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Abstract: This paper deals with the mathematical modeling of the electronic structure of semicon-
ductor particles. Mathematically, the task is reduced to a joint solution of the problem of free energy
minimization and the set of chemical kinetic equations describing the processes at the surface of
a nanoparticle. The numerical modeling of the sensor effect is carried out in two steps. First, the
number of charged oxygen atoms on the surface of the nanoparticle NO− is determined. This value is
found by solving a system of nonlinear algebraic equations, where the unknowns are the stationary
points of this system describing the processes on the surface of a nanoparticle. The specific form of
such equations is determined by the type of nanoparticles and the mechanism of chemical reactions
on the surface. The second step is to calculate the electron density inside the nanoparticle (nc(r)),
which gives the minimum free energy. Mathematically, this second step reduces to solving a boundary
value problem for a nonlinear integro-differential equation. The calculation results are compared
with experimental data on the sensor effect.

Keywords: sensors; conduction; calculus of variations; extremals; boundary value problem
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1. Introduction

It is well known that processes involving metallic and semiconductor nanoparti-
cles are at the base of many phenomena of both academic and practical interest. Their
understanding is required for the investigation and utilization of conduction, sensor, pho-
toelectric, catalytic, magnetic and other properties of nanocomposite materials [1–9]. It is
clear that any investigation into the processes occurring in nanoparticles must focus on
their charge structure.

The distribution of conduction electrons along the particle radius may be consid-
ered, due to their very high density, uniform for metallic nanoparticles. For semicon-
ductor nanoparticles, however, the situation is drastically different. One should dis-
tinguish between semiconductor nanoparticles with low (nc ≤ 1015 cm−3) and high
(nc ≤ 1018–1019 cm−3) conduction electron densities. In both cases, the density is quite
strongly temperature dependent.

Semiconductors with low conduction electron densities have less than one electron in
the nanoparticle of the radius R = 50 nm (nanoparticles of SnO2 and CeO2 may serve as
such an examples). It makes no sense, therefore, to speak about the electron structure of the
nanoparticle in this case. In the case of the high conduction electron density (for example,
In2O3 nanoparticles), the particle of the same size contains from 103 to 104 electrons [10,11].
It is then possible, with good reason, to consider the concept of the charge or electronic
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structure of a nanoparticle. At such numbers, electrons form a definitive distribution along
the radius, with part of them being pushed to the surface where they form a negatively
charged surface layer (see, for example, [12,13]).

The choice of In2O3 nanoparticles as the object of study is due to several reasons. As
is well known, nanostructured indium is widely used in microelectronics in the production
of solar cells and phosphors, as well as high-temperature thermoelectric material [14]. The
possibility of using indium in these areas is largely determined by the high concentration
of conduction electrons, and especially by its concentration in the near-surface region of
nanoparticles. Therefore, the elucidation of the distribution of electrons over the volume of
nanoparticles is an extremely important task. Note also that a comparison of the theory
with experimental data proposed in this article will be carried out for the sensor effect, for
which the near-surface electron concentration is the determining factor.

The calculation of the electron distribution along the radius reduces to the problem of
finding a minimum of the free energy (F). From the mathematical point of view, this is a
problem of calculus of variations. Furthermore, conservation laws dictate some additional
restrictions that must be imposed. Specifics of the functionals (F), considered in the present
paper, are their rather complicated form. For this reason, the application of the theory
developed in the present study to the functionals of the type (F) is a non-trivial task. The
calculation of the variation of the functional is presented in a separate appendix of the
paper. Conservation restrictions, upon the calculation of the variation, are being taken into
account directly, without involving Lagrange multipliers. While canonical functionals give
rise to a differential equation for the extremal, the corresponding equation in the present
case is formally a nonlinear integro-differential.

This paper provides a detailed iterative solution process of the equation for the ex-
tremal. In order for discussion to be easily understandable, it is illustrated using the
problem of calculation of a sensor effect. Sensors are devices that allows the detection of
various substances, in particular gases, in different media. An example of such an applica-
tion is a detection in the atmosphere of substances carrying fire and explosion hazards, as
well as other gases having adverse effects on human health. The sensor effect manifests
itself as a change in the conductance of the sensitive layer of a detector upon the action of
gases that are being traced. As shown in the investigations [15,16], the conductance of a
nano-structured sensitive layer depends on the electron distribution within the nanoparti-
cle. The sensitivity of the detector is defined as a ratio of film conductance in the presence of
hydrogen with the pressure PH2 to conductance in its absence. This corresponds to the ratio

of respective near-surface densities of conduction electrons in nanoparticles θ =
nc(R, PH2)

nc(R, 0) ,

where R is the nanoparticle radius.
There is a significant number of studies devoted to the mechanism of the sensor

effect; their detailed discussion is available in the review [17]. Equally, there are many
studies discussing relevant calculation methodologies, for example, [18,19]. These papers
consider the solution of Poisson’s equation for spherical nanocrystal of a variable radius
only. They consider neither the set of kinetic equations on the surface of the nanoparticle or
the problem of minimization of free energy in the presence of restrictions. It is also worth
while to mention the studies [15,20], which do consider, in some form, such formulations,
but with a major emphasis on physics. Related essential techniques of the computational
mathematics are not discussed in sufficient detail in these papers. The present paper
aims at comprehensive discussion of mathematical problems, related to quantification
of the sensor effect, such as minimization of free energy (i.e., calculation of variation),
description of processes in negatively charged surface layer, and consideration of more
complicated kinetics.

The present paper uses the following approach. The set of kinetic equations, describing
various physico-chemical processes occurring on the surface of nanoparticle, is being
developed. The solution of this set of equations determines the density of surface charges
uniquely. Further, this set of equations is solved together with the problem of minimization
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of free energy. The solution of the set of kinetic equations, corresponding to the processes on
the surface of the nanoparticle, provides the boundary condition for the Poisson’s equation.

2. Mathematical Formulation

The formalisation of the problem under consideration is reduced to the solution of
two mathematical problems. The first is the location of stationary points of the set of kinetic
equations describing the physico-chemical processes on the surface of the nanoparticle of a
given material, for example, In2O3.

The chemical processes that take place on the surface of a nanoparticle are complicated
and multistep, consisting of a large number of reactions. Let us consider only the most
important reactions that take place on the surface of an indium oxide nanoparticle in the
atmosphere:

O2(gas)
Kad−−−→←−−−
Kdes

O2, (I)

O2
Kdis−−−→←−−−
Krec

2O, (II)

O + e−
Kcap−−−→←−−−
Kret

O−, (III)

O + O− Krec−−→ O2 + e−, (IV)

H2(gas) + O−
KH2O−−−→ H2O + e−. (V)

Reaction (I) corresponds to the adsorption and desorption of molecular oxygen on the
surface of a nanoparticle. Reaction (II) describes the dissociation of oxygen to atomic forms,
as well as the reverse process. Reaction (III) corresponds to a conduction electron captured
by an adsorbed atom of oxygen, and to the process of an electron returning to the volume
of the nanoparticle [21]. Reaction (IV) describes the recombination of neutral and charged
atoms of oxygen. The key role in the calculation of the sensor effect belongs to reaction
(V). Here, as a result of the reaction between gaseous hydrogen and adsorbed oxygen ions,
a molecule of water is formed, while the released electron migrates to the interior of the
particle, thus increasing electron conductance. This change of electron conductance in
the presence of hydrogen, compared to its value in the absence of hydrogen, is known as
a sensor effect. The following set of kinetic equations represents the chemical reactions
(I)–(V):



dnO2
dt = Kad

(
1− nO + nO2

nlim
O2

)
− KdesnO2 + Krec(n2

O − nOnO− )− KdisnO2

(
1− nO + nO2

nlim
O2

)
,

dnO
dt = −2Krec(n2

O − nOnO− ) + 2KdisnO2

(
1− nO + nO2

nlim
O2

)
− Kdes

O (nO − nO− )− KH2OñH2 nO− ,

dnO−
dt = (nO − nO− )(Kcap − KrecnO− )− KretnO− − KH2OñH2 nO− .

(1)

In the following analysis, the steady-state form of the set of Equation (1) is consid-
ered, since the sensor response time is much longer than the time constants of chemical
reactions (I)–(V). Therefore, over the time comparable with the time constants, Equation (1)
reaches the equilibrium. The reaction rate constants are considered as known functions of
temperature (see Section 4). The unknowns are the surface density of the oxygen molecules
nO2 , the total surface density of all adsorbed forms of oxygen atoms (both neutral and
negatively charged, O and O−) nO, and the surface density nO− of negative ions O−. All
of these variables have dimension [cm−2]. The set of Equation (1) corresponds to the
reaction scheme (I)–(V) and satisfies the laws of both the chemical kinetics and the theory of
adsorption [22,23]. Various negatively charged forms of oxygen may adsorb on the surface
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of the nanoparticle. In the range of sensor work temperatures (T = 200–400 ◦C) O− is the
major form of adsorbed oxygen [24].

The set of Equation (1) is solved easily using, for example, the computational package
Wolfram Mathematica. Note that the calculation of sensitivity to hydrogen requires the set
of Equation (1) to be solved twice (see flowchart), the first time in the absence of hydrogen
(ñH2 = 0), and the second time with its presence (ñH2 6= 0).

For a different nanostructured system, for example, with a large family of different
nanoparticles, this system will be of much higher order, and inevitably more complicated.
It may have multiple solutions, including complex ones. In any case, though, this will be
the set of nonlinear algebraic equations. Since nO includes densities of both the neutral and
the charged O atoms, the solution satisfying the condition nO− < nO must be singled out.
In the case of an increased order, this set of steady-state equations is replaced by the
set of nonsteady differential equations of chemical kinetics. Equilibrium points of the
latter are solutions of the set of steady-state equations. Therefore, in the limit t→ ∞, the
solution of set of the nonsteady equations approaches the required steady-state solution.
It is known [25] that for the set of differential equations of chemical kinetics (in gaseous
phase), the solution remains positive at any point in time if initial densities are non-negative.
In particular, all the densities are positive at the equilibrium point. Moreover, such an
equilibrium point is unique. As soon as the value nO− is found, the total charge on the
nanoparticle’s surface NO− = 4πR2nO− (used at the second step of solution) may be
determined, along with the value NO = 4πR2nO.

The following is the algorithm flowchart.

Start flag = 0

flag = 0ñH2 = 0 ñH2 6= 0

Kinetic system solution

Calculation nc(R, ñH2)

flag = 0 flag = 1

θ =
nc(R,PH2 )

nc(R,0)
Stop

Yes No

Yes

No

The second stage of the solution is much more demanding computationally. Here,
it is necessary to find the electron density nc(r) and the density of positive ions n+(r)
inside the nanoparticle, which provide the free energy minimum. At the same time, the
balance between the total numbers of positive and negative charges N+ and N− must be
carried out. Negative oxygen atoms, located on the surface of nanoparticles, have also to
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be taken into account. All the variables (NO− , NO, N+, N−) are dimensionless, i.e., just real
numbers. From a mathematical point of view, this is the problem of calculus of variations
with additional restriction [26].

Let us present free energy of the nanoparticle as a sum of free energies of the interacting
charges [15,27,28].

F = F1 + F2 + F3 + F4. (2)

Here F1 is the free energy of conduction electrons [27]

F1 =

R∫
0

4πr2Fkin(r) dr, (3)

where density of free energy

Fkin(r) = −
2
√

2(m∗)3/2

3π2

∞∫
0

ε3/2 dε

1 + exp((ε− µ)/(kT))
+ µnc(r) (4)

and

nc =

√
2(m∗)3/2

π2

∞∫
0

ε1/2 dε

1 + exp((ε− µ)/(kT))
. (5)

Here, µ is the chemical potential, m∗ is the effective mass of the electron, and nc(r) is the
distribution of electron density over the radius inside of nanoparticles [27]. The Formula
(4), as well as all subsequent formulae, are written in atomic units [29].

Let us write down the potential energy of the interaction between positive and negative
charges of the nanoparticle [28].

F2 = −(Nv − Nc − NO−)εv − kT
R∫

0

4πr2
[

nv ln
nv

nv − n+(r)
+ n+(r) ln

nv − n+(r)
n+(r)

]
dr, (6)

where εv is the binding energy of electrons on donors [30] and Nv = 4π
3 R3nv is the donor

density within nanoparticles.
Free energy of positively charged donors has the form [28]

F3 =
εr

2

R∫
0

r2(
dϕ

dr
)2 dr, (7)

where ϕ is electrostatic potential within a semiconductor nanoparticle, εr is the relative
dielectric permittivity, and the function ϕ satisfied the relationship

1
r2

∂

∂r

(
r2 ∂ϕ

∂r

)
= −4π

εr
(n+ − nc). (8)

Formally, this relationship is not an equation since its left-hand side depends on the
unknown function ϕ, while the right-hand side depends on the unknown functions µ and
n+.

The last term in the expression (2) represents the free energy of negatively charged
adsorbed ions of oxygen [15]:

F4 = −NO−(εO + kT ln 2)
[

NO ln NO
NO − NO−

+ NO− ln NO − NO−
NO−

]
. (9)

Here εO is the binding energy of an electron with the adsorbed atom of oxygen.
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It is necessary to find the functions nc(r) and n+(r), which provide the minimum of
free energy F. For this purpose, it is necessary to calculate the variation of the functional (2).
Equating the variation to zero, we obtain relations that will be satisfied along the extremals
(see Appendix A)

µ = ϕ + C1, C2 − C1 = εv, n+ = nv
1 + exp((ϕ + C2)/kT)) . (10)

C1 is an arbitrary constant.
It follows from (10) that µ and n+ on the extremals are functions of ϕ, and the electron

density nc is also a function of ϕ

nc(ϕ) =

√
2(m∗)3/2

π2

∞∫
0

ε1/2 dε

1 + exp((ε− ϕ− C1)/(kT))
= − 1√

2

(
m∗kT

π

)3/2
Li3/2(−em),

m =
ϕ + C1

kT .

(11)

Here, the polylogarithm special function Lis(z) is defined as an infinite power Lis(z) =
∞
∑

j=1
zj/js. The Wolfram Mathematica package calculates the function PolyLog[s, z] explicitly.

Positive charges are located within the internal region of the nanoparticle r ∈ [0, R]
only, and their number is

N+ = 4π

R∫
0

r2n+(r) dr. (12)

As for the negative particles (i.e., electrons), some of them can migrate to the surface
of a nanoparticle and then be captured by adsorbed oxygen atoms. As a result of such a
process, negatively charged oxygen ions O− are being formed. The surface layer of the
thickness d, containing NO− electrons (NO− is the number of electrons that have appeared
on the surface) emerges. Therefore, the radius of the ball containing such electrons is R + d.
Let us assume that electrons are distributed uniformly within the interval r ∈ [R, R + d]
and their total number may be written in the form

N− = 4π

R∫
0

r2nc(r) dr + NO− . (13)

Due to expressions (10) and (11), the relationship (8) becomes a sterling equation,
depending on the parameter C1, for the unknown function ϕ. As a result, a boundary
value problem for this function on the interval r ∈ [0, R + d] is defined. It is formally an
integro-differential (see expression (11)) Poisson’s equation

1
r2

∂
∂r

(
r2 ∂ϕ

∂r

)
= Φ(ϕ),

Φ(ϕ(r)) =

 −
4π
εr

(n+(ϕ(r))− nc(ϕ(r))), 0 < r < R,
4π
εr

n̄c, R < r < R + d, n̄c =
NO−

V ,

(14)

with the boundary conditions at the ends of the interval

∂ϕ
∂r = 0, at r = 0 and at r = R + d. (15)

Here, d is thickness of the layer with oxygen traps, V = 4π
3 ((R + d)3 − R3) is the volume

of the spherical layer between R and R + d, and n̄c is the constant corresponding to uniform
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distribution of anions within the layer. The boundary value problems (14) and (15) must be
solved under the balance restriction

N− = N+. (16)

As noted above, (Formulas (10) and (11)), the functions nc, n+ depend on the arbitrary
constant C1. This constant is chosen in such a way that the balance restriction (16) is
fulfilled.

Integrating Equation (14) over the interval r ∈ [0, R], and taking into account restriction
(16), we obtain

∂ϕ
∂r |R−0 = −NO−

R2εr
. (17)

Consider Equation (14) on the interval r ∈ [R, R + d]. It admits analytical solution.
Moreover, the potential ϕ is defined up to an arbitrary constant. The solution that satisfies
both the boundary condition (15) and the condition ϕ(R + d) = 0 is

ϕ(r) = 4πn̄c
εr

(
r2

6 +
(R + d)3

3r − (R + d)2

2

)
,

∂ϕ
∂r |R+0 = −NO−

R2εr
.

(18)

A comparison of expressions (17) and (18) shows that, provided fulfillment of the
balance and adopted choice of n̄c, left and right derivatives at the point r = R coincide. Thus,
the second stage is being reduced to a solution of Equation (14) within the nanoparticle
r ∈ [0, R] only, but with the boundary conditions

∂ϕ
∂r (0) = 0, ϕ(R) = 4πn̄c

εr

(
R2

6 +
(R + d)3

3R − (R + d)2

2

)
. (19)

In this case, continuity of the solution of Equation (14) and its derivatives at r = R (i.e.,
at the point of discontinuity of the right-hand side Φ(ϕ) would be warranted.

3. Numerical Method

The boundary value problem for Equation (14) with the conditions (19) on the interval
r ∈ [0, R] was solved numerically by the method of time development [31]. According to
this method, the solution of the steady-state equation is obtained as the limit at t→ ∞ of
the solution of the nonsteady equation

∂ϕ
∂t = 1

r2
∂
∂r

(
r2 ∂ϕ

∂r

)
−Φ(ϕ). (20)

Here t is a false time, formally introduced into the problem. The method of time develop-
ment may be interpreted as an iteration process. The initial distribution at t = 0 serves as a
zeroth-order approximation. The solution at the next time layer corresponds to current iter-
ation. The main advantage of the method of time development is a very weak dependence
of the convergence on the initial distribution.

Equation (20) was solved by the finite difference method, using the following implicit
scheme:

ϕn+1
i − ϕn

i
τn

= 2
r2

i (hi+1 + hi)

[
r2

i+1/2
ϕn+1

i+1 − ϕn+1
i

hi+1
− r2

i−1/2
ϕn+1

i − ϕn+1
i−1

hi

]
−

−Φ(ϕs
i )−Φ′ϕ(ϕs

i )(ϕn+1
i − ϕs

i ).
(21)
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The integrals on the right side of Φ(ϕ) were calculated using the polylogarithm
function, as mentioned earlier. Tables of the required functions Li3/2(z), Li1/2(z) in a wide
range of the argument z were created in advance using the Wolfram Mathematica package.
Interpolation within these tables was then used to calculate the values of the integrals.

As the function Φ(ϕ) is nonlinear, its preliminary linearization was necessary. The

derivative Φ′ϕ was calculated using the relationship ∂Lin(−em)
∂m = Lin−1(−em). Due to non-

linearity of the problem, internal iterations (where s is iteration number) were performed
at each time layer. The solution from the previous layer was used as the first internal
iteration. The set of linear equations, emerging at the upper layer, was solved by the
Thomas algorithm. A variable time step was used. In the case of quick (in less than three)
internal iterations convergence, the time step was doubled. Naturally, the convergence rate
increased upon approaching the steady-state solution, and so did the time step τn. The
solution process stopped once the time step became very large (τn � 1). The implicit finite
difference scheme (21) is stable for any relation between time and spatial discretizations.
Due to this fact, iterations were performed with a larger time step upon approaching the
steady-state solution. It should be emphasized that fulfillment of the balance condition (16),
which is equivalent to the adjustment of the constant C1 in (10), requires the steady-state
solution of Equation (21) to be obtained repetitively.

The described methodology was implemented into the in-house computational code
developed at the N.N. Semenov Federal Research Centre of Chemical Physics, Russian
Academy of Sciences. The code was written in C++ using Microsoft Visual Studio 2008.

4. Results and Comparison with the Experimental Data

The free energy minimization method and consideration of the chemical system on the
surface of a nanoparticle have been used extensively for comparison between the theory
and experiment by investigating the infrared radiation absorption and sensor effect (see,
for example, [15,20]). The results for the case of the sensing layer consisting solely of the
oxide In2O3 nanoparticles are presented below. The set of Equation (1) corresponds exactly
to this case. All the calculations, with adjustment of parameters, were performed using
Atomic System Units (ASU) [29]. The relationship between the main units in the ASU and
the SI system is given below (Table 1).

Table 1. Major atomic units.

Mass unit in ASU me 9.109× 10−31 kg
Length unit in ASU a0 5.292× 10−11 m
Time unit in ASU th 2.419× 10−17 s

Energy unit in ASU Eh 4.360× 10−18 J

Tables 2 and 3 provide the expressions for reaction rate constants as functions of
temperature. The values of the parameters are given in Table 4. See also the short discussion
at the end of the Section 4.

Table 2. Rate constants of surface reactions.

Parameter Meaning Value

Kdis [t
−1
h ]

dissociation constant of
adsorbed molecules O2

νO−O exp(− εdis
kT )

Krec [a2
0t−1

h ]
recombination constant of

adsorbed atoms O a2
OνO exp(− εO

a
kT )

Kad [a
−2
0 t−1

h ]
adsorption constant of

molecules O2
1
4 ñO2

√
3kT
mO2

αO2 (T)
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Table 2. Cont.

Parameter Meaning Value

Kdes [t
−1
h ]

desorption constant of
molecules O2

νO2 exp(− εdes
kT )

Kdes
O [t−1

h ]
desorption constant of atoms

O νdes
O exp(− εO

des
kT )

Kret [t−1
h ]

electron return constant into
nanoparticle volume νret exp(− εret

kT )

Table 3. Rate constants of surface reactions, determined by the experiment.

Parameter Meaning Value

Kcap [t−1
h ]

electron capture constant by
oxygen atom

1.25× 10−17 + 3.07×
10−19e

T−383.94
96.07

KH2O [a3
0t−1

h ]
reaction rate constant of

hydrogen-oxygen reaction 7.92× 10−11Te−
486.34

T

The parameters in Table 4 correspond to the rate constants of the surface reactions
included in system 1 (see also reactions (I)–(V)). Therefore, they were selected for the fitting
procedure. Obtaining a fitting procedure with physical reasonable values of parameters
allows us to consider the constructed model as adequate. So, the following values of
parameters were used in calculations.

Table 4. Data providing best agreement with experiment.

Parameter Value Dimension References

εdis 4.32× 10−2 Eh
εO

a 6.6× 10−2 Eh
εdes 2.8× 10−2 Eh [32]
εO

des 2.9× 10−2 Eh
εret 2.3× 10−2 Eh
εv 7.35× 10−3 Eh [33,34]
εO 10−3 Eh

νO−O 2.4× 10−4 t−1
h [35]

νO2 2.4× 10−5 t−1
h [35]

νdes
O 7.5× 10−5 t−1

h [35]
νO 2.4× 10−4 t−1

h [35]
νret 2.36× 10−13 t−1

h
nv 2.16× 10−6 a−3

0 [11]
ñO2 1.15× 10−6 a−3

0 [36]
ñH2 4× 10−9 a−3

0
nlim

O2
1.12× 10−2 a−2

0
aO 2 a2

0
εr 5 dimensionless [37]

mO2 5.9× 104 me
m∗ 2 me
R 700 a0

αO2 (T) 3.8× T1.69 e−
11664.3

T dimensionless

Figure 1 demonstrates good performance of the developed model for interpretation of
experimental data on the dependence of the sensor effect (θ) on temperature (T). Details
of the experiment are available in [38]. The resistance of the film of In2O3, laid over a
dielectric substrate, was measured for the two cases: (i) in the stream of air, and (ii) in
the stream of air with addition of H2. The sensor effect is a ratio of these resistances. The
measurements were conducted at various temperatures. The results were verified using
five different samples of the film. The maximum error in resistance measurement was 2.5%.
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Figure 1. The temperature dependence of the sensor effect for In2O3 system at 2% hydrogen in the
air. The dots represent the experimental data [38]. The curve is the calculation result (fitting).

Numerical experiments were conducted in order to achieve the best agreement with
the experimental data. The values of the parameters delivering the best agreement are
reported in Table 4. These values have been partly extracted from existing publications,
in particular, the measured values of the following: dielectric permittivity of nanoparticle
material εr, energy of donor level in the indium oxide εv, density of donors nv in the volume
of a semiconductor nanoparticle, volume density of oxygen in the air ñO2 , frequency
of stretching vibrations of atoms in adsorbed oxygen molecule νO−O (of the order of
1012–1013 s−1), and the energy required to tear off the molecule of oxygen from the surface
of indium oxide εdes. Constants of the rate of the electron capture by the oxygen atom Kcap
and the reaction of hydrogen with adsorbed oxygen ions KH2O were estimated directly
from the experiments on kinetics of resistance variation upon the injection of hydrogen and
oxygen. The rest of the parameter values were adopted based on the best agreement with
the experimental data on the sensor effect to hydrogen.

The developed technique for describing processes occurring in simple nanostructured
materials also works in more complex cases. So, for illustration, in Figure 2, the recently
obtained results of comparing the theory with experimental data for the mixed system CeO2-
In2O3 [39] is presented. The fitting procedure is slightly more complicated; along with
processes (I)–(V), the chemical reactions on the surface of CeO2 nanoclusters and the transfer
of reaction products to In2O3 nanoparticles should be taken into account. Accordingly, the
system of kinetic equations will also change, but there are no fundamental innovations.
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Figure 2. The temperature dependence of the sensor effect for the mixed system CeO2-In2O3 at
2% hydrogen in the air. The dots represent the experimental data [39]. The curve is the calculation
result (fitting).

5. Conclusions

The present study demonstrates advances in mathematical modeling of physico-
chemical processes using the example of the sensor effect. A methodology and an algorithm
for such a modeling have been developed. They consist of the following steps. First,
appropriate equations describing kinetics of the given process are chosen. Further, these
equations are being solved to obtain expressions for nO2 , nO, nO− , which are required
for the calculation of the distribution function nc(r) of elections along the radius of the
nanoparticle. Obviously, solutions of the set of Equation (1) are different depending on the
presence or absence of hydrogen. In order to calculate the function nc(r), the problem of
the minimization of free energy is considered. The latter problem reduces to a boundary
value problem for the Poisson’s equation. The boundary condition at the right boundary
of the nanoparticle was set using the earlier found value nO− . The steady-state Poisson’s
equation was solved by the method of time development.

Based on the proposed algorithm, an in-house computer code was developed.
A comparison between the calculations and experimental data was performed using

the examples of sensitivity of the layer based on In2O3 and the mixed system CeO2-In2O3
to hydrogen.

The application of the developed methodology and computational code is not re-
stricted to the calculation of the distribution of the charge in spherical semiconductor
nanoparticles in a vacuum in the presence of various gases. They can also be used for
the solutions of other problems, such as the quantification of the influence of external
electrostatic fields on distributions of charge and electrical fields in nanosystems of various
shapes such as cone-like, spherical, and rectangular shapes.
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Appendix A

Variation of the functional F, under the balance constraints (16), is calculated as follows

δF1 = 4π

R∫
0

r2 ∂Fkin
∂nc

δnc dr.

∂Fkin
∂µ

= −2
√

2(m∗)3/2

3π2kT

∞∫
0

ε3/2 exp((ε− µ)/(kT)) dε

(1 + exp((ε− µ)/(kT)))2 + nc(r) + µ
∂nc

∂µ
= (in parts)

−
√

2(m∗)3/2

π2

∞∫
0

ε1/2 dε

1 + exp((ε− µ)/(kT))
+ nc(r) + µ

∂nc

∂µ
= µ

∂nc

∂µ
.

∂Fkin
∂nc

=
∂Fkin
∂µ

∂µ
∂nc

= µ.

δF1 = 4π

R∫
0

r2µ δnc dr.

(A1)

Let us assume, for the time being, that

R∫
0

r2δnc dr =
R∫

0

r2δn+ dr = 0. (A2)

then

δF2 = −kT
R∫

0

4πr2 ∂

∂n+

[
nv ln

nv

nv − n+(r)
+ n+(r) ln

nv − n+(r)
n+(r)

]
δn+ dr =

−kT
R∫

0

4πr2 ln
nv − n+(r)

n+(r)
δn+ dr.

(A3)

δn = δn+ − δnc.

∂ϕ
∂r = − 4π

χr2

r∫
0

n(α)α2 dα; (assume that, ϕ
′
r(0) = 0).

F3 = 8π2
χ

R∫
0

1
r2

 r∫
0

n(α)α2 dα

2

dr.

δF3 = 16π2
χ

R∫
0

1
r2

 r∫
0

δn(α)α2 dα

 r∫
0

n(γ)γ2 dγ

 dr =

−4π

R∫
0

 r∫
0

δn(α)α2 dα

∂ϕ

∂r
dr = −4πϕ

 r∫
0

δn(α)α2 dα

R

0

+ 4π

R∫
0

r2 ϕ(r)δn(r) dr.

(A4)
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Since
r∫

0

δn(r)r2 dr = 0 (full charge), then

δF3 = 4π

R∫
0

r2 ϕ(r)(δn+ − δnc) dr. (A5)

Finally,

δF = 4π

R∫
0

r2(µ− ϕ)δnc dr + 4π

R∫
0

r2(ϕ− kT ln
nv − n+

n+
)δn+ dr. (A6)

Therefore, we obtain the relationships

µ = ϕ + C1.

ϕ− kT ln nv − n+
n+

= −C2.

n+ = nv
1 + exp((ϕ + C2)/kT)) .

(A7)

If once assumes that
r∫

0

δn+(r)r2 dr 6= 0 , but
r∫

0

δn(r)r2 dr = 0 (balance condition is

fulfilled), then

δF2 = εv4π

r∫
0

δnc(r)r2 dr− kT
R∫

0

4πr2 ln
nv − n+(r)

n+(r)
δn+ dr.

δF = 4π

r∫
0

(εv + C1 − C2)δncr2 dr.

(A8)

From here, we obtain
C2 − C1 = εv. (A9)
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