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Abstract
Evolutionary multi-objective multi-task optimization is an emerging paradigm for solving multi-objective multi-task opti-
mization problem (MO-MTOP) using evolutionary computation. However, most existing methods tend to directly treat the
multiple multi-objective tasks as different problems and optimize them by different populations, which face the difficulty
in designing good knowledge transferring strategy among the tasks/populations. Different from existing methods that suffer
from the difficult knowledge transfer, this paper proposes to treat the MO-MTOP as a multi-objective multi-criteria optimiza-
tion problem (MO-MCOP), so that the knowledge of all the tasks can be inherited in a same population to be fully utilized
for solving the MO-MTOP more efficiently. To be specific, the fitness evaluation function of each task in the MO-MTOP
is treated as an evaluation criterion in the corresponding MO-MCOP, and therefore, the MO-MCOP has multiple relevant
evaluation criteria to help the individual selection and evolution in different evolutionary stages. Furthermore, a probability-
based criterion selection strategy and an adaptive parameter learning method are also proposed to better select the fitness
evaluation function as the criterion. By doing so, the algorithm can use suitable evaluation criteria from different tasks at
different evolutionary stages to guide the individual selection and population evolution, so as to find out the Pareto optimal
solutions of all tasks. By integrating the above, this paper develops a multi-objective multi-criteria evolutionary algorithm
framework for solving MO-MTOP. To investigate the proposed algorithm, extensive experiments are conducted on widely
used MO-MTOPs to compare with some state-of-the-art and well-performing algorithms, which have verified the great effec-
tiveness and efficiency of the proposed algorithm. Therefore, treating MO-MTOP as MO-MCOP is a potential and promising
direction for solving MO-MTOP.

Keywords Multi-objective optimization · Multi-criteria optimization · Multi-task optimization · Evolutionary algorithm ·
Evolutionary computation

· · ·

Introduction

Multi-objective multi-task optimization (MO-MTO) [1–3]
is a novel and emerging paradigm that aims to solve multi-
ple multi-objective optimization tasks simultaneously. The
core assumption of MO-MTO lies in that the knowledge
and information gained from the optimization of one task
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can be used to enhance the optimization of the other tasks
[4–7]. For instance, when the optimal solutions of two tasks
share similarities in some dimensions, the knowledge of the
current best solution in one task (no matter single or multi-
objective) can guide the evolutionary search for the other
task. Therefore, MO-MTO that tackles the multiple tasks
together during the evolutionary process canbemore efficient
than the traditionalmulti-objective optimization diagram that
only considers one multi-objective optimization task during
the evolutionary process. Moreover, the above assumption
is usually supported in a variety of real-world optimiza-
tion applications [8–12]. For instance, the vehicle routing
problem [8, 9], with various constraints such as the vehicle
capacity, vehicle number, and time constraints, usually has
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a lot of specific problem instances that are somewhat simi-
lar in their problem characteristics, function landscapes, and
optimal solutions. As a result, the MO-MTO research has
attracted increasing attention in recent years.

When dealing with the MO-MTO problem (MO-MTOP),
evolutionary computation (EC)methods are usually adopted,
which leads to a promising research topic, i.e., evolutionary
MO-MTO (denoted as EMO-MTO in the following con-
tents) [13]. This is due to the fact that EC algorithms are
powerful and efficient in tackling various complex optimiza-
tion problems with different characteristics and difficulties
[14–17]. The widely used EC algorithms include genetic
algorithm (GA) [18–20], particle swarm optimization (PSO)
[21–23], differential evolution (DE) [24–27], estimation of
distribution algorithm (EDA) [28–30], ant colony optimiza-
tion (ACO) [31–33], and evolutionary search (ES) [34, 35].
Hence, by integrating EC algorithms with the MO-MTO
paradigm, the EMO-MTO is potential for solving complex
MO-MTOP more efficiently.

To date, some EMO-MTO algorithms have been proposed
for solving MO-MTOP, which can be roughly classified into
two categories. The first category is about the multifactorial-
based approach [3, 13, 36–38], while the second category is
about the non-multifactorial-based approach [39–41]. In the
first category, the multi-objective multifactorial evolution-
ary algorithm (MO-MFEA) [3] is one of the most classical
and representative algorithm frameworks, which evolves a
single population in a unified search space with skill fac-
tors for solving multiple tasks. Due to the efficiency of the
MO-MFEA, some enhanced MO-MFEA variants have been
further studied and proposed for solving MO-MTOPs [13,
36, 37]. Differently, the second category mainly maintains
multiple populations for solving multiple tasks [39–41]. For
example, Lin et al. [39] proposed an incremental learning
method to transfer common knowledge among populations
to help solve relevant tasks. For another example, Feng et al.
[41] proposed a novel autoencoder method to transfer the
promising individuals among different populations targeted
at different tasks.

However, existing EMO-MTO algorithms, no matter
using a single population with multiple groups (based on the
MO-MFEA framework) or using multiple populations, still
treat the multiple tasks in the MO-MTOP as different prob-
lems when optimizing them during the evolution procedure.
Therefore, the existing EMO-MTO algorithms have to work
with a well-designed knowledge transferring strategy among
the tasks. However, designing a good knowledge transferring
strategy is a very difficult issue. Differently, a recent work in
[42] has shown that it is beneficial to consider the multiple
tasks as different evaluation criteria during the optimization
process of the single-objective MTOP. This way, the knowl-
edge for optimizing different tasks can be reserved in the
optimization process and be naturally shared among all the

tasks. Following this, we can use the multiple relevant cri-
teria to evolve the population accordingly, so as to search
for the optimal solutions for all different tasks in one run.
Inspired by the idea of treating multi-tasks as multi-criteria
[42], we attempt to treat the MO-MTOP as a multi-objective
multi-criteria optimization problem (MO-MCOP), so that the
knowledge for different tasks can be fully leveraged to solve
the MO-MTOP more efficiently. That is, we treat the MO-
MTOP with multiple multi-objective optimization tasks as
an MO-MCOP with multiple evaluation criteria, where the
multiple criteria are used for the environmental selection
and population evolution. By doing so, the challenging issue
in MO-MTOP, i.e., how to find the useful knowledge and
then transfer them across different relevant multi-objective
tasks, becomes a simpler issue: how to utilize the multiple
evaluation criteria to guide the environmental selection and
population evolution, so as to generate the optimal solu-
tions that satisfy different criteria of all tasks. Therefore,
this research direction has a great potential of both leading
to a significant approach for dealing with MO-MTOPs and
providing significant contributions to the developments of
related research communities.

The major novelties and contributions of this paper are
listed as follows:

First, this paper attempts to solve MO-MTOPs by treating
them as MO-MCOPs, which provides a novel and potential
way for handling MO-MTOPs. Moreover, to the best of our
knowledge, this paper is the first that tries to tackle MO-
MTOP by treating it as MO-MCOP. Besides, this paper also
mathematically discusses why treating MO-MTOP as MO-
MCOP can be effective and efficient.

Second, a probability-based criterion selection strategy
(PCSS) is proposed to select and utilize the multiple evalu-
ation criteria based on the corresponding probability, so that
different criteria can have different corresponding chances to
be selected to guide the environmental selection and popula-
tion evolution.

Third, an adaptive parameter learning (APL) method is
further proposed to learn the probability adaptively for choos-
ing criteria in PCSS. By adopting the APL, the algorithm can
learn the suitable probability to help determine which crite-
rion should be used at the current generation, so as to guide
the population evolution with different criteria more appro-
priately.

Fourth, by integrating the above, a multi-objective multi-
criteria evolutionary algorithm (MO-MCEA) framework is
developed for solving MO-MTOPs.

To evaluate the proposed methods, extensive experiments
are conducted on widely used MO-MTOP benchmarks.
Moreover, some state-of-the-art and well-performing EMO-
MTO algorithms have also been adopted to compare and
challenge the proposed MO-MCEA.
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The rest contents are as follows: the next section briefly
introduces background knowledge and relatedwork. The fol-
lowing section gives the motivation and analysis of treating
MO-MTOP as MO-MCOP. The next section describes the
proposed methods. Experimental studies are provided in the
next section. Finally, the last section concludes the paper.

Background and related work

Multi-objective multi-task optimization

MO-MTO is a diagram for solving multiple multi-objective
optimization tasks together. Mathematically, the MO-MTOP
can be defined as follows.

Given K multi-objective optimization tasks (assuming
the objectives in every task are all minimization problems),
denoted as T1, T2,…, TK , where the kth task hasMk (Mk >1)
objective functions Fk(x) � [f 1(x), f 2(x), …, f Mk(x)]. The
search space and the objective space of the kth task are �k

and ΨM
k , respectively, and they satisfy that Fk : �k →ΨM

k .
The aim of a minimization MO-MTOP is to find the optimal
solution set {xk} for each task Tk , such that {xk} satisfies

{ xk} = argmin Fk(xk |xk ∈ �k )} , k � 1, 2, 3, ..., K . (1)

As each Fk has multiple objectives, we will have the fol-
lowing important concepts for each task Tk to determine
whether a solution is optimal according to the related def-
initions in the literature of multi-objective optimization [43,
44].

Definition 1 Pareto domination Given any two objective fit-
ness vectors u � [u1, u2, …, uM ] and w � [w1, w2, …, wM ]
in the objective space ΨM , we say that u dominates w if um
≤wm for all m � 1, 2, …, M and u ��w, denoted as u�w.

Definition 2 Pareto optimalA solution vector x ∈� is Pareto
optimal if there is no x* ∈�, such that F(x*) dominates F(x).

Definition 3 Pareto set The Pareto set (PS) is a set of the
Pareto optimal solutions, which can be represented as

PS � {x ∈ � and x is Pareto optimal}. (2)

Definition 4 Pareto front The Pareto front (PF) is composed
of the solutions in PS, as

PF � {F(x)|x ∈ PS }. (3)

Based on the above definitions, the optimal solution set
{xk} for each task Tk is actually the PS of the Tk .

Related work

To date, although the EMO-MTO is a newly emerged
optimization diagram, some EMO-MTO works have been
proposed and attracted increasing attention. Therefore, this
part provides a brief review of the existing works.

As mentioned briefly in the Introduction part, existing
works about EMO-MTO can be categorized into two major
categories. The first category is about the multifactorial-
based approach [3, 13, 36–38], while the second category
is about the non-multifactorial-based approach [39–41].

In the first category, MO-MFEA is the most representa-
tive algorithm framework for solvingMO-MTOPs [3].When
compared with other algorithms, the distinct feature of MO-
MFEA is that the MO-MFEA evolves one population with
skill factors to find the optimal solutions for multiple tasks
together. In MO-MFEA, each individual in the population
corresponds to one task according to their skill factors, and
thereby individuals for different tasks can transfer common
knowledge implicitly via genetic operations, e.g., crossover
operation. By utilizing omnidirectional knowledge trans-
fers, the MO-MFEA can achieve mutual knowledge sharing
among different multi-objective optimization tasks, so that
the optimization for each task can be benefited by the
obtained knowledge from other tasks. To make the knowl-
edge sharing more adaptively, Bali et al. [13] studied the
intertask relationship learning and proposed an online adap-
tive genetic transfer method to develop the MO-MFEA-II,
which can achieve better overall performance than the origi-
nal MO-MFEA. Moreover, as MO-MFEA may convergence
slowly if tasks are weakly relevant or even irrelevant, Zheng
et al. [36] proposed to introduce additional helper tasks via
the weighted sum of original tasks to improve the knowledge
transfer and speed up the algorithm convergence. Further-
more, Yang et al. [37] considered not only the convergence
but also the diversity ofMO-MFEAandproposed a two-stage
assortativematingmethod to enhance the knowledge transfer
among diversity-related and convergence-related variables
among related tasks. Besides, Binh et al. [38] proposed a
reference-point-based approach and an enhanced random
mating probability learning method to better exploit and
transfer knowledge among individuals targeted at different
tasks.

In the second category, algorithms maintain multiple
populations with explicitly transfer information among the
populations for solving MO-MTOPs. For example, Lin et al.
[39] proposed an algorithm based on incremental learning
to find suitable knowledge for the transfer among different
tasks. Liang et al. [40] proposed a genetic transform strategy
to transfer the individual genetic information from one task
to relevant tasks. In addition, Feng et al. [41] proposed an
explicit autoencoding method to achieve knowledge transfer
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among the population targeted at different tasks to enhance
the optimization results.

However, these existing methods and algorithms for MO-
MTOPs still treat the multiple tasks in the MO-MTOP as
different problems and optimize them simultaneously, which
requires a well-designed knowledge transferring strategy to
share knowledge among tasks. Differently from these meth-
ods, the MO-MCEA proposed in this paper treats all tasks
in MO-MTOP as multiple criteria of an entire MO-MTOP
to guide the evolution appropriately, so as to fully utilize the
knowledge in different tasks during the optimization process
and obtain promising solutions for all tasks. Therefore, the
contributions and novelties of this paper are justified.

Motivation of treatingMO-MTOP
asMO-MCOP

Definition of MCOP andMO-MCOP

In this paper, the MCOP is defined as follows:
Given anoptimizationproblem (assuming it is aminimiza-

tion problem) with K available evaluation criteria (including
objective/constraint functions) on the same search space �,
which are denoted as F1, F2, …, FK , the aim of a mini-
mization MCOP is to find the optimal solution set {x} that
satisfies

{x} � argmin F0(x |x ∈ � )}
with F0 ∈ {F1, F2, ..., FK }, (4)

where F0 can be arbitrary one in {F1, F2, …, FK} at differ-
ent search stages. Note that the “argmin” should be “argmax”
if the problem is a maximization optimization problem, and
the {x} will only have one element if the problem is single-
objective. The key characteristic of MCOP is that when each
evaluation function can guide the optimization to find accept-
able optimal solutions for the problem, then the proper usage
of multiple evaluation functions can obtain a satisfactory
solution more efficiently. Moreover, if the F1, F2, …, FK

have different fidelities or accuracy scales, then the MCOP
can be considered as a multifidelity optimization problem
[45] or multi-scale optimization problem [46], respectively.
In addition, the relationship between MCOP and MTOP is
that both of them have multiple evaluation functions, while
the main difference between them lies in that the MCOP
requires the algorithm to optimize only one evaluation func-
tion each time, while the MTOP requires the algorithm
to optimize multiple different evaluation functions together
each time.

Based on the above, theMO-MCOP is the same asMCOP
except that all evaluation functions in {F1, F2, …, FK} are
multi-objective functions.

Relationship betweenMO-MTOP andMO-MCOP

This part discusses the relationship betweenMO-MTOP and
MO-MCOP. To begin with, we consider a unified search
space � for all different tasks in the MO-MTOP, where the
search space of the kth task is �k . Considering K one-to-one
mapping functions ϕ1, ϕ2, …, and ϕK , where ϕk : �→�k ,
then Eq. (1) for MO-MTOP can be rewritten as

{xk} � argmin Fk(xk |xk ∈ �k )}
� argmin Fk(ϕk(x)|x ∈ � )}
� argmin Fk ◦ ϕk(x |x ∈ � )}, k � 1, 2, 3, . . . ., K .

(5)

Now, theMO-MTOP is withK tasks with the same search
space (i.e., Ω), where the multi-objective evaluation func-
tion of the kth task is Fkzϕk and of all tasks are the same.
Moreover, if considering F1zϕ1, F2zϕ2, …, and FKzϕK as
different evaluation functions in a MO-MCOP, then the aim
of MO-MCOP, i.e., Eq. (4), can be rewritten as

{x} � argmin F0(x |x ∈ � )}
with F0 ∈ {F1 ◦ ϕ1, F2 ◦ ϕ2, ..., FK ◦ ϕK }. (6)

Note that we have {ϕk(x)} � {xk} for k � 1, 2, …, K
as ϕk : �→�k . Therefore, comparing Eqs. (5) and (6), the
main difference between MO-MTOP andMO-MCOP is that
given a set of evaluation functions, MO-MTOP aims to opti-
mize all evaluation functions by considering them together all
the time during the optimization process, while MO-MCOP
attempts to obtain the optimal solutions by considering one
evaluation function every time during the optimization pro-
cess, where the latter (i.e., MO-MCOP) can be an easier
problem, because the optimization algorithms can select an
appropriate function at different stages adaptively and flexi-
bly to guide the evolution to obtain better results. Therefore,
itwould be better ifMO-MTOPcan be treated asMO-MCOP.

TreatingMO-MTOP as MO-MCOP

Based on the above, MO-MTOP can be treated as MO-
MCOP with multiple criteria (i.e., evaluation functions) and
the algorithmcan select the proper criterion in different stages
to guide the evolution. Herein, this part further analyzes the
rationality and the benefit of treating MO-MTOP as MO-
MCOP in the following contents.

The rationality of treating MO-MTOP as MO-MCOP

In fact, the key issue of rationality depends on the difference
between the optimal results obtained from Eq. (5) and those
from Eq. (6), i.e., the equivalence degree of MO-MTOPs
and MO-MCOPs. Without loss of generality, we consider an
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MO-MTOP with two tasks Ti and Tj, where the evaluation
functions and Pareto sets of these two tasks are Fizϕi and
Fjzϕj and PSi and PSj, respectively. Therefore, according
to Eq. (5), the optimal results after solving the MO-MTOP
should include PSi and PSj.Moreover, according to Eq. (6), if
Fizϕi is selected as the evaluation criterion all the time when
solving the MO-MCOP, the optimal results after solving the
MO-MCOP will be PSi. That is, the difference between the
optimal results obtained by Eq. (5) (i.e., solvingMO-MTOP)
and those by Eq. (6) (i.e., solving MO-MCOP) can be con-
sidered as the difference between PSi ∪PSj and PSi, i.e., the
difference between PSi and PSj.

Based on the above, we can have three observations on
the rationality of treating MO-MTOP as MO-MCOP.

First, if Ti and Tj in an MO-MTOP have high similarity
and share much common knowledge in their Pareto sets PSi
andPSj, e.g., PSi �PSj or PSi≈PSj, then the results obtained
by Eq. (5) (i.e., by solving MO-MTOP) and those obtained
by Eq. (6) (i.e., by solvingMO-MCOP) are similar. In such a
situation, treating the MO-MTOP as an MO-MCOP can find
the Pareto sets for both tasks.

Second, if Ti and Tj share some similarities in their Pareto
sets, i.e., PSi ∩PSj ��Ø but PSi ��PSj, then the PSi will
contain some Pareto optimal solutions for Tj. As real-world
multi-objective optimization tasks usually require enough
Pareto optimal solutions rather than all optimal solutions,
the number of Pareto optimal solutions in PSi can be enough
to constitute an acceptable Pareto set for Tj. In this scenario,
treating theMO-MTOPas anMO-MCOPcanfind the accept-
able solutions for both tasks.

Third, if Ti and Tj are very different, e.g., PSi ∩PSj≈Ø,
these two tasks are not suggested to be integrated together as
an MO-MTOP. In this circumstance, the problem with such
tasks is actually not awell-definedMO-MTOP, and therefore,
it is no need to (and is also not recommended to) treat it as
an MO-MCOP.

Based on the above, it is reasonable to treat MO-MTOPs
as MO-MCOPs.

The benefit of treating MO-MTOP as MO-MCOP

When treating an MO-MTOP as an MO-MCOP, the algo-
rithm can select an evaluation function as the criterion to
evolve the population. To begin with, we can consider an
MO-MTOPwith all tasks in the same search space (i.e., map-
ping functions ϕ are the identity functions ϕ(x) � x and can
be omitted) as an MO-MCOP, and then define the following
notation:

Given the population at the gth generation and the (g + z)th
generation, i.e., Pg and Pg+ z, respectively, Pr(Pg+ z≺Pg|Pg,
Fi) denotes the probability that no solutions in Pg+ z are
dominated by any solutions in Pg after the Pg evolves z gen-

erations with the multi-objective evaluation function Fi as
the selection criterion to become Pg+ z.

Note that theory analysis and experimental studies have
shown that if an algorithm has a larger probability for
producing a better population in a given number of gener-
ations, the algorithm will have a faster convergence speed
and a smaller time complexity [47, 48]. Therefore, a larger
Pr(Pg+ z≺Pg|Pg, Fi) will be more satisfied.

Based on the above, we can discuss the benefit of treating
MO-MTOP as MO-MCOP as follows:

Without loss of generality, we can assume that
Pr(Pg+ z≺Pg|Pg, Fi) � ag, Pr(Pg+ 2z≺Pg+ z |Pg+ z, Fi) �
ag+ z, Pr(Pg+ z≺Pg|Pg, Fj) � bg, and Pr(Pg+2z≺Pg+z |Pg+z,
Fj) � bg+z, where ag, ag+ z, bg, and bg+ z all belong to [0,1].
In general, as different multi-objective functions have dif-
ferent landscapes and the different numbers of local optima,
the ag, ag+ z, bg, and bg+ z may be different from each other.
Then, if only one of the evaluation functions (e.g., Fi or Fj)
is selected as the criterion to evolve population Pg for 2z
generations, we can have the following equations:

(7)

Pr(Pg+2z ≺ Pg+z ≺ Pg
∣
∣Pg, Fi )

� Pr(Pg+2z ≺ Pg+z
∣
∣Pg+z, Fi ))

· Pr(Pg+z ≺ Pg
∣
∣Pg, Fi )) � ag+z · ag,

(8)

Pr(Pg+2z ≺ Pg+z ≺ Pg
∣
∣Pg, Fj )

� Pr(Pg+2z ≺ Pg+z
∣
∣Pg+z, Fj ))

· Pr(Pg+z ≺ Pg
∣
∣Pg, Fj )) � bg+z · bg.

However, if the problem is treated as an MO-MCOP and
the Fi and Fj are selected appropriately as the criteria at
different stages (e.g., during the z generations) to evolve Pg,
so as to maximize Pr(Pg+ 2z≺Pg+ z≺Pg |Pg, Fi or Fj), then
we can have

max Pr(Pg+2z ≺ Pg+z ≺ Pg
∣
∣Pg, Fi or Fj )

� max{Pr(Pg+2z ≺ Pg+z
∣
∣Pg+z, Fi or Fj ) · Pr(Pg+z

≺ Pg
∣
∣Pg, Fi or Fj )}

� max{Pr(Pg+2z ≺ Pg+z
∣
∣Pg+z, Fi ),Pr(Pg+2z

≺ Pg+z
∣
∣Pg+z, Fj )}

·max{Pr(Pg+z ≺ Pg
∣
∣Pg, Fi ),Pr(Pg+z ≺ Pg

∣
∣Pg, Fj )}

� max{ag+z, bg+z} · max{ag, bg}.
(9)

Note that the “Fi or Fj” in the formula means that the
algorithm can use Fi or Fj during the evolution from Pg to
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Pg+ z and from Pg+ z to Pg+ 2z. Then, by combining Eqs. (7),
(8), and (9), we can have the inequation

(10)

max Pr(Pg+2z ≺ Pg+z ≺ Pg
∣
∣Pg, Fi or Fj )

� max{ag+z, bg+z} · max{ag, bg}
≥ max{ag+z · ag, bg+z · bg}
� max{Pr(Pg+2z ≺ Pg+z ≺ Pg

∣
∣Pg, Fi ),Pr(Pg+2z

≺ Pg+z ≺ Pg
∣
∣Pg, Fj )}.

That is, when compared with the approach that only uses
one function as the criterion for populations for different
tasks, treating the MO-MTOP as an MO-MCOP and using
multiple fitness functions properly at different stages can
make the population have a larger probability to become a
better population within the given number of generations,
which can result in a higher evolution efficiency and a faster
convergence speed. Therefore, treating MO-MTOP as MO-
MCOPproperly can bringmore sufficient knowledge sharing
among multiple tasks to benefit the population evolution
[49–51].

Based on the above, it is rational and beneficial to treat
MO-MTOPs as MO-MCOPs and choose the criterion prop-
erly at different evolution stages. Therefore, this paper also
proposes the PCSS and APL to select the criterion in differ-
ent stages properly, which will be described in the following
contents.

The proposedMO-MCEA

The overall framework of theMO-MCEA

The overall framework of the MO-MCEA is presented in
Fig. 1, which mainly has three parts. The first part is a cri-
terion set of available evaluation functions, the second part
is the criterion selection based on PCSS and APL to select
one of the evaluation functions as the evaluation criterion to

evolve population at different evolutionary stages, and the
third part is the procedure of evolutionary optimization with
the selected criterion. In the following contents, the PCSS,
APL, and the complete algorithm will be introduced one by
one.

Probability-based criterion selection strategy

The PCSS is proposed to select one multi-objective function
from multiple multi-objective functions to be the selection
criterion for the current generation. The idea of PCSS is
straightforward: each multi-objective function will have a
criterion selection probability (denoted as csp), e.g., Fi has
cspi, and the multi-objective function with a larger csp will
have more opportunities to be selected as the selection crite-
rion. Following this, given K multi-objective functions F1,
F2,…, andFK , and their corresponding selection probability
csp1, csp2, …, and cspK , the index of the function selected
as the criterion will be determined by the roulette with csp1,
csp2, …, and cspK . Mathematically, the selection of the cri-
terion can be written as

cid � roulette(csp), (11)

where cid is the index of the selected criterion (i.e., the
selected criterion is denoted asFcid), and the function roulette
returns an index based on a roulette with csp1, csp2, …, and
cspK as the probabilities for the available indexes 1 to K.

Adaptive parameter learning

The initial csp is initialized evenly for different available
functions and the APL aims to learn more suitable csp adap-
tively during the evolution, so that the PCSS can select the
criterion more properly. In general, if the population has
better improvements after one generation under the current
selection criterion, this criterion may be more suitable for
the current evolutionary stage, and vice versa. Therefore, the

Fig. 1 The overall framework of
MO-MCEA
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APL updates the csp according to the population improve-
ment in every generation. To be specific, considering the
population at gth generation (i.e., Pg) uses the cidth multi-
objective function (i.e., Fcid) as the selection criterion, then
the APL will update cspcid as

cspcid �
{

cspcid + �, if Pg+1 is better than Pg

cspcid − �, otherwise
, (12)

where� is a fixed value for updating csp, and the “better” can
be determined by comparing Pg+ 1 and Pg based on various
metrics that do not rely on the real Pareto front, such as C
metric [52] and hypervolume [32]. Note that the proposed
MO-MCEA in this paper uses the C metric to compare Pg+ 1

and Pg. Besides the cspcid , the other csp (i.e., cspj where j
��cid) will also be updated as

csp j �

⎧

⎪⎪⎨

⎪⎪⎩

csp j − �

K − 1
, if Pg+1 is better than Pg

csp j +
�

K − 1
, otherwise

, (13)

Start

Initialize population

gen=gen+1

Initialize csp1, csp2, , cspK

and set gen=0

If mod(gen, G) == 1

Determine the Fcid via the

roulette with csp

Re-evaluate individuals

with Fcid

Evolve population with Fcid

Stop the evolution?

Update and output NDS for

each task

Perform crossover and

mutation operators

Evaluate the fitness of

new individuals with Fcid

Perform individual

selection

Update csp based on APL

No

No

Yes

Yes

Initialize NDS1, NDS2, ,

NDSK as empty sets

End

Update NDScid with the

solutions in the current NDScid

and the current population

Fig. 2 The flowchart of the complete MO-MCEA

whereK is the total number of availablemulti-objective tasks.
Note that if a cspi is smaller than 0.1, then it will be set as
0.1 and then all csp are normalized, so as to guarantee that
the ith function still has a chance to be selected again and the
sum of csp equals 1.

The complete MO-MCEA

With the PCSS and APL, the flowchart of the complete MO-
MCEA is given in Fig. 2 and the pseudo code of the complete
MO-MCEA is shown as Algorithm 1. Note that the search
spaces of all tasks will be normalized in the unified search
space [0,1]D, where D is the maximum variable dimension
among all tasks. That is, solutions for different tasks are
mapped to the [0, 1]D, which is a common technique in the
literature [4]. As can be seen, after the initialization, Algo-
rithm 1 mainly has three repeated procedures. These three
procedures are the criterion determination via PCSS, popula-
tion evolution, and the parameter learning for PCSS through
APL,which can be seen in lines 10–15, lines 16–18, and lines
19–20 of Algorithm 1, respectively. Note that the population
evolution procedures in Algorithm 1 can use various exist-
ing well-designed operators including efficient crossover,
mutation, and selection operators according to the needs
and preferences of users. Therefore, the MO-MCEA can be
extended with powerful state-of-the-art methods and opera-
tors to develop more efficient algorithms. In this paper, the
optimization algorithm for each task is the NSGA-II [44]. In
addition, it should also be noted that the evaluation criterion
will be switched by PCSS every G generations. Moreover,
every time the evaluation criterion is switched, the current
population will be re-evaluated by the new evaluation cri-
terion before going to the evolution. Therefore, NP fitness
evaluations (FEs) are needed after every switch, just as shown
in lines 13 and 14 of Algorithm 1. Overall, the algorithmwill
repeat the PCSS, population evolution, and APL iteratively
until the stop criterion is met, e.g., all available FEs are con-
sumed. Note that we useK sets (denoted asNDS1,NDS2,…,
NDSK ) to record the current non-dominated solutions for the
K tasks, respectively. During the evolutionary process, after
the population evolution of one generation with Fcid (i.e.,
the line 16 of Algorithm 1), the corresponding NDScid will
be updated. That is, all the solutions in the current popula-
tion will merge with the solutions in NScid , and then, only
those non-dominated solutions in themerged solution set can
be remained in the NDScid . After the evolutionary process,
all the solutions in the final population will be, respectively,
evaluated by each of the K multi-objective functions and be
merged with the corresponding NDS to update the NDS (the
update process is similar to that in line 18), see lines 23–24
in Algorithm 1. Finally, the algorithm outputs the best-found
non-dominated sets for all different tasks.
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Algorithm 1: The Complete MO-MCEA
Input:   T1, T2, …, TK -K optimization tasks;  

F1, F2, …, FK -the fitness function of the T1, T2, …, TK;  

NP-the number of individuals in the population;  

G -the number of generations for using each criterion. 

Output: NDS1, NDS2, …, NDSK -the current non-dominated solution sets for K tasks. 

1:Begin
2: Initialize NP individuals; 
3:     Initialize NDS1, NDS2, …, NDSK as empty sets; 

4: For i = 1 to K
5: cspi ← 1/K; // Initialize the criterion selection probability evenly 

6: End For 
7: FEs ← 0;

8: gen ← 1; // index of generation

9: While (FEs + NP×K < maximum number of available FEs) Do
10:          If mod(gen, G)==1 

11:               // Probability-based Criterion Selection Strategy 

12: cid ←roulette selection of [1, 2, …, K] with [csp1, csp2, …, cspK];

13: Re-evaluate individuals by the function Fcid; 

14: FEs ← FEs+NP; 

15:          End If
16:          Evolve population for one generation with Fcid; 

17: FEs ← FEs+NP; 

18:          Update and record the corresponding NDScid; 

19:          // Adaptive Parameter Learning 

20:          Update [csp1, csp2, …, cspK] according to Eq.(12) and Eq.(13);

21: gen ← gen+1;

22: End While 
23: Evaluate individuals by the K multi-objective functions F1, F2, …, and FK; 

24:     Update and record NDS1, NDS2, …, and NDSK, respectively; 

25: End

Experimental studies

Experiment setup

In the experimental studies, six commonly usedMO-MTOPs
[53] with different similarities are adopted to investigate the
proposed methods and algorithm. The properties of these
problems are briefly introduced in Table 1, where the task
similarity is evaluated by the Spearman’s rank correlation
coefficient [53]. InTable 1, the complete intersection (CI) and
partial intersection (PI) indicate that the Pareto optimal solu-
tions of the two tasks are similar in all and some dimensions,
respectively, while high similarity (HS), medium similar-
ity (MS), and low similarity (LS) mean that the two tasks
have high, medium, and low similarity measured by Pearson
correlation according to their function landscape. Based on
this, the six problems with different properties can be catego-
rized into different categories according to their intersection
degree and task similarity. For example, the CI +HS problem
has the property of complete intersection and high similarity

between its two internal tasks.Moreover, as shown inTable 1,
different multi-objective tasks will also have different Pareto
fronts. Therefore, the composition of different intersections,
similarity degrees, and Pareto fronts can help provide an in-
depth observation of how the proposed algorithmmaybehave
in various situations. In addition, the dimensions of all tasks
are set as 10, because tasks with high dimensions can be diffi-
cult to solve (e.g., contains many local optima) and different
algorithms may have similar results (e.g., similar very poor
results) on the high-dimensional tasks, which is not ideal for
algorithm comparison and analysis.

To evaluate the effectiveness and efficiency of the pro-
posed algorithm, some state-of-the-art and latest well-
performing algorithms with various characteristics are used
in comparisons. The adopted algorithms include the MO-
MFEA [3], MO-MFEA-II [13], and EMTwith autoencoding
forMO-MTOPs (denoted asMO-EMTA for simplicity) [41].
To make the comparisons fair, all these algorithms use the
same widely used and representative MOEA (i.e., NSGA-II
[44]) as the optimizer. By doing so, the differences of the pro-
posed MO-MCEA and the three compared algorithms only
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lie in their approach or way for handling MO-MTOPs, e.g.,
handle MO-MTOPs as MC-MTOPs or handle MO-MTOPs
via multifactorial-based approach). Moreover, an NSGA-
II integrated with the single-task evolutionary optimization
paradigm (i.e., solving each task separately and indepen-
dently) is also adopted as a baseline in the comparisons,
where the algorithm is denoted asMO-STEA in the following
contents. All the algorithm settings are kept consistent with
their original papers. As for the NSGA-II operators, the set-
tings are set as the same as those used in existing EMO-MTO
literature [13]. Moreover, theG and � in MO-MCEA are set
as 25 and 0.01, respectively. In addition, the population size
of individual budgets for each task is set as 50. Therefore,
the total population size of both MO-MCEA and MO-STEA
is 50, while the total population size of MO-MFEA, MO-
MFEA-II, and MO-EMTA are all 100.

In the experiments, the maximum number of available
FEs is 1×104 in total (i.e., 5×103 for each task) for each
independent run of all algorithms. To reduce statistical errors,
each algorithm runs 30 times independently on each MO-
MTOP and the results are collected for the comparisons, as
suggested by the literature [53].

Evaluationmetrics

To evaluate the performance of MO-MCEA, four evaluation
metrics are adopted in the experimental studies and compar-
isons. The first two metrics are the mean and standard value
of the optimization results of each algorithm for each task
over 30 runs. As the tasks are multi-objective optimization
tasks, the widely used inverted generational distance (IGD)
indicator [43] for multi-objective optimization is adopted to
evaluate the performance of an algorithm on each task. The
IGD value can be calculated with a set of objective vec-
tors obtained by an algorithm A (denoted as PA) and a set
of the objective vectors uniformly distributed over the true
PF (refer to “Multi-objective multi-task optimization”) of a
multi-objective task (denoted as P*), which is mathemati-
cally defined as

IGD(PA, P∗) � 1

|P∗|

√
√
√
√

∑

x∈P∗

(

min
y∈PA

d(x, y)
)2

, (14)

where d(x, y) calculates the Euclidean distance between x
and y in the objective space, and |P*| is the number of vectors
in P*. In general, the smaller the IGD(A, P ∗) is, the better
the algorithm A is, because a smaller IGD indicates that PA

is more close to P* or contains more data in P*. In addition,
if | P*| is large enough to represent the PF, the IGD(PA, P*)
can measure both the convergence and diversity of the non-
dominated solutions obtained by A. In other words, in this
paper, the first two metrics are the mean and standard value

of the IGD value obtained by each algorithm for each task
over 30 runs, respectively.

Furthermore, the third metric is the Wilcoxon’s rank sum
test with a significant level α � 0.05 [43] for algorithm com-
parisons. Specifically, based on theWilcoxon’s rank sum test,
the symbols “ + ”, “≈”, and “−” are used to represent that
the proposed MO-MCEA performs significantly better than,
similar to, and significantly worse than the compared algo-
rithms, respectively.

The fourth metric is the mean standard score (MSS)
designed for comparing algorithms on MO-MTOPs [53].
This metric is defined as follows. Assuming that there are
N algorithms denoted as A1, A2, …, AN for an MO-MTOP
with K multi-objective minimization tasks T1, T2, …, TK ,
each algorithm runs for R repetitions and the MSS of algo-
rithm Ai can be defined as

MSSi �
K

∑

k�1

R
∑

r�1

IGD′(i, k)r , (15)

where IGD′(i,k)r is the normalized IGD value obtained by
an algorithm Ai for task Tk in rth independent run. The nor-
malization process can be written as

IGD′(i, k)r � IGD(i, k)r − uk
σk

, (16)

where IGD(i,k)r is the original IGD value obtained by Ai on
task Tk in the rth independent run, and uk and σ k represent
the mean and standard deviation of IGD value for task Tk

over all the R repetitions of all the N algorithms, i.e., the
mean and standard value of N ×R IGD results.

Comparisons with state-of-the-art algorithms

To investigate the performance of the proposed MO-MCEA,
this part compares it with four algorithms, including the
state-of-the-art and well-performing MO-MTO algorithms
including MO-MFEA [3], MO-MFEA-II [13], and MO-
EMTA [41], and one single-task algorithm MO-STEA as
the baseline. The comparison results in Table 2 show the
great efficiency of MO-MCEA. As shown in Table 2, the
MO-MCEA can obtain the best MSS on 3 problems, while
theMO-MFEA,MO-MFEA-II, MO-EMTA, andMO-STEA
get the best MSS only on 0, 1, 2, and 1 problem(s), respec-
tively. Moreover, according to the Wilcoxon’s rank sum test,
the MO-MCEA can significantly outperform MO-MFEA,
MO-MFEA-II, MO-EMTA, and MO-STEA on 7, 7, 7, and
8 tasks, and produce worse results than them only on 4, 4, 4,
and 3 tasks, respectively. In addition, Fig. 3 plots the solutions
found by different algorithms on the multi-objective tasks of
different problems for a better result visualization. As can be
observed from Table 2 and Fig. 3, the MO-MCEA performs
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Table 2 Comparisons between the proposed MO-MCEA and state-of-the-art algorithms

Problem MO-MCEA MO-MFEA MO-MFEA-II MO-EMTA MO-STEA

MO-MTOP1 (CI + HS) Task 1 (T1) Mean 1.68E−01 6.05E−01(+) 8.50E−01(+) 1.46E+00(+) 2.14E+00(+)

Std 9.46E−02 2.08E−01 3.29E−01 9.34E−01 1.13E+00

Task 2 (T2) Mean 9.35E−01 4.94E+00 (+) 2.09E+00 (+) 2.53E+00(+) 2.43E+00(+)

Std 3.28E−01 1.24E+00 5.17E−01 7.92E−01 5.89E−01

MSS − 5.99E+01 3.31E+01 − 1.59E+01 1.18E+01 3.09E+01

MO-MTOP2 (CI + MS) Task 1 (T1) Mean 1.44E−02 3.56E−02(+) 3.14E−01(+) 3.18E−01(+) 2.70E−01(+)

Std 4.27E−03 1.39E−02 2.09E−01 1.47E−01 1.32E−01

Task 2 (T2) Mean 1.20E−01 1.82E−01(+) 1.78E−01(+) 1.84E−01(+) 1.80E−01(+)

Std 9.97E−02 4.33E−02 4.09E−02 4.60E−02 4.32E−02

MSS − 5.10E+01 − 1.87E+01 2.40E+01 2.75E+01 1.82E+01

MO-MTOP3 (CI + LS) Task 1 (T1) Mean 3.04E−01 4.53E−01(+) 2.35E+00(+) 4.07E+00(+) 5.25E+00(+)

Std 5.35E−01 4.23E−01 2.50E+00 2.39E+00 1.87E+00

Task 2 (T2) Mean 9.79E−01 9.70E−01(+) 9.17E−01(+) 9.16E−01(+) 9.16E−01(+)

Std 5.10E−01 3.02E−01 2.13E−02 2.16E−02 2.18E−02

MSS − 2.04E+01 − 1.96E+01 − 4.12E+00 1.54E+01 2.87E+01

MO-MTOP4 (PI + HS) Task 1 (T1) Mean 3.74E+02 5.52E+00(−) 4.01E+00(−) 2.92E+00(−) 3.65E+00(−)

Std 5.55E+02 2.10E+00 1.69E+00 8.83E−01 1.12E+00

Task 2 (T2) Mean 9.75E+02 3.94E+01(−) 2.85E+01(−) 2.69E+01(−) 2.77E+01(−)

Std 6.44E+02 1.20E+01 8.26E+00 1.03E+01 7.34E+00

MSS 7.84E+01 − 1.89E+01 − 1.97E+01 − 2.00E+01 − 1.98E+01

MO-MTOP5 (PI + MS) Task 1 (T1) Mean 3.87E+02 3.95E+00(≈) 3.31E+00(≈) 2.83E+00(≈) 3.70E+00(≈)

Std 5.82E+02 1.56E+00 1.44E+00 1.09E+00 1.20E+00

Task 2 (T2) Mean 1.01E+03 3.63E+01(−) 2.65E+01(−) 2.88E+01(−) 2.84E+01(−)

Std 6.98E+02 9.43E+00 7.40E+00 9.27E+00 1.01E+01

MSS 7.75E+01 − 1.89E+01 − 1.96E+01 − 1.95E+01 − 1.94E+01

MO-MTOP6 (PI + LS) Task 1 (T1) Mean 3.18E−01 3.76E−01(+) 2.69E−01(+) 2.46E−01(+) 2.63E−01(+)

Std 3.29E−01 6.91E−02 6.20E−02 5.93E−02 5.47E−02

Task 2 (T2) Mean 1.75E+01 5.71E+00(−) 1.17E+01(−) 5.08E+00(−) 1.99E+01(+)

Std 3.22E+00 1.33E+00 6.11E+00 2.25E+00 2.39E+00

MSS 2.80E+01 − 1.23E+01 − 5.69E+00 − 3.86E+01 2.86E+01

Number of +/≈/− NA 7/1/4 7/1/4 7/1/4 8/1/3

Number of best MSS 3 0 1 2 0

The bold values mean the best results

significantly better on the three complete intersection prob-
lems with different task similarities, i.e., the MO-MTOP1 to
MO-MTOP3. This is consistent with the analysis given in
Sect. 3.1 that treating MO-MTOP as MO-MCOP is reason-
able and effective when the optimal Pareto set of different
tasks share similarities. Overall, the comparison results have
verified the efficiency of MO-MCEA.

Ablation studies for component analysis

To perform the component analysis of MO-MCEA, we com-
pare it with its variants that do not use PCSS or APL, which
are denoted asMO-MCEA-w/o-PCSS andMO-MCEA-w/o-
APL, respectively. To be specific, theMO-MCEA-w/o-PCSS

selects the multiple objective functions as the criterion in
sequential order with a round-robin fashion, and the MO-
MCEA-w/o-APL will not update the probability parameter
for determining the criterion (i.e., each of the multiple objec-
tive functions has the same probability to be randomly
selected as the criterion in the PCSS).

Table 3 gives the comparison results, which indicate the
contributions of both PCSS and APL. As shown in Table
3, MO-MCEA can obtain the best MSS on 3 problems,
while the MO-MCEA-w/o-PCSS andMO-MCEA-w/o-APL
get the best MSS only on 2 and 1 problem(s), respectively.
Furthermore, the Wilcoxon’s rank sum test also shows that
the MO-MCEA can perform significantly better than MO-
MCEA-w/o-PCSS and MO-MCEA-w/o-APL on 8 and 7
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Fig. 3 Plots of solutions found by different algorithms on the multi-objective tasks of different problems

tasks and worse results only on 3 and 3 tasks, respectively,
whichmean that removing anyone of the PCSS andAPLwill
degrade the performance ofMO-MCEA. Therefore, it can be
concluded that both PCSS and APL have their contributions
to the great problem-solving ability of MO-MCEA.

Parameter studies

To study the influence of the key parameter in MO-MCEA,
i.e., G, we compare the original MO-MCEA(G � 25) with
its variants using different G, i.e., G � 1, G � 5, G � 10, G
� 15, G � 20, and G � 30. For simplicity, these variants are
denoted as MO-MCEA(G � 1), MO-MCEA(G � 5), MO-
MCEA(G � 10), MO-MCEA(G � 15), MO-MCEA(G �
20), and MO-MCEA(G � 30).

Table 4 provides the comparison results, which show that
different MO-MTOPs may favor differentG. As can be seen,
the best MSS values in solving different MO-MTOPs are
from different MO-MCEA variants and none of the variants
can obtain the best MSS on all problems. Besides, the orig-

inal MO-MCEA(G � 25) is shown to be more promising.
Based on the Wilcoxon’s rank sum test, MO-MCEA(G �
25) obtains significantly better results than MO-MCEA(G �
1) andMO-MCEA(G� 5) on 9 and 5 tasks, andworse results
only on 3 and 1 task(s), respectively. Also, theMO-MCEA(G
� 25) can obtain similar results on most MO-MTOPs when
compared with MO-MCEA(G � 10), MO-MCEA(G � 15),
MO-MCEA(G� 20), andMO-MCEA(G� 30). In addition,
although the MO-MCEA(G � 25) obtains the best MSS on
1 problem, while the MO-MCEA(G � 1) can get the best
MSS on 2 problems, the MO-MCEA(G � 25) significantly
outperformsMO-MCEA(G� 1) on highly intersection prob-
lems, e.g., MO-MTOP1 to MO-MTOP3. Therefore, G � 25
is in general a more promising setting for MO-MCEA and is
recommended in this paper.

Experiments onMO-MTOPwithmore tasks

This part further investigates the problem-solving ability of
the proposed MO-MCEA on MO-MTOPs with more than
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Table 3 Comparisons among the MO-MCEA variants with or without PCSS and APL

Problem MO-MCEA MO-MCEA-w/o-PCSS MO-MCEA-w/o-APL

MO-MTOP1 (CI + HS) Task 1 (T1) Mean 1.68E−01 2.14E+00(+) 1.41E−01(≈)

Std 9.46E−02 1.13E+00 5.34E−02

Task 2 (T2) Mean 9.35E−01 2.43E+00(+) 8.95E−01(≈)

Std 3.28E−01 5.89E−01 1.96E−01

MSS − 3.47E+01 7.16E+01 − 3.69E+01

MO-MTOP2 (CI + MS) Task 1 (T1) Mean 1.44E−02 2.70E−01(+) 3.77E−02(+)

Std 4.27E−03 1.32E−01 2.95E−02

Task 2 (T2) Mean 1.20E−01 1.80E−01(+) 4.23E−01(+)

Std 9.97E−02 4.32E−02 2.37E−01

MSS − 3.82E+01 2.59E+01 1.23E+01

MO-MTOP3 (CI + LS) Task 1 (T1) Mean 3.04E−01 5.25E+00(+) 3.77E+00(+)

Std 5.35E−01 1.87E+00 1.43E+00

Task 2 (T2) Mean 9.79E−01 9.16E−01(+) 3.74E+00(+)

Std 5.10E−01 2.18E−02 6.38E−01

MSS − 5.30E+01 5.12E+00 4.79E+01

MO-MTOP4 (PI + HS) Task 1 (T1) Mean 3.74E+02 3.65E+00(−) 1.14E+00(−)

Std 5.55E+02 1.12E+00 1.14E−01

Task 2 (T2) Mean 9.75E+02 2.77E+01(−) 1.62E+03(+)

Std 6.44E+02 7.34E+00 1.13E+01

MSS 2.44E+01 − 4.38E+01 1.95E+01

MO-MTOP5 (PI + MS) Task 1 (T1) Mean 3.87E+02 3.70E+00(≈) 8.46E−01(−)

Std 5.82E+02 1.20E+00 2.20E−01

Task 2 (T2) Mean 1.01E+03 2.84E+01(−) 1.62E+03(+)

Std 6.98E+02 1.01E+01 1.08E+01

MSS 2.51E+01 − 4.34E+01 1.83E+01

MO-MTOP6 (PI + LS) Task 1 (T1) Mean 3.18E−01 2.63E−01(+) 1.32E−01(−)

Std 3.29E−01 5.47E−02 3.74E−02

Task 2 (T2) Mean 1.75E+01 1.99E+01(+) 1.98E+01(+)

Std 3.22E+00 2.39E+00 6.47E−01

MSS − 7.04E+00 1.34E+01 − 6.32E+00

Number of + /≈/− NA 8/1/3 7/2/3

Number of best MSS 3 2 1

The bold values mean the best results

two tasks. For this, four additional problems with three tasks
(i.e., MO-MTOP7 to MO-MTOP10) are developed based on
the MO-MTOP1 to MO-MTOP6, where the problem char-
acteristics can be seen in Table 5. The experimental settings
are the same as those in previous experiments, with the FEs
for each task as 5×103 (1.5×104 in total). In addition, the
total population size of both MO-MCEA and MO-STEA is
50 (because they handle one evaluation function every time),
while the total population size ofMO-MFEA,MO-MFEA-II,
and MO-EMTA are all 150.

Experimental results of the five algorithms over 30 runs
are compared in Table 6. Table 6 shows that the MO-MCEA
can obtain the best MSS value on twoMO-MTOPs with high
similarity (i.e., MO-MTOP7 and MO-MTOP8) and MO-

EMTA gets the best MSS value on two MO-MTOPs with
low similarity (i.e., MO-MTOP9 and MO-MTOP10), while
other algorithms cannot gain the bestMSSvalue on any of the
four tested problems. Thismay be due to thatMO-MCEAcan
treatMO-MTOPwith high similarity asMO-MCOPproperly
and solve it efficiently. Moreover, the Wilcoxon’s rank sum
test reflects that theMO-MCEA can significantly outperform
MO-MFEA, MO-MFEA-II, MO-EMTA, and MO-STEA on
7, 8, 6, and 8 of the 12 tasks, and only has worse performance
on 3, 4, 5, and 4 tasks, respectively. Based on the above, the
experimental results have verified the effectiveness of the
MO-MCEA on MO-MTOPs with three tasks.
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Table 6 Comparisons between the proposed MO-MCEA and state-of-the-art algorithms on MO-MTOPs with three tasks

Problem MO-MCEA MO-MFEA MO-MFEA-II MO-EMTA MO-STEA

MO-MTOP7 (high similarity) Task 1 (T1) Mean 9.50E−02 1.38E+01(+) 9.00E−01(+) 1.88E+00(+) 2.14E+00(+)

Std 4.42E−02 6.63E+00 3.93E−01 9.88E−01 1.13E+00

Task 2 (T2) Mean 5.96E−01 7.72E+00(+) 2.15E+00(+) 2.33E+00(+) 2.43E+00(+)

Std 1.20E−01 1.73E+00 5.14E−01 5.81E−01 5.89E−01

Task 3 (T3) Mean 4.57E−02 4.22E−01(+) 1.98E−01(+) 7.88E−02(+) 2.70E−01(+)

Std 4.66E−02 1.53E−01 1.15E−01 6.31E−02 1.32E−01

MSS − 7.04E+01 1.44E+02 − 2.29E+01 − 3.57E+01 − 1.31E+00

MO-MTOP8 (high similarity) Task 1 (T1) Mean 6.88E−02 5.28E−01(+) 1.42E−01(+) 1.75E−01(+) 1.80E−01(+)

Std 1.71E−02 1.18E−01 3.95E−02 3.13E−02 4.32E−02

Task 2 (T2) Mean 3.07E−02 6.22E+00(+) 1.35E−01(+) 5.90E+00(+) 5.25E+00(+)

Std 1.38E−02 1.86E+00 1.26E−01 1.83E+00 1.87E+00

Task 3 (T3) Mean 8.56E−01 1.07E+00(+) 9.66E−01(+) 9.08E−01(+) 9.16E−01(+)

Std 2.08E−03 6.35E−02 7.86E−02 1.36E−02 2.18E−02

MSS − 8.93E+01 1.18E+02 − 4.05E+01 1.72E+00 − 9.99E−01

MO-MTOP9 (low similarity) Task 1 (T1) Mean 1.83E+02 1.63E+01(−) 3.81E+00(−) 3.50E+00(−) 3.65E+00(−)

Std 3.39E+02 5.74E+00 1.43E+00 1.16E+00 1.12E+00

Task 2 (T2) Mean 9.17E−01 7.40E−01(≈) 5.44E−01(−) 5.71E−01(−) 2.77E+01(+)

Std 4.25E−01 7.91E−02 6.51E−02 6.02E−02 7.34E+00

Task 3 (T3) Mean 1.62E+01 1.56E+01 (≈) 1.97E+01(+) 5.77E+00(−) 3.70E+00(−)

Std 4.80E+00 5.28E+00 2.70E+00 3.50E+00 1.20E+00

MSS 1.98E+01 − 1.29E+01 2.66E+00 − 6.01E+01 2.69E+00

MO-MTOP10 (low similarity) Task 1 (T1) Mean 1.41E+02 6.67E+01(−) 2.68E+01(−) 2.54E+01(−) 2.14E+00(−)

Std 3.67E+02 1.61E+01 8.77E+00 6.79E+00 1.13E+00

Task 2 (T2) Mean 1.23E+00 4.51E−01(−) 2.94E−01(−) 2.47E−01(−) 2.43E+00(+)

Std 3.71E−01 9.07E−02 6.52E−02 5.08E−02 5.89E−01

Task 3 (T3) Mean 6.29E+00 1.60E+01(+) 1.94E+01(+) 6.03E+00(≈) 2.70E−01(−)

Std 4.92E+00 5.20E+00 3.37E+00 4.35E+00 1.32E−01

MSS 2.88E+00 2.53E+00 4.33E+00 − 5.16E+01 5.49E+00

Number of + /≈/− NA 7/2/3 8/0/4 6/1/5 8/0/4

Number of best MSS 2 0 0 2 0

The bold values mean the best results

Conclusion

In this paper, we have attempted to treat MO-MTOP as MO-
MCOP and solve it efficiently. For this, we have provided
an analysis of the rationality and benefit of treating MO-
MTOP as MO-MCOP. Moreover, we have further proposed
the PCSS to select different multi-objective fitness functions
as criteria in different evolutionary stages to evolve individu-
als. In addition, theAPLmethod has been further proposed to
learn the parameter in PCSS adaptively. Based on PCSS and
APL, the complete algorithm framework called MO-MCEA
has been developed for solving MO-MTOPs. To investi-
gate the proposed methods and algorithm, experiments have
been conducted on widely used MO-MTOP benchmarks.
Also, four state-of-the-art and well-performing algorithms
have been adopted in comparisons to challenge the proposed

MO-MCEA. The experimental results have shown the great
effectiveness and efficiency of the proposed MO-MCEA,
showing that treating MO-MTOP as MO-MCOP can be a
potential way for solving MO-MTOP more efficiently.

For future work, the MO-MCEA, including the PCSS
and APL, will be further improved and extended to solve
more difficult MO-MTOPs (e.g., MO-MTOPs with different
similarities and intersections) and more complex real-world
MO-MTOPs, such as those are also with other difficult char-
acteristics in data-driven optimization problems [54, 55],
expensive optimization problems [56–58], multi-modal opti-
mization problems [59], large-scale optimization problems
[60, 61], andmany-objective optimization problems [62, 63].
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