
A Novel Evolutionary Algorithm with Column and
Sub-Block Local Search for Sudoku Puzzles

This is the Accepted version of the following publication

Wang, Chuan, Sun, Bing, Du, Ke-Jing, Li, Jian-Yu, Zhan, Zhi-Hui, Jeon, Sang-
Woon, Wang, Hua and Zhang, Jun (2023) A Novel Evolutionary Algorithm with
Column and Sub-Block Local Search for Sudoku Puzzles. IEEE Transactions
on Games. ISSN 2475-1502 (In Press)

The publisher’s official version can be found at
https://ieeexplore.ieee.org/document/10015696
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/47124/

1

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Chuan Wang, Bing Sun, Student Member, IEEE, Ke-Jing Du, Jian-Yu Li, Member, IEEE, Zhi-Hui Zhan, Senior Member, IEEE,

Sang-Woon Jeon, Member, IEEE, Hua Wang, Senior Member, IEEE, and Jun Zhang, Fellow, IEEE

Abstract— Sudoku puzzles are not only popular intellectual

games but also NP-hard combinatorial problems related to

various real-world applications, which have attracted much

attention worldwide. Although many efficient tools, such as

evolutionary computation (EC) algorithms, have been proposed

for solving Sudoku puzzles, they still face great challenges with

regard to hard and large instances of Sudoku puzzles. Therefore,

to efficiently solve Sudoku puzzles, this paper proposes a genetic

algorithm (GA)-based method with a novel local search

technology called local search-based GA (LSGA). The LSGA

includes three novel design aspects. First, it adopts a matrix

coding scheme to represent individuals and designs the

corresponding crossover and mutation operations. Second, a

novel local search strategy based on column search and sub-block

search is proposed to increase the convergence speed of the GA.

Third, an elite population learning mechanism is proposed to let

the population evolve by learning the historical optimal solution.

Based on the above technologies, LSGA can greatly improve the

search ability for solving complex Sudoku puzzles. LSGA is

compared with some state-of-the-art algorithms at Sudoku

puzzles of different difficulty levels and the results show that

LSGA performs well in terms of both convergence speed and

success rates on the tested Sudoku puzzle instances.

 Index Terms—Sudoku puzzle; genetic algorithm;

combinatorial optimization problems; evolutionary computation;

local search

I. INTRODUCTION

UDOKU is a popular logic-based combinatorial puzzle

game for people of all ages, it was invented in 1979 and

was officially named “Sudoku” in 1984 [1]. The typical

Sudoku is composed of 81 cells (a 9×9 grid), as shown in Fig.

1. Fig. 1(a) is a Sudoku puzzle with several given numbers,

and Fig. 1(b) is the solution to this puzzle. Moreover, with

rapid development, more complex high-dimensional Sudoku

puzzles have appeared in recent years, with dimensions of

16×16, 25×25, and even 100×100.

9 1

2 1 7 3 6 8

2 7

6 4 1 3 5 8

7 3

1 5 4 2 8 7 9

5 8 9

4 8 5 2 9 3

6 3 2 8

5 4 9 8 3 6 1 2 7

2 1 7 9 5 4 3 6 8

6 3 8 2 1 7 9 5 4

9 6 4 1 7 3 5 8 2

8 7 2 6 9 5 4 3 1

1 5 3 4 2 8 6 7 9

3 2 1 5 8 9 7 4 6

4 8 5 7 6 1 2 9 3

7 9 6 3 4 2 8 1 5
(a) Sudoku puzzle (b) Solution to the puzzle

Fig. 1. Example of 9×9 Sudoku puzzle and its solution.

The rules of Sudoku are as follows: The game begins with

several given numbers in an N×N grid. Then, the player must

fill in the empty cells with numbers 1 to N in such a way that

no number appears twice in the same row, column, or sub-

blocks. Sudoku puzzles are simple in form and definition, but

it is not easy to find solutions [2]. In 2003, Takayuki Yato and

Takahiro Seta proved that solving Sudoku is an NP-hard

problem [3]. Generally, the factors for evaluating the difficulty

of a Sudoku puzzle include the dimension of the problem,

percentage and distribution of the given numbers, and time

cost to solve the Sudoku by a baseline solver. To evaluate the

difficulty of Sudoku, some typical tools have been developed,

including SUDOKUSAT, Sudoku Explainer (SE), and

Hoduku Explainer [4]. Currently, the most used tool is SE,

which can give a corresponding SE score. Generally, a higher

SE score indicates that the Sudoku puzzle is more difficult.

For example, the Sudoku puzzles can be divided into levels of

easy, medium, hard, evil, and even more difficult.

Nowadays, Sudoku is not only a game but also a kind of

core problem in many real-world applications in daily life and

industrial engineering, such as in data encryption [5], radar

waveform design [6], and education [7]. For example, Jana et

al. [5] proposed a video steganography technique that hid

A Novel Evolutionary Algorithm with Column and

Sub-Block Local Search for Sudoku Puzzles

S

Manuscript received ….; revised ….; accepted ….. This work was
supported in part by the National Natural Science Foundations of China

under Grant 62176094, in part by the Guangdong Natural Science

Foundation Research Team under Grant 2018B030312003, in part by the
National Research Foundation of Korea under Grant NRF-

2022H1D3A2A01093478, and in part by the Korea Institute of Ocean

Science and Technology under Grant PE99732. (Corresponding authors:
Zhi-Hui Zhan and Jun Zhang)

C. Wang is with the College of Software, Henan Normal University,

Xinxiang 453007, China.
B. Sun is with the College of Computer and Information, Henan

Normal University, Xinxiang 453007, China.

J. Y. Li and Z.-H. Zhan are with the School of Computer Science and
Engineering, South China University of Technology, Guangzhou 510006,

China, the Pazhou Laboratory, Guangzhou 510330, China, and the

Guangdong Provincial Key Laboratory of Computational Intelligence and
Cyberspace Information, South China University of Technology,

Guangzhou 510006, China (e-mail: zhanapollo@163.com).

K. J. Du and H. Wang are with the Institute for Sustainable Industries
and Liveable Cities, Victoria University, Melbourne, VIC 8001,

Australia.

S.-W. Jeon is with the Department of Electronics and Communication
Engineering, Hanyang University, Ansan 15588, South Korea.

J. Zhang is with the Zhejiang Normal University, Jinhua 321004,

China and with the Hanyang University, Ansan 15588, South Korea.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3236490

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

encrypted data in videos by a Sudoku-based reference matrix.

This technique shows good performance in resisting fault

attacks if the Sudoku puzzle can be solved efficiently. Li et al.

[8] applied retracing extended Sudoku to image data-hiding

technology. As the retracing extended Sudoku is a kind of

Sudoku containing multiple solutions, which imposes high

demands on the robustness of the algorithm for solving the

Sudoku puzzle. To improve the efficiency of photovoltaic

systems, Horoufiany et al. [9] proposed a Sudoku-based

arrangement rule to avoid mutual shading between fixed

photovoltaic arrays and obtained the optimal arrangement by

solving the corresponding Sudoku puzzle by a genetic

algorithm (GA). Moreover, the Sudoku is also studied as a

representative of the exact cover problem [10]. Therefore, the

Sudoku puzzle widely exists in various applications. The

development of algorithms for solving Sudoku has not only of

academic research significance, but also helpful for real-world

applications, which has attracted increasing attention.

So far, the existing algorithms for solving Sudoku puzzles

can be divided into mathematical algorithms [11] and

heuristics algorithms [12]. The exact algorithms are faster at

solving Sudoku puzzles, but lack portability [13]. Therefore,

as a type of heuristics algorithm, GA has gained widespread

attention due to its powerful search ability and versatility.

During the past decade, some studies have shown the great

potential of GA in solving Sudoku puzzles [14]. However, the

GA-based methods still have some shortcomings. When

solving difficult Sudoku puzzles, some GA-based methods

still need to take a long time to solve or even be unsolvable

[15]. Therefore, developing a more efficient method to solve

Sudoku puzzles remains a challenge.

In this paper, we propose an improved GA with local search

(LSGA) to effectively and efficiently solve Sudoku puzzles.

Specifically, the LSGA has three novel designs. First, we

adopt the matrix-based encoding for Sudoku, and based on

this encoding scheme, the crossover and mutation operations

in LSGA are designed. Second, we present a novel local

search mechanism based on column search and sub-block

search to increase the convergence speed of the GA. Third, to

avoid being trapped in local optimal solutions, an elite

population learning mechanism is proposed to randomly

replace poor individuals with new individuals, which is very

effective when solving difficult Sudoku puzzles. To illustrate

the efficiency of the proposed LSGA, we evaluate it on Sudoku

puzzles at different difficulty levels and compare it with some

state-of-the-art approaches.

The rest of the paper is organized as follows: Section II

reviews studies on solving Sudoku puzzles in recent years.

Then, in Section III, the matrix-based GA is elaborated, and

the effectiveness and efficiency of the proposed LSGA are

illustrated by extensive experiments in Section IV. Finally,

conclusions are given in Section V.

II. RELATED WORK

The charm of Sudoku is that it is easy to learn but difficult

to master. Therefore, it has received much attention since it

was first published in the newspaper “Times” [16]. Fig. 2

shows the structure of a standard Sudoku puzzle. To

summarize the definition, the N×N (

N is an integer greater

than 0) Sudoku puzzle must satisfy the following constraints:

(1) Unique solution restriction: A Sudoku puzzle has

only one unique solution.

(2) The rule of rows: All 1 to N numbers in each row

should appear and not be repeated.

(3) The rule of columns: All 1 to N numbers in each

column should appear and not be repeated.

(4) The rule of sub-blocks: All 1 to N numbers in each

N ×

N sub-block should appear and should not be

repeated.

1...N

1...N

...

..
.

...

..
.

N N N N

N N N N

Fig. 2. Structure of standard N×N Sudoku puzzle.

Many researchers have tried tackling Sudoku through

different methods. A widely used method is dancing links [17],

which is a brute force algorithm. This method transforms

Sudoku puzzles into exact cover problems and employs the

backtracking method to solve them. However, brute force

algorithms cannot handle those high-dimensional Sudoku

puzzles at an acceptable time and memory cost [18].

To overcome the shortage of brute force algorithms, many

heuristic approaches have been reported in the literature to

solve Sudoku. For example, Sevkli et al. [19] proposed two

novel models based on the variable neighborhood search

(VNS) algorithm to solve Sudoku: Unfiltered-VNS and

Filtered-VNS. The experiments showed that Filtered-VNS can

obtain better solution quality than Unfiltered-VNS for easy-

and medium-level puzzles, while Unfiltered-VNS performs

better in solving hard-level puzzles. Betar et al. [20]

introduced an improved hill-climbing algorithm called the β-

Hill-Climbing algorithm, which could escape local optima by

using a random operator. Experimental results showed that the

β-Hill-Climbing algorithm can find solutions within a very

short time under the best parameter configuration.

Traditional Sudoku solution methods are ineffective in

solving complex and high-dimension Sudoku puzzles because

the Sudoku puzzles have a huge search space [21].

Evolutionary computation algorithms, such as GA [22]-[24],

ant colony optimization (ACO) [25]-[27], particle swarm

optimization (PSO) [28]-[32], differential evolution [34]-[36],

and estimation of distribution algorithms [37] have shown

promising performance in solving Sudoku puzzles and many

other complex or real-world problems [38]-[41]. For example,

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3236490

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Mantere and Koljonen [15] adopted GA to solve the Sudoku

puzzle, but this work could not effectively solve difficult

Sudoku puzzles. Pathak et al. [42] proposed the wisdom of a

crowd aggregate function for Sudoku puzzles, which can

effectively prevent GA from being trapped in local optima.

Deng et al. [43] proposed an efficient hybrid algorithm for

Sudoku. In this hybrid algorithm, the improved GA can

produce more abundant individuals to participate in crossover.

Then, they combined PSO with GA, so that the population

could better evolve towards the optimal solution. Lloyd et al.

[16] adopted ACO to solve high-dimensional Sudoku puzzles

and compared the effect of the percentage of given numbers

on the difficulty of Sudoku.

Summarizing the above algorithms, we can conclude that

the search ability and convergence speed of the algorithms are

key indicators for solving Sudoku puzzles, because of the

huge search space and unique solutions of Sudoku puzzles. In

this paper, we present an improved GA, called LSGA, which

adopts the new local search method designed for Sudoku

puzzles and a new elite population learning mechanism to

solve Sudoku puzzles more effectively and efficiently.

III. PROPOSED LSGA METHOD

A. Representations and Initialization

When solving Sudoku puzzles, it is necessary to encode the

possible solutions into data structures, which facilitate the

evolutionary operations of the GA. For example, Katya et al.

[44] recorded the given numbers and solutions of Sudoku with

two strings of length N2, and a string of length N to record the

numbers waiting to be selected in each row. Mantere et al. [15]

used two arrays of N2 numbers to represent the Sudoku

solution: one represented the solution, and the other recorded

the position of the given numbers.

...

Random assignment

[List of non-given numbers in Row i]

Row i

Fig. 3. Initialization stage: non-given numbers in row i are randomly assigned

to empty spaces.

In our algorithm, we adopt two matrices to represent a

chromosome, one matrix is the major matrix that records the

numbers in each position of the Sudoku grids, while another

matrix is the associated matrix that records where each

position is occupied by a number. Specifically, the number in

row i and column j in Sudoku is recorded at position (i, j) of

the major matrix. Meanwhile, for the associated matrix, if

there is a given number at a position, then the corresponding

value of the associated matrix is “1”; otherwise, it is “0.” This

coding method facilitates the implementation of crossover

operation and local search operation.

The initialization stage is an important process of the GA.

To reduce the complexity of the puzzle, all non-given numbers

in each row are randomly assigned to the empty spaces, as

shown in Fig. 3. Therefore, the initial solutions will satisfy the

row rules of Sudoku.

B. Fitness Function

The goal of solving a Sudoku puzzle is to find the solution

where each number occurs only once on each row, column,

and sub-block. Therefore, when evaluating an individual, we

count how many rows, columns, and sub-blocks are incorrect

(i.e., not including all the numbers from 1 to N). Therefore, the

fitness of the optimal solution is 0, which means that the rows,

columns, and sub-blocks of this individual satisfy all rules of

Sudoku.

As the individuals generated by the initialization already

satisfy the constraints of the row rule, LSGA only needs to

optimize the numbers in the columns and sub-blocks without

breaking the row rule. In summary, the fitness of each

individual can be evaluated by

1 1

N N

i j

i j

F c s
= =

= +  (1)

where N is the dimension of the Sudoku puzzle, and ci

indicates whether the i-th column satisfies the rule of Sudoku.

That is, ci equals 0 if the i-th column satisfies the rule and

equals 1 if it does not. Correspondingly, sj represents whether

the j-th sub-block satisfies the limitations. F is the sum of ri

and sj. When F equals 0, it indicates that the algorithm finds

the optimal solution.

C. Crossover and Mutation

9 8 6 1 3 4 7 2 5

Parent 1 Parent 2

Offspring 1 Offspring 2

...

9 8 6 1 3 4 7 2 5

...

...

...

...

...

...

...

3 6 9 1 5 4 7 2 8

3 6 9 1 5 4 7 2 8

Fig. 4. Crossover between two individuals.

Crossover operations emphasize the exchange of genes

among individuals. In LSGA, the crossover operator is

performed by rows. Specifically, the parents are selected

based on the individual crossover rate PC1. Subsequently,

based on the row crossover rate PC2, the same rows from the

parents are selected to participate in the swap operation. An

example of the crossover is shown in Fig. 4. In this figure, two

parents are selected based on PC1. Then, the same rows of the

two parents are selected to swap based on PC2. Because the

given numbers in the same row are in the same position, such

as “2” and “7” in Figure 4, the swap operation will not change

the original Sudoku puzzle.

The pseudocode of the crossover operation is shown in

Algorithm 1. In lines 2-3 of Algorithm 1, we select two

individuals based on the individual crossover rate PC1.

Subsequently, in lines 4-8, rows are selected to swap based on

the row crossover rate PC2. Finally, in line 10, the offspring

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3236490

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

of the crossover are preserved.

Mutation is an important operation for the population to

explore the solution space and helps populations escape local

optima. Here are two different mutation strategies to help the

GA improve its exploration capabilities: swap mutation and

reinitialization mutation.

...

...

...

1Row

RowN

Individual

Random

 Reinitialization

0 0 0 1 0 0 1 0 0

0 0 0 1 0 0 1 0 0

(a) Swap mutation (b) Reinitialization mutation

Fig. 5. Two designed mutation operations: (a) swap mutation; (b) reinitialize

mutation.

The swap mutation operation is performed as a swap of two

positions inside random rows to ensure that each row satisfies

constraint (2) of Sudoku (as mentioned in Section II). The

associated matrix is used to check if the position is appropriate

for mutation. If the value is “1”, this position is occupied by a

given number and this corresponding position is illegal to

exchange; thus, the given numbers will not be changed during

the mutation. The probability of the swap is determined by the

swap mutation rate PM1. As shown in Fig. 5(a), the above

mutation is legal, while the below mutation is illegal.

The reinitialization mutation performs the mutation by

reinitializing the distribution of the random rows. As shown in

Fig. 5(b), the number of given numbers is retained while the

non-given numbers are randomly assigned to the empty space

at random. The reinitialization mutation can help the algorithm

jump out of the local optima better than the swap mutation.

However, a high mutation probability for reinitialization

mutation will slow the convergence of the algorithm, so the

reinitialization mutation rate PM2 is a value smaller than 0.1

and the fitness of individuals is the worst.

The pseudocode of the mutation operator is shown in

Algorithm 2. In lines 3-7 of Algorithm 2, rows are selected to

participate in the swap mutation based on the PM1. In lines 4-

6, here is a judgment on the feasibility of the swap. If there is

only one non-given number in a row, this row cannot

participate in the swap. In lines 8-10, rows are reinitialized

based on PM2.

D. Column and Sub-Block Local Search

Many studies have shown that local search is an effective

technique for improving the convergence speed of the

algorithm [45]. Therefore, we design a new novel local search

method in LSGA for solving Sudoku puzzles. It has two

components: column local search and sub-block local search.

1 8

3

5

4

7

6

8

1

9

4

7

5

9

2

2

6

3

0

0

0

0

0

1

0

1

0

1

0

0

0

0

0

0

1

0

Column A Column C

1 3

5

4

7

2

2

6

9

8

4

7

5

9

1

2

6

3

1

0

0

0

0

1

0

0

0

0

0

0

0

1

1

0

0

0

Column A Column B

Fig. 6. Example of column local search. Repeat numbers are marked as 1, and

others are marked as 0.

The first component is the column local search, which is

designed to eliminate the repeating numbers in columns. First,

count all columns that do not meet the rules (called illegal

columns). We define the set C to record these columns. Then,

each illegal column is randomly paired with the other columns

in C, which will be swapped if the repeat numbers are in the

same row and none of them are in each other’s column. For

example, Fig. 6 depicts a part of the solution to a 9×9 Sudoku

puzzle, where we use 1 to mark the position of the repeated

number. According to the rules of Sudoku, the number “1” is

the repeat number in Column A and “2” is the repeat number

in Column B. Therefore, both columns all have repeat

numbers in the 6-th row, so we can exchange “1” and “2” to

make Column B a legal column. Then, Column A continues to

swap with Column C, which could make both of them meet

the column rules.

The second component is the sub-block local search. Similar

to the column local search, the sub-block local search swaps

the repeat number in the same row. First, it counts all sub-

blocks that do not meet the rules (called illegal sub-blocks).

We define the set S to record these sub-blocks. Then, each

illegal sub-block is randomly paired with the other sub-blocks

Algorithm 1: Pseudocode of crossover

Input: population, individual crossover rate PC1, row crossover rate
PC2

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

For each individual in the population:
If rand1<PC1: // rand1 is a random variable in [0,1]:

Select the second parent from the population randomly;
For each row in the individual:

If rand2<PC2: // rand2 is a random variable in [0,1]:
Parents exchange the selected rows;

End If
End For

End If
Save the offspring to the new population;

End For

Output: new population

Algorithm 2: Pseudocode of mutation

Input: population, swap mutation rate PM1 and reinitialization
mutation rate PM2

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:

For each individual in the population:
For each row in the individual:

If rand1<PM1: // rand1 is a random variable in [0,1]:
If the number of non-given numbers>=2:

Select two non-given numbers to exchange positions;
End If

End If
If rand2<PM2: // rand2 is a random variable in [0,1]:

Reinitialize the row;
End If

End For
End For

Output: new population

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3236490

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

in S, swapping them if the repeat numbers are in the same row

and none of them is in each other’s sub-block. For example, in

Fig. 7, Sub-block A and Sub-block B both have repeated

numbers, one of which is “9” and the other is “8”. Therefore,

we can exchange them on the same row to make both sub-

blocks satisfy the Sudoku rules.

0 1 0

0 0 0

1 0 0

0 0 0

0 1 0

0 0 1

Sub-block A Sub-block B

9 1 4

6 2 5

3 9 7

2 7 8

1 8 3

6 4 5

Fig. 7. Example of sub-block local search. Repeat numbers are marked as 1,

and others are marked as 0.

In summary, the basic idea of local search is to make the

columns and sub-blocks on both sides gradually satisfy the

rules of Sudoku by exchanging repeated values. Algorithm 3

describes the basic framework of the local search.

E. Elite Population Learning

As the local optimal solution and the global optimal solution

of Sudoku puzzles are very different, it is difficult for the GA

to jump out of the local optima. Thus, a learning mechanism

based on elite populations is proposed to avoid the GA falling

into local optima. The elite population is a queue structure,

that records the best individuals of each generation and

updates them with new optimal individuals. In elite population

learning, the worst individuals in the population are replaced

by a random individual xrandom from the elite population or are

reinitialized. We define the probability Pb to control this

process.

The replacement operation is as follows:

, if ()

(), otherwise

random b

worst

x rand P
x

init


= 


 (2)

s.t.
()random

b

xMaxfx fx
P

Maxfx

−
= (3)

where xworst is the worst individual, Maxfx is the fitness of

xworst, xrandom is a randomly selected elite individual with fitness

is fx(xrandom), rand() outputs a random variable in (0,1), and

init() is the initialization function.

According to Eq. (2), the worst individual in each

generation has only two choices: to be replaced or to be

reinitialized. Therefore, in most cases, the algorithm tends to

search toward the current optimal solution via replacement but

still explores new search directions via reinitialization. Thus,

LSGA can balance exploration and exploitation.

F. Overall LSGA Method

Integrating the above techniques using GA, the developed

LSGA is outlined in Algorithm 4. In detail, the individuals

are generated through initialization in line 1. Then, the

population is optimized by evolutionary operations in lines 4-

6. Subsequently, in lines 7-8, local search operations are

applied to speed up the convergence of the algorithm. Then,

the fitness of individuals is evaluated in line 9 and the elite

population learning strategy is executed in line 10. The

algorithm iteratively repeats the above operations until the

optimal solution is found or the maximal number of

generations is reached.

Algorithm 4: Pseudocode of LSGA

Input: maximum number of generations FESmax, population.
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:

Initialize population;
Evaluate population;
While (count≤ FESmax) do:

Tournament selection;
Crossover;
Mutation;
Column local search;
Sub-block local search;
Evaluate population;
Elite population learning;
Reserve the best individual as gbest;
If fx(gbest)==0:

Break;
End If

End While
Obtain the best solution gbest and its fitness fx(gbest);

Output: fx(gbest) and gbest

IV. EXPERIMENTAL STUDIES

A. Comparisons with State-of-the-Art Methods

To illustrate the performance of LSGA, we compare it with

state-of-the-art algorithms, including the node-based

coincidence algorithm named NB-COIN [13], the preserve

building blocks GA named GA-I [46], and the GA with local

optima handling named GA-II [18]. To make a fair

comparison, the population size is set to 150, while all

algorithms run 1×104 generations. The parameter settings of

LSGA are listed in Table I.

TABLE I. PARAMETERS IN LSGA

Parameter Value

Population size 150

Elite population size 50

Individual crossover rate PC1 0.2

Row crossover rate PC2 0.1

Swap mutation rate PM1 0.3

Reinitialization mutation rate PM2 0.05

Tournament size 2

Algorithm 3: Pseudocode of local search

Input: population
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:

For each individual in population:
Record all illegal columns (sub-blocks) in the set C (S);
For each column (sub-block) in C (S):
 Randomly select another column (sub-block) from C (S);
 If the repeat numbers are in the same row:
 If repeat numbers do not exist in both columns (sub-blocks):
 Swap these repeat numbers;

End If
End If

 End For
End For

Output: new population

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3236490

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

In the experiments, six classic Sudoku puzzles, which are

also solved by the compared algorithms NB-COIN, GA-I, and

GA-II, are selected. These Sudoku puzzles cover three

difficulty levels (i.e., easy, medium, and hard), as shown in

Fig. 8. Each algorithm runs 100 times on each puzzle, where

Succ_Count is the number of runs among the 100 runs that can

find the optimal solutions within 1×104 generations, and

Avg_Gen is the average number of generations required to find

the optimal solution. Note that to ensure the fairness of the

comparison, the experimental results of the compared

algorithms are obtained directly from their original papers.

Table II lists the experimental results.

TABLE II. RESULTS OF PROPOSED LSGA AND OTHER METHODS FOR SOLVING SUDOKU ON SIX DIFFERENT SUDOKU PUZZLES

Puzzle ID
LSGA NB-COIN [13] GA-I [46] GA-II [18]

Succ_Count Avg_Gen Succ_Count Avg_Gen Succ_Count Avg_Gen Succ_Count Avg_Gen

Easy 1 100 2 100 2 100 62 100 46

Easy 11 100 6 100 4 100 137 100 88

Medium 27 100 23 100 130 100 910 100 188

Medium 29 100 57 100 1196 100 3193 100 357

Hard 77 100 254 100 2710 100 9482 100 702

Hard 106 100 1269 100 2341 96 26825 100 1791

TABLE III. RESULTS OF PROPOSED LSGA AND OTHER METHODS FOR SOLVING SUDOKU ON THREE SUPER DIFFICULT SUDOKU PUZZLES

Puzzle ID
LSGA GA-III [14] GPU-GA [47] GA-I [46]

Succ_Count Avg_Gen Succ_Count Avg_Gen Succ_Count Avg_Gen Succ_Count Avg_Gen

SD1 100 424 100 10993 100 9072 98 25257

SD2 100 538 100 22036 100 13481 90 40365

SD3 100 3926 96 27384 100 22799 62 62283

9 1

2 1 7 3 6 8

2 7

6 4 1 3 5 8

7 3

1 5 4 2 8 7 9

5 8 9

4 8 5 2 9 3

6 3 2 8

2 9 7 1

5 3 6 1

6 3 4

5 9 4

1 5 4 6 8 9

1 8 3

2 6 9

3 6 4 7

9 4 8 5

5 4 9 8 3 6 1 2 7

2 1 7 9 5 4 3 6 8

6 3 8 2 1 7 9 5 4

9 6 4 1 7 3 5 8 2

8 7 2 6 9 5 4 3 1

1 5 3 4 2 8 6 7 9

3 2 1 5 8 9 7 4 6

4 8 5 7 6 1 2 9 3

7 9 6 3 4 2 8 1 5

2 9 4 7 5 1 8 3 6

5 3 8 4 6 9 1 2 7

1 7 6 3 2 8 9 4 5

6 8 3 5 9 7 2 1 4

7 1 5 2 3 4 6 8 9

4 2 9 1 8 6 5 7 3

8 5 2 6 7 3 4 9 1

3 6 1 9 4 2 7 5 8

9 4 7 8 1 5 3 6 2

Easy level (No.1) Easy level (No.1) Easy level (No.11) Easy level (No.11)

 (a) Initial Sudoku puzzle (b) Solution to puzzle (c) Initial Sudoku puzzle (d) Solution to puzzle

1 5 6 2

3 6

9 1 4 5

9 1 4

7 3 2 5

3 8 6

3 2 7 1

9 2

5 6 1 8

4 1 8 5 3 6 9 2 7

3 2 5 9 7 8 4 1 6

7 6 9 1 2 4 5 3 8

8 9 6 7 1 5 2 4 3

1 7 4 3 6 2 8 5 9

5 3 2 4 8 9 7 6 1

6 8 3 2 4 7 1 9 5

9 4 1 8 5 3 6 7 2

2 5 7 6 9 1 3 8 4

1 8

3 4 7 5

6 5

8 6 2 3 4 9

9

3 4 8 1 7 2

3 7

8 1 5 6

2 3

5 4 1 2 8 7 9 3 6

9 2 8 3 6 4 7 5 1

7 6 3 1 5 9 8 2 4

8 7 6 5 1 2 3 4 9

2 1 9 7 4 3 6 8 5

3 5 4 6 9 8 1 7 2

1 3 5 4 7 6 2 9 8

4 9 7 8 2 1 5 6 3

6 8 2 9 3 5 4 1 7

Medium level (No.27) Medium level (No.27) Medium level (No.29) Medium level (No.29)

 (e) Initial Sudoku puzzle (f) Solution to puzzle (g) Initial Sudoku puzzle (h) Solution to puzzle

5 8 7 1 6 2 4 3 9

9 2 4 8 3 5 1 7 6

3 6 1 9 4 7 2 8 5

1 4 5 2 9 8 7 6 3

7 9 6 3 1 4 5 2 8

2 3 8 7 5 6 9 4 1

4 1 9 6 7 3 8 5 2

8 7 3 5 2 9 6 1 4

6 5 2 4 8 1 3 9 7

4 7

1 7

4 3

2 3 9 4

4 1 9

6 8

5 8

8 4 6 5 3

3 2

8 5 3 4 9 7 2 1 6

6 9 1 2 3 8 7 5 4

4 7 2 1 5 6 9 8 3

1 2 5 3 8 9 6 4 7

7 4 8 6 1 2 3 9 5

9 3 6 5 7 4 8 2 1

5 1 7 9 2 3 4 6 8

2 8 4 7 6 1 5 3 9

3 6 9 8 4 5 1 7 2

5 9

9 8 5 6

3 9 7 5

9

9 1 2

3 8 9 4

4 2

3 5 9 6

2 4 1 3

Hard level (No.77) Hard level (No.77) Hard level (No.106) Hard level (No.106)

 (i) Initial Sudoku puzzle (j) Solution to puzzle (k) Initial Sudoku puzzle (l) Solution to puzzle

Fig. 8. Six Sudoku puzzles and their solutions.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3236490

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

From Table II, we can see that in these six Sudoku puzzles,

LSGA, NB-COIN, and GA-II all obtain the final results in all

100 runs, while GA-I in Hard 106 only finds the solution in 96

runs. Thus, LSGA, NB-COIN, and GA-II are better than GA-I.

Subsequently, compared with NB-COIN, the performance of

LSGA is worse than NB-COIN when solving easy-level

puzzles. Furthermore, as NB-COIN depends on probability

distributions to generate solutions for Sudoku, NB-COIN is

less influenced by local optimal solutions than other GAs.

Specifically, both LSGA and the other comparison algorithms

solve Hard 106 with more generations than Hard 77, but the

performance of NB-COIN on the two puzzles is not very

different. By analyzing the solution process, we found that

there is a very competitive local optimal solution in the Hard

106. This local optimal solution has only two columns that do

not conform to the rules of Sudoku, but its structure is

different from the best solution. As a result, the GAs can

easily fall into this local optimum. In general, comparing the

results of solving medium-level, and hard-level Sudoku

puzzles, the average number of generations of LSGA is less

than GA-I, GA-II, and NB-COIN. Therefore, the performance

of LSGA in solving Sudoku puzzles is very competitive.

Next, we conduct an experiment on three so-called super

difficult Sudoku puzzles named Super Difficult-1 (SD1), AI-

Escargot (SD2), and Super Difficult-2 (SD3) selected from

[14]. These are shown in Fig. 9. Among these three puzzles,

the AI Escargot is one of the most difficult Sudoku puzzles in

the world [46]. Table III shows the comparison result of

LSGA and some other algorithms that have successfully

solved these super difficult puzzles: GA-III [14], GPU-GA

[47], and GA-I [46]. Each algorithm runs 100 times on each

puzzle, where Succ_Count is the solution success rate among

the 100 runs within 1×104 generations, and Avg_Gen is the

average number of generations required to find the optimal

solution.

From Table III, we see that LSGA and GPU-GA can solve

all puzzles with 100% success rate, while GA-I and GA-III

cannot. Moreover, both LSGA and GPU-GA require fewer

number of generations than the other algorithms in each

puzzle, and LSGA requires the fewest. Furthermore, we

evaluate the difficulty of SD1, SD2, and SD3 with the help of

the Sudoku Explainer (SE) and get scores of 7.2, 10.5, and 2.8,

respectively, which means, for the Sudoku solving methods

that have been recorded in SE (like WXYZ-Wing, Swampfish,

ALS-Wing, etc.), SD2 is very difficult to solve, but SD3 is

much simpler. However, the experimental results in Table III

are different. Compared with SD1 and SD2, LSGA uses much

more generations to solve the SD3, this situation not only

occurs in LSGA, but also in other compared GAs in Table III.

Therefore, we consider that if some known methods for

solving Sudoku can be introduced into GA, the efficiency of

solving difficult Sudoku puzzles could be greatly improved.

B. Statistical Performance on Open Sudoku Puzzles

To illustrate the statistical performance of LSGA on more

Sudoku puzzles, we conduct experiments based on a large

number of Sudoku puzzles selected from the open website

www.websudoku.com. We select Sudoku puzzles from four

difficulty levels: Easy, Medium, Hard, and Evil. In each

difficulty level, 30 puzzles are randomly selected. Therefore,

totally 120 puzzles are adopted for testing. The details of all

the 120 puzzles are provided in the Supplemental_Material.

The configurations of LSGA are the same as those in Table I.

LSGA runs 10 times on each puzzle and the average

performance of the 10 runs is calculated and given as

Avg_Gen in Table S.I in the Supplemental_Material. Then, the

mean performance of the LSGA on all the 30 puzzles (i.e., the

30 Avg_Gen values) in each difficulty level is given as

Mean_Gen in the last row of Table S.I. Moreover, all the

Mean_Gen values of the four difficulty levels and other

statistical values are reported in Table IV. For example, in the

second row of Table IV for all the 30 puzzles in easy level, the

average number of generations needed by LSGA to obtain the

optimal solution to each puzzle among the 10 runs is

calculated, and then the maximal average number and the

minimal average number among the 30 puzzles are given as

Max_Gen and Min_Gen. Moreover, the mean of the 30

average numbers is given as Mean_Gen and the

Mean_Succ_Rate is the success rate of LSGA in solving all

the 30 puzzles in all the 10 runs.

From Table IV, we see that LSGA efficiently solves all

puzzles. As the difficulty level increases, the number of

generations needed by LSGA to obtain the optimal solution

also increases exponentially, especially for the puzzles of the

7 9 3

6

8 1 4 2

5

3 1

4 6 2 9

2 3 6

3 6 5 4 2 1

7 9 2 5 6 8 1 4 3

4 5 3 2 1 9 8 6 7

8 6 1 3 7 4 9 5 2

6 2 5 8 9 3 7 1 4

3 7 9 1 4 2 6 8 5

1 4 8 7 5 6 2 3 9

2 8 4 9 3 1 5 7 6

9 3 7 6 8 5 4 2 1

5 1 6 4 2 7 3 9 8

Super Difficult Sudoku (SD1) Super Difficult Sudoku (SD1)

 (a) Initial Sudoku puzzle (b) Solution to puzzle

1 7 9

3 2 8

9 6 5

5 3 9

1 8 2

6 4

3 1

4 7

7 3

1 6 2 8 5 7 4 9 3

5 3 4 1 2 9 6 7 8

7 8 9 6 4 3 5 2 1

4 7 5 3 1 2 9 8 6

9 1 3 5 8 6 7 4 2

6 2 8 7 9 4 1 3 5

3 5 6 4 7 8 2 1 9

2 4 1 9 3 5 8 6 7

8 9 7 2 6 1 3 5 4

 AI Escargot (SD2) AI Escargot (SD2)

 (c) Initial Sudoku puzzle (d) Solution to puzzle

3 1 7

1 5 9 8

6

1 7

9 2

5 4

2

5 6 3 4

3 4 2

2 9 4 8 6 3 5 1 7

7 1 5 4 2 9 6 3 8

8 6 3 7 5 1 4 9 2

1 5 2 9 4 7 8 6 3

4 7 9 3 8 6 2 5 1

6 3 8 5 1 2 9 7 4

9 8 6 1 3 4 7 2 5

5 2 1 6 7 8 3 4 9

3 4 7 2 9 5 1 8 6

 Super difficult Sudoku (SD3) Super difficult Sudoku (SD3)

 (e) Initial Sudoku puzzle (f) Solution to puzzle

Fig. 9. Three super difficult Sudoku puzzles and their solutions.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3236490

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

evil level. Therefore, we conduct a further investigation on the

factors affecting the performance of the LSGA in the

following part.

TABLE IV. RESULTS OF PROPOSED LSGA FOR SOLVING SUDOKU PUZZLES

AT WWW.WEBSUDOKU.COM

Level Mean_Succ_Rate Mean_Gen Max_Gen Min_Gen

Easy 100% 4.8 9.4 2.7

Medium 100% 17.3 32.8 6.1

Hard 100% 70.4 151.1 19.6

Evil 100% 107.6 449.5 22.6

C. Further Investigation and Discussion

To further study the factors affecting the performance of

LSGA, we decide to rate and generate Sudoku puzzles by

using Sudoku Explainer (SE). The score of a Sudoku puzzle in

SE is determined by the complexity of the skills required to

solve it. The more complex the skills required to solve a

Sudoku puzzle, the higher SE score it will get, which can

determine the difficulty level of the Sudoku puzzle

accordingly. This type of evaluation is very effective for

players and is widely used [4]. Therefore, we use SE to

generate Sudoku puzzles with 7 difficulty levels, each

difficulty level containing 10 different Sudoku puzzles. These

7 levels are called Easy, Medium, Hard, Superior, Fiendish,

Super, and Advance, and their SE score intervals are [1.0, 1.2],

[1.3, 1.5], [1.6, 2.6], [2.7, 3.9], [4.0, 5.9], [6.0, 6.9], and [7.0,

8.0], respectively. The details of all the 70 puzzles are given in

the Supplemental_Material. The LSGA is adopted to solve

these Sudoku puzzles. Similar to the experiments in Section

IV-B, each puzzle is solved 10 times and the average number

of generations needed by LSGA to obtain the optimal solution

of the 10 runs is calculated. Then, we can obtain 10 average

results on each difficulty level (i.e., there are 10 puzzles and

each puzzle has an average result). The details of these 10

average results are given in Table V and their distribution is

plotted as Box in Fig. 10. There are 7 columns in Table V and

7 Boxes in Fig. 10 for 7 difficulty levels. Moreover, we also

look into the number of given numbers in all the 70 puzzles.

Fig. 11 shows the average number of generations needed by

LSGA to solve Sudoku puzzles with different given numbers.

For example, the first bar means that, there may be several

puzzles among the 70 puzzles that are with 23 given numbers,

then the average number of generations needed by LSGA to

solve each of these several puzzles among the 10 runs is

calculated, and at last the mean of these several average values

is calculated, which is 177.

As shown in Fig. 10 and Table V, we can conclude that the

required generations for LSGA to solve Sudoku are not

significantly affected by difficulty levels. For example, the

generations required to solve most Sudoku puzzles at the Hard

and Superior levels are less than that at the Medium level.

That is, LSGA inherits the problem-independent

characteristics of GA and is more general for Sudoku puzzles.

Moreover, as shown in Fig. 11, we can conclude that there is a

correlation between the difficulty of solving Sudoku puzzles

and the number of given numbers. More given numbers can

give LSGA more help in finding a solution, because the given

numbers can effectively reduce the search space and eliminate

interference solutions. However, the relationship between the

given numbers and difficulty is not strictly linear or

exponential. That is, there exists the situation that some

Sudoku puzzles with more given numbers but are more

difficult to be solved because these given numbers do not

provide enough clues to determine the non-given numbers. For

example, in Section IV-A, Sudoku puzzle Hard 106 (with 24

given numbers) is more difficult than Sudoku puzzle SD2

(with 23 given numbers), because some Sudoku puzzles like

Hard 106 have many local optimal solutions and their given

numbers cannot effectively help LSGA to escape from the

local optimal solutions.

TABLE V. AVERAGE GENERATIONS NEEDED BY LSGA TO SOLVE EACH

SUDOKU PUZZLE WITH DIFFERENT DIFFICULTY LEVELS

 Level*

Puzzle
1 2 3 4 5 6 7

1 42.8 130.9 96.3 88.4 847.1 145.2 147.7

2 67.1 68.1 11.1 36 135.7 107 63.3

3 3.1 19.6 21.5 94.1 36.1 28.4 78.6

4 197.4 166.3 22 253.7 21.1 10.2 150.3

5 30.1 91.5 34.7 211.9 17.5 97.9 84.7

6 9.6 241.2 21.6 24.3 30.9 92.5 315.7

7 24.7 80.7 70.5 62.1 258.4 46.4 88.8

8 9.9 247.3 64.2 11.5 54.5 24.9 43.3

9 12.7 44.7 155.9 111.9 102.4 53.6 50

10 102.8 237.4 140.4 100.1 248.6 975.2 145.4

Mean 50.02 132.77 63.82 99.4 175.23 158.13 116.78

*The level 1 to 7 means Easy, Medium, Hard, Superior, Fiendish, Super, and

Advance, respectively.

Easy Medium Hard Superior Fiendish Super Advance

0

200

400

600

800

1000

G
en

er
a

ti
o

n

 25%~75%

 Range within 1.5IQR

 Median Line

 Mean

 Outliers

Fig. 10. Distributions of the average generations needed by LSGA to solve

Sudoku puzzles with different difficulty levels.

177 176

226

135

87

59

72

38

14 15 11 10 6 3

23 24 25 26 27 28 29 30 31 32 33 34 35 36

0

50

100

150

200

250

G
en

er
a

ti
o

n

Given number
Fig. 11. Mean generations needed by LSGA to solve Sudoku puzzles with

different given numbers.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3236490

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

V. CONCLUSION

In this paper, we propose an improved GA with a local

search (named LSGA) for Sudoku. In particular, we adopt a

matrix-based encoding GA and devise mutation and crossover

operators for this coding scheme. Then, to improve the

convergence speed of LSGA, a local search method

incorporating column and sub-block search is proposed.

Finally, by comparing with GA-based algorithms in different

dimensions and levels of Sudoku puzzles, LSGA successfully

solves all of these puzzles and shows good performance.

LSGA can also be applied to solve other types of Sudoku

puzzles such as Mini Sudoku and Ring Sudoku. However, for

Sudoku variants such as Killer Sudoku and Kakuro Sudoku

[48], the initialization and local search strategies need to be

redesigned because the local search in LSGA is designed for

regularly shaped sub-blocks. Furthermore, for puzzles without

sub-blocks, such as those of Futoshiki and Takuzu [49], the

column local search strategy is still applicable. Therefore,

LSGA deserves further research to better solve other Sudoku

puzzles. Although our algorithm is successful in solving many

Sudoku puzzles, there is still room for improvement. For

example, with the help of manual Sudoku solving methods,

such as direct hidden pair and fish methods [50], humans can

easily find numbers in the irrational position and adjust them,

whereas LSGA needs several, tens, or even hundreds of

generations to achieve the same results. Therefore, in the

future, we can improve the performance of LSGA by

combining it with other Sudoku-solving methods.

REFERENCES

[1] J.-P. Delahaye, “The science behind SUDOKU,” Sci. Am., vol. 294, no. 6,
pp. 80-87, Jun. 2006.

[2] X. Qi, G. Li, N. Wang, X. Wang, and L. Wen, “Method Study on Solving

Sudoku Problem,” in Int. Conf. Data Sci. and Bus. Anal., Istanbul, Turkey.
2019, pp. 269-271.

[3] T. Yato and T. Seta, “Complexity and completeness of finding another

solution and its application to puzzles,” Comp. Sci., vol. E86-A, no.5, pp.
1052-1060, May. 2003.

[4] M. Henz and H.-M. Truong, “SudokuSat—A Tool for Analyzing

Difficult Sudoku Puzzles,” Tools Appl. Artifi. Intell., vol 166. Springer,
pp. 25-35, 2009.

[5] S. Jana, A. K. Maji, and R. K. Pal, “A novel SPN-based video
steganographic scheme using Sudoku puzzle for secured data hiding,”

Innovations Syst. Soft. Eng., vol. 15, no. 1, pp. 65-73, Jan. 2019.

[6] R. M. Nicholas, D. B. Travis, and M. N. Ram, “Sudoku based phase-
coded radar waveforms,” Radar Sensor Technol., vol. 11742, pp.

117420L, April, 2021. [Online]. doi: 10.1117/12.2588316.

[7] S. Jose and R. Abraham, “Influence of Chess and Sudoku on cognitive
abilities of secondary school students,” Iss. and Ideas in Educ., vol. 7, no.

1, pp. 27-34, Jul. 2019.

[8] X. Li, Y. Luo, and W. Bian, “Retracing extended sudoku matrix for high-
capacity image steganography,” Multimedia Tools Appl., vol. 80, no. 12,

pp. 18627-18651, Feb. 2021.

[9] M. Horoufiany and R. Ghandehari, “Optimization of the Sudoku based
reconfiguration technique for PV arrays power enhancement under

mutual shading conditions,” Solar Energy, vol. 159, pp. 1037-1046, Jan.

2018.
[10] M. Harrysson and H. Laestander, “Solving Sudoku efficiently with

Dancing Links”, Exp. Math., vol. 23, pp. 190-217, Dec. 2014.

[11] J. Gunther and T. Moon, “Entropy minimization for solving Sudoku,”
IEEE Trans. Signal Proces., vol. 60, pp. 508-513, Jan. 2012.

[12] L. Clementis, “Advantage of parallel simulated annealing optimization by

solving Sudoku puzzle,” in Emerg. Trends Robot. Intel. Syst., Kosice,
Slovakia, 2015, pp. 207-213.

[13] K. Waiyapara, W. Wattanapornprom, and P. Chongstitvatana, “Solving

Sudoku puzzles with node based Coincidence algorithm,” in Joint Conf.
Comput. Sci. Softw. Eng., Khon Kaen, Thailand, May. 2013, pp. 11-16.

[14] M. Becker and S. Balci, “Improving an evolutionary approach to Sudoku

puzzles by intermediate optimization of the population,” Inform. Sci.
Appl., Daegu, Korea, Jul. 2019, pp. 369-375.

[15] T. Mantere and J. Koljonen, “Solving and rating sudoku puzzles with

genetic algorithms,” Artificial Intel. Conf. Soiety, Espoo, Finland, Oct.
2006, pp. 86-92.

[16] H. Lloyd and M. Amos, “Solving Sudoku with ant colony optimization,”

IEEE Trans. Games, vol. 12, no.3, pp. 302-311, Sept. 2020.
[17] D. E. Knuth, “Dancing links,” Millenial Perspect. Comput. Sci., Palgrave

Macmillan, Basingstoke, USA: Boston, 2000, pp. 187-214.

[18] F. Gerges, G. Zouein, and D. Azar, “Genetic algorithms with local optima
handling to solve Sudoku puzzles,” in Int. Conf. Comput. Artif. Intell.,

Chengdu, China, Mar. 2018, pp. 19-20.

[19] A. Z. Sevkli and K. A. Hamza, “General variable neighborhood search for
solving Sudoku puzzles: Unfiltered and filtered models,” Soft Comput.,

vol. 23, no.15, pp. 6585-6601, Aug. 2019.

[20] M. A. Al-Betar, M. A. Awadallah, A. L. Bolaji, and B. O. Alijla, “β-Hill

Climbing Algorithm for Sudoku Game,” in Int. Confe. Inform. Commun.

Tech., Gaza, Palestine, May. 2017, pp. 84-88.

[21] J. Horn, “Solving a large sudoku by co-evolving numerals,” in Genet. and
Evolut. Comput. Conf. Companion, New York, United States, Jul. 2017,

pp. 29-30.

[22] J. -Y. Li, Z. -H. Zhan, H. Wang and J. Zhang, “Data-Driven Evolutionary
Algorithm With Perturbation-Based Ensemble Surrogates,” IEEE Trans.

Cyber., vol. 51, no. 8, pp. 3925-3937, Aug. 2021.

[23] Z. H. Zhan, et al., “Matrix-based evolutionary computation,” IEEE Trans.
Emerg. Top. Comput. Intell., vol. 6, no. 2, pp. 315-328, Apr. 2022.

[24] J. -Y. Li, Z. -H. Zhan, C. Wang, H. Jin and J. Zhang, “Boosting Data-

Driven Evolutionary Algorithm With Localized Data Generation,” IEEE
Trans. Evol. Comput., vol. 24, no. 5, pp. 923-937, Oct. 2020.

[25] X. Zhang, Z. -H. Zhan, W. Fang, P. Qian and J. Zhang, “Multipopulation

Ant Colony System With Knowledge-Based Local Searches for
Multiobjective Supply Chain Configuration,” IEEE Trans. Evolut.

Comput., vol. 26, no. 3, pp. 512-526, June 2022.

[26] L. Shi, Z. H. Zhan, D. Liang, and J. Zhang, “Memory-based ant colony
system approach for multi-source data associated dynamic electric vehicle

dispatch optimization,” IEEE Trans. Intell. Transp., early access, doi:

10.1109/TITS.2022.3150471.
[27] J. Y. Li, et al., “A multipopulation multiobjective ant colony system

considering travel and prevention costs for vehicle routing in COVID-19-

like epidemics,” IEEE Trans. Intell. Transp., early access, doi:
10.1109/TITS.2022.3180760.

[28] J. R. Jian, Z. G. Chen, Z. H. Zhan, and J. Zhang, “Region encoding helps

evolutionary computation evolve faster: A new solution encoding scheme
in particle swarm for large-scale optimization,” IEEE Trans. Evolut.

Comput., vol. 25, no. 4, pp. 779-793, Aug. 2021.
[29] J. Y. Li, Z. H. Zhan, R. D. Liu, C. Wang, S. Kwong, and J. Zhang,

“Generation level parallelism for evolutionary computation: A pipeline-

based parallel particle swarm optimization,” IEEE Trans. Cybern., vol. 51,
no. 10, pp. 4848-4859, Oct. 2021.

[30] X. F. Liu, Z. H. Zhan, Y. Gao, J. Zhang, S. Kwong, and J. Zhang,

“Coevolutionary particle swarm optimization with bottleneck objective
learning strategy for many-objective optimization,” IEEE Trans. Evolut.

Comput., vol. 23, no. 4, pp. 587-602, Aug. 2019.

[31] Z. J. Wang, et al., “Dynamic group learning distributed particle swarm
optimization for large-scale optimization and its application in cloud

workflow scheduling,” IEEE Trans. Cybern., vol. 50, no. 6, pp. 2715-

2729, Jun. 2020.
[32] X. Xia, L. Gui, F. Yu, H. Wu, B. Wei, Y. Zhang, and Z. H. Zhan, “Triple

archives particle swarm optimization,” IEEE Trans. Cybern., vol. 50, no.

12, pp. 4862-4875, Dec. 2020.
[33] J. Y. Li, Z. H. Zhan, K. C. Tan, and J. Zhang, “Dual differential grouping:

A more general decomposition method for large-scale optimization,”

IEEE Trans. Cybern., early access, doi: 10.1109/TCYB.2022.3158391.
[34] J. Y. Li, K. J. Du, Z. H. Zhan, H. Wang, and J. Zhang, “Distributed

differential evolution with adaptive resource allocation,” IEEE Trans.

Cybern., early access, doi: 10.1109/TCYB.2022.3153964.
[35] Z. H. Zhan,Z. J. Wang, H. Jin, and J. Zhang, “Adaptive distributed

differential evolution,” IEEE Trans. Cybern., vol. 50, no. 11, pp. 4633-

4647, Nov. 2020.
[36] J. Y. Li, Z. H. Zhan, K. C. Tan, and J. Zhang, “A meta-knowledge

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3236490

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

transfer-based differential evolution for multitask optimization,” IEEE

Trans. Evolut. Comput., vol. 26, no. 4, pp. 719-734, Aug. 2022.

[37] J. Y. Li, Z. H. Zhan, J. Xu, S. Kwong, and J. Zhang, “Surrogate-assisted

hybrid-model estimation of distribution algorithm for mixed-variable

hyperparameters optimization in convolutional neural networks,” IEEE
Trans. Neural Networks Learn. Syst., early access, doi:
10.1109/TNNLS.2021.3106399.

[38] Z. H. Zhan, L. Shi, K. C. Tan, and J. Zhang, “A survey on evolutionary
computation for complex continuous optimization,” Artif. Intell. Rev., vol.

55, no. 1, pp. 59-110, Jan. 2022.

[39] Z. H. Zhan, J. Y. Li, and J. Zhang, “Evolutionary deep learning: A
survey,” Neurocomputing, vol. 483, pp. 42-58, Apr. 2022.

[40] Z. G. Chen, Z. H. Zhan, S. Kwong, and J. Zhang, “Evolutionary

computation for intelligent transportation in smart cities: A survey,” IEEE
IEEE Comput. Intell. M., vol. 17, no. 2, pp. 83-102, May, 2022.

[41] J. Y. Li, Z. H. Zhan, and J. Zhang, “Evolutionary computation for

expensive optimization: A survey,” Mach. Intell. Res., vol. 19, no. 1, pp.
3-23, Jan. 2022.

[42] N. Pathak and R. Kumar, “Improved wisdom of crowds heuristic for

solving sudoku puzzles,” Soft Comput. Signal Proc., Singapore, Jan. 2019,

pp. 369-377.

[43] X. Q. Deng and Y. D. Li, “A novel hybrid genetic algorithm for solving

Sudoku puzzles,” Optim. Lett., vol. 7, no.2, pp. 241-257, Oct. 2013.
[44] K. Rodríguez-Vázquez, “GA and entropy objective function for solving

sudoku puzzle,” in IEEE CEC, New York, USA, Jul. 2018, pp. 67-68.

[45] N. Musliu and F. Winter, “A Hybrid Approach for the Sudoku Problem:
Using Constraint Programming in Iterated Local Search,” in IEEE Intell.

Syst., vol. 32, no. 2, pp. 52-62, Mar.-Apr. 2017.

[46] Y. Sato and H. Inoue, “Solving Sudoku with genetic operations that
preserve building blocks,” in Conf. Comput. Intell. Games, Copenhagen,

Denmark, Aug. 2010, pp. 23-29.

[47] Y. Sato, N. Hasegawa, and M. Sato, “GPU acceleration for Sudoku
solution with genetic operations,” in IEEE CEC, June 2011, pp. 296-303.

[48] Pillay N. “Finding solutions to Sudoku puzzles using human intuitive

heuristics”. S. Afr. Comput. Journal, vol.49, no.1, pp. 25-34, Sept. 2012.
[49] Groza, Adrian. “Japanese Puzzles.” Modelling Puzzles in First Order

Logic, Springer, Berlin, 2021, pp. 221-253.

[50] X. Peng, Y. Huang, and F. Li, “A steganography scheme in a low-bit rate
speech codec based on 3D-sudoku matrix,” in IEEE ICCSN, June 2016,

pp. 13-18.

Chuan Wang received the B.S. degree in computer

science and M.S. degree in education from Henan
Normal University, Xinxiang, China, in 1999 and 2009

respectively. He is currently an Associate Professor with

College of Software, Henan Normal University.
His current research interests computational

intelligence and its applications on intelligent information
processing and big data.

Bing Sun (Student Member, IEEE) received the B.S.

degree in computer science and technology from Henan
University of Science and Technology, Henan, China, in

2020, where he is currently pursuing the M. S. degree in

electronic and information engineering with Henan
Normal University.

His current research interests mainly include

evolutionary computation, swarm intelligence, and their
applications in real-world problems.

Ke-Jing Du received the B.S. degree from Sun Yat-

Sen University, Guangzhou, China, in 2012, and the

M.S. degree from City University of Hong Kong,
Hong Kong, in 2014. She is currently working

toward the Ph.D. degree in Victoria University,

Melbourne, VIC, Australia.
Her current research interests include

evolutionary computation (EC) and supply chain

management, especially the distributed EC and
application of EC in supply chain, feature selection, and games.

Jian-Yu Li (Member, IEEE) received the Bachelor's

degree and the Ph. D. degree in Computer Science and

Technology from the South China University of

Technology, China, in 2018 and 2022, respectively.
His research interests mainly include computational

intelligence, data-driven optimization, machine learning

including deep learning, and their applications in real-
world problems, and in environments of distributed

computing and big data. He has been invited as the

reviewer of the IEEE Transactions on Evolutionary Computation and the
Neurocomputing journal, and the program community member and reviewer

of some international conferences.

Zhi-Hui Zhan (Senior Member, IEEE) received the

Bachelor’s degree and the Ph. D. degree in Computer

Science from the Sun Yat-Sen University, Guangzhou

China, in 2007 and 2013, respectively.
He is currently the Changjiang Scholar Young

Professor with the School of Computer Science and

Engineering, South China University of Technology,
Guangzhou, China. His current research interests

include evolutionary computation, swarm intelligence, and their applications

in real-world problems and environments of cloud computing and big data.
Dr. Zhan was a recipient of the IEEE Computational Intelligence Society

(CIS) Outstanding Early Career Award in 2021, the Outstanding Youth

Science Foundation from National Natural Science Foundations of China
(NSFC) in 2018, and the Wu Wen-Jun Artificial Intelligence Excellent Youth

from the Chinese Association for Artificial Intelligence in 2017. His doctoral

dissertation was awarded the IEEE CIS Outstanding Ph. D. Dissertation and
the China Computer Federation Outstanding Ph. D. Dissertation. He is one of

the World’s Top 2% Scientists for both Career-Long Impact and Year Impact

in Artificial Intelligence and one of the Highly Cited Chinese Researchers in
Computer Science. He is currently the Chair of Membership Development

Committee in IEEE Guangzhou Section and the Vice-Chair of IEEE CIS

Guangzhou Chapter. He is currently an Associate Editor of the IEEE
Transactions on Evolutionary Computation, the Neurocomputing, the

Memetic Computing, and the Machine Intelligence Research.

Sang-Woon Jeon (Member, IEEE) received the B.S.
and M.S. degrees in electrical engineering from Yonsei

University, Seoul, South Korea, in 2003 and 2006,

respectively, and the Ph.D. degree in electrical
engineering from the Korea Advanced Institute of

Science and Technology (KAIST), Daejeon, South

Korea, in 2011.
He has been an Associate Professor with the

Department of Military Information Engineering

(undergraduate school) and the Department of Electronics and
Communication Engineering (graduate school), Hanyang University, Ansan,

South Korea, since 2017. From 2011 to 2013, he was a Postdoctoral Associate

at the School of Computer and Communication Sciences, Ecole Polytechnique
Federale de Lausanne, Lausanne, Switzerland. From 2013 to 2017, he was an

Assistant Professor with the Department of Information and Communication

Engineering, Andong National University, Andong, Korea. His research
interests include network information theory, wireless communications,

sensor networks, and their applications to the Internet of Things and big data.

Dr. Jeon was a recipient of the Haedong Young Scholar Award in 2017,
which was sponsored by the Haedong Foundation and given by the Korea

Institute of Communications and Information Science (KICS), the Best Paper

Award of the KICS journals in 2016, the Best Paper Award of the IEEE
International Conference on Communications in 2015, the Best Thesis Award

from the Department of Electrical Engineering, KAIST, in 2012, the Best

Paper Award of the KICS Summer Conference in 2010, and the Bronze Prize
of the Samsung Humantech Paper Awards in 2009.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3236490

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

> REPLACE THIS LINE WITH YOUR MANUSCRIPT ID NUMBER (DOUBLE-CLICK HERE TO EDIT) <

Hua Wang (Senior Member, IEEE) received his Ph.D.

degree from the University of Southern Queensland,

Toowoomba, Qld., Australia in 2004.

He is now a full-time Professor at Victoria University.

He has expertise in electronic commerce, business
process modeling, and enterprise architecture. As a Chief

Investigator, three Australian Research Council (ARC)

Discovery grants have been awarded since 2006, and 200
peer-reviewed scholar papers have been published.

Jun Zhang (Fellow, IEEE) received the Ph.D. degree from

the City University of Hong Kong in 2002.
He is currently a Korea Brain Pool Fellow Professor

with Hanyang University, South Korea. His current

research interests include computational intelligence, cloud
computing, operations research, and power electronic

circuits. He has published more than 150 IEEE

Transactions papers in his research areas.

Dr. Zhang was a recipient of the Changjiang Chair Professor from the

Ministry of Education, China, in 2013, The National Science Fund for

Distinguished Young Scholars of China in 2011 and the First-Grade Award in
Natural Science Research from the Ministry of Education, China, in 2009. He

is currently an Associate Editor of the IEEE Transactions on Evolutionary

Computation and the IEEE Transactions on Cybernetics.

This article has been accepted for publication in IEEE Transactions on Games. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TG.2023.3236490

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

