multiple view systems and UAV-based
cameras. UAVs can cover a large area. However, they pose problems of (1) a moving
camera, (2) the crowd that may move during the capture time and (3) different view points
which require extensive additional training and testing data.

Given the challenges of gathering and annotating data, our paper explores the use of
a simulator to generate the training images and annotated ground-truth data. Furthermore,
we have introduced a novel automated 3D crowd estimation system using a UAV, that
was trained and tested with our simulator. In the initial phase, we have focused on the
problem of static crowds and intend to move towards more dynamic crowds in the future.
The motivation for developing our system is for crowd flow management, large-scale public
gathering monitoring, public event security and relief-aid work by welfare organisations
in disaster-hit areas.

This paper covers the following contributions:

1. We have extensively studied the existing crowd estimation methods, data sets, and
open-source crowd simulators, along with an assessment of their shortcomings. We
have focused on the intended use to identify the need to develop a new simulator for
estimating the crowd using UAV.

2. We have explored in detail the development of a new 3D crowd simulation system
that can generate the required training images and annotated ground truth data.
Furthermore, we have generated various 3D models along with accompanying camera
locations and orientations.

3. We have trained, tested and validated the simulation system against real-crowd data,
where we have tested synthetic data against real crowd data sets using various state-
of-the-art methods. Furthermore, we have trained a new model based on our aerial
synthetic data and tested it against the real-crowd data.

4. We have introduced a novel 3D crowd estimation technique using UAV for a robust
and accurate estimation of a crowd spread over a large geographical area. Our
proposed solution overcomes the issue of counting of the same individual multiple
times from a moving UAV.

5. We also discuss the remaining challenges for wide area crowd estimation and suggest
future directions for research. Additionally, we have covered significant issues for
aerial crowd data collection and have put across some promising research challenges
that needs to be explored.

The remainder of this paper is organized as follows:

Section 2 provides an up-to-date review of the most relevant recent literature including
recently introduced crowd estimation methods. Section 3 provides a detailed step-by-step
discussion of our approach and describes the benchmarks used for evaluation. In Section 4, we
discuss the implementation and setup of our system. In Section 5, we present and analyze
the results of our experimental evaluation of the system. The work presented in the paper
is summarized and the results and their interpretation have been discussed in Section 6.
Finally, we discuss the conclusion and future directions in Section 7.
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2. Related Work and Scope

2.1. Manual Crowd Estimation

In 1967, Herbert Jacobs [1], a professor at the University of California, Berkeley,
proposed a simple method of dealing with scenarios where estimating the crowd size is not
as easy as counting the number of tickets sold. His office looked out onto the plaza where
students assembled to protest the Vietnam War. The concrete on this plaza was divided
into grids. Jacobs used the layout to develop his method for estimating crowd size based
on area times density. As he observed numerous demonstrations, Jacobs gathered plenty of
information that led him to come up with a few basic rules of thumb, which are still used
today. According to Jacobs, in a loose crowd, where the distance between each person is
about one arm’s length, one person would occupy 10 square feet of space. People occupy
4.5 square feet for a dense crowd, and 2.5 square feet for a mosh-pit density crowd.

In other words, if you knew the area that the crowd was covering and you applied
Jacob’s rule of thumb for the density of the crowd, you could easily estimate the size of
the crowd by multiplying the area by density. In practice, however, it is not always easy to
determine the specific area crowds cover, and densities may vary across a crowd. Suppose
a crowd has gathered to hear a speaker up on a stage. We might predict that the crowd
would be denser up front and less dense during the back and around the edges. To address
these problems, it may be helpful to divide the crowds into low, medium, and high density
zones and collect samples from each. The sample method would allow us to obtain a more
reliable representation of the crowd area and density along with an estimate of standard
error for both. We can use the delta rule to find the relative standard error for our estimation
of the crowd size, if we have the standard errors for area and density and assume they are
at least roughly independent.

Manually detecting the development and movement of a crowd around the clock,
or manually counting persons in exceptionally dense crowds, is a time-consuming process.
When it comes to static linear and static nonlinear events, where the entire crowd is present
at the same time in a single-session event, such as a Christmas Parade or a Pride Parade,
there is a higher chance of getting a false estimate due to a shift in the crowd and counting
the same person multiple times. Manual crowd estimating techniques like Jacob’s Crowd
Formula (JCF) are inefficient in dealing with such a large flow of crowd, these methods are
confined to finding the average of the overlapped or shifting crowd sizes. Thus, it is very
likely to estimate a larger crowd size than expected that would result in a crowd count
with an unknown error rate. Considering the challenging situations such as dynamic linear
or dynamic nonlinear events, it is extremely difficult to count and maintain an accurate
estimate as these events often have free-flowing crowds with various entry points and can
be stretched across several sessions or days. These methods are suitable for estimating the
maximum crowd capacity in an area, but when it comes to accurate estimation, there is a
need to develop automatic crowd estimation methods.

2.2. Computer Vision for Crowd Estimation and Analysis

Computer vision-based crowd estimation has gained considerable attention in vari-
ous aspects of crowd analysis. In 2017, Marsden et al. [2] described that crowd analysis
focuses on developing task-specific systems that perform a single analysis task such as
crowd counting, crowd behavior recognition, crowd density level classification and crowd
behavior anomaly detection. For crowd estimation purposes, crowd counting approaches
may vary based on factors like estimating the crowd from an image or from a real-time
video. Loy et al. [3] classified the crowd counting approaches into three different categories
known as detection-based [4,5], regression-based [6,7] and density-based estimation [8].
The evolving interest of researchers in the last five years has contributed to new devel-
opments and rapid expansion in the crowd counting domain, where the researches have
mainly concentrated on crowd tracking, pedestrian counting and crowd behavior analysis,
among other tasks.
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Idrees et al. [9] performed dense crowd estimation using a locally consistent scale
to capture the similarity between local neighbourhoods and its smooth variation using
images. The high crowd density and challenging nature of the data set led to several
failure cases. A high-confidence detection in the first iteration often made the method
over-sensitive to detection hypotheses occurring at the desired scale in neighboring areas.
Similarly, at early iterations, high confidence nonhuman detection drastically degraded the
prior scale, because they provided incorrect scale information. It led to misdetections in
the surrounding areas that later papers tried to address.

Zhang et al. [10] proposed a multicolumn convolutional neural network architecture
(MCNN) which could estimate the number of people in a single image. By creating a
network comprising of three columns corresponding to filters with receptive fields of
varying sizes, the proposed approach offers resistance to huge variations in object scales
(large, medium, small). The three columns were created to accommodate various object
scales in the images. In addition, it offered a novel method to generate ground truth crowd
density maps. In contrast to the existing methods that either summed up Gaussian kernels
with a fixed variance or perspective maps, Zhang et al. also proposed that perspective
distortion should be taken into consideration by estimating the spread parameter of the
Gaussian kernel based on the size of each person’s head within the image. However, using
density maps to determine head sizes and their underlying relationships is impractical.
Instead, the authors employed a key feature noticed in high-density crowd images: the
relationship between head size and distance between the centres of two neighbouring
people. Each person’s spread parameter was calculated using data-adaptive methods
based on their average distance from their neighbours. It is worth noting that the ground
truth density maps generated using this method included distortion information without
employing perspective maps.

Zhang et al. [11] recently introduced a multiview crowd counting method using
3D features fused with 3D scene-level density maps. The deep neural network-based
(DNN) 3D multiview counting method was integrated with camera views to estimate the
3D scene-level density maps. This method used 3D projection and fusion, which could
address situations where people were not all at the same height (e.g., people standing on
a staircase) and provided a way to tackle the scale variation issue in 3D space without a
scale selection operation. However, increasing the height resolution did not contribute to
the body’s information, but could introduce more noise (other people’s features) along the
z-dimension, resulting in poor performance.

Zhao et al. [12] introduced crowd counting with limited supervision. Initially, it
labeled the most informative images and later introduced a classifier to align the data and
then performed estimation based on density. The number of labeled individuals varied over
the course of trials and cycles. However, the ground truth was unknown, so it was difficult
to determine the exact number of people, which led to a higher or lower detection rate.
A ground truth verification is necessary to overcome the problem or justify the introduced
method since labeling more or fewer heads does not imply a better or worse performance.

Recently, Wang et al. [13] developed a new Scale Tree Network (STNet) for crowd
counting that aimed to improve scale variety and pixel-wise background recognition. The
STNet network consistently met the challenges of drastic scale variations, density changes,
and complex backgrounds. A tree-based scale enhancer dealt with scale variations and
a multilevel auxiliator filtered pixels from complex backgrounds and adjusted them to
density changes. STNet proved to be superior to the state-of-the-art approaches on four
popular crowd counting data sets, while employing fewer parameters at the same time.
They also proposed a method for addressing the crowd and background imbalance problem
using pure background images. This concept could be easily incorporated in other crowd
counting algorithms to further improve accuracy.

Ranjan et al. [14] recently published a crowd counting method based on images with
imprecise estimation. The majority of the presented work focused on estimating crowd
density and using a random sample selection technique to eliminate the need for labeled
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data. They provided results that showed improved performance based on selecting only
17% of the training samples previously used.

Mustapha et al. [15] presented a study that used CNN and Support Vector Machines
(SVM) with sensor data adapted from both structure sensors and accelerometers of wearable
devices to study crowd flows and bridge loads. A classification was used to determine
crowd flow classification either as a binary choice of motion speed being fast or slow or as a
multiclass decision based on high, medium, low, heavy, and light crowd loads, with heavy
and light corresponding to crowd load designation. The load estimate of the crowd on
the structure was calculated using regression to obtain the overall weight in kilograms.
However, the regression results revealed inconsistency in fusion performance and a huge
percentage of errors, when using the raw signal for SVM. Additionally, the study was
conducted on a small scale. While considering the size of the crowd, however, any size
can be considered in the future. That said, a large-scale crowd flow study is required to
establish and comprehend the relationship between crowd flow and bridge load.

Almeida et al. [16] recently proposed a crowd flow filtering method to analyze crowd
flow behavior. It converted the input for the optical flow from an image plane into world
coordinates to perform a local motion analysis, while exploring the Social Forces Model.
The filtered flow was then returned to the image plane. The method was evaluated using
an image plane and needs to be expanded for the image’s analysis to world coordinates.
However, the work was confined to static cameras and could monitor behavior in a limited
area. In addition, there is a pressing need to implement the proposed filtering approach
on GPUs to achieve even faster execution times. However, the possibility for substantial
speedups must be assessed.

Choi et al. [17] recently presented 3DCrowdNet, a 2D human pose-guided 3D crowd
pose and shape estimation system for in-the-wild scenes. The 2D human pose estimation
methods provide relatively robust outputs on crowd scenes than 3D human pose estimation
methods. After all, they can exploit in-the-wild multiperson 2D data sets. Nevertheless,
the challenge remains in recovering accurate 3D poses from images with close interaction.
Extreme instances frequently entail difficult poses and substantial interperson occlusion,
which are both uncommon in the existing trained data.

Fahad et al. [18] attempted to address the issue of public venues by using static camera
positions that only record the top view of the images. To deal with events like strikes
and riots, the proposed approach captured both the top and front view of the photos.
The congested scene recognition (CSRNet) model assessed in this study utilized two
separate test cases, one with only top view photos and the other with only front view
images. However, the mean absolute error (MAE) and mean squared error (MSE) values of
the front view images were higher than the top view images which needs to be reconsidered
using other state-of-the-art networks. The gradient adversarial neural network (GANN)
network could be effective in resolving the problem of projecting images from multiple
viewpoints.

2.3. Previous Reviews and Surveys

Zhan et al. [19] presented the first assessment of crowd analysis approaches used
in computer vision research and discussed how diverse research disciplines can assist
computer vision approach. Later on, Junior et al. [20] provided a survey on crowd analysis
using computer vision techniques, which covered topics including people monitoring,
crowd density estimation, event detection, validation, and simulation. The research focused
on three key issues in crowd analysis: density estimation, tracking in crowded settings,
and analysing crowd behavior at a higher level, such as temporal evolution, primary
directions, velocity predictions, and detection of unexpected situations. In terms of crowd
synthesis, the review mostly focused on crowd models that either used computer vision
algorithms to extract real-world data to improve simulation realism or were used to train
and test computer vision techniques.
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Teixeira et al. [21] presented the first human sensing survey offering a comprehensive
analysis of the presence, count, location, and track of a crowd. It focused on five commonly
encountered spatio-temporal properties: identity, presence, count, location, and track.
The survey provided an inherently multidisciplinary literature of human-sensing, focusing
mainly on the extraction of five commonly needed spatio-temporal properties: namely
presence, count, location, track and identity. It also covered a new taxonomy of observable
human attributes and physical characteristics, as well as the sensing technologies that may
be utilized to extract them. In addition, it compared active and passive sensors, sensor
fusion techniques, and instrumented and uninstrumented settings.

Loy et al. [3] discussed and evaluated state-of-the-art approaches for crowd counting
based on video images as well as a systematic comparison of different methodologies using
the same procedure. The review concluded that regression models capable of dealing
with multicollinearity among features, such as Kernel ridge regression (KRR), Partial least-
squares regression (PLSR), and Least-squares support vector regression (LSSVR), perform
better than linear regression (LR) and random forest regression (RFR). The findings also
revealed that depending on the crowd structure and density, certain features may be
more useful. In sparse settings, foreground segment-based features could give all of the
information required to estimate crowd density. Edge-based features and texture-based
features, on the other hand, became increasingly important when a scene becomes packed
with frequent interobject occlusions. Depending on the data set and regression model used,
the final results affirmed that combining all attributes does not always help.

In 2014, Ferryman et al. [22] presented a PETS2009 crowd analysis data set and
highlighted performance in detection and tracking. It first published a performance review
of state-of-the-art crowd image analysis visual surveillance technologies, using defined
metrics to objectively evaluate their detection and tracking algorithms. Comparing results
with others, whether anonymous or not, was a practical and encouraging research strategy
for advanced, robust, real-time visual systems. Furthermore, the latest findings highlighted
the requirement for ground truth data sets, which may be used to showcase the different
systems capabilities, such as accuracy, precision, and robustness.

Li et al. [23] examined the state-of-the-art techniques for crowded scene analysis in
three major areas: motion pattern segmentation, crowd behavior recognition, and anomaly
detection, using various methods such as crowd motion pattern learning, crowd behavior,
activity analysis, and anomaly detection in crowds. The survey concluded that crowded
settings frequently involve extreme clutter and object occlusions, making current visual-
based techniques difficult to use. Fusion of data from several sensors is a proven tool to
eliminate confusion and enhance accuracy [24]. Another finding revealed that many exist-
ing video analysis systems track, learn, and detect by integrating the functional modules,
without taking into account the interactions between them. It was preferable for crowded
scene analysis systems to execute tracking, model learning, and behavior recognition in
a completely online and unified manner to effectively utilise the hierarchical contextual
information. Despite the development of several approaches for feature extraction and
model learning in crowded scene analysis, there is no widely acknowledged crowded scene
representation.

Ryan et al. [25] offered a comparison of holistic, local, and histogram-based approaches
as well as numerous picture characteristics and regression models, across multiple data
sets. The performance of five public data sets was evaluated using a K-fold cross-validation
protocol: the UCSD [26], PETS 2009 [27], Fudan [28], Mall [29], and Grand Central [30]
data sets. The survey of the various methods concluded that the usage of local features
consistently surpassed holistic and histogram features. Despite their extensive use in
literature, edge and texture traits did not deliver ideal performance for a holistic approach.
As a result, further data sets must be examined to corroborate these findings and to see if
other feature sets or regression models might boost performance.

Later, Saleh et al. [31] considered crowd density and visual surveillance to be the
most significant aspects in the computer vision research context. The survey focused on
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two approaches: direct (i.e., object-based target detection) and indirect (e.g., pixel-based,
texture-based, and corner points based analysis). As long as people were adequately
segregated, direct approaches tracked and counted people simultaneously. The indirect
technique, on the other hand, used a collection of measuring features and crowd learning
algorithms to conduct the counting and estimating processes. While concluding the direct
crowd estimating approach, the survey highlights that in lower-density groups, recognising
individuals is easier. When detecting people in large groups or in the presence of occlusions,
however, this process became more challenging and complex. That’s why despite recent
breakthroughs in computer vision and pattern recognition algorithms, many recent studies
have avoided the task of detecting individuals to save processing time. Instead, majority
of the research has focused on indirect crowd estimation approaches based on a learning
mapping between a set of observable variables and the number of people.

Zitouni et al. [32] attempted to provide an explanation of such challenges by extrap-
olating relevant statistical evidence from the literature and making recommendations
for focusing on the general elements of approaches rather than any specific algorithm.
The study focused on existing crowd modeling approaches from the literature, conclud-
ing that the methods are still density dependent. In addition, real-world applications in
surveillance, behavioral understanding, and other areas necessitate that crowd analysis
that begins at the macro-level and branches into the micro-level. Let us consider the case
of a crowd splitting due to an individual target crossing. Although macro-analysis (in
this case, splitting) could detect changes in crowd behavior, micro-analysis (individual
target crossing) is required to understand the cause of the behavior. To meet such realistic
expectations, crowd representation and inference must concentrate on development at
both macro and micro levels as well as in the middle. Most techniques, according to
the study, operate under strong and restrictive assumptions such as camera perspective,
environmental conditions, density, background and occlusion which must be addressed in
the future.

Grant et al. [33] investigated crowd analysis in relation to two main research areas:
crowd statistics and behavior analysis. To address the challenge of measuring large crowds
with high densities, the survey determined that good data including photographs col-
lected at a variety of standoffs, angles, and resolutions as well as ground-truth labels for
comparisons, is essential. It also shed light on the intriguing topic of detecting crowd
demographics, where knowing demographics like gender, ethnicity, and age could be
beneficial for event planning and marketing. The study also indicated that combining
behavior recognition could help determine factors like the quantity of persons walking
versus sprinting in a scene. It was strongly stated that synthetic crowd videos filled many
gaps, and that these videos were useful in generating important ground-truth information
for evaluating and comparing algorithms as well as providing scenes of situations that are
too dangerous to re-enact. Plus, it justified the need to generate synthetic crowd data set in
the future to avoid such scenarios.

Sindagi et al. [34] compared and contrasted several single-image crowd counting
pioneering methodologies and density estimation methods that used hand-crafted rep-
resentations, with a strong emphasis on newer CNN-based approaches. Across all the
data sets, the most recent CNN-based algorithms outperformed the traditional approaches,
according to the study. While CNN-based methods performed well in high-density crowds
with a variety of scene conditions, traditional approaches had substantial error rates in
these situations. Additionally, the multicolumn CNN architecture [10] was tested on three
diverse data sets such as UCSD, WorldExpo ’10, and ShanghaiTech and the method at-
tained state-of-the-art results on all the three data sets. The CNN-boosting approach by
Walach and Wolf [35] achieved the best results on the Mall data set. Optimum results on
the UCF_CC_50 data set were achieved by joint local and global count approach [36] and
Hydra-CNN [37].

Kang et al. [38] examined crowd density maps created using various methodologies
on a variety of crowd analysis tasks, such as counting, detection, and tracking. While
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fully-convolutional neural networks (e.g., MCNN) produce reduced-resolution density
maps performed well at counting, their accuracy decreased at localisation tasks due to
the loss of spatial resolution, which cannot be entirely recovered using upsampling and
skip connections. It was also recommended that dense pixel-prediction of a full resolution
density map using CNN-pixel generated the best density map for localisation tasks, with a
minor decrease in counting tasks. Dense prediction, on the other hand, had a larger
computational complexity than fully-convolutional networks.

Tripathi et al. [39] offered a thorough overview of contemporary convolution neural
network (CNN)-based crowd behavior analysis approaches. The goal of the approaches
that were examined was to give law enforcement agencies a real-time and accurate visual
monitoring of a busy area. The study identified a shortage of training data sets as a major
difficulty when utilising CNN to analyze distinct population types. A list of numerous
data sets was offered in this survey. These data sets, however, only comprised a few
hundred training examples that were insufficient to train a CNN. CNN-based methods
require a large pool of labeled training data sets and major manual interventions that were
both complex and time-consuming. Another study found that CNN-based approaches
require specialized hardware for training, such as GPUs, because training a CNN is a
computationally expensive proposition. To overcome this issue, it would be interesting
to look into transfer learning approaches that used previously taught models rather than
having to train the model from scratch. Because a shortage of training examples for various
types of crowd can impair the system’s performance, online CNN training could become
an exciting research domain.

Most recently, Gao et al. [40] presented a review of over 220 methods that looked at
crowd counting models, primarily CNN-based density map estimates from a variety of
angles, including network design and learning paradigms. It tested various state-of-the-art
approaches and benchmarked crowd counting algorithms against several crowd data
sets such as the National Forum for Urban Research, UCSD, Mall, WorldExpo’10, SHA
and UCF-QNRF. The study suggested that PGCNet [41], S-DCNet [42] and PaDnet [43]
methods outperformed on Shanghai Tech data set with a MAE of 57.0%, 58.3% and 59.2%,
respectively. The study demonstrated, however, that mainstream models were intended
for domain-specific applications. Furthermore, supervised learning necessitates precise
annotations could be time-consuming to manually label data, especially in highly congested
scenarios. Given the unanticipated domain gap, generalising the training model to unseen
scenarios might provide sub-optimal outcomes. The study also found that MCNN’s [10]
head size is proportional to the distance between two people. This notion prompted the
creation of a geometry-adaptive kernel-based density map creation method, which has
inspired many crowd estimation works to use this tool to prepare training data.

The studies [34,38–40] found that CNN methods are successful and outperform tra-
ditional approaches in high-density crowds with a variety of scene variables, whereas
traditional approaches suffer from high-error margins in such settings. Sindagi et al. [34]
compared different methods for single-image crowd counts and density estimation, the mul-
ticolumn CNN architecture [10] performed best on the data sets from UCSD, WorldExpo
10, and ShanghaiTech. Another study from Kang et al. [38] found that MCNN-generated
reduced-resolution density maps performed well in crowd counting. Tripathi et al. [39]
highlighted a shortage of training data sets as a major issue in utilising CNN to analyze
diverse crowd types. It indicated that the existing data sets only had a limited amount of
training examples, which were insufficient to train a CNN. Hence, it validated the need to
create more training data. After examining more than 220 works, which primarily included
CNN-based density map estimation methods, the most recent study from Gao et al. [40]
highlighted that MCNN [10] performed well in dense crowd scenes. Considering the sug-
gestions from the most recent studies, we have applied the MCNN and used ShanghaiTech
data set to train, test, and validate the simulation system against real-crowd data and have
discussed it further in Section 3.4.
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2.4. Related Open Source Crowd Simulator

Considering the recent growth in crowd estimation, testbed for generating crowd
training and testing data is a major issue. Capturing the crowd has never been easy and
ethical issues don’t allow to capture the crowd in most countries. Furthermore, the process
of capturing the crowd is expensive and can backfire. Simulators are the best solution to
overcome the testbed issue because they are cost-effective and can easily produce data for
training and testing. To resolve the issue, we have reviewed the existing crowd simulators,
determined its limitations, and demonstrated why a new 3D crowd simulation system with
an integrated UAV simulator is required.

Kleinmeier et al. [44] introduced Vadere, a framework for simulation of crowd dy-
namics. It consists of features that allowed interaction with the microscopic pedestrian.
As a result, it has contributed to many simulation models and comprises of models like the
gradient navigation model and social force model for further research purposes, which are
restricted to 2D simulations. Maury et al. [45] introduced Cromosim, a library specifically
designed for Python that was mainly used to model crowd movements. It is simple to set
up, and there are some examples models available to monitor the trend, such as follow-
the-leader and social powers. However, its use is limited in other respects, such as crowd
motion tracking. Curtis et al. [46] developed Menge, a full-featured 3D crowd simulator
designed for crowd simulation and dynamics that compared two different models. Since
the crowd and its aspects do not appear to be real, it could only be used for tracking
purposes within the developed environment.

Crowd Dynamics is another 2D simulation system intended to develop for crowd
movement. However, the system is still in the early stages of development. PEDSIM is a
microscopic pedestrian crowd library with limited application. Consequently, the docu-
ments simply mention the use of PEDSIM to implement several models such as cellular
automata and social force, but nothing else is specified. Wagoum et al. [47] presented
JUPEDSIM framework to map crowd dynamics. The framework is an open source one and
can be used for research purposes such as mapping and measuring crowd dynamics, data
visualization etc. Mesa [48] is a python library limited to modeling functions and can’t be
used for simulation. There isn’t enough data available for RVO2 [49], Fire Dynamics [50]
and AgentJL. These frameworks have been developed specifically for crowd dynamics
navigation and haven’t been updated in a long while. Other licensed and paid crowd
simulators such as CrowdSim3D and Urho3D are also available with built-in tracking and
mapping features, but their use is limited and they are expensive.

To summarise, except for Menge, most open-source simulators are limited to 2D and
are specifically designed to track the crowd dynamics and motion. A detailed review
of the available open-source simulators summarised in Table 1 has revealed that most
simulators are designed for specific tasks such as crowd dynamics or fire dynamics study
in 2D and are not efficient enough to generate 3D synthetic data and avatars to mimic real-
world conditions. Considering the available 3D simulator ’Menge’, it consists of repeated
characters and encounters problems in distinguishing various features of individuals such
as gender, age, weight, height, ethnicity, proportion, outfit, pose, color, and geometry. As a
result, this 3D simulator cannot be used to envision any scenario that mimics real-world
settings. Furthermore, various geometric shapes and topologies for each individual’s eyes,
hair, teeth, eyebrows, eyelashes, and other features are necessary to produce a realistic
prototype. Menge does not provide this functionality. All these factors validate the need
for developing a new 3D crowd simulator that can generate reams of data in any scenario,
visualise a realistic 3D world, as well as relative locations for crowd estimation.
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Table 1. Summary of Open-Source Simulators and Supporting Libraries.

Simulator Language OS 2D/3D Intended Use

Vadere [44] Java Windows, Linux 2D Crowd Dynamics
Cromosim [45] Python Library Windows 2D Crowd Motion

Menge [46] C++ Windows, Linux Both Cross-Platform
Crowd Dynamics Python Ubuntu 16.04 2D -

PEDSIM C++ Win, Linux 2D Pedestrian Library
JuPedSim [47] Python, C++ Windows, Linux 2D Pedestrian Dynamics

Mesa [48] Java Windows, JVM 2D Crowd Simulation
RVO2 [49] C++ - 2D Mobile Robots

Fire Dynamics [50] - Windows, MacOS 2D Fire Dynamics
Agent.JL Julia - 2D Agent-Based Model

2.5. Crowd Data Sets

Traditional surveillance systems for crowd estimation are effective when dealing with
small crowd sizes. Nevertheless, the traditional approach has some design issues including
slow frame processing speeds, resulting in a major breakdown in the process because it
cannot handle high-density crowds. Most of the methods have been developed and tested
for single images or videos, with majority of the approaches perform crowd testing with
low-density crowds [2]. This study analyzes crowd data sets and subclassifies them into
free, surveillance and drone-view crowds. The data sets have been categorized based on
release year, attribute, number of samples, and average count per image. The primary
objective of this study is to identify why existing drone view data sets cannot be used for
the estimation of crowds using UAV, and why synthetic data is required.

The first free-view data sets UCF_CC_50 [51] were released in 2013 with a sample size
of 50 and 63,974 instances. UCF_CC_50 is the only available large density crowd data set
as shown in Table 2. ShanghaiTech Part A [10] is another congested attributed data set con-
taining 241,677 instances with an average count of 501 people. Sindagi et al. [52] discussed
available data sets for crowd surveillance and estimations. Some of the popular and easily
accessible data sets include UCSD [26] which consists of 2000 frames of size 238 × 158,
and the Mall data set [29] containing 2000 frames of size 320 × 240 with 6000 instances and
large number of labeled pedestrians. The ShanghaiTech crowd data set [10] discussed in
Table 3 includes both part A and part B of the dataset. It consists of 1198 images with a
large number of 330,000 annotated heads.

Table 2. Summary of Different Free-View Crowd Data Sets.

Data Set Year Attribute No. Samples No. Instances Avg. Count

NWPU-Crowd [53] 2020 Localization 5109 2,133,375 418
JHU-CROWD++ [54] 2020 Congested 4372 1,515,005 346

UCF-QNRF [55] 2018 Congested 1535 1,251,642 815
SanghaiTech Part A [10] 2016 Congested 482 241,677 501

UCF_CC_50 [51] 2013 Congested 50 63,974 1279

Bahmanyar et al. [66] presented the first drone-view crowd data set in 2019 for crowd
estimation known as DLR’s Aerial Crowd Data Set. The images were captured through a
helicopter providing 33 aerial images from 16 different fights of a slowly moving crowd.
Zhu et al. [67] presented the second aerial data set of the crowd. As shown in Table 4, this
data set comprised of 112 video clips collected from 70 different scenarios.
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Table 3. Summary of Different Surveillance-View Crowd Data Sets.

Data Set Year Attribute No. Samples No. Instances Avg. Count

DISCO [56] 2020 Audiovisual 1935 170,270 88
Crowd Surveillance [41] 2019 Free scenes 13,945 386,513 28
ShanghaiTechRGBD [57] 2019 Depth - - -
Fudan-ShanghaiTech [58] 2019 Video 15,000 394,081 27

GCC [59] 2019 400 Fixed Scenes 15,211 7,625,843 501
Venice [60] 2019 4 Fixed Scenes 167 - -

CityStreet [61] 2019 Multiview 500 - -
Beijing-BRT [62] 2019 1 Fixed Scene 1280 16,795 13
SmartCity [63] 2018 - 50 369 7

CityUHK-X [61] 2017 55 Fixed Scenes 3191 106,783 33
ShanghaiTech Part B [10] 2016 Free Scenes 716 88,488 123

AHU-Crowd [64] 2016 - 107 45,000 421
WorldExpo’10 [65] 2015 108 Fixed Scenes 3980 199,923 50

Mall [29] 2012 1 Fixed Scene 2000 62,325 31
UCSD [26] 2008 1 Fixed Scene 2000 49,885 25

Table 4. Summary of Different Drone-View Crowd Data Sets.

Data Set Year Attribute No. Samples No. Instances Avg. Count

DroneVehicle [68] 2020 Vehicle 31,064 441,642 14.2
DroneCrowd [67] 2019 Video 33,600 4,864,280 145

DLR-ACD [66] 2019 1 Fixed Scene 33 226,291 6857

According to the pattern since 2008, when UCSD’s first crowd data set was released,
the majority of publicly available crowd data sets have been captured with static cam-
eras [34] and have been limited to 2D. The first aerial crowd data set was released in 2019
with a sample size of 33. That said, the data set is inaccessible and has no annotations.
In fact, most aerial crowd data sets are not widely available for study. Previous studies [39]
evidenced and highlighted the shortage of training examples for various crowd types.
Ref. [20] focused primarily on simulation realism and highlighted the importance of virtual
data sets that will address the issue in the near future. Our study also concluded that gath-
ering and manually annotating crowd data sets are both expensive and time-consuming.
Considering the current laws and ethical issues, there is a justified need of a testbed that
can generate virtual crowd data set and contain in-depth information of both 2D and
3D images.

The study of various traditional and most recent 2D crowd estimation approaches
discussed in Sections 2.2 and 2.3 highlighted the inherent limitations of 2D approaches
which include static camera monitoring that can monitor a specific area with a high
possibility of counting the same individual multiple times, nonhuman or false detections,
and lack of information and inconsistency in performance, which leads to a high percentage
of errors, among others. Extensive work has been done for different segments of 2D crowd
estimation and received a lot of attention, but work related to 3D crowd estimation is
limited. Recently, promising research has been conducted on density estimation [69–72]
and advances have been made in 3D pose estimation from 2D [11,73–80] but the work
related to 3D crowd estimation using UAV is not prevalent. Interestingly, UAVs have
immense potential to estimate the crowd spread over a huge geographical area in a shorter
duration. Recent advances in optical instrumentation and computer vision techniques
have facilitated the use of 3D models to explore in-depth information. In contrast, very
little research has been done regarding 3D crowd estimations with UAVs. This fact alone
underscores the necessity to devise a new way to overcome the traditional and inherent
limitations. It also demonstrates how our 3D work varies from existing and conventional
2D crowd estimation methodologies. To summarise, taking into account the existing
shortcomings, we have presented a 3D crowd simulator in Section 3.3, trained, tested and
validated the simulation system against real-crowd data in Section 3.4. In addition, we have
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introduced a novel 3D crowd estimation technique using UAV for a robust and accurate
estimation of a crowd spread over a large geographical area in the subsequent sections.

3. 3D Crowd Estimation Using UAV

In this section, various techniques and tools used to develop 3D crowd estimation
technique with UAVs have been covered in detail. We have also highlighted the way these
tools can be used in conjunction with one another. An overview of the development of
a crowd simulation for training and testing data has also been discussed. Unreal Engine
has been used as the main tool for simulation and Make Human and Anima have been
employed to design and import random crowd that mimic real-life settings. Furthermore,
we have discussed the process used for training, testing and validation of synthetic data
against real crowd data and vice-versa. Finally, we have introduced our novel method of
3D crowd estimation using UAVs in real time.

3.1. 3D Simulation and Modeling

Unreal Engine [81] is a game engine developed by Epic Games that focuses on first
person shooter games. It was created using Blueprint and C++ as the main languages in
version 4 (v4). With features such as blueprint interface, game mode, simulation, real-time
output and automatic annotations, it is the perfect fit for reproducing 3D framework,
especially for simulating real-life scenarios that rarely occur.

Make Human [82] is an open-source 3D computer graphics software used to create
realistic humanoids. Make Human is used to design and create crowds size considering
different genders, age and features. Given a larger community comprising of programmers,
artists and people with academic interests in 3D modeling of characters, this tool is written
in Python and is compatible with almost all the available operating systems. Make human
is easy to use and extracts the skeleton or a static mesh as per the requirements of any other
simulation tool such as unreal engine.

Anima [83] is a 3D people animation application developed specifically for archi-
tects and designers and is ideal for creating amazing 3D animated people quickly and
easily. The tool has been used to create many 3D animated people and realistic scenarios.
The crowd flow and movement direction are plotted in such a way to avoid collision
and maintain a realistic flow. Many realistic 3D models such as stairs, escalators, tracks,
and moving sidewalks are pre-designed and easy to access for UE4 which not only helps
to design and simulate any complex scenarios quickly but also saves time while creating
any new realistic setting.

Colmap [84] is a 3D reconstruction tool and uses the patch-based stereo to reconstruct
3D dense point clouds. In our proposed method, it has been used to generate 3D models
using images extracted from Unreal Engine. The Colmap provides intrinsic parameters
such as camera model and extrinsic parameters such as camera location, rotation, etc.
Several studies [85,86] critically compared the results of popular multiview stereo (MVS)
techniques and concluded that COLMAP achieves the best completeness and on average,
it produced promising results for most individual categories.

3.2. Why 3D Simulation?

3D simulation is less time-consuming and cost-effective to build a 3D simulator of a
crowd to train and test the system as well as provide accurate ground truth information
about people and their locations. In addition, a 3D simulator is useful to create and
design simulations of seldom occurring events and understanding the real-world outcomes.
Additionally, it can be useful to self-train the system by finding out about those uneven
possibilities, such as stampedes, public gatherings, etc. within the crowd data sets. Another
factor that influences and attracts computer vision researchers toward 3D simulation is the
virtual data set. It makes it possible to consider and construct a virtual data set by creating
various scenarios, events, and their outcomes in real time, which can help to train and test
the system [87].
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3.3. Overview of the Proposed Testbed

In a limited time, UAVs have gained enormous prominence due to their ability to
resolve major issues. Obtaining a licence and permission to fly a UAV near a crowd in
most countries is hard, expensive, and time-consuming due to rigorous restrictions and
regulatory limits. Navigating and coping with a variety of precise settings and unforeseen
situations can also be difficult. Handling a UAV in a gusty environment with a shorter
flying time and distance, for example, highlights the inefficiency of mapping a large area,
which could be dangerous in real life. All of these variables make 3D simulation the ideal
solution because it has no negative implications or ethical issues.

Considering the challenges of gathering and annotating real data, we built the crowd
simulation system using the Unreal Engine version 4 (UEv4). The design of the basic
prototypes and reusable meshes such as houses and trees was the first step involved in
creating a virtual environment and shown in Figure 1. Furthermore, we placed all those
meshes within the environment to give a real-life look. We have used smooth, linear,
and spherical features to flatten and reduce surface noise. Animation and wind effects were
incorporated to make the virtual environment more realistic, but only in 3D. These models
can be imported and utilized in a variety of settings, making the process of building and
generating scenarios quick, easy, and adaptive to the requirement.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 1. The figure demonstrates various steps involved before simulating the crowd, whereas
(a) shows the skeleton design sample of a person containing in-depth details which can be exported
and further used in UE4, (b) shows one of the samples designed to be a part of the crowd, (c) contains
the basic template for the first person used as a map to place various objects, (d) demonstrates the
designing and animating of the mesh. A tree sample has been presented in this image. (e) shows
a sample blueprint command line to calibrate and establish the working between different objects,
(f) shows an initial output map designed before placing the crowd in the environment, (g) demon-
strates how different crowd samples look like when they are ready for simulation, (h) depicts the final
image after starting the simulation where the image was captured from the top view and showed our
UAV prototype used in UE4, (i–l) demonstrates various scenarios where the crowd was randomly
distributed in diverse settings.

Having said that, it is necessary to create a synthetic crowd prototype comprised
of different genders before simulating the environment. Hence, we have used Make
Human and Anima to design and generate random crowds using random sets of features
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for different random variables to mimic the real world. The random crowd consists of
individuals of different genders, ages, weights, heights, ethnicities, proportions, outfits,
poses, colors, and geometries. For proper representation, we have used different geometric
shapes and topologies for the eyes, hair, teeth, eyebrows, eyelashes, etc. of each individual.

Manually annotating the crowd in any dense crowded image is an extremely laborious
and time-consuming task with a higher possibility of getting false annotations or multiple
count of the same individual. While the captured 2D data holds good image resolution,
the inherent limitation of 2D does not make it efficient to provide every single detail
required for estimating the crowd in 3D. That said, data collection within the 3D simulation
system is relatively easy and accurate to generate reams of data, especially when using
a moving camera over a large crowd. Our proposed 3D simulation system is efficient
enough to generate automatic annotations and can provide 3D world and relative locations
to estimate the crowd in any static or dynamic event. The simulation system is also able
to generate virtual data sets that could be beneficial in future research within the domain.
Furthermore, it resolves existing issues such as the availability of massive crowd data sets,
among others. The flowchart in Figure 2 depicts the steps taken to capture the frame while
storing ground truth (GT) positions at the same time. The collected data was used in the
subsequent Section 3.4 for the training, testing and validation of the simulation system and
generation of synthetic data. Furthermore, the 3D annotations collected by flying the UAV
were extracted from the simulator and further used in the final 3D method introduced in
Section 3.5.

Figure 2. The flowchart presents the whole pipeline for capturing synthetic data with a 3D simula-
tion system.

3.4. Training, Testing and Validation the Simulation System against Real-Crowd Data

Given the requirement for a UAV crowd estimation and limitations of a flying UAV
in the real world, we have introduced a novel way to estimate the crowd using synthetic
images extracted from our simulation system. We started by implementing our initial
idea of building and testing the simulation system. Using aerial photos gathered from
the drone as a foundation for assessment was a very challenging task. So we prototyped
photo-realistic humanoids of various sizes and integrated all of their meshes and skeletons
into the simulator to make it as realistic as possible.

With a variety of methods discussed in Section 2.3, we have evaluated the advantages
and disadvantages of the broad approaches. Most recent studies [34,38–40] suggest that
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multicolumn CNN [10] method achieves the best results on ShanghaiTech data set and is
efficient enough to train, test and validate the simulation system against real-crowd data.
ShanghaiTech is the best fit as it is one of the largest large-scale crowd counting data sets
in previous few years. It consists of 1198 images with 330,165 annotations. According to
different density distributions, the data set has been divided into two parts: Part A (SHA)
and Part B (SHB). SHA contains images randomly selected from the internet, whereas Part
B includes images taken from a busy street of a metropolitan area in Shanghai. The density
in Part A is much larger than that in Part B which make SHA a more challenging data set
and an ideal fit for large crowd testing.

To test and validate the simulation system, we extracted the aerial video captured
through UAV within the simulator and split it into different frames. Initially, we set up the
ShanghaiTech data set for testing and validation against the synthetic images (Figure 3).
For testing the system, we set up data and created the training and validation set along
with ground truth files. We calculated the errors using mean absolute error (MAE) and root
mean square error (RMSE), and the output in the form of density maps.

Figure 3. The pipeline shows the steps involved in testing of synthetic data against publically
available crowd data set.

We trained the model on synthetic data using multicolumn convolutional neural
network (MCNN) after obtaining a high throughput and validating the simulated data.
Three parallel CNNs, whose filters were attached with local receptive fields of different
sizes, were used as shown in Figure 4. We utilized the same network structures for all the
columns (i.e., conv–pooling–conv–pooling) except for the sizes and numbers of filters. Max
pooling was applied to each 2 × 2 region, and Rectified linear unit (ReLU) was adopted as
the activation function. We used fewer filters to minimise computation time.

Figure 4. The figure depicts the network architecture design and overview of single image crowd
counting via multi-column network.

3.5. Our Approach to Crowd Estimation Using UAV

In this section, various tools and techniques used to develop the 3D crowd estimation
technique using UAV have been discussed. We have highlighted step-by-step how these
tools are interlinked with each other. We have briefly discussed the Make Human and
Anima for designing and importing random crowd that mimic real-life settings.

115



Remote Sens. 2021, 13, 2780

In the most recent studies, counting the same individual from a moving camera has
been a major issue. We have attempted to overcome the issue by introducing a novel
3D crowd estimation technique using UAV for a robust and accurate estimation of a
crowd spread over a large geographical area. Figure 5 shows the step-by-step process of
our presented method where the basic prototypes and meshes were designed to setup a
simulation environment in Unreal Engine. Anima and Make Human were used to generate
random crowds size using random sets of features for different random variables to mimic
real-life settings. After preparing the simulation environment, we flew a virtual UAV
around the crowd and captured the ground truth 3D locations which we will use at the end
to map the estimated 3D crowd locations. Various frames were also captured associated
with the crowd to train, test and validate the system. After extracting the captured data
from Unreal Engine, we tested the captured virtual data using state-of-the-art method
MCNN. Later, Laplacian of Gaussian (LOG) was applied in the extraction of the density
map provided by the MCNN to identify the possible 2D crowd location. It was later used
to ray trace the possible crowd locations in 3D. In the third step, we reconstructed the 3D
model from the frames captured using UE4 and collected in-depth details of the model
such as camera location, quaternion matrix, camera translation and points such as screen
points and 3D points for every 2D image provided as input. Finally, we initiated a ray hit
testing and traced the possible 2D crowd location extracted from the blob-detector and
stored the intersection points between ray and plane, considering them as the possible
crowd locations in 3D model. Although the traced 3D locations overlapped in the initial
frame capturing, we set up an averaging method and discarded most of the overlapping
points from each frame. To map the output estimated point with the ground truth point
captured from UE4, we used the ICP algorithm for registering both point sets. Once it
converged, we mapped the ground truth points with the estimated points using the nearest
neighbour search algorithm and extracted the matched pair between the two sets, where pi
is considered a match to qj if the closest point in Q to pi is qj and the closest point in P to qj
is pi and tested it against various universally-agreed and popularly adopted measures for
crowd counting model evaluation which have been discussed further in Section 3.6.

Figure 5. The system architecture diagram provides a detail representation and steps involved in our
approach to crowd estimation using UAV.
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To make a clearer representation of the method, we divided the process into several
steps and tried to present the working of every step. To give a realistic vision, we also
attempted to visualise how the output would look like. The steps involved in the presented
method are as follows:

Step 1: Make Human and Anima have been used to design and generate random
crowds size using random sets of features for different random variables. They give a
random crowd that mimics real-life settings. Furthermore, this image covers people of
different genders, age, weight, height, ethnicity, proportion, clothes, pose, colour, geome-
tries etc. Different geometries for each person have been used to make the synthetic crowd
more appropriate for the real crowd, including eyes, hair, teeth, topologies, eyebrows,
eyelashes, and so on. Furthermore, these individuals were involved in the simulation
system’s estimation process.

Step 2: Unreal Engine (UE4) is primarily used as a platform to simulate various real-
life scenarios that rarely occur. To make it more practical and closer to real-life situations,
we have used random crowd distribution (Figure 6). Because of the random distribution,
the crowd size for each simulated scenario is unknown before testing. Algorithm 1 demon-
strates steps 1 and 2 with a detailed overview of how the simulation scenario was created
and 3D locations were extracted for the simulated crowd within the system.

Figure 6. The figure shows the demonstrations from Steps (1–2), where the synthetic image has been
captured from the UAV.

Algorithm 1 Algorithm for 3D simulation and data collection.

Input: H={h1, h2, ..h126}, Where H is a set of humanoid;
G={g1, ..g1000}, where G is a set of environmental geometries
Output: Simulation Scenario S;
Log file LF consisting of 3D locations Pi;
Frames captured Fi
while Not enough sample picked do

/*enough sampled here means the no. of humanoid objects required for
simulation*/;

Import a random hi
end
while Not enough sample picked do

/*enough sampled here means the no. of geometric objects required for
simulation*/;

Import a random gi;
end
Combine the imported subsets C, which represents the crowd and M the mesh
respectively to get the simulation scenario S;

Start simulation;
while Not all crowd captured do

Fi=fly UAV around the crowd to capture frames;
Ray tracing ;
Li=extract crowd 3D locations Pi to log file LF;
Store locations in log file LF ;

end
return LF containing GT location Pi;
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Step 3: Density estimation and blob detection were used for projection and verification.
To gather all the information and evaluate the output images, the system was trained using
real images and tested on synthetic images provided by the simulator. Few state-of-the-art
pre-trained models were considered for checking against both the synthetic and real data
to train and test the system. Moreover, we incorporated a multicolumn convolutional
neural network for single image crowd counting. We repeated this process for all the data.
The density heat maps generated using the person detector (Figure 7) for all the 2D images
were used for mapping the 3D data. Later, we used a Gaussian blob detector to extract the
individual’s 2D locations from the density maps. The coordinates were later used to ray
trace these 2D locations to obtain the 3D locations. These points were crucial for filtration
and determining whether or not the estimate point in the 3D model belonged to a person.
Algorithm 2 demonstrates step 3 and highlights the procedure followed to extract the 2D
coordinates for each person from each image that has been extracted.

(a) MCNN Output (b) Blob detection

Figure 7. The figure shows the demonstrations of step 3, whereas (a) shows the network output from
MCNN in the form of density map and (b) represents the Step 3, where the blob detected from the
density map are shown and further used for mapping and tracing the crowd.

Algorithm 2 Algorithm for density estimation and Blob detection.
Input: Frames captured Fi
Output: .JSON File containing 2D coordinates (xi, yi) for each person EPi in

frame Fi;
Initialization;
Download data set;
create directory;
Density_map = MCNN(Fi);//use MCNN Algorithm here to get heat map
for EPi ← 0 to Fi do

Read density_map to array;
Convert to gray scale;
Apply Laplacian of Gaussian in image;
Detect blobs;
Extract (xi, yi);
Save extracted (xi, yi) to .JSON File

end
return.JSON File;

Step 4: Colmap is used to generate 3D models using the synthetic data (Figure 8)
gathered from the simulator. Various simulated images were captured by flying the UAV
over the randomly distributed crowd. The gathered data was merged into a realistic
model using structure-from-motion (SfM) and multiview stereo (MVS). The whole pipeline
returned the 3D parameters such as camera location, quaternion matrix, camera translation
and points such as screen points and 3D points for every 2D image provided as input.
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Figure 8. The image presents the first step of COLMAP 3D reconstruction where a set of simulated
overlapped images have been provided as an input.

This approach uses a set of multiview images captured by RGB cameras to reconstruct
a 3D model from the object of interest. 3D reconstruction is often identified as SfM-MVS.
SfM is an acronym for structure-from-motion. It creates a sparse point cloud model from
the input images.

First, the SfM technique determines intrinsic (distortion, focal length, etc) and extrinsic
(position and orientation) camera parameters (Figure 9) for putting the multiview images
into context by identifying the local features/keypoints of the images. The corresponding
points were then used to measure the 3D model and find the relationship between images.
Algorithm 3 represents how the 3D model (Figure 10) has been reconstructed as explained
in step 4.

Figure 9. The figure shows the UAV path trajectory. The data was captured by following a circular
path to store every crowd detail from the scene.

Figure 10. The figure explains the final step involved in the COLMAP reconstruction. A 3D model
has been provided as an output.
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Algorithm 3 Algorithm for 3D model reconstruction using COLMAP.
Input: Frames captured Fi
Output: Reconstructed 3D Model as STL file SF;
Cameras File CF;
Images File IF;
Point 3D File PF;
Initialization;
while 3D model not reconstructed do

Feature detection and extraction;
Feature matching and geometric verification;
Structure and motion reconstruction;

end
return model SF as text to store the values of CF, IF,PF

Step 5: A ray hit test was set up using the starting point and direction to find the
intersection point between the ray and 3D model plane. It was used to track down and
estimate the crowd size in 3D, while considering the challenge of a moving camera and
crowd. It is possible to ray trace every point in each 2D image, but it would be a very
expensive and time-consuming process. To overcome this problem, unrelated points were
filtered and discarded and ray trace was set up only for the points extracted after the blob
detection obtained the exact 3D location points. The returned ray intersection points with
the relevant frame numbers were stored and used in the next step to overcome the issue of
counting the same individual multiple times.

Structure-from-Motion (SfM) is the process of reconstructing 3D structure from its
projections into a series of images. The input is a set of overlapping images of the same
object taken from different viewpoints. The output is a 3D reconstruction of the object as
well as the reconstructed intrinsic and extrinsic camera parameters of all images. Typically,
Structure-from-Motion systems divides this process into three stages: feature detection
and extraction, feature matching and geometric verification and structure and motion
reconstruction. Furthermore, multiview stereo (MVS) takes the SfM output to compute
depth and normal information for every pixel in an image. Fusion of the depth and normal
maps of multiple images in 3D then produces a dense point cloud of the scene. Using the
depth and normal information of the fused point cloud, algorithms such as the Poisson
surface reconstruction [88] can then recover the 3D surface geometry of the scene.

Figure 11 depicts the original model reconstructed using an overlapped image pro-
vided as input. Before moving forward, plotting the traced point back is an efficient way of
checking the accuracy. For this, we used the reconstructed intrinsic and extrinsic camera
parameters of all images stored in a database. Later, we plotted the same traced points
back to create the same model to double-check the data accuracy. Figure 12 refers to the
back projected traced points to the point cloud which creates an accurate model and proves
the reconstructed model’s accuracy. Various steps followed in step 5 have been presented
in Algorithm 4 that demonstrate how the intersection points were extracted using a ray
hit test.

Step 6: A merging algorithm was developed to find the average of the total number of
points hit by the ray tracer. Then, a list of intersection points for each ID and the threshold
was set up as the input. The closest point to the threshold was selected. Each point of the
frame number (from ID 1 to N-1) was checked against all the neighbouring points with the
same ID. If the difference between the point P and the intersection point Q was greater than
the threshold, the point was appended to a new point set while the rest were discarded.
The detailed explanation and the steps involved in the algorithm have been discussed in
Algorithm 5.
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Algorithm 4 Algorithm for Ray Hit Testing.

Input: Cameras File CF;
Images File IF;
Point 3D File PF;
Blob Points 2D File BF;
STL File SF;
Output: Intersection point set pij for each frame Fi
Initialization;
Transform camera file into key values where key=Ci, camera id;
value=Cp, camera parameters;
Transform image file into key values where key=P2Di, point 2D id;
value=Ip, image parameters;
Transform Point 3D File into key values where key=P3Di, point 3D id;
value=3DPi, 3D parameters;
Map data;
Map Cameras File, Images File, Points3D File, Blob Points 2D File;
Map data output;
for Fi ← 0 to N − 1 do

Map Ci to IF point 2D;
Extract image data and point data;
Map image data with blob data;
Create kD tree from blob points;
for P2Di ← 0 to N − 1 do

if Closest to blob point in kD tree then
Map with P3Di ;

else
Eliminate P2Di ;

end

end
Caster = rayCaster.fromSTL(STL File, scale=1);
Read Data cam id, Data parameters, Caster;
Set up ray start point and direction;
Intersection points = caster.castRay(start point, direction);

end
return Intersection points pij;

Figure 11. The figure shows the original 3D Model reconstructed using five humanoid prototypes.
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Figure 12. The figure has traced points back projected to the point cloud, while reconstructing the
original model.

Algorithm 5 Merging of Ray traced intersection points.

Input: List of intersection points pij for each frame Fi;
threshold t
Output: Pointset Q
Initialisation;
pij = points[0];
for idi ← 0 to N − 1 do

new_point_set = Qi;
for p ← 0 to Fi do

for q ← 0 to pij do

if (|p − q| > t) then
Q ← p ∪ Qi;

end

end

end
return Q

Step 7: Point matching for evaluation was carried out in the final step. To evaluate our
detections, we had to match the ground truth 3D locations to the estimated locations from
our system. The Iterative Closest Point (ICP) [89,90] algorithm was used to find the best fit
transform and to validate the estimated points against the ground truth points. Fast Library
for Approximate Nearest Neighbors (FLANN) [91] was used for the nearest neighbour
search. A two-way matching of points was carried out and cross-checked between the two
3D point sets pairs. Algorithm 6 demonstrates the procedure followed for the two-way
matching from the two different point sets where Q represented the estimated average
points and P represented the ground truth points extracted from the simulation system. It
has been explained in step 1 of the presented method.

Algorithm 6 Algorithm for 2-way point matching using ICP.

Input: P = p0, p1, ..., pN ;
Q = q0, q1, ..., qM;
Output: Matched pairs
Initialize transform M to be the identity;
until converged;
R = Find 2-way closest points between P and MQ (MQ = Mq0, Mq1, ...MqM);
update M based on matches in R;
return Pairs (P → MQ) and (MQ → P);
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3.6. Evaluation Metrics

Many evaluation metrics are available to predict the estimation and ground truths.
They are universally agreed and popularly adopted measures for crowd counting model
evaluation. They are classified as image-level for evaluating the counting performance,
pixel-level for measuring the density map quality and point-level for assessing the precision
of localisation.

The most commonly used metrics include Mean Absolute Error (MAE) and Mean
Squared Error (RMSE), which are defined as follows:

MAE =
1
N

N

∑
i=1

|Cpred
Ii − Cgt

Ii | (1)

where N is the number of the test images, Cpred
Ii and Cgt

Ii represent the prediction results
and ground truth, respectively.

RMSE =

√√√√ 1
N

N

∑
i=1

|Cpred
Ii − Cgt

Ii |2 (2)

Roughly speaking, MAE determines the accuracy of the estimates whereas RMSE
indicates the robustness of the estimates.

Precision is a good measure to determine when the costs of False Positive are high.
For instance, in the current crowd estimation approach, a false positive means that a point
hit by the model is not the right point (actual negative) and has been identified as a person
(predicted crowd). The crowd estimation system might lose the actual individual out of
the crowd, if the precision is not high for the crowd estimation model.

Precision =
TruePositives

TruePositives + FalsePositives
(3)

Recall calculates how many of the Actual Positives our model has captured by la-
beling it as Positive (True Positive). For instance, in the current system, if an individual
(Actual Positive) is not predicted and counted null (Predicted Negative), then the cost
associated with False Negative will be extremely high, and it might collapse the whole
estimation model.

Recall =
TruePositives

TruePositives + FalseNegative
(4)

F1 Score may be a better measure to use, if we need to strike a balance between
Precision and Recall and see if there is an uneven class distribution (a large number of
Actual Negatives).

F1 = 2 × Precision ∗ Recall
Precision + Recall

(5)

4. Implementation Details

In our experiments, we used Pytorch for training and testing synthetic data. For the
hardware equipment, the training was done on a 64-bit computer with 32 cores Intel(R)
Xeon(R) Gold 6130 CPU @ 2.10GHz processors, 48 GB RAM and two Tesla P100-PCIE-16GB
GPU devices. To improve the training set for training using MCNN, we cropped 9 patches
from each image at different locations; each patch was 1

4 size of the original image. We
trained 133 images that contained 1197 patches using the MCNN model. The 2D detector
model was trained on a shared network of 2 Convolutional layers with a Parametric
Rectified Linear Unit (PReLU) activation function after every layer to enhance the accuracy
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of the traced blob points. For the CMTL training, we cropped 16 patches from each image at
different locations; each patch was compressed to 1

4 size of the original image. We trained
133 images containing 2128 patches using the CMTL model.

The implementation of 3D crowd estimation was performed using a ray caster on the
reconstructed 3D model. The model was reconstructed using the 127 images that were
captured from our 3D simulator. The model was rebuilt using an Intel Core i7-8750H
processor with a 6 Cores/12 Threads @ 4.1 GHz CPU, Windows 10 on 16 GB RAM, and an
NVIDIA Geforce GTX 1060 Max-Q graphics card (6GB of dedicated memory). We used a
simple radial camera to capture the data while flying the UAV above the crowd. Initially,
the data was captured by following a circular path. The capturing angel varied from 45◦
to 90◦ while keeping the height and speed constant. The crowd was randomly placed
considering the fact that there is no ground truth in real-time.

5. Experimental Results

Blob detection aimed to detect regions, either in a digital image or synthetic image.
They were tested on the pre-existing state-of-the-art methods known as: From Open Set to
Closed Set: Supervised Spatial Divide-and-Conquer for Object Counting (S-DCNet) [42],
Locate, Size and Count: Accurately Resolving People in Dense Crowds via Detection
(LSC-CNN) [92], CNN-based Cascaded Multitask Learning of High-level Prior and Density
Estimation for Crowd Counting (CMTL) [93], and Single-Image Crowd Counting via
Multicolumn Convolutional Neural Network (MCNN) [10]. The estimated count of our
data set against the ground truth was promising and presented in the form of MAE and
RMSE. Moreover, we demonstrated that the simulator data is compatible and worked
appropriately with real-world crowd data.

The simulated images we used demonstrated a high degree of realism and quality
that worked with crowd estimation algorithms trained on real images. As demonstrated in
Table 5, S-DCNet, MCNN and CMTL showed promising results on our data set against
SHA. CMTL performed better and provided the best MAE of 27.6 and RMSE of 34.6.

Table 5. Testing of Our Data against Shanghai Tech Part_A (SHA) using state-of-the-art methods
where the highlighted text demonstrates the methods which performed better on our data set.

Methods
SHA Our Data Set

MAE RMSE MAE RMSE

S-DCNet [42] 58.3 95.0 64.4 103.2
LSC-CNN [92] 66.4 117.0 72.7 128.3

CMTL [93] 101.3 152.4 27.6 34.6
MCNN [10] 110.2 173.2 57.2 72.2

Comparing the publicly available aerial crowd data sets using individual state-of-the-
art methods (Figure 13), our synthetic data set performed comparatively better than the
other two data sets (Table 6). A similar number of images were used for testing and chosen
randomly. The VisDone2020_CC data performed better than our data set on S-DCNet with
a MAE of 71.39 and RMSE of 123.5. However, our data set performed better than the other
two data sets in the remaining methods as shown in Table 6 with a lowest MAE of 27.6
and RMSE of 34.6. For an accurate estimation, the original model was trained on a source
domain and can be easily transferred to a target domain by fine-tuning only the last two
layers of the trained model, which demonstrates good generalisability. To augment the
training sample set for training the MCNN, we cropped 16 patches from each image at
various locations and each patch was compressed to 1

4 size of the original image. The pre-
training crowd density was very high where it used geometry-adaptive kernels to generate
the density maps and calculate the overlapping region density by calculating the average
of the generated maps to assist in more accurate estimation.
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Figure 13. This graph shows the estimated and ground truth count of the CMTL method tested using
ShanghaiTech data set.

Table 6. Comparison of aerial crowd data set against state-of-the-art methods.

Methods
DLR_ACD [66] VisDrone2020-CC [67] Our Data Set

MAE RMSE MAE RMSE MAE RMSE

LSC-CNN [92] 71.4 104.3 65.41 107.4 64.4 103.2
S-DCNet [42] 76.3 134.8 71.39 123.5 72.7 128.3

CMTL [93] 97.2 168.2 103.4 148.2 27.6 34.6
MCNN [10] 122.1 193.6 118.6 169.6 57.2 72.2

For any method, data augmentation is important. The S-DCNet results suggest that
S-DCNet method is able to adapt to the crowded scenes. The method cropped the original
image into 9 sub-images of 1

4 resolution. Mirroring performance and random scaling
doesn’t work well on our data. Due to random crowd distribution in our data, the first
4 cropped 224 × 224 sub-images which refers the four corners of the image, didn’t fit
well and failed to identify the crowded regions in some images which downgraded the
performance of our data set. On the other hand, the randomly cropped images improved
the downgraded performance and identified the crowded regions which eventually deliv-
ered a better performance. However, the VisDrone2020-CC data contains a higher density
crowd than ours where the sub-images or cropped patches located the crowd easily. It per-
formed comparatively better on high-density images that justifies that S-DCNet effectively
generalises to large crowd data and makes accurate predictions.

After analysing the methods and their best results, we chose CMTL and MCNN
for training the model on synthetic data. We selected the CMTL’s and MCNN’s best
model using error on the validation set during training, and set 10% of the training
data for validation. Then, we obtained the ground truth density maps using simple
Gaussian maps and compared them against network output (Figure 14). The method
performed better when the system was trained using synthetic data and tested against the
ShanghaiTech data set.

Table 7 shows the output comparison between CMTL model, MCNN model and
model trained on our synthetic data set. Our model demonstrates a better performance
against the original CMTL model using the same data set which is evident by a low MAE
of 98.08 and RMSE of 131.22 which is comparatively better than the original CMTL model.
To show the advantage of using our simulator in training with various scenarios, we have
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additionally trained a multicolumn convolutional neural network (MCNN) on synthetic
data and tested against SHA.
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Figure 14. The graph shows the comparison between the ground truth (GT) and the estimated count
(ET) that were tested against the CNN-based Cascaded Multitask Learning of High-level Prior and
Density Estimation for Crowd Counting (CMTL) [93] method using the aerial synthetic images. We
randomly selected 140 images from the synthetic data for testing and compared them against the
ground truth.

Table 7. The table presents the results of CMTL model, MCNN model and our synthetic data trained
model that were tested against the ShanghaiTech data set.

Method
SHA

MAE RMSE

CMTL Model 101.3 152.4
Our Model 98.08 131.22

MCNN Model 110.2 173.2
Our Model 117.01 194.79

Finally, we tested our own data set as shown in Table 8 using the model trained on
synthetic images. The CMTL performed better with the results depicting a lower MAE of
8.58 and RMSE of 10.39. This model offered an accurate estimation of the synthetic data
and significantly improved the accuracy of 3D crowd estimation method.

Table 8. The table shows the output of synthetic data model tested against our synthetic data set.

Methods MAE RMSE

CMTL 8.58 10.39
MCNN 17.43 24.46

To the best of our knowledge, this is the first UAV-based system for crowd estimation.
The developed system efficiently captures and calculates large crowds spread over a large
geographical area. To determine the system’s robustness, the results have been compared
to standard metrics such as accuracy, recall, RMSE, and MAE. Our proposed method
outperforms with a randomly distributed static crowd from a moving camera in 3D and
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shows a throughput with an accuracy of 89.23%. The output shows the accurate estimation
of 116 people out of 130 which highlights the robustness of the proposed method with
a possibility to improve the detection rate in further testing. With a precision of 94.30%
and recall of 95.86% shown in Table 9, the RMSE of 0.0002748 justifies that the proposed
method is efficient to capture and estimate a large geographical area as well as produce
an accurate count in minimal time. The method also validated using two-way mapping
methods where the output was matched with the ground truth points to cross-check the
initial performance.

Table 9. The table shows the results for 3D crowd estimation using UAV method.

RMSE Accuracy Precision Recall F1

0.0002748 89.23% 94.30% 95.86% 0.9507

Figure 15 illustrates the final output from the ICP [94] where the ground truth points
(P) were plotted against the 3D estimated points (MQ). In the ICP, we provided the input
point set as P and Q and initialized transform M to be the identity until it was converged.
The converged ICP in 1 iteration highlighted the accuracy of the estimated and ground-
truth locations. FLANN [91] was used for the nearest neighbour search. Two-way matching
of points was carried out and cross-checked between P and MQ. The final result outputs
with a list of closest points and 116 pairs matched between P and MQ out of 128 pairs.
A wider comparison of our results with the state-of-the-art methods, however, is not
possible as no similar method that can justify and motivate us to compare the results with
the ground truth exists.

Figure 15. The figure shows the output from the ICP. The plot shows the GT points as P and possible
estimated points as MQ.
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6. Discussion

The simulation system generated virtual crowd data set was initially tested in conjunc-
tion with four well-known state-of-the-art approaches. While performing experiments with
virtual crowd data set, we encountered less errors, which is evident by the low MAE and
RMSE. The CMTL method outperforms with a MAE of 27.6 and RMSE of 34.6. During the
testing, we noted that annotating the accurate position is the most important aspect in
accurate computation and generation of density maps. Crowds with distinct features and
geometries are important to obtain better results from the virtual data. It not only reduces
the chances of overlapping but also helps to create a robust reconstruction model.

In the aerial data set comparison, our simulation system generated data outperforms
against DLR_ACD and VisDron2020-CC data sets when tested against S-DCNet. Due to
the sparse crowd distribution in our data, the methods which evaluates the entire image as
an input such as MCNN and CMTL preforms better than the approaches like S-DCNet that
divide the whole image into patches where the accuracy depends on the image density. It
should also be noted that the number of patches that lie in the empty region surpasses the
crowded region and could not help much in estimation and the error rate will be high.

For a better evaluation of the crowd counting method performance under practical
conditions, we have simulated and labeled our new data set. Furthermore, our model has
been trained on a source domain that can be easily transferred to a target domain by fine-
tuning only the last few layers of the trained model. To enhance the training sample set for
training the MCNN, we have cropped 16 patches from each image at various locations and
each patch is compressed to 1

4 size of the original image. Our data set outperforms against
the state-of-art CMTL model with a higher throughput and lowest MAE of 98.08 and RMSE
of 131.22. We have also tested our data against the model trained on the same set of data
which shows a MAE of 8.58 and RMSE of 10.39. This trained model is helpful especially
with the same synthetic data and provides a higher accuracy than any other methods but is
limited to the same set of data. Further testing needs to be done on the existing publicly
available data sets where we want to see how these synthetic data trained model behaves
with a new set of data.

The proposed method of 3D crowd estimation system has been tested on various
scenes using random crowd distribution. Further testing needs to be done to improve
the consistency of the method. Initial test on a moving camera and static crowd provided
the accuracy of 89.23% which need to be improve and tested on a large scale. That said,
the problem of moving crowd and moving UAV is still being worked on. Here, the recon-
struction of a 3D model needs to be considered carefully because the points not aligned
properly leads to a false estimation or an output with a lower accuracy. The overlapping
of the data and stability of the moving camera is very crucial and needs to be considered
while capturing the crowd.

At any given time, the most important issue is optimising the flight path over a wide
area to get the most accurate estimate of the available crowd. For example, crowd density
may be higher along roads or maybe spilling out radially from the town centre which needs
to be dealt in the near future for more accurate estimation. We have captured the data and
gathered information for future analysis of different crowd distribution. This data needs
to be studied in terms of how synthetic data differs from real data considering domain
randomisation, transfer learning and adaptation.

7. Conclusions

Crowd estimation in the 3D domain has grabbed the attention of the computer vision
industry, as it provides a more reliable and comprehensive information of the crowd. In this
article, we have presented an up-to-date review of open-source simulators and relevant
crowd data sets with their shortcomings. It primarily justifies the need of a 3D simulator
and explains the type of data the simulator should generate. The paper describes the initial
issues of crowd estimation from a moving camera and proposes a solution by developing
a 3D crowd simulator for training and testing. It also covers the testing of 3D simulator
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data by implementing the pre-existing techniques such as LSC-CNN, S-DCNet, CMTL
and MCNN. Moreover, it highlights a pre-developed approach to train the synthetic data
precisely and validate it using state-of-the-art methods, which justifies that virtual data is as
effective as the existing data captured in reality. This will contribute in future development
by generating more virtual data sets which could be useful for training deep learning
models. In addition, it identifies three big and precise crowd estimation issues, along
with introducing a method for 3D crowd estimation using UAV. The presented method
can estimate large crowd spread over a large geographical area. Lastly, it explores the
limitations that the current model do not address, as well as what needs to be addressed in
the future and how the current state will assist in addressing future problems.

In the future, our presented approach could be extended for various potential 3D appli-
cations which include tourist attraction [95] using video information to attract and maintain
tourist flow, suspicious action detection [96] by monitoring crowded areas and alerting
authorities of any suspicious activities and safety monitoring [97] in various facilities, such
as religious gatherings, airports, and public areas to monitor crowds, among others.
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Abstract: In this paper, we investigate the problem of aligning multiple deployed camera into one
united coordinate system for cross-camera information sharing and intercommunication. However,
the difficulty is greatly increased when faced with large-scale scene under chaotic camera deploy-
ment. To address this problem, we propose a UAV-assisted wide area multi-camera space alignment
approach based on spatiotemporal feature map. It employs the great global perception of Unmanned
Aerial Vehicles (UAVs) to meet the challenge from wide-range environment. Concretely, we first
present a novel spatiotemporal feature map construction approach to represent the input aerial and
ground monitoring data. In this way, the motion consistency across view is well mined to overcome
the great perspective gap between the UAV and ground cameras. To obtain the corresponding rela-
tionship between their pixels, we propose a cross-view spatiotemporal matching strategy. Through
solving relative relationship with the above air-to-ground point correspondences, all ground cameras
can be aligned into one surveillance space. The proposed approach was evaluated in both simulation
and real environments qualitatively and quantitatively. Extensive experimental results demonstrate
that our system can successfully align all ground cameras with very small pixel error. Additionally,
the comparisons with other works on different test situations also verify its superior performance.

Keywords: multi-camera system; space alignment; UAV-assisted calibration; cross-view matching;
spatiotemporal feature map; view-invariant description; air-to-ground synchronization

1. Introduction

The advance of imaging performance and decline of sensor price play a significant
role in promoting the popularization and development of multi-camera systems. With
its advantages, such as complementary field of view, flexible structural arrangement
and diverse acquisition forms, multi-camera systems have an increasingly important
effect in the field of security surveillance [1,2], automatic controlling [3,4], intelligent
transportation [5,6], etc. Among them, camera space alignment, which is the foundation
and difficulty for large-scale multi-camera systems, has gradually become one of the
research focuses in recent years. It aims to unify visual data from different cameras
into one coordinate system which contributes to cross-camera information sharing and
interconnection.

To date, several related algorithms have put been forward for camera spatial rela-
tionship estimation of multi-camera system space alignment [7–9]. According to whether
the camera field of view overlaps, numerous corresponding space alignment solutions
are presented for overlapping cameras and non-overlapping cameras, respectively. When
there are overlapping areas between cameras, we can use common features from addi-
tional calibrator or only own scene to calculate the relative camera relationship matrix for
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space alignment. There are many and various types of calibration object: one-dimensional
calibrating bar, board calibration plane, stereo calibration tower, etc. For space alignment
of cameras without overlapping, current approaches relate these independent but closely
linked visual data by intermediate connector, e.g., scene 3D map, mirror reflection, mov-
ing target, common marker, etc. Their performances typically rely on the accuracy and
robustness of cross-camera link bridge establishment. Based on the above achievements,
several technical issues such as active tracking and situation awareness can be studied and
implemented under multi-camera spatial calibration results.

However, despite recent advances, there are still many problems that need further
research on existing deployed multi-camera space alignment. The main difficulties cover
the following points: (1) Chaotic spatial layout: Most cameras are set up at different times
for different application requirements. Lack of scientific topology structure planning and
design lead to chaotic layout. Thus, the overlapping relation between cameras is also
complex. (2) Large scale environment: Multi-camera systems are mostly used in large
scenes because of their wider coverage. Thus, specially designed calibrators with limited
size and fixed shape are inapplicable. Meanwhile, how to balance accuracy and efficiency
in large-scale environment is also a challenge. (3) Great visual gap: Cameras are distributed
dispersedly under wide baseline. There are differences between cameras in viewing angle,
rotation and object scale. These differences bring great difficulty on space alignment
across cameras.

In this paper, we thoroughly analyze the above problems of multi-camera space
alignment in large-scale environment. Its essence lies in how to better build the connection
among these independent cameras. This problem, in a sense, is similar to multi-station
cooperative wireless communication [10]. In its relevant studies, a UAV is employed as
relay node to maintain stable signal coverage in long-distance data transmission due to
its mobility and flexibility. Inspired by this, we extend the thinking of UAV assistance to
multi-camera space alignment, as shown in Figure 1. However, UAV airborne camera and
ground deployed camera observe the surveillance scene in aerial view and street view,
respectively. Significant perspective differences make it hard to directly match the air
with the ground. To address this problem, we explore the consistency of motion across
different views. Based on the principle that intersection point is invariable under projection
transformation, we construct spatiotemporal feature map which records the time and
position of intersection generated by moving targets. Through matching these feature
maps, time synchronization and spatial alignment can be achieved simultaneously. The
relative relationship between ground cameras and UAV is established. Multiple cameras
are aligned into one coordination system with the auxiliary connection of UAV.

Following the above research route, we propose a novel UAV-assisted multi-camera
space alignment algorithm based on spatiotemporal feature map. Concretely, it contains
two main modules: one is spatiotemporal feature map construction to describe UAV-
assisted aerial data and ground monitoring data and the other is cross-view spatiotemporal
matching based on feature map. The first one employs several lines perpendicular to the
road direction as the feature detection lines. The corresponding spatiotemporal feature map
can be constructed by recording the time and position of moving target crossing each line.
On this basis, we then present a novel cross-view matching strategy which deeply explores
their relations through the waveform change of time series and space distribution. With
UAV-to-ground matching point pairs, we can calibrate ground cameras’ space relationship
to UAV. When the spatial parameters of all ground cameras are estimated, the multi-camera
system is aligned into one united space under UAV assistance.
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Figure 1. An illustration of UAV-assisted wide area multi-camera space alignment. Through air-to-
ground matching based on spatiotemporal feature map, the relative relationship between UAV and
ground cameras is obtained (yellow line). Since we can unity the UAV’s external parameters (blue
line), multiple cameras in a large-scale environment are aligned into one coordination system with
UAV auxiliary linkage effectively and efficiently.

1.1. Related Work

In this section, we review the other multi-camera space calibration works which are re-
lated to the proposed method. Multi-camera space alignment calibrates all sensors together
by estimating each sensor’s rotation matrix and translation matrix in one reference coordi-
nate system. According to whether there is overlap between their field of view, we divide
existing methods into two categories: overlapping cameras and non-overlapping cameras.

For the first one, most scholars mine the common and independent visual data cap-
tured by different cameras to estimate their spatial relationship. Either the scene itself
or additional calibrator can be used. Many studies are conducted based on the common
visual feature of observation scene itself. For example, Lv et al. [11] detected moving
humans, who represent common visual information across cameras, and regarded them
as a set of sticks with the same height for camera calibration based on vanishing point
theory. Liu et al. [12,13] put forward an automatic camera calibration approach and its im-
provement method using common pedestrian feature. Their methods are proposed under
the assumption that all humans are on one plane surface. Unlike them, Truong et al. [7]
employed president tracks to match corresponding information in partial overlapped
cameras and then computed the extrinsic calibration matrices. Besides these methods
using pedestrian information, Romil et al. [14] analyzed the traffic scenarios and intro-
duced a novel camera calibration method by leveraging vehicle feature correspondences
between real size and pixel distance. Furthermore, many studies focus on adding common
visual information by additional calibration markers [15]: one-dimensional calibration
bar, checkerboard plane, stereo calibration tower, etc. One of the widely used calibration
algorithms was proposed by Zhang [16], who used single checkerboard calibration plane
to estimate camera external and internal parameters simultaneously. Based on Zhang’s
approach, many corresponding improved methods [17,18] are presented to optimize dif-
ferent parts such as optimization function and calibration object. To overcome the limited
stereo information of 2D calibration object, 3D marker is used to camera imaging pa-
rameter estimation. Andreas et al. [19] calculated the extrinsic matrix of a multi-camera
system with 3D target and then optimized these parameters based on genetic algorithm.
Huang et al. [20] designed a cube calibration object which can easily be captured by multi-
ple cameras, and this approach calibrates all cameras in one process with high efficiency
and convenience. In summary, the calibration methods of overlapping cameras, whether
based on its own scene feature or additional calibrator, have their own advantages and
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disadvantages. The approach based on the scene feature itself is strongly influenced by
the accuracy of feature detection and matching, while the approach based on additional
marker usually has poor universality.

Calibration algorithms of non-overlapping cameras can be broadly classified into
the following kinds: SLAM-based method, mirror-based method, tracking-based method
and marker-based method. Taking advantages of SLAM in visual localization, a user can
estimate camera relative pose by several corresponding points. For instance, Yin et al. [21]
constructed 3D feature point map of the natural environment. The extrinsic matrix is
obtained through the 3D scene point map created by SLAM. Feng et al. [22] modeled the
surveillance space by SLAM previously and then employed 2D–3D matching to calibrate
camera external parameters. Another extensively applied calibration strategy is based
on specular reflection. It can generate the common view between different cameras by
planer mirror. Xu et al. [23] employed mirrored phase target as an intermediate linkage,
and camera calibration without overlapping can be achieved through mirror reflection
relationship. By combining camera projection model and flat refractive geometry, an
accurate multiple camera pose estimation approach [24] is investigated with a transparent
glass calibration board. Beyond that, some works connect non-overlapping camera with
moving object. Sarmadi et al. [25] analyzed the interaction relationship between camera
pose estimation and object tracking. Their method shows accurate results on camera
imaging parameters estimation and real-time tracking with low computational cost. Similar
to overlapping camera calibration, users can also add an extra calibrator. Izaak et al. [26]
established a gray code and projected it into a plane with a projector. They could calculate
the relative pose between camera, plane and projector. For non-overlapping cameras in
aero photogrammetry, Yin et al. [27] introduced a novel marker-based method based on
multiple chessboard targets. Sufficient equations can be obtained to solve the extrinsic
parameters by moving camera at multiple positions. Recently, Jeong et al. [28] regarded
road markings as robust visual feature in urban environment. They realized calibration
through joint optimization of normalized information distance, edge alignment and plane
fitting. Overall, these algorithms start from different perspectives to solve various problems
when calibrating the camera without field of view overlapping.

1.2. Main Contribution

This paper aims to align all deployed monitoring cameras into a united coordinate sys-
tem. Compared to the aforementioned related works, there are some differences between
our proposed approach and them. The problem studied in this paper is more complicated
due to the chaotic layout of deployed cameras. The overlapping relationship between cam-
eras is unknown. Meanwhile, the research ideas are also different. Most current strategies
employ designed calibrators or scene visual feature to relate multiple cameras, while this
paper utilizes UAV as an aid. We give full play to the UAV’s global perception ability
to cover the challenge in large scenes. In addition, unlike the above methods based on
visual features (texture, object trajectory, etc.), we explore a more stable cross-view feature
description method based on motion intersection invariance to overcome perspective gap
between aerial and ground data. In this paper, we start our research from a new angle and
propose a novel UAV-assisted wide area multi-camera space alignment approach.

We summarize our contributions in this paper as follows:
• We propose a multi-camera wide-area space alignment approach with UAV assistance

to realize the unification of cameras’ imaging coordinate system. Unlike current ad-
ditional marker-based methods, this paper employs UAV to build visual connection
across cameras which shows superior flexibility and efficiency in large-scale environ-
ment.

• We present a novel cross-view feature description algorithm, called spatiotemporal
feature map, to overcome perspective gap between aerial-view images captured by
UAV and street-view images collected by ground cameras. It makes full use of motion
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consistency among different views, which can implement synchronization on both
time and space.

• To better evaluate the proposed method, we establish a new traffic monitoring
database collected in both simulation and real environment. This database provides
abundant monitoring data captured by multiple cameras at different fixed positions
from various scenarios, including crossroad, T-junction, straight road, multi-lane road,
etc. Extensive experiments demonstrate that our system returns encouraging space
alignment results.

The rest manuscript is organized as follows. A detailed introduction of the proposed
approach is described in Section 2. Section 3 evaluates our method in simulation and
real-world environment qualitatively and quantitatively. In addition, we also conduct
contrast experiments with other methods for performance comparison in Section 4. The
parameter influence of system performance is discussed at the end of this section. Finally,
Section 5 concludes this paper considering the methodology and experimental results.

2. UAV-Assisted Wide Area Multi-Camera Space Alignment Based on Spatiotemporal
Feature Map

Figure 2 provides an overview of the proposed UAV-assisted wide area multi-camera
space alignment approach intuitively. With the videos from assisted-UAV and ground
monitoring cameras as input, we first describe them by the spatiotemporal feature map,
which lays a basis for multi-camera space alignment. Then, this paper puts froward a
cross-view spatiotemporal matching strategy to mine the association relationship between
these feature maps from multiple levels. The corresponding pixels between UAV-assisted
videos and ground fixed videos can be obtained, and then multiple ground cameras are
aligned into one surveillance space under UAV auxiliary data connection.

The following notations are used in this manuscript (Table 1).

Table 1. Major notations.

Notation Description

N The number of ground monitoring cameras
M The number of UAV’s hovering positions
VC1, VC2, ...VCN The set of ground monitoring videos
VA1, VA2, ...VAM The set of UAV assisted videos
V An example of monitoring video
Ni The number of frames obtained from V deframing
NLi The number of feature lines detected from V
f li An example of feature line in V
Ng The number of ground spatiotemporal feature maps
Fg The set of ground spatiotemporal feature maps
Fgi ith ground feature map
Fak kth aerial feature map
fg The set of feature vectors of Fg in time dimension
fgti Feature vector of Fgi in time dimension
fatk Feature vector of Fak in time dimension
τ Time delay
Fg

′
i ith ground feature map after cutting

Fa
′
k kth aerial feature map after cutting

fgsi Feature vector of Fg
′
i in space dimension

fask Feature vector of Fa
′
k in space dimension

W
′

Corresponding coordinate set between fgsi and fask
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Figure 2. An illustration of the proposed UAV-assisted wide area multi-camera space alignment
approach based on spatiotemporal feature map. Our algorithm contains two critical components:
spatiotemporal feature map construction to describe the input UAV-assisted aerial data and ground
monitoring data and cross-view spatiotemporal matching to mine air-to-ground space correspon-
dences. Multiple ground cameras are aligned into one space with UAV-assisted visual connection.

2.1. Spatiotemporal Feature Map Construction

Before constructing spatiotemporal feature map, we firstly introduce the input data.
As shown in Figure 2, the input data contains two parts: ground monitoring videos from
ground deployed cameras and aerial videos from the UAV. Among them, each ground
monitoring video corresponds to a deployed camera to be aligned. The aerial videos
are collected by assisted UAV at different hover positions. The motion information in
observation scene is contained in both UAV aided data and ground surveillance data,
which is the key to motion consistency for subsequent cross-view matching.

Let N ground monitoring videos VC1, VC2, . . . VCN denote the monitoring data from
N deployed cameras, respectively, and VA1, VA2, . . . VAM are the UAV-assisted data which
are obtained by UAV hovering at M positions. How can these data be described by the spa-
tiotemporal feature map? Similar to the general pipeline of visual feature construction (key
point detection, feature extraction and description), our approach consists of three modules:
feature line detection, spatiotemporal information extraction and feature map description.

2.1.1. Feature Line Detection

To find spatial correspondences between the UAV data and ground monitoring data,
we expect to get the pixel relationship between them for camera space alignment. Therefore,
local feature representation method is required for such local information matching. Similar
to key point detection in widely-used SIFT algorithm, feature line detection is the beginning
step in our proposed spatiotemporal feature map construction method.

What kind of line should we choose as feature line? As is known, there exists a great
gap in perspectives between aerial UAV data and ground monitoring data. Perspective
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projection transformation causes deformation in length, relative proportion and intersec-
tion angle. That is why direct scene lines extracted by traditional hand-craft method or
deep-learning network are not suitable for air-to-ground matching. However, fortunately,
the intersection points of lines are precisely invariant under perspective projection transfor-
mation. According to this, we start with the establishment of feature lines. As shown in
Figure 2, we draw several lines perpendicular to the direction of vehicle moving as feature
lines. This is because such feature lines can capture rich visual intersection information of
the moving target passing through them. Thsi intersection information remains unchanged
between the air and the ground.

Considering the uncertainty of camera position and orientation, our approach adopts
the combination of traffic flow direction and vanish point in [29] to determine feature line.
Next, we introduce the proposed feature lines detection method of ground monitoring data
and UAV-assisted data, respectively.

For ground monitoring data, feature line directions vary greatly in different camera
orientations (Figure 3). When the camera faces the road center (Figure 3a), its feature line
directions are quite similar. While for roadside camera, Figure 3b shows an instance of its
collected data. The feature line directions are different in different positions. Their included
angles are also different in two-dimensional image. Therefore, we need to determine the
direction of feature line adaptively according to specific condition. By thoroughly analyzing
scene visual information, feature line direction relates to the short edges of foreground
moving vehicles. Their slope in different positions is the feature line direction. We adopt
vanish point to help extract the feature line direction. This specific method was proposed
by Dubská et al. [29], who first obtained the direction of traffic flows by optical flow and
calculated the first vanish point by diamond space voting. The feature line corresponds
to the direction parallel to the ground and perpendicular to the first direction. Thus, we
model background edge to get the edge of foreground moving vehicle. Then, we filter out
the edge which belongs to the first vanishing point or perpendicular to the ground. Feature
lines are the extensions of these retained foreground edges.

Camera orientation (b)

KL1
KL2

KL3
KL4KL5

(0,0)

KL6

 Camera orientation (a)(0,0)

KL1

KL2

KL3

KL4

KL5

Figure 3. Feature lines in different camera orientations: (a) the directions of feature lines are similar
to each other; and (b) the directions of feature lines are much more different.

As for aerial data from the UAV, its top view makes two-dimensional image without
geometric perspective. That is different from ground monitoring data above. Therefore,
the feature line direction is just the line perpendicular to the direction of traffic flow in
two-dimensional image. Thus, in this part, we only utilize traffic flow detection to obtain
feature line. To be specific, the procedure has two steps: traffic flow detection by optical
flow approach and feature line drawing with vertical direction of optical flow. It is worth
noting that aerial video usually has a wider observation range, which may involve traffic
flow in multiple directions. For example, a turning road contains traffic in two directions.
Multiple traffic directions correspond to multiple feature line sets. Feature lines in the same
direction are grouped into one set.

Based on the methods stated above, we detect and draw feature line in N ground
monitoring videos and M UAV-assisted videos. Each video has several feature lines. Taking
V as a monitoring video example, it can come from ground cameras or aerial UAV. There

141



Remote Sens. 2021, 13, 1117

are NLi feature lines detected from V. We finally obtain numerous ground feature lines
and aerial feature lines after a series of the above-mentioned processing.

2.1.2. Spatiotemporal Information Extraction

This section aims to extract visual information from input ground monitoring data
and aerial assisted data with the help of feature lines. According to motion consistency
in cross-view data, we extract the visual information in two dimensions (temporal order
and spatial structure). For temporal order extraction, the monitoring video is unframed in
order. We record their spatial features from the feature line in turn. Thus, temporal visual
feature shown over time can be extracted. Meanwhile, the visual changes in space are the
spatial visual feature.

Figure 4 provides the detailed spatiotemporal information extraction method intu-
itively. Suppose f li is one of the feature lines in monitoring video V; it is circled in this
figure. V can be ground monitoring camera or aerial camera. The video is decoded into
Ni frames at the beginning. The visual data at the position and direction of this feature
line can be found at corresponding locations in each frame. Next, the related data are
extracted and integrated into one row in order. The number of rows is equal to the number
of video frames, which is Ni for f li. Figure 4 (right) shows the rows from top to bottom
corresponding to the video frames from front to back. The visual data of all rows are the
spatiotemporal information extracted from feature line f li.

The above visual information extraction approach not only extracts time series infor-
mation at feature line location but also extracts spatial visual information on the different
pixels of feature line. For better understanding, feature lines are similar to a door: the door
can obtain what passed by recording what happened in every moment. Similarly, we can
get what information go through the feature line by recording visual data in every frame.
Thus, the motion time occurred as well as its space position are extracted.

...
... ...

G ...
...

Feature line fli Corresponding video frames
Spatio-temporal 

information extraction

G

Figure 4. Spatiotemporal information extraction. With the position and direction of a sample feature
line (circled on the left), we can extract the visual data at this location from each corresponding video
frame. The related visual data are integrated into several rows in order on the right and form the
spatiotemporal information.

2.1.3. Feature Map Description

Next, how to describe the above spatiotemporal information is also an important
problem. To address this, we construct two dimensional feature map whose coordinate
axes are the set of space and time information, respectively.

The spatiotemporal information extracted from the above section is represented by
several visual data rows. Based on this, we then connect them in chronological order to
form a two-dimensional feature map. The row of visual data calculated in the last section
composes one row in the feature map, and the visual data at different time from one feature
line position compose one column in the feature map. From the middle module of Figure 2,
we can see that the time and position of every passed moving object are recorded in this
feature map. The height of each moving object’s Y axis in feature map is their passage time
through feature line, and the span of each moving object’s X axis is object width.

Then, we transform feature map into binary image with small data quantities by
foreground object segmentation method. The benefits of this are the following. It can
further highlight the motion information which is consistent in different cameras. At
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the same time, it can also filter out the other visual features that we do not care about
(such as color and gradient). The feature map shows that most of the visual data in it are
background road. Based on this, we start with the hypothesis that background occupies the
majority relative to foreground motion. Then, each column in the feature map is processed
as an independent unit to find the background of feature line. According to the statistical
distribution of gray value in each column, the gray with maximum value comes from
background. Thus, the pixel whose gray value is close to the maximum is set to 255 to
indicate background, and vice versa. The binary processed feature map displays obvious
black–white effect.

Thus far, the spatiotemporal feature map construction is finished. N ground mon-
itoring videos VC1, VC2, . . . VCN and M aerial assisted videos VA1, VA2, . . . VAM are repre-
sented by spatiotemporal feature maps. The relationship of videos and their feature maps
is one-to-many.

2.2. Cross-View Spatiotemporal Matching

To describe the proposed method clearly, we assume that the aerial spatiotemporal
feature map from the UAV is query. To search for its matched database feature map from
ground monitoring videos, we propose a cross-view spatiotemporal matching approach
which can also determine the best space responding pixel between matched feature map
pairs for camera space alignment. The proposed method includes three key steps: (1) global
feature map matching; (2) aerial-to-ground time synchronization; and (3) cross-view spatial
alignment. The first one measures the similarity of feature maps from the global and the
latter two are used to find the corresponding relationship between local pixels.

2.2.1. Global Feature Map Matching

Let Fak be the kth query feature map from aerial assist UAV and Fg the database
which contains Ng ground spatiotemporal feature maps. It is the collection of ground
feature maps calculated from N ground monitoring videos VC1, VC2, ...VCN , as expressed in
Equation (1). Figure 5 gives the whole global feature map matching method.

Fg = {
VC1︷ ︸︸ ︷

Fg1, Fg2, ..., FgNc1,

VC2︷ ︸︸ ︷
FgNc1+1, FgNc1+2, ..., FgNc1+Nc2, ..., FgNg} (1)

Figure 5. Global feature map matching. Query feature map Fak from aerial assisted UAV and
database feature map Fg from ground cameras are firstly transformed into one-dimensional time
feature vector. Then, we measure the similarity between them according to their weighted SVD
generalized cross correlation value (WSVD FS-GCC). The feature map Fgi corresponding to the
highest scoring feature vector fgti is the global matching result.

First, the input feature maps Fak and Fg are mapped into one-dimensional space
before matching. The two-dimensional feature map matching problem is transformed into
a one-dimensional feature vector similarity measurement problem. In doing so, it avoids
complicated computing accompanied by high-dimensional feature maps while attempts
to narrow the gap of 2D feature map caused by air-ground asynchronous. Our method
projects 2D feature map to 1D feature vector in time (see Figure 2). To better describe this
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process, we take feature map F ∈ R
m×n as an example. F is m rows and n columns. F can

be regarded as several row vectors, as F = {r1, r2, ..., rm}. The number of row vectors is
m and the dimension of each row vector is n. Each row vector comes from a sampling
time. Then, as for each row vector, we count the number of foreground pixels as its feature
number. Thus, a n-dimensional row vector is converted to a feature number. m row vectors
are converted into m feature numbers. By arranging the m feature numbers in order, we
can establish the time feature vector of feature map F. Thus, the two-dimensional feature
map F, which is m rows and n columns, can be mapped to one-dimensional feature vector
ft, which is an m-dimensional feature vector. The calculation process is shown as follows:

ft = { f t1, f t2, ..., f tm}, where f tj = card(rp(q) = 0); q = 1, 2, ...n; p = 1, 2, ...m (2)

In this way, query Fak is represented by fatk, and all database feature maps in Fg
are also represented by time feature vectors. Our next step is to measure the similarity
between them. The time non-synchronization problem among air and ground cameras
makes the traditional Euclidean distance incapable of quantifying their similarity. This
paper analyzes the generalized cross-correlation value between them as the similarity
measurement. We adopt the evaluation index of generalized cross-correlation. It was
defined by Cobos [30] in 2020, who improved the general generalized cross-correlation
based on the sub-band analysis of cross-power spectrum phase, named FS-GCC (Frequency-
sliding Generalized Cross Correlation). This method shows robust performance under
noise and reverberation. Concretely, according to their denoised FS-GCC values based
on weighted SVD, the similarity between query feature vector fatk and every database
feature vector in fg can be obtained. In the following calculation, the highest scoring
database feature vector is the ground feature vector matched with fatk. We denote it as fgti.
Meanwhile, their corresponding feature maps Fak and Fgi are a matched pair.

i = arg max
p

(FS − GCC(fatk, fgtp)) where fgtp ∈ fg (3)

When all aerial feature maps retrieve their matched ground feature maps in database,
we can obtain several feature map pairs, which are the results of global feature map
matching. Furthermore, the feature lines corresponding to the same feature map pair are
considered as a matched feature line pairs.

After finding the matching relationship between feature maps globally, we next try to
find the correspondence between local pixels. The calculation procedure includes two key
modules: aerial-ground time synchronization and cross-view spatial alignment.

2.2.2. Aerial-to-Ground Time Synchronization

To find the corresponding pixels between matched feature line pairs, we need to
realize time synchronization between them at first. The visual feature is described by
spatiotemporal feature maps in this paper, time synchronization and space alignment
are closely related. Time synchronization affects the accuracy of finding corresponding
points, and then influences the performance of camera spatial alignment. In other words,
considering a single variable principle, accurate spatial correspondence is obtained under
the prior time unification of spatiotemporal feature maps.

Mathematically, feature vectors fatk and fgti are one-dimensional time features en-
riched from the two-dimensional feature maps Fak and Fgi. They are also the time series.
The problem of feature maps’ time synchronization is also the issue of one-dimensional se-
ries’ time delay estimation. Generalized cross correlation is one of the most commonly used
method. It estimates time delay by analyzing the correlation between two signals. There-
fore, our approach employs an improved generalized cross correlation algorithm [30] to
synchronize fatk and fgti. This method is used for similarity measurement and global match
feature map matching in the previous section. In terms of time delay estimation of fatk
and fgti, their concrete time delay τ is the corresponding value when the maximum cross-
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correlation value obtains. Let G be the calculation function (G named WSVDFC − GCC
in [30], and we do not bore you with its details), the time delay can be calculated as below:

τ̂ = arg max
τ

G(fatk(t), fgti(t + τ)) (4)

τ̂ is the time delay of aerial feature vector fatk and ground feature vector fgti. fatk is
the reference. The first component of fatk and the τ̂th component of fgti are synchronized.
We reverse τ̂ into the row of feature maps Fak and Fgi, and the collection time of these
rows is the same. We than cut the same length T from the synchronization row and get
new spatiotemporal feature maps Fa

′
k ∈ R

T×na and Fg
′
i ∈ R

T×ng . The parameter T needs
to meet the following two requirements: T < ma and T + τ̂ < mg. The specific calculation
method is expressed as:

Fak =

[
Fa

′
k

A

]
where Fak ∈ R

ma×na ; Fa
′
k ∈ R

T×na ; A ∈ R
(ma−T)×na (5)

Fgi =

⎡
⎣ B

Fg
′
i

C

⎤
⎦ where Fgi ∈ R

mg×ng ; Fg
′
k ∈ R

T×ng ; B ∈ R
τ̂×na ∈ R

(mg−T−τ̂)×na (6)

2.2.3. Cross-View Spatial Alignment

With Fa
′
k and Fg

′
i , we next solve the problem of finding corresponding pixels for

cross-view spatial alignment. Our proposed method includes three steps: (1) feature
map dimension reduction; (2) one-dimensional space feature vector alignment; and (3)
cross-view air-to-ground spatial alignment.

Similar to Section 2.2.1 that maps feature map to time dimension, we map Fa
′
k =

{caT
1 , caT

2 , ..., caT
na} and Fg

′
i = {cgT

1 , cgT
2 , ..., cgT

ng
} to space dimension at first. Figure 6

displays the proposed feature dimension reduction and alignment process vividly. As we
can see, Fa

′
k and Fg

′
i are reduced to one dimension as space feature vectors fask and fgsi.

The length of space feature vector is equal to the number of columns in feature map and
each component is the number of foreground pixels in the corresponding column. The
calculation formula is as follows.

Figure 6. Cross-view spatial alignment. The matched feature map Fa
′
k (left) and Fg

′
i (right) is firstly

reduced from 2D map to 1D spatial feature vector, as denoted by fask and fgsi. We then match the two
spatial sequences by DTW (middle). Several corresponding pixel pairs labeled in blue are returned
as result.

fask = { f ask1, f ask2, ..., f askna} where f askp = card(cap(q) = 0); q = 1, 2, ...T; p = 1, 2, ...na (7)

fgsi = { f gsi1, f gsi2, ..., f gsing} where f gsip = card(cgp(q) = 0); q = 1, 2, ...T; q = 1, 2, ...ng (8)

Note that the length of space feature vectors are different because the different sizes of
feature maps.

We leverage Dynamic Time Warping (DTW) [31] as the matching method to align a
pair of space feature vector fask and fgsi. It is a simple but effective template matching
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algorithm which is also universality for different sequence lengths. Our first stage is to
construct a distance matrix D ∈ R

na×ng . D(x, y) is the Euclidean distance between the xth
element of fask and the yth element of fgsi. After that, we start to align the two sequences.
The matching path is set as W = w1, w2, ..., wj, ..., wl (max(|na|, |ng|) ≤ l ≤ |na| + |ng|).
Each element wj = (x, y) represents the aligned coordinate pair (xth coordinate of fask
aligns with the yth coordinate of f gsi). To ensure each element in the sequence can find its
corresponding alignment position without intersection, W needs to satisfy:

w1 = (1, 1) (9)

wl =
(
na, ng

)
(10)

wj+1 = (x
′
, y

′
) x ≤ x

′ ≤ x + 1 y ≤ y
′ ≤ y + 1 (11)

where x
′

and y
′

are the next matched coordinates of fask and fgsi. It only has three possible
results: (x+ 1, y), (x, y+ 1), (x+ 1, y+ 1). We choose the one with the minimum cumulative
distance from (x, y) according to distance measurement D. After that, we can obtain the
matching relationship between vector elements which is stored in W. However, there are
diversified corresponding relation types which include one-to-many relationship, many-
to-one relationship and one-to-one relationship. The first two are ambiguous in spatial
alignment, so we only retain the one-to-one matching pixel pairs. At the same time, we
further sample these one-to-one pixel pairs at equal space intervals to get sparse space
correspondences. After such screening, W

′
is the corresponding coordinate set between

fask and fgsi.
Feature maps Fak and Fgi constructed by fask and fgsi are just an example of matched

feature map pairs. All feature map pairs calculated after Section 2.2.1 can obtain their
corresponding relationship between local pixel by the methods in Sections 2.2.2 and 2.2.3.
Thus, several corresponding coordinate sets are returned. Moreover, we can track back to
the feature line and camera corresponding to each set. This means that we obtain several
cross-view corresponding points between aerial 2D images captured by assisted UAV and
ground 2D visual data collected by deployed monitoring cameras.

Once air-to-ground corresponding pixels are matched, we calculate the homography
matrix between cameras by more than four non-collinear corresponding coordinate pairs.
The relative projection relationship between them can be estimated. In this way, the
proposed method gets the relationship between each ground monitoring camera and the
assisted UAV. The M locations of assisted UAV can be united into one coordinate system
with current visual positioning and navigation methods (e.g., SLAM), so ground deployed
cameras are aligned to this coordinate system naturally. Our system realizes multi-camera
space alignment in large scale environment under UAV assistance.

3. Experiments

We conducted extensive experiments to evaluate the performance of our proposed
multi-camera space alignment approach based on spatiotemporal feature map. To main-
tain the objectivity and comprehensiveness, we constructed an evaluation database by
ourselves, which is described in Section 3.1. On this basis, we then explored the robustness
and accuracy of our proposed method from both qualitative and quantitative aspects in
simulation environment and real scene. The extended applications of our approach are
provided in Section 3.4.

3.1. Database

Database in simulation environment

This paper utilizes AirSim [32] as the simulation platform to construct a suitable
virtual scene for our system’s performance verification. AirSim is an open source simulator
based on Unreal Engine. It supports cross-platform operation, multiple programming
languages and various sensors (camera, UAV, Lidar, GPS, etc.). Some major parameter

146



Remote Sens. 2021, 13, 1117

settings in Airsim are summarized in Table 2, including environmental parameters and
sensor parameters. Figure 7 presents the simulation scene model and some simulation
monitoring data.

Table 2. The parameter settings to generate database in simulation environment and real scene.

Environmental Parameter Sensor Parameter

Simulation
Environment

Environment intensity 1.0 Ground camera number 11

Directional light actor light source Ground camera resolution 1920 × 1080

Colors determined by sun position Yes Ground camera FOV 90◦

Sun brightness 75 Aerial camera position 5

Sun height 0.348239 Aerial camera resolution 1920 × 1080

Horizon Falloff 3.0 Aerial camera FOV 90◦

Diffuse boost 1.0 Acquisition frame rate 25 fps

Real Scene

Scene type Mixed traffic system Ground camera number 4

Acquisition time 15:00 p.m. Ground camera resolution 1920 × 1080

Scene width ≈60 m Aerial camera position 1

Scene length ≈50 m Aerial camera resolution 1920 × 1080

Ground camera height ≈7 m Aerial camera FOV 58◦

UAV flight altitude ≈80 m Acquisition frame rate 25 fps

To be specific, we chose a model of urban street block as our simulation environment,
as shown in Figure 7a. It includes abundant and complex city elements: buildings, land-
scape plants, traffic signs, junctions, etc. Based on this model, we firstly load multiple car
models and set various running routes to restore the real traffic flow as much as possible.
Then, the camera model and UAV at different positions are added to imitate ground moni-
toring cameras and aerial auxiliary camera. Thereafter, we collect simulation monitoring
data with these cameras and establish a test simulation dataset called CamData − Sim. This
database consists of two parts: (1) 24 videos from 11 ground cameras at fixed locations;
and (2) 5 aerial videos from the UAV at 5 hover positions. Their frame resolution and
rate are set to 1920 × 1080 and 25 fps, respectively. The self-built simulation database
CamData − Sim is provided in Figure 7 (right). Several vehicles shuttle through these
streets and their moving information is collected into ground monitoring videos and the
UAV videos independently. Moreover, to better evaluate the effectiveness of the proposed
method, these videos are captured by ground cameras and UAV at different heights with
different pitch angles.

Database in real scene

Taking into account that current public multi-camera databases cannot provide both
ground monitoring data and auxiliary UAV data, we constructed a new multi-camera
monitoring database. Figure 8 provides the collection environment and data of our self-
built database. Table 2 provides its related parameter settings, in which some cannot be
obtained in real scenes and only roughly estimated parameters are given. (1) Acquisition
environment: This database is collected from a mixed traffic system with bidirectional
six-lane main road and bidirectional four-lane side road. The width of its middle green belt
is about 25 m and the total transverse length of this road is more than 60 m. (2) Camera
configuration: There are four ground monitoring cameras and each camera monitors traffic
in one traffic area, including northbound main road, northbound side road, southbound
main road and southbound side road. Since the accurate parameters of a deployed multi-
camera system are unknown, we make a rough estimation of its main parameters. The
deployment heights of ground cameras are about 7 m and their pitch angle is about 60◦. As
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shown in Figure 8, there is little overlap between their field of view. The auxiliary UAV data
which overlook the observation scenario are captured at about 80 m. It contains common
motion information with the ground monitoring data. (3) Data information: The frame
resolution and rate of all data in this database are 1920 × 1080 and 25 fps, respectively. The
total frame number of each ground video is 5493. The time delay and space relationship
between these data is unknown. This paper applies the proposed approach to estimate the
space alignment relationship between the ground cameras with UAV assistance.

Urban street block

Car model UAV

(b) Simulation data
 Ground monitoring video

(a) Simulation environment
Assisted UAV video

Figure 7. Our simulation database . (a) Simulation environment. The top left figure is a model
of urban street block. The car models and UAV used in database are displayed below. (b) Some
examples of ground monitoring videos and assisted UAV videos in this simulation database.

Mixed traffic system
(b) Real data(a) Real environment

 Ground monitoring video Assisted UAV video

Figure 8. Our self-built database in real scene. (a) Real environment. It is a mixed traffic system with
bidirectional six-lane main road and bidirectional four-lane side road. The stars represent UAV and
ground camera’s general locations. (b) Real data. the ground monitoring videos and the UAV videos
captured from real scene.

3.2. System Performance Evaluation on Simulation Environment

In this section, we explore the performance of our proposed approach on three typical
traffic scenarios: crossroad, T-junction and straight road. In addition to qualitative analysis,
we also conduct quantified analysis on simulation environment in which the ground truth
is manually labeled. Figure 9 displays some space alignment results and Table 3 the pixel
error statistics.
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Figure 9. Some qualitative evaluation results of our proposed approach on simulation environment.
Three groups of experiments conducted on crossroad, T-junction and straight road are displayed
from top to bottom, respectively. Their space alignment results are shown in turn, including the
monitoring data, space transformation and the comparison with ground truth. In these results, the
ground truth is marked in green and our results are marked in red.

Figure 9 shows the space alignment results of crossroad, T-junction and straight road,
from top to bottom, respectively. The fist column is the monitoring data of ground deployed
cameras. They are transformed into the united coordinate system with the alignment
parameter. The following error analysis roughly evaluates algorithm performance by the
coincidence degree between ground truth (marked in green) and our results (marked in
red). Multi-camera space alignment results are shown in the end. It can be seen in this
figure that our approach performs well in different situations. The first simulation scene
is a crossroad. Four overlapping monitoring cameras monitor traffic from four directions.
To better see the space alignment performance of overlapping region, the space alignment
results of crossroad are set to translucent. Compared with ground truth, we can find that
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zebra crossings are mapped together successfully. That means the same visual information
is aligned to the same coordinates, which indicates the effectiveness of our approach. The
second simulation scene is a T-junction and the ground monitoring cameras in it have
limited overlapping area between them. Under UAV assistance, these three cameras are
calibrated into one space. This illustrates that our system can maintain stable performance
with partial-overlapping cameras. The bottom test situation is a straight road with three
cameras of sequential distribution. Their overlapping region is not only limited but has
fewer visual features. As the right column shows, we can return good space alignment
results, further verifying the robustness of our proposed method.

The quantitative experimental study was conducted by analyzing the pixel error
between our space alignment results and ground truth. Table 3 shows that the pixel error
varies from 5.78 to 23.76 pixels. The average errors on above three scenarios are 20.02,
20.32 and 10.01 pixels, respectively. Thus, if we want to relate the visual data of different
cameras, the space alignment error is within 25 pixels. This set of evaluations on different
monitoring scenes further demonstrates that the proposed approach satisfies the need in
the practice interconnection application. Meanwhile, these quantitative results are also in
good agreement with the previous qualitative results. In addition, we can see in this table
that there are some differences of space alignment error between different scenarios. The
performance of straight road is better than that of crossroad and T-junction. The reason for
this phenomenon is as follows. Crossroad and T-junction have both turning and straight
traffic. They include more complex motion compared with straight road. This leads to
more disturbances of feature line detection and spatiotemporal feature map construction,
which directly influences space alignment performance.

Table 3. The pixel error of different monitoring scenarios.

Scene Crossroad T-Junction Straight Road

Camera 1 2 3 4 AVG 1 2 3 AVG 1 2 3 AVG

Pixel error 23.76 16.33 23.71 16.29 20.02 22.09 17.23 21.65 20.32 14.11 10.13 5.78 10.01

Overall, the evaluation in a simulation environment shows that our proposed multi-
camera space alignment approach obtains satisfactory performance not only in quality but
also in quantity.

3.3. System Performance Evaluation on Real Environment

Besides evaluation on simulation environment, we also evaluated the performance
of our system in a real environment. The test scene and monitoring data constructed by
ourselves is introduced in detail in Section 3.1. We applied the proposed method to align
the four ground monitoring cameras into one united coordinate system.

Figure 10 shows our space alignment result in real traffic scene. The monitoring data
from four ground cameras are mapped into a united coordinate system, as shown in the
second column. We then compare our result (labeled in red) with ground truth (labeled
in green by manual calibration) qualitatively. The comparison results of the individual
camera and the whole system are both provided. Viewing the result as a whole, we can
see that these ground cameras are well aligned. Their space alignment results replay the
whole monitoring scene, which is a bidirectional traffic system with greenbelt. The imaging
relationship between these limited overlapping ground cameras can be obtained with UAV
connection. This means that cameras can cooperate for overall surveillance. By comparing
with the ground truth, the pixel error of our approach is about 20, which demonstrates the
feasibility and effectiveness in real environment. From a local point, lane direction after
each camera mapping is basically parallel. That conforms to the actual situation, which also
confirms algorithm performance. However, as we can see, our approach performs poorly
on the distant targets which are warped incorrectly with too large longitudinal extension.
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This happens because our method cannot get enough feature lines when the object is too
small in the far region.

Figure 10. Some qualitative evaluation results of our proposed approach on real environment. The
real monitoring scene is two-way multi-lane traffic system with main and side road. Our space
alignment results are shown in turn, including the monitoring data, space transformation and the
comparison with ground truth. In these results, the ground truth is marked in green and our results
are marked in red.

The above experiments were conducted on a computer with an Interl(R) Core(TM)
i9-9900X (3.50 Hz GPU, NVIDIA GeForce GTX 1080Ti GPU, 64 GB RAM) using C++. The
computational complexity of the proposed method is analyzed below. As described, the
proposed method contains two main modules: spatiotemporal feature map construction
and cross-view spatiotemporal matching. For the real scene above, the running time of the
first module is about 123.9 s. In the second module, the feature map dimensional reduction
in time and space costs 38.2 s on average. The time of air-to-ground time synchronization
and cross-view spatial matching is 136.0 s. To sum up, the time cost to align the ground
monitoring cameras in the above real scene is within 5 min. That also verifies the fast
spatial alignment ability of our system in large scenes. In addition, the proposed method is
easier to operate in real environment. The operation complexity mainly comes from input
data preparation. The input ground monitoring videos can be obtained from database or
real-time monitoring data. The UAV needs to capture the monitoring space from top view
under stable flight condition. We only need a part of the common motion information
between ground and aerial data and do not require data synchronization.

3.4. Extended Applications

Due to its multi-camera space alignment ability, the proposed method has great value
in many real-world scenarios. For example, vehicle road hybrid system is a common traffic
scene. Multiple cameras are used in it to monitor traffic operation status. The proposed
method can be applied to estimate the space relationship between cameras and converts
independent monitoring to integrated monitoring. The efficiency of traffic monitoring
can be improved. A campus is a typical example of our approach’s application scenario.
To insure teachers and students work or study on a harmonious campus, many cameras
are deployed in every corner of the campus. The proposed method can be used to obtain
the spatial position of each camera in a campus and unify them into a coordinate system.
Thus, all monitoring data will be aligned as a whole. We can see what is happening on
campus from the whole multi-camera video rather than multiple separate single camera
videos. Besides the above two examples, our approach also can be applied to key industrial
factories, large-scale activity square, etc.
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In addition, the proposed method, which lays the foundation of multi-camera system,
has the potential application value in many multi-camera cooperation fields, including
object re-identification, multi-object detection, multi-camera cooperative locating, and so
on. To be specific, on the basis of our multi-camera space alignment results, cross-camera
object re-identification can be solved from a new perspective. Other object re-identification
methods identify the same target by their feature similarity. Unlike other methods that mine
their similarity, we can relate the same object across different cameras by the estimated
spatial corresponding relationship. Furthermore, the initial object detection result can
be verified by multiple cameras with their space alignment result. Through the spatial
correspondence between target boxes, false alarm rate and missed rate can also be reduced.
For multi-camera cooperative locating, their space alignment result can provide a references
location of the interested target. Especially, when the target is occluded, the result obtained
by our approach can ensure stable positioning accuracy.

To show the utility of our proposed approach in real-world intuitively, we apply it in
a typical vehicle road hybrid system. Figure 11 shows a crossroad with four ground moni-
toring cameras. They observe the traffic intersection from four directions. The proposed
method has application value in imaging display and intelligent analysis. Concretely, on
the one hand, the proposed method aligns the four cameras into one coordinate system.
Four independent monitoring videos are unified into a more comprehensive monitoring
video, as shown on the right. That allows users to timely obtain the whole intersection
running state, which improves the efficiency of current video surveillance. On the other
hand, the spatial correspondence between different cameras obtained by our approach also
contributes to cross-camera intelligent analysis. If we employ single camera object detection
algorithm on one of these cameras, the objects can be detected out. As shown in the upper
left corner, a white car marked with red box is detected out. On the basis of our result, the
data of this target in other cameras can be directly associated. In other words, such ability
to relate targets across cameras is capable of cross-camera re-identification and tracking.
Compared with other methods which detect objects in different cameras separately first
and then re-identify them, our approach only detects objects of one camera and relate them
by coordinate correspondence. The efficiency and robustness of cross-camera intelligent
analysis are naturally improved.

Figure 11. An applicable example of the proposed multi-camera space alignment approach. Our
method aligns the four ground monitoring locations into one coordinate system. With this corre-
sponding spatial relationship, the object information of the car in Camera 1 (marked in red) can be
directly associated with its data in other related cameras (marked in blue).
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4. Discussion

4.1. Performance Comparison

In this section, we compare our performance with other works from two levels. First,
from the partial important sub-process, we conducted contrast experiments on cross-view
matching performance, which is one of the key technologies in our system. Then, from
the overall performance, we compared our approach with other methods on multi-camera
space alignment.

4.1.1. Comparison of Cross-View Matching

Cross-view matching, which mines the relationship between ground monitoring
camera and auxiliary UAV, is one of the key technologies involved in this paper. Its
accuracy has a direct impact on air-to-ground coordinate system unification, and thus plays
a negative role in multi-camera space alignment. Therefore, first, the performance our
proposed cross-view matching algorithm is compared with other matching methods in
both simulation and real environments.

SIFT (Scale-Invariant Feature Transform) [33] proposed by Lowe and SuperGlue [34]
proposed by Sarlin are chosen as the contrast methods. SIFT as a traditional hand-crafted
matching approach that is widely used in practical application. It extracts local feature
from input image and measures them similarity by Euclidean distance. The highest scoring
feature and query feature are the matching pair. SIFT is robust to rotation, zoom scale
and brightness changes. SuperGlue [34], as a deep neural matching network, was recently
proposed. It is based on graph neural network and attention mechanism. They regard
matching as the optimal transport problem in which the loss function is constructed by deep
network. In the specific implementation, two images and their visual features described by
SuperPoint [35] are the input. They are then sent to the matching network established by
SuperGlue and the matching relationship between them is returned as output.

Figure 12 shows the qualitative performance comparison of SIFT, SuperGlue and
our approach on cross-view matching. The test image on the left is a UAV aerial image,
and its related ground monitoring image is provided on the right. They observe the
monitoring scene from the top view and street view, respectively. Obviously, there exists
great perspective gap between them. The evaluation results on simulation environment
and real traffic scene are provided from top to bottom.The above three methods are applied
on the two scenes for cross-view matching. For visualization, the matching pairs found
by each method are connected with straight lines. We can see that our proposed method
outperforms the other methods in both quantity and accuracy. (1) For quantity, our
approach returns more than 60 matching pixel pairs. SIFT only obtains a few matching
pairs. SuperGlue finds plenty of matching pairs in the simulation environment, but it finds
very few pairs in real scene. (2) For accuracy, most of the matching pairs calculated by
SIFT are not correct. Similarly, SuperGlue can also hardly find the accurate cross-view
corresponding point. However, in the matching results of our system in the simulation and
real environments, the overwhelming majority of pairs are accurate. According to the above
analysis, SIFT gets too few and incorrect matching pairs. The accuracy of SuperGlue is also
poor on air-to-ground matching. In other words, the two approaches fail on cross-view
matching. However, our proposed method can obtain sufficient and correct matching pairs.
It shows satisfying performance across different perspective views.
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Figure 12. Qualitative cross-view matching comparison of our proposed method against SIFT and
SuperGlue. The air-to-ground matching pairs between UAV aerial image and the ground monitoring
image are connected by straight lines.

The high performance of our approach is due to the proposed spatiotemporal feature
map and cross-view matching method, which links up different views according to inter-
section invariance of projection transformation. Thus, it is naturally robust to view change.
However, SIFT matches images by their local feature similarity. That makes it difficult to
cover such huge view gap. Meanwhile, there are many similar elements in the observation
scene, e.g., the pedestrian crossings in four directions. That is also a key reason for the
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poor performance of SIFT. SuperGlue is based on a pre-trained matching network. Its
performance depends on the scale and quality of the training database. The disadvantage
of matching neural network on generalization capability causes its failure of cross-view
matching. To sum up, experimental evaluation and result analysis prove that our approach
has better performance than the comparison methods in cross-view matching.

4.1.2. Comparison of Multi-Camera Space Alignment

For the overall multi-camera space alignment performance, we compare the proposed
method with other two methods: COLMAP and MapNet.

COLMAP is a widely used 3D reconstruction approach based on structure-from-
motion [36] and multi-view stereo [37]. Without camera calibration in advance, COLMAP
can reconstruct the whole scene with a set of ordered or unordered two-dimensional
images. For multi-camera space alignment, we use COLMAP to reconstruct the whole
monitoring scene by inputting a series of scene images obtained from different angles.
Then, the monitoring data from multiple ground camera as the new registered images can
be re-localized into scene reconstructed model. Thus, multiple cameras are united into the
coordinate system established by scene reconstructed model. Thus, COLMAP can also
achieve multi-camera space alignment based on three-dimensional reconstruction.

MapNet [38] is a camera localization approach with geometry-aware learning of
maps. It was proposed by Brahmbhatt in 2018. In this work, they proposed a novel
parameterization method for camera rotation to better estimate camera pose with deep
learning network. In other words, MapNet can be regarded as an end-to-end multi-camera
method. The ground monitoring data can be sent to this network and the output is each
camera’s pose in the whole scene map. The relative space relationship is also contained in
their poses. On the basis of multiple camera localization, we can align them. Therefore,
MapNet can realize multi-camera space alignment by camera localization.

As described above, COLMAP and MapNet are not proposed for multi-camera space
alignment. The reason that we choose them as the comparison methods are as follows.
First, the related works for overlapping cameras and non-overlapping cameras are not
suitable for comparison. The overlapping relationship between cameras in wide area
multi-camera system is usually chaotic and unknown. Marker- or motion-based methods
can estimate camera spatial topological relations and not the pixel level correspondence.
Second, COLMAP as a representative algorithm of 3D reconstruction and MapNet as
a deep learning method can obtain camera space relationship in some ways. They can
implement multi-camera space alignment with data post processing. The comparison with
them can reflect the performance of our method on space alignment.

The multi-camera space alignment results of the above three methods are displayed
in Figure 13. As we can see, the test scene is a crossroad with four ground monitoring
cameras. From left to right, the results of COLMAP, MapNet and ours are provided.
COLMAP successfully aligns the monitoring data captured from four cameras into one
coordinate. The same visual information (e.g., the zebra crossings) is mapped with the
same two-dimensional coordinate. As for MapNet, it fails to align all monitoring data into
one united coordinate system. Especially, the result of Camera 2 maps the data into the
wrong coordinates. That leads to a large pixel error with manually labeled ground truth.
Meanwhile, the final alignment result is also formless, which makes it hard to monitor
the scene in all directions. The alignment result obtained by our proposed method shows
comparable qualitative performance with COLMAP. The four monitoring cameras are also
well aligned into one united coordinate system. We can see that the error between ground
truth and our result is very small. To quantitative compare the pixel error, we statistically
analyze the error of each method, as shown in Table 4. It is the qualitative experiment
results. COLMAP obtains the minimum pixel error on each camera space alignment, while
MapNet has quite large pixel error. The pixel error of our approach is about 20 pixels,
which can meet the demand in real-world.
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Table 4. The quantitative comparison of COLMAP, MapNet and ours on pixel error.

Camera 1 Camera 2 Camera 3 Camera 4 AVG

COLMAP [36,37] 8.25 3.84 9.89 5.88 6.965

MapNet [38] 174.61 88.34 59.59 231.49 138.51

Ours 23.76 16.33 23.71 16.29 20.02

Figure 13. The comparison of multi-camera space alignment performance. The test scene is a
crossroad with four monitoring cameras. The coordinate mapping results of each camera by COLMAP,
MapNet and ours are provided from left to right. The space alignment result in the bottom marked
in green is the ground truth.
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The factors causing the above results are analyzed below. The high performance of
COLMAP is due to the space relationship provided by its pre-built scene 3D model. A better
scene model guarantees accurate space alignment. However, such scene model is usually
obtained by a variety of scene images, requiring 10 h for three-dimensional reconstruction.
With the increase of the number of cameras and monitoring area, it will take more time.
It cannot meet the needs of fast spatial alignment in large scenes. The performance of
MapNet is limited by the deep neural network. It can regress camera pose by multi-layer
network computing and pre-data training. However, such pose regression method still has
accuracy disparity with the method based on geometry structure and image retrieval. For
the proposed method, it ensures space alignment efficiency with the help of UAV, which
has excellent flexibility and global awareness that can adapt to the needs of fast spatial
alignment in large scenes. Meanwhile, we mine the motion consistency between UAV and
ground monitoring cameras. Thus, we can align them into one united coordinate system
by air-to-ground pixel correspondence. That ensures the space alignment accuracy. To
balance the efficiency and accuracy, our approach returns better performance than the other
contrast methods.

4.2. Parameter Discussion

This section discusses the effect of three parameters on our system’s performance: the
number of feature lines, camera pitch angle and deployment height. The number of feature
lines relates to cross-view visual feature extraction and description. Different camera pitch
angles and deployment heights are also two main factors influencing our performance.

The evaluation data are captured from a typical crossroad on simulation environment,
as presented in the top of Figure 9. To simulate different situations, we vary the view
angle and deployment height of ground cameras. Meanwhile, the number of feature lines
is also changed to analyze algorithm performance. Using variable-controlling principle,
the pixel errors by varying these parameters are studied. The experimental results are
given in Figure 14. It provides the proposed method’s pixel error under different camera
pitch angles (20◦, 30◦ and 40◦) and different camera deployment heights (5 and 9 m) with
different number of feature lines (the range interval is [50, 600]).

Figure 14. Pixel error under different camera pitch angle, deployment height and the number of
feature lines. Blue, red and orange curves are the performance of different pitch angles with different
number of feature lines based on the same deployment height of 9 m. Blue and green curves are the
performance of different deployment with different number of feature lines based on the same pitch
angle 20◦.

First, the error decreases with increasing the parameter of number of feature lines,
as shown by the three curves. When this number is large enough, the algorithm error
keeps at a low level. That is because more feature lines mean more spatiotemporal feature
maps. The input data can be described more comprehensively, and then rich cross-camera
corresponding points can be obtained. Thus, the accuracy is greatly improved at the
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beginning. However, when we have enough features and corresponding points, the error
will not be greatly reduced. An appropriate number of feature lines for the proposed
method is about 200–300. At the same time, it can be seen that the greater is the camera
pitch angle, the better is the performance. Overall, 40◦ obtains the minimum alignment
error. Large pitch angles of the ground monitoring camera have a small perspective gap
between it and the aerial UAV. That makes air-to-ground matching more accurate and
further improves multi-camera space alignment performance. In addition, we also found
that the situation with 40◦ pitch angle converges to the minimum error more slowly than
others. Under the same deployment height, the more the camera looks down, the smaller its
observation range is. Therefore, it requires more feature lines for accurate space alignment.

The blue and green curves show the impact of different deployment heights on
alignment error. We enlarge the error results after convergence in the upper right corner. It
is noticeable that the space alignment error of cameras deployed at 9 m is lower than those
at 5 m. It is for the same reason that a large pitch angle has a smaller error. High deployed
cameras have more similar perspective views with auxiliary UAV. They can be aligned into
the united coordinate system established by UAV more accurately. The change regularity
of feature line number also verifies the discussion in the previous paragraph.

However, there are two major limitations to this study that will be addressed in the
future. First, the proposed multi-camera space alignment approach is based on UAV-
assisted aerial data, which unifies ground monitoring cameras. Thus, it is not applicable
to these monitoring situations where stable UAV video cannot be obtained, e.g., no fly
zone for UAV, bad weather so the UAV is unable to hover stably or areas that are covered
by trees or other things. Secondly, the performance of our proposed method depends on
the spatiotemporal feature map which describes input data with abundant traffic flow.
However, it is affected by random traffic flow. When the passing vehicles are too sparse or
their moving direction is complex, our system performs poorly. To overcome this problem,
lane detection and segmentation can be used to reduce dependence on traffic flow during
future work.

5. Conclusions

This paper introduces a novel UAV-assisted wide-area multi-camera space alignment
approach based on a spatiotemporal feature map. The proposed methods contains two
key parts: spatiotemporal feature map construction and cross-view space matching. The
first is presented on the basis of motion consistency between UAV-assisted aerial data and
ground monitoring data. Following the procedure of feature line detection, spatiotemporal
information extraction and feature map description, all input monitoring videos are de-
scribed by spatiotemporal feature maps. The second key module is the cross-view space
matching strategy, which is proposed to find the corresponding relationships between
aerial and ground data. Through three matching steps, which are global feature map
matching, air-to-ground time synchronization and cross-view spatial alignment, we can
obtain a set of air-to-ground corresponding pixel pairs. In this way, the spatial relationship
between assisted UAV and ground deployed camera can be calculated. Due to the united
coordinates between UAVs, multiple cameras are successfully aligned into one coordinated
system with UAV assistance.

Experimental results on simulation environment and real scene demonstrate that
our system achieves satisfactory performance and aligns multiple camera in one space
coordinate system. From the quantitative analysis, its minimum pixel error is around
5 pixels and the maximum error is less than 25 pixels. Through parameter discussion, we
find that high deployment height and large pitch angle of camera are beneficial to alignment
accuracy. Meanwhile, the proposed method shows superior performance to other contrast
methods. Furthermore, this study has great academic meaning for camera pose estimation,
camera array imaging and cross-camera information fusion. It has significant application
value in the field of traffic monitoring, public security and so on. However, there may be
some possible limitations to this study. The proposed method cannot work in no UAV
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fly zones which cannot obtain UAV-assisted data. Because the proposed method relies
on traffic flow, it not applicable to the area with not enough traffic. Our future work will
consider these problems.
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