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Abstract— Sudoku puzzles are not only popular intellectual 

games but also NP-hard combinatorial problems related to 

various real-world applications, which have attracted much 

attention worldwide. Although many efficient tools, such as 

evolutionary computation (EC) algorithms, have been proposed 

for solving Sudoku puzzles, they still face great challenges with 

regard to hard and large instances of Sudoku puzzles. Therefore, 

to efficiently solve Sudoku puzzles, this paper proposes a genetic 

algorithm (GA)-based method with a novel local search 

technology called local search-based GA (LSGA). The LSGA 

includes three novel design aspects. First, it adopts a matrix 

coding scheme to represent individuals and designs the 

corresponding crossover and mutation operations. Second, a 

novel local search strategy based on column search and sub-block 

search is proposed to increase the convergence speed of the GA. 

Third, an elite population learning mechanism is proposed to let 

the population evolve by learning the historical optimal solution. 

Based on the above technologies, LSGA can greatly improve the 

search ability for solving complex Sudoku puzzles. LSGA is 

compared with some state-of-the-art algorithms at Sudoku 

puzzles of different difficulty levels and the results show that 

LSGA performs well in terms of both convergence speed and 

success rates on the tested Sudoku puzzle instances. 

 
 Index Terms—Sudoku puzzle; genetic algorithm; 

combinatorial optimization problems; evolutionary computation; 

local search 

I.  INTRODUCTION  

UDOKU is a popular logic-based combinatorial puzzle 

game for people of all ages, it was invented in 1979 and 

was officially named “Sudoku” in 1984 [1]. The typical 

Sudoku is composed of 81 cells (a 9×9 grid), as shown in Fig. 

1. Fig. 1(a) is a Sudoku puzzle with several given numbers, 

and Fig. 1(b) is the solution to this puzzle. Moreover, with 

rapid development, more complex high-dimensional Sudoku 

puzzles have appeared in recent years, with dimensions of 

16×16, 25×25, and even 100×100. 
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(a) Sudoku puzzle                              (b) Solution to the puzzle 

Fig. 1. Example of 9×9 Sudoku puzzle and its solution. 

 

The rules of Sudoku are as follows: The game begins with 

several given numbers in an N×N grid. Then, the player must 

fill in the empty cells with numbers 1 to N in such a way that 

no number appears twice in the same row, column, or sub-

blocks. Sudoku puzzles are simple in form and definition, but 

it is not easy to find solutions [2]. In 2003, Takayuki Yato and 

Takahiro Seta proved that solving Sudoku is an NP-hard 

problem [3]. Generally, the factors for evaluating the difficulty 

of a Sudoku puzzle include the dimension of the problem, 

percentage and distribution of the given numbers, and time 

cost to solve the Sudoku by a baseline solver. To evaluate the 

difficulty of Sudoku, some typical tools have been developed, 

including SUDOKUSAT, Sudoku Explainer (SE), and 

Hoduku Explainer [4]. Currently, the most used tool is SE, 

which can give a corresponding SE score. Generally, a higher 

SE score indicates that the Sudoku puzzle is more difficult. 

For example, the Sudoku puzzles can be divided into levels of 

easy, medium, hard, evil, and even more difficult. 

Nowadays, Sudoku is not only a game but also a kind of 

core problem in many real-world applications in daily life and 

industrial engineering, such as in data encryption [5], radar 

waveform design [6], and education [7]. For example, Jana et 

al. [5] proposed a video steganography technique that hid 
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encrypted data in videos by a Sudoku-based reference matrix. 

This technique shows good performance in resisting fault 

attacks if the Sudoku puzzle can be solved efficiently. Li et al. 

[8] applied retracing extended Sudoku to image data-hiding 

technology. As the retracing extended Sudoku is a kind of 

Sudoku containing multiple solutions, which imposes high 

demands on the robustness of the algorithm for solving the 

Sudoku puzzle. To improve the efficiency of photovoltaic 

systems, Horoufiany et al. [9] proposed a Sudoku-based 

arrangement rule to avoid mutual shading between fixed 

photovoltaic arrays and obtained the optimal arrangement by 

solving the corresponding Sudoku puzzle by a genetic 

algorithm (GA). Moreover, the Sudoku is also studied as a 

representative of the exact cover problem [10]. Therefore, the 

Sudoku puzzle widely exists in various applications. The 

development of algorithms for solving Sudoku has not only of 

academic research significance, but also helpful for real-world 

applications, which has attracted increasing attention.  

So far, the existing algorithms for solving Sudoku puzzles 

can be divided into mathematical algorithms [11] and 

heuristics algorithms [12]. The exact algorithms are faster at 

solving Sudoku puzzles, but lack portability [13]. Therefore, 

as a type of heuristics algorithm, GA has gained widespread 

attention due to its powerful search ability and versatility. 

During the past decade, some studies have shown the great 

potential of GA in solving Sudoku puzzles [14]. However, the 

GA-based methods still have some shortcomings. When 

solving difficult Sudoku puzzles, some GA-based methods 

still need to take a long time to solve or even be unsolvable 

[15]. Therefore, developing a more efficient method to solve 

Sudoku puzzles remains a challenge. 

In this paper, we propose an improved GA with local search 

(LSGA) to effectively and efficiently solve Sudoku puzzles. 

Specifically, the LSGA has three novel designs. First, we 

adopt the matrix-based encoding for Sudoku, and based on 

this encoding scheme, the crossover and mutation operations 

in LSGA are designed. Second, we present a novel local 

search mechanism based on column search and sub-block 

search to increase the convergence speed of the GA. Third, to 

avoid being trapped in local optimal solutions, an elite 

population learning mechanism is proposed to randomly 

replace poor individuals with new individuals, which is very 

effective when solving difficult Sudoku puzzles. To illustrate 

the efficiency of the proposed LSGA, we evaluate it on Sudoku 

puzzles at different difficulty levels and compare it with some 

state-of-the-art approaches. 

The rest of the paper is organized as follows: Section II 

reviews studies on solving Sudoku puzzles in recent years. 

Then, in Section III, the matrix-based GA is elaborated, and 

the effectiveness and efficiency of the proposed LSGA are 

illustrated by extensive experiments in Section IV. Finally, 

conclusions are given in Section V. 

II. RELATED WORK 

The charm of Sudoku is that it is easy to learn but difficult 

to master. Therefore, it has received much attention since it 

was first published in the newspaper “Times” [16]. Fig. 2 

shows the structure of a standard Sudoku puzzle. To 

summarize the definition, the N×N (
 

N is an integer greater 

than 0) Sudoku puzzle must satisfy the following constraints: 

(1) Unique solution restriction: A Sudoku puzzle has 

only one unique solution. 

(2) The rule of rows: All 1 to N numbers in each row 

should appear and not be repeated. 

(3) The rule of columns: All 1 to N numbers in each 

column should appear and not be repeated. 

(4) The rule of sub-blocks: All 1 to N numbers in each 
 

N ×
 

N sub-block should appear and should not be 

repeated. 

 

1...N

1...N

...

..
.

...

..
.

N N N N

N N N N

 
Fig. 2. Structure of standard N×N Sudoku puzzle. 

 

Many researchers have tried tackling Sudoku through 

different methods. A widely used method is dancing links [17], 

which is a brute force algorithm. This method transforms 

Sudoku puzzles into exact cover problems and employs the 

backtracking method to solve them. However, brute force 

algorithms cannot handle those high-dimensional Sudoku 

puzzles at an acceptable time and memory cost [18].  

To overcome the shortage of brute force algorithms, many 

heuristic approaches have been reported in the literature to 

solve Sudoku. For example, Sevkli et al. [19] proposed two 

novel models based on the variable neighborhood search 

(VNS) algorithm to solve Sudoku: Unfiltered-VNS and 

Filtered-VNS. The experiments showed that Filtered-VNS can 

obtain better solution quality than Unfiltered-VNS for easy- 

and medium-level puzzles, while Unfiltered-VNS performs 

better in solving hard-level puzzles. Betar et al. [20] 

introduced an improved hill-climbing algorithm called the β-

Hill-Climbing algorithm, which could escape local optima by 

using a random operator. Experimental results showed that the 

β-Hill-Climbing algorithm can find solutions within a very 

short time under the best parameter configuration. 

Traditional Sudoku solution methods are ineffective in 

solving complex and high-dimension Sudoku puzzles because 

the Sudoku puzzles have a huge search space [21]. 

Evolutionary computation algorithms, such as GA [22]-[24], 

ant colony optimization (ACO) [25]-[27], particle swarm 

optimization (PSO) [28]-[32], differential evolution [34]-[36], 

and estimation of distribution algorithms [37] have shown 

promising performance in solving Sudoku puzzles and many 

other complex or real-world problems [38]-[41]. For example, 
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Mantere and Koljonen [15] adopted GA to solve the Sudoku 

puzzle, but this work could not effectively solve difficult 

Sudoku puzzles. Pathak et al. [42] proposed the wisdom of a 

crowd aggregate function for Sudoku puzzles, which can 

effectively prevent GA from being trapped in local optima. 

Deng et al. [43] proposed an efficient hybrid algorithm for 

Sudoku. In this hybrid algorithm, the improved GA can 

produce more abundant individuals to participate in crossover. 

Then, they combined PSO with GA, so that the population 

could better evolve towards the optimal solution. Lloyd et al. 

[16] adopted ACO to solve high-dimensional Sudoku puzzles 

and compared the effect of the percentage of given numbers 

on the difficulty of Sudoku.  

Summarizing the above algorithms, we can conclude that 

the search ability and convergence speed of the algorithms are 

key indicators for solving Sudoku puzzles, because of the 

huge search space and unique solutions of Sudoku puzzles. In 

this paper, we present an improved GA, called LSGA, which 

adopts the new local search method designed for Sudoku 

puzzles and a new elite population learning mechanism to 

solve Sudoku puzzles more effectively and efficiently. 

III. PROPOSED LSGA METHOD 

A. Representations and Initialization 

When solving Sudoku puzzles, it is necessary to encode the 

possible solutions into data structures, which facilitate the 

evolutionary operations of the GA. For example, Katya et al. 

[44] recorded the given numbers and solutions of Sudoku with 

two strings of length N2, and a string of length N to record the 

numbers waiting to be selected in each row. Mantere et al. [15] 

used two arrays of N2 numbers to represent the Sudoku 

solution: one represented the solution, and the other recorded 

the position of the given numbers. 

 

...

Random assignment

[ List of non-given numbers in Row i ]

Row i

 
Fig. 3. Initialization stage: non-given numbers in row i are randomly assigned 

to empty spaces. 

 

In our algorithm, we adopt two matrices to represent a 

chromosome, one matrix is the major matrix that records the 

numbers in each position of the Sudoku grids, while another 

matrix is the associated matrix that records where each 

position is occupied by a number. Specifically, the number in 

row i and column j in Sudoku is recorded at position (i, j) of 

the major matrix. Meanwhile, for the associated matrix, if 

there is a given number at a position, then the corresponding 

value of the associated matrix is “1”; otherwise, it is “0.” This 

coding method facilitates the implementation of crossover 

operation and local search operation. 

The initialization stage is an important process of the GA. 

To reduce the complexity of the puzzle, all non-given numbers 

in each row are randomly assigned to the empty spaces, as 

shown in Fig. 3. Therefore, the initial solutions will satisfy the 

row rules of Sudoku. 

B. Fitness Function 

The goal of solving a Sudoku puzzle is to find the solution 

where each number occurs only once on each row, column, 

and sub-block. Therefore, when evaluating an individual, we 

count how many rows, columns, and sub-blocks are incorrect 

(i.e., not including all the numbers from 1 to N). Therefore, the 

fitness of the optimal solution is 0, which means that the rows, 

columns, and sub-blocks of this individual satisfy all rules of 

Sudoku. 

As the individuals generated by the initialization already 

satisfy the constraints of the row rule, LSGA only needs to 

optimize the numbers in the columns and sub-blocks without 

breaking the row rule. In summary, the fitness of each 

individual can be evaluated by 

 
1 1

N N

i j

i j

F c s
= =

= +    (1) 

where N is the dimension of the Sudoku puzzle, and ci 

indicates whether the i-th column satisfies the rule of Sudoku. 

That is, ci equals 0 if the i-th column satisfies the rule and 

equals 1 if it does not. Correspondingly, sj represents whether 

the j-th sub-block satisfies the limitations. F is the sum of ri 

and sj. When F equals 0, it indicates that the algorithm finds 

the optimal solution. 

C. Crossover and Mutation 

9 8 6 1 3 4 7 2 5

Parent 1 Parent 2

Offspring 1 Offspring 2

...

9 8 6 1 3 4 7 2 5

...

...

...

...

...

...

...

3 6 9 1 5 4 7 2 8

3 6 9 1 5 4 7 2 8

 
Fig. 4. Crossover between two individuals. 

 

Crossover operations emphasize the exchange of genes 

among individuals. In LSGA, the crossover operator is 

performed by rows. Specifically, the parents are selected 

based on the individual crossover rate PC1. Subsequently, 

based on the row crossover rate PC2, the same rows from the 

parents are selected to participate in the swap operation. An 

example of the crossover is shown in Fig. 4. In this figure, two 

parents are selected based on PC1. Then, the same rows of the 

two parents are selected to swap based on PC2. Because the 

given numbers in the same row are in the same position, such 

as “2” and “7” in Figure 4, the swap operation will not change 

the original Sudoku puzzle. 

The pseudocode of the crossover operation is shown in 

Algorithm 1. In lines 2-3 of Algorithm 1, we select two 

individuals based on the individual crossover rate PC1. 

Subsequently, in lines 4-8, rows are selected to swap based on 

the row crossover rate PC2. Finally, in line 10, the offspring 
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of the crossover are preserved. 

Mutation is an important operation for the population to 

explore the solution space and helps populations escape local 

optima. Here are two different mutation strategies to help the 

GA improve its exploration capabilities: swap mutation and 

reinitialization mutation.  

 

 

...

...

...

1Row

RowN

Individual

Random

 Reinitialization

0 0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0 0

 
(a) Swap mutation                                (b) Reinitialization mutation 

Fig. 5. Two designed mutation operations: (a) swap mutation; (b) reinitialize 

mutation. 

 

The swap mutation operation is performed as a swap of two 

positions inside random rows to ensure that each row satisfies 

constraint (2) of Sudoku (as mentioned in Section II). The 

associated matrix is used to check if the position is appropriate 

for mutation. If the value is “1”, this position is occupied by a 

given number and this corresponding position is illegal to 

exchange; thus, the given numbers will not be changed during 

the mutation. The probability of the swap is determined by the 

swap mutation rate PM1. As shown in Fig. 5(a), the above 

mutation is legal, while the below mutation is illegal. 

 

 

The reinitialization mutation performs the mutation by 

reinitializing the distribution of the random rows. As shown in 

Fig. 5(b), the number of given numbers is retained while the 

non-given numbers are randomly assigned to the empty space 

at random. The reinitialization mutation can help the algorithm 

jump out of the local optima better than the swap mutation. 

However, a high mutation probability for reinitialization 

mutation will slow the convergence of the algorithm, so the 

reinitialization mutation rate PM2 is a value smaller than 0.1 

and the fitness of individuals is the worst. 

The pseudocode of the mutation operator is shown in 

Algorithm 2. In lines 3-7 of Algorithm 2, rows are selected to 

participate in the swap mutation based on the PM1. In lines 4-

6, here is a judgment on the feasibility of the swap. If there is 

only one non-given number in a row, this row cannot 

participate in the swap. In lines 8-10, rows are reinitialized 

based on PM2. 

D. Column and Sub-Block Local Search 

Many studies have shown that local search is an effective 

technique for improving the convergence speed of the 

algorithm [45]. Therefore, we design a new novel local search 

method in LSGA for solving Sudoku puzzles. It has two 

components: column local search and sub-block local search. 
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1

0

0
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Fig. 6. Example of column local search. Repeat numbers are marked as 1, and 

others are marked as 0. 

 

The first component is the column local search, which is 

designed to eliminate the repeating numbers in columns. First, 

count all columns that do not meet the rules (called illegal 

columns). We define the set C to record these columns. Then, 

each illegal column is randomly paired with the other columns 

in C, which will be swapped if the repeat numbers are in the 

same row and none of them are in each other’s column. For 

example, Fig. 6 depicts a part of the solution to a 9×9 Sudoku 

puzzle, where we use 1 to mark the position of the repeated 

number. According to the rules of Sudoku, the number “1” is 

the repeat number in Column A and “2” is the repeat number 

in Column B. Therefore, both columns all have repeat 

numbers in the 6-th row, so we can exchange “1” and “2” to 

make Column B a legal column. Then, Column A continues to 

swap with Column C, which could make both of them meet 

the column rules. 

The second component is the sub-block local search. Similar 

to the column local search, the sub-block local search swaps 

the repeat number in the same row. First, it counts all sub-

blocks that do not meet the rules (called illegal sub-blocks). 

We define the set S to record these sub-blocks. Then, each 

illegal sub-block is randomly paired with the other sub-blocks 

Algorithm 1: Pseudocode of crossover 

Input: population, individual crossover rate PC1, row crossover rate 
PC2 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 

For each individual in the population: 
If rand1<PC1: // rand1 is a random variable in [0,1]: 

Select the second parent from the population randomly; 
For each row in the individual: 

If rand2<PC2: // rand2 is a random variable in [0,1]: 
Parents exchange the selected rows;  

End If 
End For 

End If 
Save the offspring to the new population; 

End For 

Output: new population 

Algorithm 2: Pseudocode of mutation 

Input: population, swap mutation rate PM1 and reinitialization 
mutation rate PM2 

1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 

For each individual in the population: 
For each row in the individual: 

If rand1<PM1: // rand1 is a random variable in [0,1]: 
If the number of non-given numbers>=2: 

Select two non-given numbers to exchange positions; 
End If 

End If 
If rand2<PM2: // rand2 is a random variable in [0,1]: 

Reinitialize the row; 
End If 

End For 
End For 

Output: new population 
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in S, swapping them if the repeat numbers are in the same row 

and none of them is in each other’s sub-block. For example, in 

Fig. 7, Sub-block A and Sub-block B both have repeated 

numbers, one of which is “9” and the other is “8”. Therefore, 

we can exchange them on the same row to make both sub-

blocks satisfy the Sudoku rules. 

 

 

0 1 0

0 0 0

1 0 0

0 0 0

0 1 0

0 0 1

Sub-block A Sub-block B

9 1 4

6 2 5

3 9 7

2 7 8

1 8 3

6 4 5

  
Fig. 7. Example of sub-block local search. Repeat numbers are marked as 1, 

and others are marked as 0. 

 

In summary, the basic idea of local search is to make the 

columns and sub-blocks on both sides gradually satisfy the 

rules of Sudoku by exchanging repeated values. Algorithm 3 

describes the basic framework of the local search. 

E. Elite Population Learning 

As the local optimal solution and the global optimal solution 

of Sudoku puzzles are very different, it is difficult for the GA 

to jump out of the local optima. Thus, a learning mechanism 

based on elite populations is proposed to avoid the GA falling 

into local optima. The elite population is a queue structure, 

that records the best individuals of each generation and 

updates them with new optimal individuals. In elite population 

learning, the worst individuals in the population are replaced 

by a random individual xrandom from the elite population or are 

reinitialized. We define the probability Pb to control this 

process. 

The replacement operation is as follows:  

 
,    if  ()

(),     otherwise

random b

worst

x rand P
x

init


= 


  (2) 

s.t. 
( )random

b

xMaxfx fx
P

Maxfx

−
=   (3) 

where xworst is the worst individual, Maxfx is the fitness of 

xworst, xrandom is a randomly selected elite individual with fitness 

is fx(xrandom), rand() outputs a random variable in (0,1), and 

init() is the initialization function.  

According to Eq. (2), the worst individual in each 

generation has only two choices: to be replaced or to be 

reinitialized. Therefore, in most cases, the algorithm tends to 

search toward the current optimal solution via replacement but 

still explores new search directions via reinitialization. Thus, 

LSGA can balance exploration and exploitation. 

F.  Overall LSGA Method 

Integrating the above techniques using GA, the developed 

LSGA is outlined in Algorithm 4. In detail, the individuals 

are generated through initialization in line 1. Then, the 

population is optimized by evolutionary operations in lines 4-

6. Subsequently, in lines 7-8, local search operations are 

applied to speed up the convergence of the algorithm. Then, 

the fitness of individuals is evaluated in line 9 and the elite 

population learning strategy is executed in line 10. The 

algorithm iteratively repeats the above operations until the 

optimal solution is found or the maximal number of 

generations is reached. 

 
Algorithm 4: Pseudocode of LSGA 

Input: maximum number of generations FESmax, population.  
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 
12: 
13: 
14: 
15: 
16: 

Initialize population; 
Evaluate population; 
While (count≤ FESmax) do: 

Tournament selection; 
Crossover; 
Mutation; 
Column local search; 
Sub-block local search; 
Evaluate population; 
Elite population learning; 
Reserve the best individual as gbest; 
If fx(gbest)==0: 

Break; 
End If 

End While 
Obtain the best solution gbest and its fitness fx(gbest);  

Output: fx(gbest) and gbest 

 

IV.  EXPERIMENTAL STUDIES 

A. Comparisons with State-of-the-Art Methods 

To illustrate the performance of LSGA, we compare it with 

state-of-the-art algorithms, including the node-based 

coincidence algorithm named NB-COIN [13], the preserve 

building blocks GA named GA-I [46], and the GA with local 

optima handling named GA-II [18]. To make a fair 

comparison, the population size is set to 150, while all 

algorithms run 1×104 generations. The parameter settings of 

LSGA are listed in Table I. 

 
TABLE I. PARAMETERS IN LSGA 

Parameter Value 

Population size 150 

Elite population size 50 

Individual crossover rate PC1 0.2 

Row crossover rate PC2 0.1 

Swap mutation rate PM1 0.3 

Reinitialization mutation rate PM2 0.05 

Tournament size 2 

  

Algorithm 3: Pseudocode of local search 

Input: population 
1: 
2: 
3: 
4: 
5: 
6: 
7: 
8: 
9: 
10: 
11: 

For each individual in population: 
Record all illegal columns (sub-blocks) in the set C (S); 
For each column (sub-block) in C (S): 
  Randomly select another column (sub-block) from C (S); 
  If the repeat numbers are in the same row: 
      If repeat numbers do not exist in both columns (sub-blocks): 
          Swap these repeat numbers; 

End If 
End If 

    End For 
End For 

Output: new population 
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In the experiments, six classic Sudoku puzzles, which are 

also solved by the compared algorithms NB-COIN, GA-I, and 

GA-II, are selected. These Sudoku puzzles cover three 

difficulty levels (i.e., easy, medium, and hard), as shown in 

Fig. 8. Each algorithm runs 100 times on each puzzle, where 

Succ_Count is the number of runs among the 100 runs that can 

find the optimal solutions within 1×104 generations, and 

Avg_Gen is the average number of generations required to find 

the optimal solution. Note that to ensure the fairness of the 

comparison, the experimental results of the compared 

algorithms are obtained directly from their original papers. 

Table II lists the experimental results.  

TABLE II. RESULTS OF PROPOSED LSGA AND OTHER METHODS FOR SOLVING SUDOKU ON SIX DIFFERENT SUDOKU PUZZLES 

Puzzle ID 
LSGA NB-COIN [13] GA-I [46] GA-II [18] 

Succ_Count Avg_Gen Succ_Count Avg_Gen Succ_Count Avg_Gen Succ_Count Avg_Gen 

Easy 1 100 2 100 2 100 62 100 46 

Easy 11 100 6 100 4 100 137 100 88 

Medium 27 100 23 100 130 100 910 100 188 

Medium 29 100 57 100 1196 100 3193 100 357 

Hard 77 100 254 100 2710 100 9482 100 702 

Hard 106 100 1269 100 2341 96 26825 100 1791 

 

TABLE III. RESULTS OF PROPOSED LSGA AND OTHER METHODS FOR SOLVING SUDOKU ON THREE SUPER DIFFICULT SUDOKU PUZZLES 

Puzzle ID 
LSGA GA-III [14] GPU-GA [47] GA-I [46] 

Succ_Count Avg_Gen Succ_Count Avg_Gen Succ_Count Avg_Gen Succ_Count Avg_Gen 

SD1 100 424 100 10993 100 9072 98 25257 

SD2 100 538 100 22036 100 13481 90 40365 

SD3 100 3926 96 27384 100 22799 62 62283 
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          (a) Initial Sudoku puzzle                       (b) Solution to puzzle                             (c) Initial Sudoku puzzle                           (d) Solution to puzzle 
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          (i) Initial Sudoku puzzle                         (j) Solution to puzzle                              (k) Initial Sudoku puzzle                           (l) Solution to puzzle   

Fig. 8. Six Sudoku puzzles and their solutions. 
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From Table II, we can see that in these six Sudoku puzzles, 

LSGA, NB-COIN, and GA-II all obtain the final results in all 

100 runs, while GA-I in Hard 106 only finds the solution in 96 

runs. Thus, LSGA, NB-COIN, and GA-II are better than GA-I. 

Subsequently, compared with NB-COIN, the performance of 

LSGA is worse than NB-COIN when solving easy-level 

puzzles. Furthermore, as NB-COIN depends on probability 

distributions to generate solutions for Sudoku, NB-COIN is 

less influenced by local optimal solutions than other GAs. 

Specifically, both LSGA and the other comparison algorithms 

solve Hard 106 with more generations than Hard 77, but the 

performance of NB-COIN on the two puzzles is not very 

different. By analyzing the solution process, we found that 

there is a very competitive local optimal solution in the Hard 

106. This local optimal solution has only two columns that do 

not conform to the rules of Sudoku, but its structure is 

different from the best solution. As a result, the GAs can 

easily fall into this local optimum. In general, comparing the 

results of solving medium-level, and hard-level Sudoku 

puzzles, the average number of generations of LSGA is less 

than GA-I, GA-II, and NB-COIN. Therefore, the performance 

of LSGA in solving Sudoku puzzles is very competitive. 

Next, we conduct an experiment on three so-called super 

difficult Sudoku puzzles named Super Difficult-1 (SD1), AI-

Escargot (SD2), and Super Difficult-2 (SD3) selected from 

[14]. These are shown in Fig. 9. Among these three puzzles, 

the AI Escargot is one of the most difficult Sudoku puzzles in 

the world [46]. Table III shows the comparison result of 

LSGA and some other algorithms that have successfully 

solved these super difficult puzzles: GA-III [14], GPU-GA 

[47], and GA-I [46]. Each algorithm runs 100 times on each 

puzzle, where Succ_Count is the solution success rate among 

the 100 runs within 1×104 generations, and Avg_Gen is the 

average number of generations required to find the optimal 

solution. 

From Table III, we see that LSGA and GPU-GA can solve 

all puzzles with 100% success rate, while GA-I and GA-III 

cannot. Moreover, both LSGA and GPU-GA require fewer 

number of generations than the other algorithms in each 

puzzle, and LSGA requires the fewest. Furthermore, we 

evaluate the difficulty of SD1, SD2, and SD3 with the help of 

the Sudoku Explainer (SE) and get scores of 7.2, 10.5, and 2.8, 

respectively, which means, for the Sudoku solving methods 

that have been recorded in SE (like WXYZ-Wing, Swampfish, 

ALS-Wing, etc.), SD2 is very difficult to solve, but SD3 is 

much simpler. However, the experimental results in Table III 

are different. Compared with SD1 and SD2, LSGA uses much 

more generations to solve the SD3, this situation not only 

occurs in LSGA, but also in other compared GAs in Table III. 

Therefore, we consider that if some known methods for 

solving Sudoku can be introduced into GA, the efficiency of 

solving difficult Sudoku puzzles could be greatly improved. 

B. Statistical Performance on Open Sudoku Puzzles 

To illustrate the statistical performance of LSGA on more 

Sudoku puzzles, we conduct experiments based on a large 

number of Sudoku puzzles selected from the open website 

www.websudoku.com. We select Sudoku puzzles from four 

difficulty levels: Easy, Medium, Hard, and Evil. In each 

difficulty level, 30 puzzles are randomly selected. Therefore, 

totally 120 puzzles are adopted for testing. The details of all 

the 120 puzzles are provided in the Supplemental_Material. 

The configurations of LSGA are the same as those in Table I. 

LSGA runs 10 times on each puzzle and the average 

performance of the 10 runs is calculated and given as 

Avg_Gen in Table S.I in the Supplemental_Material. Then, the 

mean performance of the LSGA on all the 30 puzzles (i.e., the 

30 Avg_Gen values) in each difficulty level is given as 

Mean_Gen in the last row of Table S.I. Moreover, all the 

Mean_Gen values of the four difficulty levels and other 

statistical values are reported in Table IV. For example, in the 

second row of Table IV for all the 30 puzzles in easy level, the 

average number of generations needed by LSGA to obtain the 

optimal solution to each puzzle among the 10 runs is 

calculated, and then the maximal average number and the 

minimal average number among the 30 puzzles are given as 

Max_Gen and Min_Gen. Moreover, the mean of the 30 

average numbers is given as Mean_Gen and the 

Mean_Succ_Rate is the success rate of LSGA in solving all 

the 30 puzzles in all the 10 runs. 

From Table IV, we see that LSGA efficiently solves all 

puzzles. As the difficulty level increases, the number of 

generations needed by LSGA to obtain the optimal solution 

also increases exponentially, especially for the puzzles of the 
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Fig. 9. Three super difficult Sudoku puzzles and their solutions. 
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evil level. Therefore, we conduct a further investigation on the 

factors affecting the performance of the LSGA in the 

following part. 

 
TABLE IV. RESULTS OF PROPOSED LSGA FOR SOLVING SUDOKU PUZZLES 

AT WWW.WEBSUDOKU.COM 

Level Mean_Succ_Rate Mean_Gen Max_Gen Min_Gen 

Easy 100% 4.8 9.4 2.7 

Medium 100% 17.3 32.8 6.1 

Hard 100% 70.4 151.1 19.6 

Evil 100% 107.6 449.5 22.6 

 

C. Further Investigation and Discussion 

To further study the factors affecting the performance of 

LSGA, we decide to rate and generate Sudoku puzzles by 

using Sudoku Explainer (SE). The score of a Sudoku puzzle in 

SE is determined by the complexity of the skills required to 

solve it. The more complex the skills required to solve a 

Sudoku puzzle, the higher SE score it will get, which can 

determine the difficulty level of the Sudoku puzzle 

accordingly. This type of evaluation is very effective for 

players and is widely used [4]. Therefore, we use SE to 

generate Sudoku puzzles with 7 difficulty levels, each 

difficulty level containing 10 different Sudoku puzzles. These 

7 levels are called Easy, Medium, Hard, Superior, Fiendish, 

Super, and Advance, and their SE score intervals are [1.0, 1.2], 

[1.3, 1.5], [1.6, 2.6], [2.7, 3.9], [4.0, 5.9], [6.0, 6.9], and [7.0, 

8.0], respectively. The details of all the 70 puzzles are given in 

the Supplemental_Material. The LSGA is adopted to solve 

these Sudoku puzzles. Similar to the experiments in Section 

IV-B, each puzzle is solved 10 times and the average number 

of generations needed by LSGA to obtain the optimal solution 

of the 10 runs is calculated. Then, we can obtain 10 average 

results on each difficulty level (i.e., there are 10 puzzles and 

each puzzle has an average result). The details of these 10 

average results are given in Table V and their distribution is 

plotted as Box in Fig. 10. There are 7 columns in Table V and 

7 Boxes in Fig. 10 for 7 difficulty levels. Moreover, we also 

look into the number of given numbers in all the 70 puzzles. 

Fig. 11 shows the average number of generations needed by 

LSGA to solve Sudoku puzzles with different given numbers. 

For example, the first bar means that, there may be several 

puzzles among the 70 puzzles that are with 23 given numbers, 

then the average number of generations needed by LSGA to 

solve each of these several puzzles among the 10 runs is 

calculated, and at last the mean of these several average values 

is calculated, which is 177. 

As shown in Fig. 10 and Table V, we can conclude that the 

required generations for LSGA to solve Sudoku are not 

significantly affected by difficulty levels. For example, the 

generations required to solve most Sudoku puzzles at the Hard 

and Superior levels are less than that at the Medium level. 

That is, LSGA inherits the problem-independent 

characteristics of GA and is more general for Sudoku puzzles. 

Moreover, as shown in Fig. 11, we can conclude that there is a 

correlation between the difficulty of solving Sudoku puzzles 

and the number of given numbers. More given numbers can 

give LSGA more help in finding a solution, because the given 

numbers can effectively reduce the search space and eliminate 

interference solutions. However, the relationship between the 

given numbers and difficulty is not strictly linear or 

exponential. That is, there exists the situation that some 

Sudoku puzzles with more given numbers but are more 

difficult to be solved because these given numbers do not 

provide enough clues to determine the non-given numbers. For 

example, in Section IV-A, Sudoku puzzle Hard 106 (with 24 

given numbers) is more difficult than Sudoku puzzle SD2 

(with 23 given numbers), because some Sudoku puzzles like 

Hard 106 have many local optimal solutions and their given 

numbers cannot effectively help LSGA to escape from the 

local optimal solutions. 

 
TABLE V. AVERAGE GENERATIONS NEEDED BY LSGA TO SOLVE EACH 

SUDOKU PUZZLE WITH DIFFERENT DIFFICULTY LEVELS 

          Level* 

Puzzle  
1 2 3 4 5 6 7 

1 42.8 130.9 96.3 88.4 847.1 145.2 147.7 

2 67.1 68.1 11.1 36 135.7 107 63.3 

3 3.1 19.6 21.5 94.1 36.1 28.4 78.6 

4 197.4 166.3 22 253.7 21.1 10.2 150.3 

5 30.1 91.5 34.7 211.9 17.5 97.9 84.7 

6 9.6 241.2 21.6 24.3 30.9 92.5 315.7 

7 24.7 80.7 70.5 62.1 258.4 46.4 88.8 

8 9.9 247.3 64.2 11.5 54.5 24.9 43.3 

9 12.7 44.7 155.9 111.9 102.4 53.6 50 

10 102.8 237.4 140.4 100.1 248.6 975.2 145.4 

Mean 50.02 132.77 63.82 99.4 175.23 158.13 116.78 

*The level 1 to 7 means Easy, Medium, Hard, Superior, Fiendish, Super, and 

Advance, respectively. 
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Fig. 10. Distributions of the average generations needed by LSGA to solve 

Sudoku puzzles with different difficulty levels.  
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Fig. 11. Mean generations needed by LSGA to solve Sudoku puzzles with 

different given numbers. 
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V. CONCLUSION 

In this paper, we propose an improved GA with a local 

search (named LSGA) for Sudoku. In particular, we adopt a 

matrix-based encoding GA and devise mutation and crossover 

operators for this coding scheme. Then, to improve the 

convergence speed of LSGA, a local search method 

incorporating column and sub-block search is proposed. 

Finally, by comparing with GA-based algorithms in different 

dimensions and levels of Sudoku puzzles, LSGA successfully 

solves all of these puzzles and shows good performance.  

LSGA can also be applied to solve other types of Sudoku 

puzzles such as Mini Sudoku and Ring Sudoku. However, for 

Sudoku variants such as Killer Sudoku and Kakuro Sudoku 

[48], the initialization and local search strategies need to be 

redesigned because the local search in LSGA is designed for 

regularly shaped sub-blocks. Furthermore, for puzzles without 

sub-blocks, such as those of Futoshiki and Takuzu [49], the 

column local search strategy is still applicable. Therefore, 

LSGA deserves further research to better solve other Sudoku 

puzzles. Although our algorithm is successful in solving many 

Sudoku puzzles, there is still room for improvement. For 

example, with the help of manual Sudoku solving methods, 

such as direct hidden pair and fish methods [50], humans can 

easily find numbers in the irrational position and adjust them, 

whereas LSGA needs several, tens, or even hundreds of 

generations to achieve the same results. Therefore, in the 

future, we can improve the performance of LSGA by 

combining it with other Sudoku-solving methods. 
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