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Abstract 

Brain signal data are recordings of the electrical activity of the brain made using the 

electroencephalography (EEG). EEG is considered the future of neuroscience, as it has 

emerged as the latest gold standard for detecting neurological disorders such as dementia, 

mild cognitive impairment (MCI), Alzheimer's disease (AD), Parkinson's disease, 

schizophrenia, epilepsy, and so on. Due to its cost-effectiveness and portability, EEG is 

becoming the first choice when it comes to analyses and the detection of neuro-

degenerative disorders. In addition, it has been widely accepted that analyzing EEG data 

is the better method for solving the challenge of learning about the brain's dynamics. EEG 

measures the electrical activity of the brain in real-time and can provide valuable 

information about brain function and dysfunction. The ability to analyze EEG data is 

crucial for improving our knowledge of cognitive processes and aiding in the 

identification of brain illnesses. 

 To discover the most recent trends and gaps in the EEG research, a lot of scholarly 

articles have been studied. However, the following research problems are still existing: 

• Poor classification performances due to old and shallow traditional machine learning 

(TML) algorithms. 

• Lack of efficient noise removal algorithms being used. 

• Computationally expensive models are being proposed, which consume more power 

and time to diagnose brain diseases. 

• Limit the diagnosis to detect one disorder, even though there may be more than one 

brain disorder with similar symptoms. 

• Failed to accommodate a huge volume of EEG data. 

In this dissertation, all five of the aforementioned research challenges have been 

answered. To address the aforementioned research issues, this dissertation focuses on the 

detection of AD and MCI among 600 neuro-diseases. The main objective of this 

dissertation is to develop computer-aided diagnostic methods for effectively detecting 

both AD and MCI handling a large volume of EEG data with improved performance and 

cost-effective deep learning (DL) models. 
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For the purpose of diagnosing AD and MCI from healthy volunteers (HVs), I have 

developed five DL-based frameworks using EEG data. The following are the innovations 

achieved at the end of this extensive work: 

✓ Twenty different LSTM models with varying parameter configurations were analysed 

in the first investigation, with the best one in terms of performance being 

recommended. 

✓ The first GRU examination, in which a newly developed adaptive noise reduction and 

compression technique has also been employed, outperformed the performance of the 

LSTM effort. 

✓ The second suggested GRU approach, which is lightweight and computationally 

cheap, has undergone further enhancements, and the MCI classification accuracy has 

climbed to a new level. 

✓ The Deep Residual Network has been used in our proposed deep residual Alzheimer's 

disease and MCI detection network architecture. This study is the first multi-class 

breakthrough in this field. 

✓ Eventually, the Cognitive Decline Recognition Network framework, a specially 

developed convolutional neural network, has enabled multi-class AD-MCI detection 

to reach a new level of accuracy of over 99% while accommodating a huge volume 

of EEG data. 

The outcomes of the experiments have shown how successful the techniques are in 

detecting MCI and AD. Additionally, technology experts and neuro researchers may find 

this work useful in creating a new automatic diagnosis system for AD-MCI detection. 
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CHAPTER 1 : INTRODUCTION 

 

1.1 Overview and Motivation 

The future of neuroscience lies in electroencephalography (EEG). EEG is the latest gold 

standard for diagnosing most neurological disorders like dementia, mild cognitive 

impairment (MCI), Alzheimer’s disease (AD), and so on. It is a cheap, portable, and non-

invasive option to discover neuro-disorders compared to the remaining expensive and 

time consuming options like computed tomography (CT) scans, positron emission 

tomography (PET), mini-mental state examinations, and magnetic resonance imaging 

(MRI). Though EEG sounds like a promising option, there are some challenges involved 

in EEG signal processing, from EEG signal recording to disease classification. This 

chapter has introduced the topic and its background. 

The brain is the most perplexing body part of a human, and most of the brain-

related diseases remain undiscovered until they reach a dangerous level. Dysfunction and 

death of the brain cells are the main causes of neurodegenerative diseases and disorders. 

Brain abnormalities include more than 600 disorders [92], including AD, epilepsy [92], 

[3], stroke, dementia, traumatic disorders, MCI, schizophrenia (SZ), Parkinson disease 

(PD), brain tumours, migraine, multiple sclerosis, and autism [80]. The brain, nerve roots, 

spinal cord, peripheral nerves, neuromuscular junction, cranial nerves, autonomic 

nervous system, and muscles are influenced by these neuro-disorders. Being impartial 

about countries, sex, age, income or education, these disorders have effect on people. The 

continuous development in the medical science and technology sectors has increased the 

life expectancy of humans, and it is very difficult to stay aside without the touch of 

technology [8], [37], [10]. More facilitations in the health care sector are essential to 

confirm the life expectancy of the people. However, increased life anticipation leads to 

an extensive possibility of being affected by age-related neurodegenerative diseases, 

which seriously influence our regular lives. Influenced people and their families are being 

deprived of having a quality life because of these neurological disorders.  

According to the World Health Organisation’s (WHO), nearly one billion 

individuals worldwide were afflicted with brain illnesses such as Alzheimer's disease, 

epilepsy, stroke, and headache [106]. This indicates that nearly 1 in 6 of the world’s 
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population suffers from neurological disorders. As stated by the WHO, 6.8 million people 

die every year as a result of neurodegenerative diseases, and these disorders affect 

hundreds of millions of people worldwide: globally, around 47 million have dementia 

[92]; more than 50 million are affected by epilepsy [97]. Among the brain-related 

disorders, different types of dementia are the most common. These are very common 

neuro-diseases for the elderly community who are 65 years old or more, and the severity 

rate increases exponentially with age [62], [30], [71]. Every year, there are 7.7 million 

new dementia cases. According to the Australian Bureau of Statistics, the amount of 

deaths owing to AD and dementia have increased by 32.0% from 2009 to 2013, and these 

brain diseases are the second-leading cause of death in Australia [1]. There are many 

neuro-disorders, but this study has picked the top five: MCI, dementia, AD, 

schizophrenia, and Parkinson's disease (PD), as they are all major public health issues. 

These disorders are usually diagnosed using electroencephalography data. The recent 

studies of the aforementioned five neuro-disorders are reported in this chapter. 

There are several techniques for the diagnosis of MCI, dementia, AD, SZ, and PD, 

such as positron emission tomography (PET), magnetoencephalography (MEG), 

magnetic resonance imaging (MRI), and computed tomography (CT) scan [80]. These 

techniques are very time-consuming and costly. There is another technique called mini-

mental state examination (individual interview method) to measure the severity of the 

disease. On the other hand, electroencephalography (EEG) is the most popular tool to 

investigate the presence of neuro-disorder biomarkers [81], [4], and [83]. In recent years, 

EEG has become a better cost-effective and time-efficient alternative for detecting neuro-

diseases like dementia, MCI, SZ, PD, and AD in healthy volunteers (HVs). The EEG 

records the electrical activities in the cerebral cortex with respect to time. There are 

electrodes that are placed on the cranium to collect the electric potentials. The 

International 10-20 system is the most common layout of EEG, having around 21 

electrodes [89]. 10-10 and 10-5 are some higher-density layouts with 64 and 128 

electrodes, respectively, that are also used sometimes [48]. 

For the last two decades, EEG has been used as a promising tool for diagnosing 

neurodegenerative diseases. It is a period impressible biomarker tool that is mostly used 

in detecting cortical disorders like autism spectrum disorders [95], Huntington's disease 

[68], epilepsy and seizure [38], [79], [49], [90], [102], [43], [93], Parkinson’s disease 

[61], [101], cerebral ischemia [60], and dementia [14], [29], [6]. When analysing the EEG 
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signal, it has five frequency bands: delta (δ) from 0.1 Hz to 4 Hz, theta (θ) from 4 Hz to 

8 Hz, alpha (α) from 8 Hz to 12 Hz, beta (β) from 12 Hz to 30 Hz, and gamma (γ) > 30 

Hz. A relative power content comparison among HC, MCI, and AD subjects of different 

frequency bands is shown in Fig. 1.1. 

 

Fig. 1.1: Relative comparison on power content of the frequency bands averaged [55]. 

Functional alteration is mirrored in EEG signals; hence, it is a very useful clinical tool to 

detect neuronal degeneration. Because of its promising performance and cost 

effectiveness, EEG has become more popular compared to other existing medical tools 

like PET, MRI, and MEG. MEG has a limitation in localising the position of occurrence 

in the brain, and it is also very expensive. EEG has shown better temporal commitment 

[92] than other neuroimaging methods [91], [82]. 

In addition, EEG recording is very sensitive to artifacts such as body movement, 

electricity grid inference, eye blinks, heartbeats, etc. These drawbacks are one of the main 

reasons for not detecting neurodegenerative disorders at an early stage. For detecting 

neuro-disorders from EEG signals, there are few common components of EEG signal pre-

processing: removing noises from the EEG data [7], [9], compression of large volume 

EEG data, segmentation, down/up sampling the sampling frequency. The raw EEG data 

contains artifacts and other noises. Therefore, the first step begins with removing noise 

from the recorded EEG data. After separating the signal from the noise, the filtered signal 



 

27 

 

was then passed through some time, frequency, or time-frequency algorithms to extract 

the meaningful attributes. Finally, the pulled out attributes are employed as inputs to a 

classification model to detect the neuro-disorders. 

A rigors amount of machine learning (ML) techniques [65], [66] have been used 

in a number of studies to identify these diseases early on. And it is an ongoing area of 

research to discover neurological disorders at the quickest possible time with EEG data. 

But this is a cross-field area of research that evolves both signal processing and ML 

together. That creates some extra challenges for the researchers. Raw EEG signals have 

to be processed using time- or frequency-domain methods to get effective and important 

features out of them. Finally, a promising classifier with adequate parameters to 

differentiate those disorders from HVs is essential. 

1.2 Problem Statements 

To determine the most recent trends and gaps in EEG research, an extensive amount of 

scientific papers are reviewed. The research problems along with the suggested solutions 

that are uncovered after examining prior EEG efforts are reported below: 

Problem 1: Noise removal is an integral part of every research project that evolved from 

raw data collection. While examining earlier EEG attempts, I have discovered that the 

studies [16], [17], [28], [42], [45], [75] that did not work well either did not de-noise the 

EEG data correctly or the de-noising efforts were not good enough to clean the raw EEG 

data. As a result, I have identified this noise reduction issue as one of the primary 

shortcomings in earlier EEG studies. 

Solution: In this dissertation, I have developed an adaptive de-noiser approach 

that is discussed in Chapter 4 and used it to compress the EEG data as well. Chapter 4 

reflects the solution to this research problem #1. 

Problem 2: In order to improve the performance of the suggested models, prior attempts 

[13], [32], [84], [100] utilized computationally expensive models, which need more 

power and longer time to diagnose. Since not everyone has access to a powerful computer, 

I identified this as a further area in need of investigation. 

Solution: Six models are included in this long study, where I have provided four 

lightweight and computationally affordable models and discussed and compared their 
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temporal complexity. The answer to this research problem #2 is presented in Chapters 

4–7. 

Problem 3: Numerous brain illnesses have symptoms that are quite similar. Most of the 

prior EEG initiatives [13], [32], [70], [86], [157], [172] resolved binary classification 

issues due to a lack of data, computational assistance, and diagnostic expertise. It was 

either MCI identification from HVs or AD identification from HVs. Whereas MCI is 

treated as the preliminary stage of AD, and they share some similar symptoms. Lack of 

multi-classifiers that will be able to differentiate between AD, MCI, and normal cognitive 

function simultaneously poses a significant obstacle in achieving precise and 

comprehensive diagnostic capabilities for cognitive disorders. Another limitation I have 

realized is this. 

Solution: The innovative and novel AD-MCI- HV detection frameworks I have 

presented in Chapters 6 and 7 using an EEG dataset of 109 participants established a 

new standard for multi-class AD-MCI-HV detection performance which has resolved the 

research problem #3. 

Problem 4: The effectiveness of earlier EEG attempts [32], [52], [58], [70], [75], [121], 

[134], [135], [138], [155], [172] has also been hampered by the use of traditional ML 

methods. The shallow and simple design of such ML techniques, such as support vector 

machine (SVM), K-nearest neighbor (KNN), decision tree (DT), Naïve Bayes (NB), etc., 

prevented them from learning characteristics and extracting features from complicated 

EEG data. It is one of the significant challenges in cutting-edge EEG research that has 

made it difficult to develop an appropriate model. 

Solution: In this dissertation, I have proposed six new deep learning (DL)-based 

frameworks using EEG data. Since the outset, I have avoided using traditional ML 

approaches and have shown via comparisons that DL techniques surpass such classical 

ML techniques. The answer to this research problem #4 may be found in Chapters 3 

through 7. 

Problem 5: Performance is an important factor in classification problems. Since I am 

working with medical data, there should be no room for error. Previous suggested 

strategies [13], [32], [52], [58], [70], [75], [86], [125], [133], [134], [135], [173] for 

diagnosing brain illnesses like AD or MCI didn't provide enough insight. 
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Solution: All previous performance records have already been broken and a new 

benchmark for AD-MCI detection have been established by the six initiatives suggested 

in this dissertation. Evidence for solutions to research problem #5 is reported in 

Chapters 3–7. 

1.3 Objectives 

The research reported in this dissertation concentrates on how various EEG signals from 

various brain activity might be categorized to assess various brain illnesses. In this 

dissertation, I have created a total of six techniques for processing and categorizing 

massive amounts of EEG data into AD, MCI, and HV categories. Each of the research 

that have been described outperforms previously published efforts when compared to 

current state-of-the-art techniques. Even I have made attempts to surpass our previous 

records. 

I arrived at the six methodologies in this dissertation as a result of the specified 

research challenges. Three main goals for the analysis and categorization of EEG signals 

have been established after looking into the research challenges. The following are our 

main objectives: 

1) Develop a method for noise removal and handle the huge volume of EEG data. 

2) Create frameworks for MCI detection and increase the bar in terms of 

performance. 

3) Introduce a lightweight and inexpensive model to compute for identifying 

neurological disorders from EEG data. 

4) Deliver multi-class (AD, MCI, and HV) models for efficient neuro-disorder 

detection using brain signal data. 

5) Study different DL methods, particularly variants of recurrent neural network 

(RNN) and convolutional neural network (CNN) models, to build frameworks for 

AD and MCI detection in HVs. 

With regard to the aforementioned goals, I am fortunate to have created six innovative 

techniques. Three frameworks for MCI detection have been established in this 

dissertation. These MCI recognition frameworks were all built with DL algorithms. Every 

one of them uses a novel approach in the EEG pre-processing phase. The three platforms 

that determine MCI are listed below: 
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➢ A long short-term memory (LSTM) based framework for early detection of mild 

cognitive impairment from EEG signals (MCI-LSTM) 

➢ Developing a deep learning based approach for anomalies detection from EEG 

data (MCI-GRU along with Method 1) 

➢ A deep learning based framework for diagnosis of mild cognitive impairment 

(MCI-GRU) 

Our earlier suggested methods (1-4) were created using an EEG dataset that only included 

MCI and HVs. As a result, I was unable to examine AD. While this was going on, I 

worked with the IRCCS Centro Neurolesi "Bonino-Pulejo" and acquired a large EEG 

dataset that included people with AD, MCI, and normal physiology. I developed two 

novel frameworks using this multiclass EEG dataset that outperform earlier multiclass 

attempts. The two multi-class AD-MCI identification frameworks that I have suggested 

are listed below: 

➢ DRAM-Net: A Deep Residual Alzheimer’s Diseases and Mild Cognitive 

Impairment Detection Network Using EEG Data 

➢ CDR-Net: A Computerized Framework to Detect Alzheimer’s Diseases and Mild 

Cognitive Impairment 

Below is a quick outline of their accomplishments: 

1.3.1 Develop a method for noise removal and handle the huge volume of EEG 

data 

Method 1(Adaptive De-noiser): In order to deal with artifacts and other noises, I 

have presented an adaptive noise reduction method that has been tested with digitized and 

static data such as color images in Chapter 4. For our objectives, I transformed the 

digitized EEG data (amplitude in μV) into image intensity values. Peak signal-to-noise 

ratio for our suggested adaptive strategy is 15.38 dB, exceeding the approaches currently 

in use. To down-sample EEG data for an MCI diagnosis system, I have adopted this 

technique. 

1.3.2 Create frameworks for MCI detection and increase the bar in terms of 

performance 

Method 2 (MCI-LSTM): This is our first effort to use EEG data to solve the MCI 

detection challenge. I investigated RNNs and discovered that LSTM may work well with 
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EEG data. The 20 best LSTM models out of more than 35 examined have been included 

in the study reported in Chapter 3. I have put forwards the most effective LSTM-based 

framework with four steps for detecting MCIs in HVs after an extensive examination. 

The first phase included gathering and describing EEG data; the second involved de-

noising using the Butterworth filter, segmenting the data to produce 300 new temporal 

segments, and down-sampling with the Average filter. After that, the two-layer LSTM 

model, which includes 1024 and 512 neurons, is provided with the processed EEG data 

to categorize. The performance of the suggested framework is assessed in the final stage. 

The best model scored 96.41% accuracy, 96.55% sensitivity, and 95.95% specificity 

during 5-fold cross-validation. 

1.3.3 Introduce a lightweight and inexpensive model to compute for 

identifying neurological disorders from EEG data 

Method 3(MCI-GRU along with Method 1): This time, I have explored the 

alternative RNN subtype, gated recurrent unit (GRU). While GRU and LSTM both have 

comparable features, GRU is lighter and comes with a reset gate. Four steps make up our 

suggested GRU-based MCI detection framework (Chapter 4): EEG data collection, pre-

processing (de-noising using the Butterworth filter, 6-second segmentation of each 

subject's EEG recording, and down-sampling using the suggested method 1), 

classification using the GRU network, and outcome assessment. Two hidden, deep layers 

as well as a dense layer make up our suggested GRU network. The GRU network's dense 

layer included a single neuron, whereas the first hidden layer contained 1024 neurons and 

the second, 512. On a publicly accessible EEG dataset, our suggested model performed 

with 96.91% accuracy, 97.95% sensitivity, 96.16% specificity, and a 96.39% F1 score. 

Method 4(MCI-GRU): This is a thorough and in-depth study that combines 

LSTM and GRU with other traditional ML techniques like SVM and KNN. Gathering 

raw EEG data, pre-processing it (de-noising using stationary wavelet transformation, 6 

second segmentation, and down-sampling using an average filter), identifying hidden 

features and differentiating MCI subjects from HVs, and performance testing of the 

suggested structure make up the proposed framework. The purpose of this MCI research 

(Chapter 5) was to identify MCI participants by using distinguishing characteristics of 

deep learning. Neither a separate approach for feature extraction nor one for classification 

is utilised. SVM and KNN are unable to extract features on their own, whereas LSTM 
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and GRU can. Therefore, in order to lower the computational cost, I have employed the 

LSTM-extracted features for both SVM and KNN. GRU has distinguished itself and 

earned the best performance out of the four classifiers that were reported. 

1.3.4 Deliver multi-class (AD, MCI, and HV) models for efficient neuro-

disorder detection using brain signal data 

Method 5(DRAM-Net): Our first response to the multiclass AD-MCI challenge 

is the Deep Residual Alzheimer's Disease and MCI Detection Network (DRAM-Net). A 

DL-based classifier known as the deep residual network is used to construct this system. 

In our suggested DRAM-Net design (Chapter 6), there are four residual blocks. This 

multi-class research includes steps for collecting EEG data, pre-processing (down-

sampling to 256 Hz frequency, noise reduction using stationary wavelet transform 

(SWT), and 5-second temporal segmentation), DRAM-Net architecture to identify AD, 

MCI, and HVs, and experiment assessment. In this study, I have reported performance by 

class. In addition to exceeding other multi-class studies, our suggested DRAM-Net 

architecture has claimed accuracy of 96.66% for the HV class, 98.06% for the MCI class, 

and 97.79% for the AD class. It has also achieved an overall multiclass accuracy of 

96.26%. 

1.3.5 Study different DL methods, particularly variants of RNNs and CNN 

models, to build frameworks for AD and MCI detection in HVs 

Method 6(CDR-Net): In order to develop a framework that would include the 

answers to all the research questions I have raised, I have further examined the multiclass 

EEG dataset. The Cognitive Decline Recognition Network (CDR-Net) architecture has 

been constructed and reported in Chapter 7 to recognize MCIs, ADs, and HVs employing 

EEG data in order to get around the research challenges. The proposed CDR-Net 

architecture enables the acquisition of EEG data, data pre-processing (down-sampling 

from 1024 Hz to 256 Hz, noise cleaning using SWT, 5-second segmentation, and 8-bit 

digital picture construction), feature extraction and classification using CDR-Net, as well 

as performance evaluation and cross-validation stages. The ultimate part of the CDR-Net 

architecture is a custom designed multi-layer CNN model with a softmax classifier. Better 

multiclass accuracy, sensitivity, and specificity were achieved using our recommended 

CDR-Net design, with values of 99.25%, 99.13%, and 99.32%, respectively. Concerns 
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about stability, consistency, and data over- and under-fitting are alleviated by performing 

10-fold and leave-one-out cross validations.  

1.4 Contributions 

To accomplish our goals in this dissertation, I endured really hard. In essence, I am 

successful in contributing the following to the completion of this dissertation: 

• The construction of an LSTM-based deep learning system for rapid identification 

of MCI in this dissertation is the first to employ EEG signal data as input. 

• Twenty LSTM models have been evaluated to determine the optimal LSTM 

version for MCI detection. 

• I have released the first report of an EEG classification research using deep 

learning techniques based on GRU. 

• To reduce the computational burden of the proposed frameworks, I developed 

adaptive filtering as a down-sampling strategy. 

• To save computational costs, I employed the LSTM-extracted features for SVM 

and KNN rather than employing different feature extraction techniques. 

• I have presented a deep residual network that is specifically made for AD-MCI 

identification for the first time. 

• To further aid in the processing of EEG data more quickly, I investigated the 

average filtering approach for down-sampling. 

• Created and implemented a state-of-the-art, accurate, dependable, and efficient 

CDR-Net framework for identifying AD, MCI, and HVs using EEG data. 

• Our investigations use 5 seconds temporal segments and 5 seconds of EEG 

recording is good enough to judge the patient’s case 

• Improved classification performance on the same and distinct EEG datasets, both 

for multi-class and binary classifications, in comparison to older techniques. 

• Our recommended frameworks have improved classification accuracy while 

requiring less computational effort. 

• Performed 10-fold and LOOCV cross validations to check the consistency and 

stability of these suggested frameworks. 

• Executed ablation experiments to identify the most appropriate classifier. 
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1.5 Structure of this Dissertation 

This dissertation is divided into 8 chapters, each of which presents significant research 

results. The remainder of the dissertation is structured as follows: 

Chapter 2 discusses contemporary EEG signal categorization techniques and 

their underlying knowledge. The underlying knowledge and the basics of EEG, and 

several neuro-disorders are introduced in this chapter. Following that, I described 

previously used techniques based on several domains. Additionally, a comparative 

outcome analysis with disease-specific performance comparisons is presented. This 

chapter concludes with a thorough assessment of prior efforts and a few outstanding 

research issues for the future. 

Chapter 3 introduces our initial approach for MCI detection in this dissertation. 

It opens with an overview before introducing the context and earlier MCI research that 

are relevant. Following that, a framework for LSTM-based MCI detection has been 

described. Results of experiments are presented later. A very thorough comparative 

discussion and a essence come to an end in this chapter. It contains the answer to research 

problems 4 and 5. 

Chapter 4 has integrated two studies together. I conducted two separate 

investigations, one involving the development of an adaptive de-noiser and the other 

using a GRU-based MCI detection framework that incorporates the adaptive de-noiser. 

An overview, an introduction to the subject, and a few associated MCI studies come first 

in this chapter. Afterwards, the suggested GRU-based MCI detection framework appears. 

This GRU-based MCI identification framework part discusses the recently created 

adaptive de-noiser. The results, discussion, and conclusion round up this chapter. 

Research problems 1, 2, 4, and 5 have an answer in it. 

In Chapter 5, a complete investigation employing the same prior EEG dataset 

and the GRU classifier is reported. Beginning with an overview, an introduction to the 

subject matter and research challenges, and background investigations. Following that, 

the suggested framework has been presented. The framework discussion section includes 

four classifiers and their respective talks. Investigations and their findings are then 

described, followed by a discussion of comparisons. An essence and some 

recommendations for succeeding study are provided in this chapter's conclusion. It 

provides answers to research problems 2, 4, and 5. 
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Chapter 6 has revealed a new era for AD-MCI detection. This research is a 

multiclass EEG study that includes patients with AD, MCI, and normal cognitive 

function. A summary of the chapter is presented at the beginning, and then the subject 

matter, research concerns, and related works are covered. The DRAM-Net framework has 

subsequently been presented. Then, some fascinating findings and discussions are 

presented. An essence and recommendations for further investigation are provided in this 

chapter's conclusion. Research problems #2, 3, 4, and 5 are addressed inside this 

chapter. 

Chapter 7 incorporates our last proposed method to resolve the MCI-AD 

identification problem using EEG data. A summary is given at the outset. It then includes 

a thorough introduction, background research, and a description of the proposed CDR-

Net design. The investigations and findings from the study are then included. Following 

that, there has been a documented comparison. An essence and recommendations for 

further research come at the end of Chapter 7. Chapter 7 answers research problems #2, 

3, 4, and 5. 

Chapter 8 includes an overview and a contribution summary of this dissertation's 

work, and this dissertation concludes with a discussion of our shortcomings and 

suggestions for further study. 
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CHAPTER 2 : LITERATURE REVIEW 

 

2.1 Overview 

The efficient detection of neurological abnormalities (disorders) is very important in 

clinical diagnosis for modern medical applications. As stated by the World Health 

Organization (WHO), brain diseases like Alzheimer’s disease (AD), epilepsy, stroke, and 

headache infect almost one billion people globally. Electroencephalography (EEG) is the 

current reference standard for the diagnosis of most neurological diseases as it is 

inexpensive, bearable, and non-invasive compared to other tests (e.g., computed 

tomography, positron emission tomography, mini-mental state examination, and 

magnetic resonance imaging). In the preliminary stage, many studies are performed using 

EEG signals to detect neurodegenerative abnormalities. This chapter attempts to provide 

a comprehensive survey of the recent studies that have used EEG signals to detect the 

neurological diseases: dementia, mild cognitive impairment (MCI), AD, schizophrenia, 

and Parkinson's disease. This chapter focuses on the following key research questions: 

(1) what are the key components of EEG signal processing? (2) What algorithms have 

been used in this processing? (3) which signal processing techniques have received more 

attention? This chapter provides a clear description of the mentioned neuro-diseases along 

with the relevant studies. Moreover, this study presents all the recent efforts of the 

methods that are obtained at various steps of signal data processing, including the feature 

extraction and classification phases. Finally, an elaborated comparison of the existing 

efforts with their drawbacks and performance is reported. This will guide medical field 

researchers and technology experts to discover more accurate solutions for neuro-diseases 

and come up with a neurological abnormality detection framework. 

The contents of this chapter have been published in the Artificial Intelligence 

Review [106] and also in the Proceedings of Databases Theory and Applications: 33rd 

Australasian Database Conference, ADC 2022 [160]. 
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2.2 Introduction 

Human life expectancy has grown as a result of constant advancements in medical 

research and technology, and it is becoming increasingly impossible to live without being 

touched by technology [8], [10], [37]. To confirm people's life expectancy, more changes 

in the health-care industry are necessary. However, greater life expectancy increases the 

risk of developing age-related neurodegenerative illnesses [187], which have a significant 

impact on our daily lives. 

The brain is the most complex part of the human body, and the majority of brain 

illnesses go unnoticed until they become serious. The primary cause of neurologic 

illnesses and disorders is the dysfunction and death of brain cells. There are more than 

600 neuro-diseases, which include AD [44], MCI [107], [100], [104], [105], dementias, 

epilepsy [3], [92], [184], stroke, schizophrenia (SZ) [11], [85], Parkinson’s disease (PD) 

[40], migraine, autism, brain tumours, etc. These neurological diseases have an impact on 

the brain, nerve roots, spinal cord, peripheral nerves, neuromuscular junction, cranial 

nerves, autonomic nervous system, and muscles [106]. 

According to the WHO, nearly one billion individuals worldwide were afflicted 

with brain illnesses such as AD, epilepsy, stroke, and headache [106]. This indicates that 

nearly 1 in 6 of the world’s population suffers from neurological disorders. Regardless of 

country, gender, age, wealth, or education, these neuro-diseases affect individuals. WHO 

claims that every year, 6.8 million people die as a result of neurological illnesses, which 

impact hundreds of millions of people throughout the world: about 47 million people have 

dementia, and more than 50 million people have epilepsy [97]. These are highly frequent 

neuro-diseases in the senior population, especially those aged 65 and more, and the 

severity rate rises exponentially with age [30]. 

The existing biomarkers to detect these neuro-disorders are a computed 

tomography (CT) scan, magnetoencephalography (MEG), positron emission tomography 

(PET), magnetic resonance imaging (MRI), and a mini-mental state examination (a one-

to-one interview procedure). These diagnostic tools are either expensive, time-

consuming, or require manual methods. EEG has emerged as a non-invasive, portable, 

easy, inexpensive, and robust biomarker for investigating neurological disorders. The 

electroencephalogram captures the electrical activity in the cerebral cortex throughout 

time. To capture the electric potentials, electrodes are implanted on the skull. The most 



 

42 

 

common EEG configuration, with about 21 electrodes, is the International 10–20 system 

[89]. It is worthy of mention that I am dealing with more than 600 neuro-diseases in the 

current world. In our study, I have focused on the five common and deadliest neuro-

disorder detection challenges, which are: dementias, MCI, AD, PD, and SZ. The 

following is a summary of the key contributions to this effort: 

• Introduced 5 neuro-diseases and their recent studies 

• A through comparative analysis has been done along with the research gaps 

• All the narrow spikes entangle in EEG signal processing have been explored. 

• I have investigated the obstacles related to classification and reported here. 

• Finally, observing the common challenges both in signal processing and 

machine learning (ML), I have suggested some solutions. 

This systematic review is concentrated on bringing EEG to bear as a scrutinizing 

clinical tool to detect or classify MCI, dementia, AD, SZ, and PD. The remainder of the 

chapter is divided into four main sections. In section 2.3, all the mentioned neuro-diseases 

are sub-sectioned and related recent works are discussed. All the methods used in the 

recent studies, which are mentioned in Section 2.3, are elaborately discussed in Section 

2.5. There is a list of public EEG dataset repository reported inside Section 2.4. Section 

2.5 is partitioned into two subsections: feature extraction methods and classification 

methods. A detailed comparison and analysis have been provided in Section 2.6. Section 

2.7 has reported all the related challenges involved in EEG data processing. A 

summarized discussion of the findings is talked over in section 2.8, and finally, this study 

ends with the essence in section 2.9. 

2.3 Neuro Diseases 

In this section, I deliver a summarized description of the aforementioned five neuro-

diseases with some recent research works and their implemented data structures. I have 

reported all the work that has been done with EEG data only. Among all five neuro-

disorders, I have found more studies have been done on AD detection and prediction. And 

also, almost all the studies have struggled to have a large dataset for their experiment. 

This did not allow them to have full or high accuracy in their works. I have placed the 

works below in sorted order with respect to the diseases. 
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2.3.1 MCI 

MCI is a degenerative neurological disorder caused by cognitive degeneration. It is the 

early stage of AD, caused by a diminished vocabulary, progressive memory erosion, and 

a reduced potentiality to perform precise motor motions, all of which impair the 

performance of day-to-day activities [100]. It is still an ongoing area of study to detect 

dementia at the MCI stage, which is very challenging in most cases. Annually, almost 

25% of patients with MCI are metamorphosed into AD [19]. Therefore, predicting 

dementia at the MCI stage can support the patients with early medical treatment. By 

implementing appropriate methods with a quick and timely diagnosis, I can protect and 

significantly develop subjects’ lives. As it is an elderly neuro-disorder, therefore, most of 

the time the symptoms remain unchecked. 

Sharma et al. [75] worked with 44 subjects (15 dementia subjects, 16 MCI 

subjects, and 13 healthy volunteers) who were more than 40 years old and living in India 

[92]. The EEG data that they used had 21 channels, and one ECG channel was run for 13 

minutes, keeping the sampling rate at 256 Hz. A different approach named the Finger 

Tapping Test (FTT) was used in [75], [76], [77], which calculates the connectivity and 

motor speed of the cortico-cortical sensorimotor channel. In FTP, MCI patients were 

asked to squeeze the space bar of the computer at 10-second intervals with their left and 

right index fingers in accordance with the instructions shown on the computer screen. The 

Continuous Performance Test (CPT) was also used in [75], [76] to calculate attention and 

impulsivity. In the CPT test, MCI patients were asked to squeeze the space bar when they 

see the letter B on the computer monitor with a gap of 1 to 4 seconds. These two tests 

were done to measure the attention and the motor speed of the subjects to identify 

dementia, MCI, and healthy volunteers (HVs). A deep learning (DL)-based study [86] 

with 35 subjects (28 HVs and 7 MCI subjects) was conducted with 16 channel EEG data. 

A solo EEG channel-based study to classify MCI had been proposed by Khatun, 

Morshed, and Bidelman [52]. The authors had 23 subjects, and among them, 15 of them 

were HVs, and 8 of them had MCI. The subjects were asked to identify the vowel 

continuum speech sounds as the sounds were playing during the EEG data recording. 

Using the event-related potential (ERP), 590 features were picked. A dataset having 25 

MCI subjects and 11 HVs has been used to predict MCI at an early stage [58]. The authors 

recorded nineteen to thirty-two channels of EEG data at a rate of 250 Hz, and the band 
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pass was from 0.016 to 100 Hz. After EEG recording, they used independent component 

analysis to erase the eye movement artifacts. 86 MCI patients were diagnosed for two 

years, and 25 patients turned into AD patients in [70]. EEG data used in this experiment 

was collected using the international 10-20 system in a dimly lit room. The authors kept 

the sampling frequency at 500 Hz, and subjects kept their eyes closed for 20 minutes. 

 

Fig. 2.1: Subjects’ demographics and psychiatric test scores [50]. 

Kashefpoor, Rabbani, and Barekatain [50] worked with 27 subjects, of whom 11 were 

MCI patients and 16 were HVs. All the subjects were in a resting, eyes closed, state, and 

EEG data were recorded in the morning. Fig. 2.1 is a screenshot illustrating the 

demographic information of subjects who participated in this study. Using the same data, 

authors proposed an integrated MCI detection framework [100]. Another MCI detection 

framework [84] was proposed using this same EEG dataset. 

2.3.2 Dementia 

Dementia is prescribed clinically as a degeneration of brain activities, with mostly the 

subject’s intellectual and memory degeneration characterized by the quietus of brain cells 

[23]. In recent years, there have been significant efforts to detect dementia at an early 

stage. Dementia is peered with neurodegenerative disorder diversity [6]. Efforts through 

neuroimaging, neurophysiological, and biochemical biomarkers have been made [23], 

[36]. If dementia has not been detected in its early stages, it can increase the severity of 
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having AD. The Alzheimer ’s Disease International (ADI) report says 66% of humans are 

affected by dementia in developing countries. There is someone who develops dementia 

every 3 seconds [44]. 

Durongbhan et al. [29] reported a classification framework using time-frequency 

and frequency domains. The authors worked with 40 subjects, of which 20 were HVs and 

20 were patients with dementia. The 10-20 international system was modified with a 

10/10 overlapping system, and an XLTEK 128 channel was exercised for sampling at 2 

KHz. Dominant-frequency analysis was used to detect dementia in its early stages [14]. 

The authors used publicly available data that was collected with the patients in a relaxed 

state, with both eyes open and closed. The analogue pass band of frequencies was 0.01–

100 Hz, whereas the sampling rate was 256 Hz. 

2.3.3 Alzheimer’s Diseases 

AD is the most common among the different categories of dementia, and almost 70% of 

cases fall into the AD category [22]. The most dangerous form of dementia is AD, which 

causes serious memory loss and cognitive impairment. When dementia reaches AD, there 

is no permanent cure for it; only alleviative care can stop the growth of AD for the time 

being. After being medically proven, an AD patient lives for only 5–8 years [21], [39]. 

Therefore, many studies have been done, and it is still an ongoing area of work to detect 

AD at an early stage so that the patients can have a medically sound life. 

Fiscon et al. [32], [31], proposed some supervised algorithms using EEG signals 

to classify AD subjects. This study was done using 109 subjects, of whom 86 were 

suffering from AD or MCI and 23 were HVs. A multi-channel EEG signal was collected 

using 19 electrodes according to the 10–20 system. Kim and Kim [53] worked with 20 

subjects, among whom 10 were AD patients and 10 were HVs. The EEG data were 

collected for 1 minute for each subject having 32 electrodes according to the 10-20 

system, and the sampling rate was 500 Hz. All the subjects were in a resting state with 

their eyes open. In [96], authors collected 144 subjects EEG data from two different 

sources, and among them, 102 were HVs and 42 were AD patients. This study tried to 

prove that only three electrodes are enough to detect AD subjects. 

Subjects from three different nationalities—England, Italy, and Romania—were 

used in [5]. A total of 41 British citizens, among them 17 AD patients and 24 HVs, 10 

Italian nations, among them 5 AD subjects and 5 HVs, and 11 Romanian citizens, among 
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them 8 AD patients and 3 HVs, were engaged in the EEG data recordings. A total of 169 

patients’ (58 MCI subjects, 49 AD subjects, 22 subjective cognitive impairment (SCI) 

subjects, and 40 other pathology subjects) EEG data that were collected from 2009 to 

2013 in Charles-Foix Hospital, France, was used to detect AD in a differential framework 

[42]. These data were collected in a relaxed state with both eyes closed, and the sampling 

frequency was 256 Hz. Along with the international 10-20 system, 11 additional 

electrodes were used. 

In [16], transcranial magnetic stimulation (TMS)-based EEG recorded data from 

26 right-handed AD patients was used. Among all 26 subjects, 20 patients participated in 

the Face Name Association Memory Task (FNAT). The EEG data were processed at a 

sampling rate of 5000 Hz. 37 right-handed AD patients and 37 MCI patients participated 

in [13]. Though the AD subjects were prescribed cholinesterase inhibitors (ChEis) at 20 

mg/day and a dose of antidepressants (citalopram) at 30 mg/day, the MCI subjects were 

not following any clinical healing. EEG data were collected under the 10-20 system with 

a sampling frequency of 1024 Hz. A comparison of F8 and O2 amplitudes of a MCI and 

an AD subject of this study is shown in Fig. 2.2. Xiaojun and Haibo [18] studied 12 

subjects, of which 4 were HVs, 4 were MCI patients, and 4 were AD patients. The EEG 

data were collected from 64 channel electrodes with a sampling rate of 500 Hz, and the 

duration was 60 seconds for each participant. 

 

Fig. 2.2: EEG signal’s sample at three different positions: frontal (F8), parietal (Pz), and 

occipital lobes (O2) of (a) an MCI and (b) an AD patient [13]. 
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With a sampling rate of 256 Hz and a total of 38 subjects in [73]. There were eleven HVs, 

eight MCI subjects, and nineteen AD patients in the dataset. 5 AD patients who are also 

suffering from epilepsy were chosen to have their EEG data collected for 24 hours with 

a 30-minute routine EEG epoch [41]. After discarding the other events of the day, the 

sharing of discards and their relevance to sleep time were measured. 76 subjects (27 HVs 

and 49 AD subjects) participated in [33], where the authors tried to characterize AD using 

amplitude modulation analysis. The collected EEG data had twenty channels, and the 

sampling rate was 200 Hz. Chiang and Pao [24] proposed a fuzzy probability model to 

detect AD at an early stage. This study was done using the EEG data of 22 HVs and one 

AD patient collected at a sampling frequency of 512 Hz. 34 subjects (17 HVs and 17 AD 

subjects) participated in [2], where the EEG data were collected with a 128-channel 

geodesic sensor for 180–240 seconds. The sample rate of the EEG signal was 500 Hz 

using a 12-bit Analogue to Digital Converter (ADC). 

2.3.4 Schizophrenia 

Schizophrenia is a neuropsychiatric disorder that affects one percent of the world's 

population [11]. According to the WHO [92], there are more than 21 million people who 

are suffering from schizophrenia [98]. It is one of the four leading causes of childhood 

disability in developed countries. SZ prefixes influence the subjects by manifesting as 

auditory hallucinations, paranoid or bizarre delusions, and/or disorganized speech and 

thinking in the context of significant social and/or occupational dysfunction [46]. A 

limited number of studies were done to detect schizophrenia (SZ) compared to AD. Jalili 

and Knyazeva [46] reported a graph-based theoretical measure of neuro-functional 

networks. A total of 28 subjects (14 SZ subjects and 15 HVs) participated in this study 

by recording EEG data in the resting state with their eyes closed for 3–4 minutes with the 

help of the Geodesic Sensor Net. 13 SZ subjects and 18 HVS EEG data were used to 

classify SZ patients, as proposed in [20]. For each subject, the EEG recording lasted for 

two minutes while seated upright and keeping eyes open. Jahmunah et al. [45] collected 

a 19-channel EEG dataset from 14 SZ patients and 14 HVs. 19 electrodes, as stated by 

the international 10-20 system, were used, and the experiment lasted for fifteen minutes 

with a sampling frequency rate of 250 Hz. A visual disparity between a HV and a SZ 

subject’s EEG signal after filtering the raw signal from noise appeared in Fig. 2.3. 

Another recent study [67] was done using a public dataset of 45 schizophrenia patients 

and 39 HVs. With a sampling frequency of 128 Hz and a duration of 60 seconds for each 
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participant, the EEG data of 16 channels was collected. Li et al. [56] reported a resting 

and P300 task-based EEG dataset of 23 SZ subjects and 25 HVs. EEG data were recorded 

using a symptoms amplifier and 16 channel electrodes with a sampling frequency rate of 

1000 Hz. A total of 20 subjects (11 SZ patients and 9 HV) were included in a recent study 

[28]. The EEG data in this study is different from other studies because it was recorded 

while the subjects were freely viewing natural scenes. 32 scalp channels were placed to 

record the EEG data; another 6 channels were arranged around the eyes to save the 

electro-oculogram (EOG), and the sampling frequency rate was 2048 Hz. In another study 

with 60 schizophrenia patients and 76 HVs, authors tried to find the difference in the 

gamma activity among the subjects [17]. A 256-channel Biosemi Active Two method 

was implemented to store the EEG data at a frequency rate of 512 Hz. 14 paranoid SZ 

patients and 14 control subjects participated in a multivariate iterative filtering (MIF)-

based SZ detection study [25]. EEG was recorded for 15 minutes on 19 channels, and the 

electrodes were placed according to the 10-20 international EEG electrode placement 

standard. Siuly et al. [85] used the empirical mode decomposition (EMD) method for SZ 

identification from EEG signals. The data for this study was gathered from 81 people, 

including 49 SZ sufferers and 32 HVs. Collected EEG signals were decomposed into 

intrinsic mode functions (IMFs) by EMD. An empirical wavelet transformation-based SZ 

identification framework was proposed in [51]. This study contained 22 HVs and 26 SZ 

subjects. 

 

Fig. 2.3: EEG signals of (a) HV and (b) schizophrenia after pre-processing [45]. 
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2.3.5 Parkinson 

Parkinson's disease is a neurodegenerative disorder characterised by the death of the 

neurones. According to the WHO, 10 million people have died because of PD [97]. At 

the time of birth, the human brain contains the maximum number of brain cells, which 

are also known as neurones [87]. Apart from other cells of the human body, neurones 

cannot get fixed automatically [78]. These neurones produce dopamine, a chemical 

substance necessary for controlling body movement. Therefore, the death of nerve cells 

stops them from producing dopamine, and that is the main cause leading to PD. The 

principal prefixes of PD are damaged fine motor skills, unsteady posture, tremor, slow 

movements, loss of balance, and stiffness [40]. Very few studies were done to detect 

Parkinson's disease using EEG signals. 

A convolutional neural network (CNN) model was used with 20 PD subjects and 

20 HVs EEG data in [61]. For each data point, the EEG recording lasted for 5 minutes in 

the resting state with the eyes closed. The sampling frequency was 128 Hz, and an 

emotive EPOC neuroheadset having fourteen channels was utilized. Raw EEG data of a 

HV and a PD patient are provided for comparison in Fig. 2.4. Using the same dataset, 

Yuvaraj, Acharaya, and Hagiwara [101] reported different classifier performances. 

Genetic Algorithm (GA) and Binary Particle Swarm Optimization (BPSO) were used to 

choose highly valued features in a ML-based PD study [64]. This study collected data 

from 252 subjects, including 188 PD patients and 64 HVs. Three repetitions of the 

sustained phonation of the vowel ‘a' were used to target each of the characteristics of PD 

throughout the data gathering process. The frequency of the microphone used to gather 

the data was 44.1 kHz. 

 

Fig. 2.4: A Sample EEG signals of (a) HV and (b) PD subject [61]. 
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2.4 Public EEG Dataset Repositories 

Table 2.1, gives some publicly available EEG dataset web link of these neuro diseases. 

Table 2.1: Publicly available EEG dataset sources. 

Neuro 

diseases 

Neuro diseases 

MCI EEG Signals from Normal and MCI (Mild Cognitive Impairment) 

Cases. [Online]. 

Available: http://ww25.biosigdata.com/?download=eegsignals-from-

normal-and-mci-cases#comment-2909 

AD https://doi.org/10.17862/cranfield.rd.7673702 

Schizophren

ia 

https://repod.icm.edu.pl/dataset.xhtml?persistentId=doi:10.18150/repo

d.0107441 

Schizophren

ia 

https://www.kaggle.com/broach/button-tone-sz 

Parkinson https://www.frontiersin.org/articles/10.3389/fninf.2017.00067/full 

 

2.5 Previous Efforts 

All the feature extraction methods that were used in the existing research are described 

here in this section. Data source, collection techniques, and preconditions have been 

discussed in the earlier section. Almost every study that I have analyzed has two parts to 

its methodology. The first part talks about EEG data processing and feature extraction, 

and the second part discusses the classification technique. I have put all the reference 

methods into the two subsections and described them accordingly. 

2.5.1 EEG Data Processing and Feature Extraction 

After collecting the EEG data, it is necessary to check for noise and outliers. The raw 

EEG data often contains artifacts like eye blinking, sinusoidal noises produced by 

alternating current (AC) movement, electro-oculograms, electrocardiograms, etc. 

Therefore, it is a must to preprocess the raw EEG data before feature extraction. A 

Butterworth filter is commonly used to discard higher-frequency signals. It is a low-pass 

http://ww25.biosigdata.com/?download=eegsignals-from-normal-and-mci-cases#comment-2909
http://ww25.biosigdata.com/?download=eegsignals-from-normal-and-mci-cases#comment-2909
https://doi.org/10.17862/cranfield.rd.7673702
https://repod.icm.edu.pl/dataset.xhtml?persistentId=doi:10.18150/repod.0107441
https://repod.icm.edu.pl/dataset.xhtml?persistentId=doi:10.18150/repod.0107441
https://www.kaggle.com/broach/button-tone-sz
https://www.frontiersin.org/articles/10.3389/fninf.2017.00067/full
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filter used in [29], [42], [45], [28], and [17]. A 6th-order Butterworth filter was 

implemented to filter frequencies from 1 to 49 [61], [101]. 

Independent Component Analysis (ICA) is a statistical algorithm that finds out 

the secret attributes and factors from a group of arbitrary signals or variables. It is mostly 

implemented in signal processing to reveal the important factors of signals. Artefacts like 

eye movements, electromyograms, electro-oculograms, and electrocardiograms were 

discarded using ICA [75], [58], [16], and [17]. Poil et al. [121] used the JADE ICA 

algorithm to break the EEG signals into 23 components. CleanLine is an EEGLAB plugin 

that is often employed to clean the signal. Notch (Butterworth) is a bandstop filter used 

for removing sinusoidal signals. A Wiener-type filtering technique named the SOUND 

algorithm is used in [16] to discard other noises from the EEG signal after applying ICA. 

2.5.1.1 Time Domain Algorithms 

To measure the correlation of brain capabilities at each electrode position, the authors of 

[96] calculated the Triple Correlation Value, which is measured by multiplying the three 

signals EVA(t), EVB(t), and EVC(t), using time shifts of τ1 and τ2 with regard to the 

signals, and finally integrating over time. The calculation of the triple correlation value is 

given in (1), and the three electrodes are shown in Fig. 2.5. 

             𝑆𝑖(𝜏1, 𝜏2) =  
1

𝑁
∫ |𝐸𝑉𝐴(𝑡) ∗ 𝐸𝑉𝐵(𝑡 − 𝜏1) ∗ 𝐸𝑉𝐶(𝑡 − 𝜏2)|𝑑𝑡

𝑖+1

𝑖
                         (1) 

 

Fig. 2.5: Electrode sets located at P3, P4, and Oz in the International 10-20 EEG System [96]. 
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The triple correlation value is only measured when all three signals have the same sign. 

Therefore, it can limit the rotation plane. The total number of times when all three 

electrodes have the same value is represented by N. This method was used to differentiate 

AD patients from HVs when the triple correlation value of all the subjects’ distribution 

was plotted with respect to the time axis. 

To find the similarity between two signals, the cross correlation value is calculated 

and used in [5]. It returns a sequence of vectors with a value range of -1 to +1. The cross-

relation value is equal to 1 if both signals are identical to each other; otherwise, it returns 

0. 

To measure the complexity for early detecting AD, epoch-based entropy is 

measured [42]. Using the Hidden Markov Model (HMM) [72], the epoch-based entropy 

is calculated on piecewise stationary epochs of the EEG signal. It estimates the local 

density at epoch level. 

Jalili and Knyazeva [46] worked with the connectivity matrices of the neuron 

networks of the brain. They considered the partial and impartial correlations to find out 

the functional connectivity through both indirect and direct links. The authors measured 

the Pearson correlation coefficient for all feasible couples. 

Source localization is a non-parametric algorithm to present a linear equation 

between EEG calculations and brain networks, which was used in a study [2]. It is a time-

domain calculation to measure the similarity between electrodes at any given time. For N 

number of electrodes, P dipole, and T discrete time samples sources at any given time, 

source localization matrices are measured as follows: 

                              𝑏 =  [
𝑏(𝑟1)

⋮
𝑏(𝑟𝑁)

] = 𝐴 [

𝑥1

⋮
𝑥𝑝

] = 𝐴𝑥                                                       (2) 

𝑏(𝑡) =  [
𝑏(𝑟1, 1) ⋯ 𝑏(𝑟1, 𝑇)

⋮ ⋱ ⋮
𝑏(𝑟𝑁, 1) ⋯ 𝑏(𝑟𝑁, 𝑇)

] = 𝐴 [

𝑏(𝑥1, 1) ⋯ 𝑏(𝑥1, 𝑇)
⋮ ⋱ ⋮

𝑏(𝑥𝑝, 1) ⋯ 𝑏(𝑥𝑝, 𝑇)
]                        (3) 

In (2), b represents the EEG measurements vector (N1),... exhibits the location of each 

electrode, and x shows the cortical dipole moments vector (P1). The current flow for a 

given electrode through each dipole position is indicated by each row of the transfer 
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matrix A (NP). In (3), b(t) (NT) is the EEG measurement matrix, and x(t) (PT) is the 

dipole moments matrix at different time frames. 

Boostani, Sadatnezhad, and Sabeti [20] reported auto-regressive (AR) 

coefficients, which is a time-domain algorithm used for signal processing. Each EEG 

sample is treated as an estimation of earlier weighted samples in the AR model. Siuly et 

al. [84] used the AR model along with permutation entropy (PE) for feature extractions. 

The authors calculated the AR coefficients by using the Burg method [88]. It applies an 

nth-order AR model to the input signal by reducing the backwards and forwards 

estimation errors. Therefore, setting the order of the model is an important decision here. 

The Finite Sample Criteria (FSC) method was performed to find out the best order for 

AR. A vector autoregressive (VAR) model was used to generate a CNN in [67]. To 

measure the connectivity between different EEG channels, this VAR model was used. 

VAR coefficients estimators can be calculated using the least-squares (LS) method. 

From the filtered EEG data, only 14 optimal features were chosen among 157 non-

linear features using a Student’s t-test [103] in a study [45]. Student’s t-test is a statistical 

method to verify a hypothesis from the mean of a small sample calculated from a normally 

distributed dataset. It is used when the standard deviation of the dataset is unknown. The 

most discriminant 30 features for a SZ study [25] are selected for classification, and they 

are ranked using the student t-test. 

Phase Locking Value (PLV) and coherence are useful tools to build brain 

networks. PLV can be used to measure changes in the large-range synchronization of 

brain activity from EEG signals. Li et al. [56] worked with PLV and P300, two time-

domain techniques, and measured the phase synchronization among each pair of 

electrodes. The authors defined the PLV value range as 0 to 1. A high PLV value means 

strong phase synchronization. On the other hand, P300 is an endogenous potential and 

part of the event-related potential (ERP), which helps in finalizing decisions. While 

recording the EEG signals, P300 surfaces as a positive drift in the supplied voltage with 

an evanescence of 250 ms to 500 ms. After filtering the raw EEG data, all the P300 trails 

for each subject were averaged in the same study. From the trial-averaged value, C3, C4, 

P3, and P4’s P300 amplitudes were set as their utmost peaks from 300 ms to 500 ms. 

Then, SZ and HVs were distinguished by the differences in P300 amplitudes using an 

independent t-test. 
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ERP computes the response of the brain when a sensory, motor, or cognitive event 

occurs in front of the subject. After applying the Butterworth filter and ICA to the 

recorded EEG data, the authors measured the ERP with all possible trials for each 

electrode [52], [28]. For every image group, the authors [28] averaged across frontal 

electrodes (Fz, F3, F4, AF3, and AF4), central electrodes (Cz, C3, and C4), parietal 

electrodes (Pz, P3, P4, CP1, and CP2), and occipital electrodes (Oz, O1, O2, PO3, and 

PO4). From each of these four average ERPs, the average between 400 ms and 600 ms 

was used as a feature for classification. In this same study, authors used the Wilcoxon 

Rank Sum (WRS), which is a non-parametric method to check the mean ERP results. 

WRS is often used because it allows two independent groups to have two different sample 

sizes. WRS was also used in another study [2] for statistical evolution. 

2.5.1.2 Frequency Domain Algorithms 

Khatun and Morshed [52] extracted 590 features using ERP and used the top 25 features 

for classification. While extracting the features, ERP and Candidate Feature Vector 

(CFV) were used. CFV is a nonlinear algorithm to separate features from EEG data and 

has been described in the nonlinear method section. The authors used relative power (RP) 

along with CFV in the EEG bands for detecting AD, MCI, and HVs. RP measures the 

relationship between two passing frequency bands. In [52], [20] all the four bands [delta 

(0-4Hz), theta (4-7Hz), alpha (8-12Hz), and beta (12-30Hz)] were used, and in [53], only 

three bands [theta (4-7Hz), alpha (8-12Hz), and beta (12-30Hz)] were used to extract 

features. The power.m function of MATLAB was used, and 64 features were extracted in 

the study [52]. By normalizing each band power by the total power of 4–30 Hz, three RP 

values were computed, and 96 relative power features were used for each EEG trial in the 

study [53]. 

The cross-frequency connectivity technique was reported in [58], [33]. All the 

participating subjects had to interact with the questions and descriptions asked by the 

authors [58], and the alterations in the scalp functionality of the MCI and HV participants 

were captured in the EEG recordings. Cross-frequency coupling between θ and α / β were 

noticed between groups and within groups. 

The Hilbert Transform (HT) converts real-valued signals to analytic signals and 

is reported in [70], [5], [33], and [56]. 13 biomarkers were extracted using HT in [70]. 

The temporal envelope of each of the 5 bands of the EEG signals is calculated using HT 
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[33]. Using the HT, which transforms analytic signals, phase synchronisation was 

detected in [5]. 

Linear coherence of signals can be measured using magnitude squared coherence 

and reported in [5]. The square of the modulus of the average cross-power spectral density 

(PSD) normalized to the product of the average auto-PSDs is known as the magnitude 

squared coherence. PSD computes the average power allotted as a frequency function and 

is also used in [24]. 

Linear coherence between two signals x and y is measured using (4), where 

𝐶𝑥𝑦(𝑓) is defined as the coherence between two channels x and y at a given time, 𝐶𝑥𝑦(𝑓) 

is the cross PSD, 𝑃𝑥𝑥(𝑓) and 𝑃𝑥𝑦(𝑓) are the two PSD estimations of x and y channels, 

respectively. 

                                 𝐶𝑥𝑦(𝑓) =  
|𝑃𝑥𝑦(𝑓)|

𝑃𝑥𝑥(𝑓)𝑃𝑥𝑦(𝑓)
                                                                (4) 

Phang et al. [67] reported Partial Directed Coherence (PDC), which measures the direct 

dependencies between frequency channels in a brain network. It also uses the Furrier 

Transformation (FT) and VAR coefficients described in the time domain algorithm. The 

squared PDC has a normalized value between 0 and 1, which determines the ratio between 

the channels outflow of data. 

After applying fast Furrier transformation (FFT), Dominant Frequency (DF) was 

measured for each epoch [14]. DF in α range was found available in 30% of the epoch, 

DF variability above 3.5 Hz in 68% of the epochs and DF in θ is above 40% of the epochs. 

2.5.1.3 Time – Frequency Domain Algorithms 

Wavelet Transform (WT) has been used in [75], [100], and [42] after cleaning the raw 

EEG data from artifacts/noises. Some of the noises have various time-frequency domain 

properties. Therefore, WT is a powerful time-frequency tool to discard those multi-

domain noises. WT along with ICA wavelet noise removal was done in [75], and using 

the stationary wavelet transform (SWT), recorded EEG signals were decomposed into 

coefficients with various frequency ranges, and frequencies that were bigger or smaller 

compared to the range were discarded in [100]. Power line interference and baseline drift 

were removed using SWT and segmented in [84]. Then, segmented data were compressed 
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using Piecewise Aggregate Approximation (PAA). Morlet wavelets were used to 

calculate wavelet time-frequency in [42]. 

The MUSIC-Empirical Wavelet Transformation (EWT) algorithm was proposed 

by Amezquita-Sanchez and Adeli [12] and used in a study [13] to detect AD. It is an 

adaptive WT that performs well in buggy signals with non-stationary and non-linear 

characteristics like the EEG signals. In the mentioned study, initially the MUSIC 

algorithm is implemented to compute the frequencies visible in the investigated EEG 

signals, and then the fitting limitations are set to the visible frequencies that have already 

been analyzed. This leaves the WT filters blank. The extremely non-stationary EEG 

signals are decomposed into modes in a Fourier spectrum using EWT [51]. 

Rodrigues et al. [73] used the discrete wavelet transform (DWT) to have a multi-

resolutional analysis from successive filtering and shorter signal resolution versions. 

Using a scale function and a WT function, the DWT works. The authors achieved signal 

disintegration into multiple frequency bands by continuous high-pass and low-pass 

filtering in the time domain, followed by sub-trialling by a factor of two until the highest 

elevation of disintegration is achieved. In another study [32], DWT was applied to each 

EEG signal for 180 seconds. There were 48 coefficients and 19 electrodes, which 

produced 912 features. 

The mean of all continuous wavelet transform (CWT) coefficients is known as the 

CWT and was reported in the study [29]. Availing a mother wavelet in that fixed 

frequency band over the complete signal duration, CWT is measured. 

The Fourier Transform (FT) is a commonly used algorithm to transform time-

domain EEG signals into frequency-domain signals through non-periodic functionalities. 

A fuzzy logic-based study [24] to detect AD had applied FR to the filtered EEG data 

before assigning fuzzy membership values to the bands. In another study [32], the FFT 

was used for 180 seconds for each channel with 16 Furrier Coefficients, and FFT is 

dependent on the Discrete Furrier Transform (DFT). 304 characteristics were separated 

from the data after implementing FFT in the same work. As the authors of [18] found that 

the most important features lie in the frequency domain, they applied FFT to measure the 

power spectrum of the data. They used FFT for 0.5 s for each channel only in the theta, 

alpha, and beta bands because the oscillatory cortical activity mostly found these bands. 

Aghajani et al. [2] used the dipole approximation algorithm of FFT for frequency 
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analysis. On the other hand, Welch’s algorithm with a 2 second, 75% overlapping window 

of FFT was applied in [17]. γ band was computed in 31–48 Hz by the addition of absolute 

power on frequency bins. After that, authors calculated the Log10 transform with summed 

frequency. FFT was applied on 12 epochs per channel in another study [14]. In [29], the 

features of FFT were set as the mean magnitude of the FFT coefficients in a particular 

frequency band. 

Mazaheri et al. [120] measured the time-frequency representation (TFR) of power 

using moving Hanning tapers for each trial and frequency while maintaining a variable 

time window of 3 rounds. This power oscillatory analysis was done using this TFR. 

The sparse bump model is a time-frequency map that was used in [42]. It has time-

frequency representatives that go on for approximately four time periods and are 

concentrated at a particular frequency. These patterns are the ambassadors of transient 

local synchronization in the neuronal network. 

2.3.1.4 Other Neuromarkers 

ANOVA is a statistical measure to verify the significance of any experiment. It had been 

used in [58] to identify the event-related shifts in the θ and α / β between constraints, in 

[75] to find out the difference between independent groups (MCI, dementia, and HV), in 

[13] to discover the most unique features for differentiating AD subjects from MCI, in 

[41] along with Bonferroni posthoc analysis to analyses the sensitivity of the EEG signal’s 

epoch, and in [33] to differentiate normally distributed features across the three groups 

(MCI, AD, and HV) at different locations on the scalp. 

Reference Electrode Standardization Technique (REST), an offline band pass 

filter, was used in [56]. It has a duration of 1 s of EEG data segmenting [-200 ms, 0 ms] 

for baseline emendation and other artifacts. 

Kashefpoor, Barekatain, and Rabbani [50] reported a correlation-based process 

for feature extraction. They tested channels and features individually, zone correlation-

based process for feature extraction. They tested channels and features individually, zone-

group-mean, and zone-grouped to select the best discriminatory feature. 

The Candidate Feature Vector (CFV) in [52] included features that were distinct 

by ERP. The highest amplitudes and their corresponding latencies, as well as the average 

amplitudes of the interval holding the distinguished points, were also added to the CFV. 
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CFV performs well in isolating groups in the tests, implying evoked responses. 80 feature 

points were selected from the CFV. 

For analyzing the nonlinear properties of the EEG signal, higher order spectra 

(HOS) were used in [101]. HOS is a spectral portrayal of higher-order statistics. Because 

of the difference in gaussianity and levels of nonlinearity in the time domain, HOS can 

hold the information. A third-order spectrum named bispectrum was applied in this work. 

Bispectrum is the easiest to calculate and most reachable of HOS. 

For measuring the orderliness and self-similarity of any signal, the Fractal 

Dimension (FD) was used in [13], [20]. FD works with the entropy of a signal, and this 

entropy holds the information of that signal. In both studies, three algorithms—the 

Higuchi method, Katz method, and Petrosian method—were used to calculate the FD. 

The Hurst Exponent (HE) is another approach to measuring the similarities 

available in a time-domain signal like the FD, mentioning the order of persistence 

between the signal series. HE has a value between 0 and 1, which means it works on 

scaling-law statistics. When the HE value is 0.5, it means it is a random signal. If the HE 

value is greater than [92] 0.5 or less than [92] 0.5, it means the measured signal has low 

or high self-similarities, respectively. In [13], HE was used to separate the MCI patients 

from the AD patients. 

2.5.2 Classification Methods to Detect Neuro Diseases 

Classification is a way to identify the category or class of a new observation based on a 

training set of data that contains the characteristics. Classification methods are being 

applied to almost every research problem. ML algorithms are an application of artificial 

intelligence that enable the model to learn and detect automatically. ML algorithms are 

often chosen and perform well when it comes to supervised learning. 

K-nearest neighbor (KNN) is a well-known classical ML algorithm to classify 

unknown subjects and is used in [65], [29], [66], [100], [13], and [45]. The default 10-

fold cross-validation procedure was implemented, and training was done continuously 

with the same data for 50 iterations [29]. To increase the performance and reduce the 

fluctuation, they evaluated and averaged the 50 trained models. The collected EEG data 

were separated into N folders, and among them, N-1 folders were used for training the 

models. The rest of the data was used for testing, and this process continued for N times. 
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                                  𝐿𝑜𝑠𝑠 =  
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                         (5) 

                                    𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 − 𝐿                                                             (6) 

                                 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                           (7) 

                                  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                         (8) 

Loss, accuracy, sensitivity, and specificity are calculated using (5), (6), (7), and (8), 

respectively, where TP means true positive, FP means false positive, TN means true 

negative, and FN means false negative. This is how the authors measured the performance 

of the classification model in [29], [100]. KNN was implemented with other classification 

algorithms just to compare the performance in [100], [45]. Fuzzy logic was used along 

with KNN in [101], [50]. The Takagi-Sugeno neuro-fuzzy (NF) inference system was 

applied, which has the IF-THEN rules inside the model for universal approximation in 

[50]. Interpretability and accuracy are the two contradictory requirements in fuzzy 

modelling. Linguistic fuzzy modelling looks after the interpretability, and the Takagi-

Sugeno model takes care of the accuracy. Features were used as the input of the NF 

system, and their corresponding values were the output, where MCI = 1 and HV = 2. In 

the study, two-thirds of the data were used to train the NF, and the outputs were used to 

model the KNN classifier [50]. Fuzzy K-Nearest Neighbor (FKNN) was implemented in 

[101]. Fuzzy membership values were computed based on the Euclidean distance. The 

fuzzy strength parameter was also calculated to find out the contribution of each neighbor 

based on the distance. The authors found the best result when the strength parameter was 

set to 1.24 and k = 3. 

Decision Tree (DT) is a decision-aided classifier that has tree-type models and 

their feasible effects. DT is a flowchart-type structure. I have found DT has been 

implemented in [101], [100], [32], [13], [24], and [45]. Extracted features were used to 

build the tree that had the rules to detect the subjects into two labels, and the performance 

was measured by the Gini index in [101]. The C4.5 DT algorithm was used as it has the 

capability to manage noisy datasets [32], [15]. The quality of the model was measured 

using the leave-one-out cross-validation method. DT was utilised for comparing with 

other classifiers in [100], [13], [24], and [45]. Siuly et al. [85] introduced the ensemble 

bagged tree (EBT) for a SZ study, where it outperformed other comparing classifiers with 

an IMF value of 2. 
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Extreme Learning Machine (ELM) is a relatively recent ML approach that can 

achieve the global optimal solution while providing higher generalization performance at 

a significantly quicker learning pace. ELM was first designed for single-hidden-layer 

feed-forwards networks (SLFNs), then expanded to include "generalized" SLFNs. Siuly 

et al. [84] used 50 neurons in the hidden layers of their ELM architecture. ‘hardlim’ was 

set as the activation function. 

Support Vector Machine (SVM) is a supervised learning model widely used for 

regression and classification. It is often used for detecting neurodegenerative disorders 

and is suitable for use when the data size is small or medium. To detect the MCI at an 

early stage, this binary classifier was chosen in [75], [52], [100], [58], and [24]. It was 

picked to compare with a fuzzy logic-based method in [24]. As there were fewer 

overlapping features between the HVs, dementia, and MCI groups, a hierarchy-based 

SVM classifier was chosen using the Gaussian kernel [75]. The model consisted of three 

binary class labels: control vs. dementia, control vs. MCI, and MCI vs. dementia. Khare 

et al. [51] used a similar Gaussian kernel-based SVM classifier for their SZ study. The 

top 25 features chosen by the random forest algorithm were implemented to develop the 

SVM classifier [52]. Polynomial and radial-based kernels were used with the cost, C = 

{10-2, 10-1, 1, 101, 102} in the same study. Yin et al. [100] developed a 3-D evaluation 

method to pick features, and selected features were used to design the SVM classifier. To 

achieve the capacity to classify in the presence of a polynomial kernel function having an 

order of 2, the SVM was used. Another Gaussian kernel-based study where radial basis 

functions (SVMrbf) were used to train the model to differentiate MCI from AD convertors 

from the two classes of MCI stable and HVs [58] This was performed on each related 

variable in their dataset and also on amalgamations of those variables. Liner inseparability 

was the main concern of the authors (SVMrbf). Using the polynomial kernel functions of 

orders 2 and 3, the nonlinear signals, which were difficult to separate, were transformed 

into a higher-dimensional feature space in a PD detection study [101]. SVM performed 

better [92] than other used classifiers in this same study when the smoothing parameter 

(σ) had a value of 0.284. The radial basis function and linear kernels were also part of this 

experiment. Houmani et al. [42] worked with multi-class probabilistic SVM classifiers 

for AD detection, having four different groups of subjects: SCI subjects, AD subjects, 

MCI subjects, and subjects with other pathologies. To overcome the unbalanced dataset 

issue and also differentiate between each pair of classes, they used the polynomial SVM 
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classifier. Using Platt’s estimation method [69], results coming from the SVM classifier 

were mapped to posterior probabilities. Another AD detection study using a supervised 

linear SVM classifier was used to build an optimal hyperplane, making a decision surface 

that increased the margin of differentiation between the nearest data points associated 

with varied classes [2]. Any possible bias was erased by using the leave-one-out cross-

validation (LOOCV) method to have an unfailing estimate of the performance of the 

algorithm. A SZ study used SVM and fuzzy support vector machine (FSVM) classifiers 

to compare with the proposed method [20]. When the input vectors go through the kernel 

functions (SVMrbf), their dimensions are enlarged, and a hyperplane is coached to detect 

the classes. The instances that are positioned on the margin are considered by the SVM 

when adjusting its hyperplane. It is one of the drawbacks of SVM reported in this study. 

Even the FSVM could not solve the margin solidity problem as the amount of noisy 

instances in the EEG signal features was so large. An SVM classifier with radial basis 

function (SVMrbf) was picked and applied to detect SZs and HVs in [45]. The SVM 

classifier, which has multiple polynomial kernels, including 1st-order (SVM1), 2nd-order 

(SVM2), and 3rd-order (SVM3), was also used to perform the classification. Again, SVM 

was trained to compare with the proposed DL method in another SZ study [67]. Time-

domain Vector Autoregressive (VAR) features performed better [92] than the frequency-

domain Partial Directed Coherence (PDC) features in achieving high accuracy. With the 

radial basis kernel, SVM was coached using the training features in another SZ work [56]. 

While training the SVM, a grid search technique was used to find the optimised 

parameters. Finally, based on the extracted EEG features (i.e., the spatial pattern of the 

network (SPN), network properties, and P300 amplitudes), the trained SVM classifier 

was used to distinguish the SZs and HVs. Das and Pachori [25] proposed a MIF-based 

SZ study where SVM with a cubic kernel was used.  

Logistic regression (LR) is a statistical algorithm often used in classification 

problems that uses a logistic function to model a binary dependent variable. Khatun et al. 

[52] used the "liblinear" package of Weka 3.7 to perform LR for MCI detection. A LR 

grid search was implemented where the cost was 10-2, 10-1, 1, 101, and 102. Another 

MCI study used LR for binary classification [70]. The binary classes, either AD 

transformers (i) or MCI durables (ii), are regressed with linear integration of biomarkers. 

The probability was set to 50% as the classification threshold; if the number of subjects 

was greater than 92, they belonged to the AD converter class; otherwise, they belonged 
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to the MCI stable class. A SZ study used the random regression hierarchical linear model 

(HLM), where absolute power was the dependent variable [17]. Age, education level, and 

gender were utilized as covariates to adjust for potential confounding. A channel-wise 

comparison between SZ subjects and HVs was performed. Additional statistical analysis 

was done with gamma power changes in the subjects to find out the connection between 

psychopathological and clinical variables. Finally, to find out which frequencies are 

dominant in changes in SZ observed in the gamma range, another subsidiary analysis was 

done. 

Linear discriminant analysis (LDA) is an algorithm commonly used in pattern 

recognition or ML. It perceives a linear combination of the inputted features that 

differentiates two or more classes. It is one of the basic classifiers that creates a single 

hyperplane in the data space. LDA was trained to classify MCI to AD converters from 

the two classes of MCI stables and HVs in an MCI study [58]. It was applied to each 

relevant variable and also to the combinations of those variables. Apart from the standard 

LDA, a boosted version of direct LDA (BDLDA) was proposed in a SZ study to improve 

the accuracy [20]. BDLDA is composed of the Fisher linear discriminant analysis 

(FLDA) and the Adaboost. To get a direction in the feature space along which the distance 

of the relative to the in class scatter prolongs the highest and, as a result, maximizes the 

class differentiability, authors used the FLDA. Then, by using the Adaboost, they 

sequentially employed a base classifier on a weighted version of the training sample set. 

To increase the within-class differentiability, a linear mapping was required and a 

pairwise class discriminant distribution [57] was used. To identify a matching class 

according to the set of findings, LDA was used in another SZ detection [45]. It did not 

perform well as it was tested with only two discriminative features. But the computation 

time was very fast for the LDA. Li et al. [56] used the extracted features from the different 

brain states (rest or work) to train the LDA. Then the model was tested based on P300 

amplitudes, SPN features, and network properties to separate the SZ subjects from the 

HVs. In another study [28], three different LDAs were used to detect SZ: LDA, Rule-

based LDA, and a combination of the posterior probability of two LDAs. Using the ERP 

occipital imparity as an instrument to separate the SZs from the HVs, the LDA was trained 

with the mean power from each patient as the input feature. While testing the same 

classifier based on the mean amplitude in each group, they called it a rule-based classifier. 

They also utilized the mean power from the occipital electrodes of each patient as the 
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input feature of the classifier. By adding three new rules and combining the two 

classifiers, the third LDA was created. To interpret the subject’s label, the posterior 

probabilities were compared. 

Naïve Bayes (NB) is a probabilistic ML algorithm that works on the Bayes 

theorem and has the belief that the attributes are independent and random. Ranked 

attributes were inputted to the NB classifier to perform an automated PD detection [101]. 

But it was outperformed by SVM. NB was also used for AD detection to compare its 

performance with other used classifiers [32], [13], and [24]. But it did not perform well 

compared with other commonly used classifiers. 

DL-based methods [185], a subfield of ML, have been used in various 

investigations. DL is inspired by artificial neural networks, which are a type of human 

brain function and structure. A neural network (NN) was implemented to compare with 

the proposed classifier in an AD detection study [24]. CNN is a widely used DL algorithm 

often used for analyzing visual imagery. It is a fully connected network, and it learns 

more as the network gets deeper. Oh et al. [61] proposed a thirteen-layer CNN model to 

detect the PD. Adam optimization [54] with a learning rate of 0.0001 was utilized. The 

architecture used the Relu activation function for all layers and Softmax for the last layer. 

The dropout value was set to 0.5 for the dropout layer. Using the brute force algorithm, 

the kernel size and amount of filters were obtained. For an automated human mood 

detection study [27] using EEG oscillations, five deep CNN models are considered: 

AlexNet, VGG16, ResNet50, SqueezeNet, and MobilNetv2. The AlexNet features with 

Alpha rhythm give greater accuracy scores of 91.07 percent in the Oz channel, according 

to the trial findings. A SZ study was done using a novel multi-domain connectome CNN 

(MDC-CNN) [67]. The proposed model worked using brain network having two parts: 

connectivity feature extraction and the classification based on the CNN. VAR coefficients 

of time-domain, PDC of frequency-domain, and complex network’s (CN) topological 

measures are the various measures of the directed brain network computed in the first 

stage. Second stage started with the extracted connectivity features from the different 

domains using as input to construct the deep CNN classifier. There were two 2D-CNNs 

to store the spatial architecture in the 2-D PDC and VAR connectivity matrices and a 1D-

CNN for the CN computes of the entire brain network. A softmax activation function was 

used in the output layer. 
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Xiaojun and Haibo [18] demonstrated an AD detection algorithm with a multitask 

learning strategy using a discriminative convolutional high-order Boltzmann machine 

(DCssCDBM) with hybrid feature maps. There were two hidden layers: the energy 

function and the softmax activation function. Probabilistic maximum pooling was done 

using dual variables. Based on the Siamese DCssCDBM model with distributed weights, 

multitask learning was done. 

Probabilistic Neural Network (PNN) is one of the feed-forwards architectures that 

has multiple layers and works with an exponential activation function. PNN was used to 

compare with the proposed model in a PD detection study [101]. In a SZ study, PNN was 

implemented but did not perform well [45]. This SZ study used the hidden layer for 

calculating the probability density value and the summing layer for accumulating the 

results. An AD study modified the PNN and used the Enhanced Probabilistic Neural 

Network (EPNN) architecture [13]. After being evaluated by the ANOVA test, most 

discriminative attributes are inputted into the EPNN classifier to distinguish the AD and 

MCI subjects. 

Kim and Kim [53] mentioned a Deep Neural Network (DNN) technique to detect 

AD subjects. There were four hidden layers, and the trial-and-error method was utilized 

to determine the number of nodes in each hidden layer. As the number of nodes in each 

hidden layer affects the learning, they changed the hidden nodes from 5 to 15 for each 

hidden layer. 

A bidirectional long short-term memory (BLSTM) network is proposed for MCI 

detection in [86]. With a total of 164 hidden nodes, the BLSTM layer is built with one 

forwards and one backwards layer of a long short-term memory (LSTM) network. A 

Rectifying Linear Unit (ReLu) Layer is an activation layer that outputs the original input 

if the input is positive and 0 if the input is negative. The following layer is a completely 

connected layer, in which all nodes are linked to each other. The softmax layer restricts 

the function's output to a 0–1 range. The three main component characteristics generated 

from the principal component analysis (PCA) processing of the 16-channel EEG and 

EMG data are fed into the network. An EMG signal-based hand movement recognition 

framework has been proposed in [59]. Logarithmic spectrogram-based graph signal 

(LSGS), AdaBoost k-means (AB-k-means), and an ensemble of feature selection (FS) 

approaches make up the suggested system. 
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Using only three electrode potentials of the EEG data, the authors [96] proposed 

a new method named Deep Neuronal Activity Topography (dNAT) for AD detection. 

They assumed a triangular-shaped pyramid region in the brain network collected by three 

electrodes named P3, Oz, and P4. By exploring the time series of these three electrodes, 

they classified the AD subjects. Fig. 2.5 displays those three electrodes that were used in 

this study. 

Al-Jumeily et al. [5] designed two different approaches to detect AD. One is 

taking the average of the synchrony measures, and the other is principal component 

analysis (PCA). For all frequency bands, they used the synchrony computation technique 

on the time series of each pair of electrodes in two separate regions. And by using the 

PCA, they eliminated redundant features. After that, they used the synchrony measures 

on two pairs of regions. Then the results were compared with the neural synchronization 

of the AD and HVs by the Mann-Whitney U-test. 

Standardized low-resolution brain electromagnetic tomography (sLORETA) 

along with the TMS protocol were introduced in [16] for AD classification. sLORETA 

[63] is a distributed-source imaging algorithm. Standardized neuronal present source 

density allotment compatible with the scalp topography in the cortical grey matter and 

the hippocampus of the template of the Montreal Neurological Institute 152 (MNI-152) 

that comprises 6239 grey matter voxels at 5-mm spatial resolution is calculated by 

sLORETA [34]. sLORETA calculated the underlying sources under the hypothesis that 

the neighboring voxels should have maximally alike electrical activity; the outcome was 

a blurred, widespread result in which the voxel with the maximum present density is 

identified as the middle of the source of the signal. 

Rodrigues et al. [73] designed a hybrid algorithm using the cepstral analysis of 

EEG DWT multiple band decomposition for early AD detection. After performing the 

DWT decomposition with the EEG data, a cepstral analysis was done using the Cepstrum, 

which is a tool to check the time lags between the frequency bands. The results of the 

cepstral vectors were analyzed with Leven’s test, and normality was checked with the 

Kolmogorov-Smirnov test. The difference between classes was measured by the Kruskal-

Wallis test (p<0.05) as the data distribution was not close to the parametric tests’ 

assumption. IMFs were used to calculate twenty-two statistical features, and using the 

Kruskal-Wallis test, five characteristics were chosen as important characteristics in a SZ 
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study [85]. The Kruskal–Wallis test is used to choose highly discriminating features in 

another SZ study [51]. 

An Epileptiform discharge analysis was demonstrated to detect AD in the sleeping 

state in [41]. The IBM SPSS 20 software was used to perform the statistical analysis. Any 

discharge was reviewed as Epileptiform discharge (ED) (localized spikes and waves; 

spike-and-wave complexes; ≥ 3s rhythmic synchronization) when both raters analyzed it 

so. The daily distribution of the EDs was shown as the index of detection probability and 

defined as the amount of EDs at a certain time of the day divided by the entire number of 

EDs saved during a complete day of recording. 

Fraga et al. [33] applied the amplitude modulation analysis technique (AMAT) 

constructed on the spectra of temporal signal processing for AD classification. After 

performing the HT, amplitude envelopes were measured from the five subbands. A 

secondary frequency decomposition was conducted to pick the temporal dynamics of the 

subbands using the second-order band-pass modulation filters. Then cross-frequency 

modulation interaction was explored by the percentage of modulation energy found at a 

given frequency. There were 5 scenarios, which represent the modulation bands relative 

to the energy. The cross-frequency modulation parameters were measured for each of the 

19 EEG channels. Using the Jarque-Bera test [47], the normality was measured, and the 

critical values were calculated by Monte-Carlo simulation [26]. One-way ANOVA was 

performed for normally distributed features. When the normal distribution was not clear 

for some of the features, the Kruskal-Wallis test was utilized. For correcting the multiple 

comparisons, the Dunn-Sidak post hock test was performed. Pearson correlations were 

performed between two classes (HV and AD). 

A fuzzy and associative Petri net (APN) technique was proposed to design an 

algorithm for AD classification in [24]. The entropy of all the extracted features was 

measured by the fuzzy membership function named minimize entropy principle approach 

(MEPA) [74]. Different associative production rules (ARPs) are associated to create the 

APN model. Each input state’s true preposition was set by the fuzzy membership 

function, and using the certainty function, the true extent of the consequence preposition 

was found. 

Jalili and Knyazeva [46] implemented the graph-theoretic measure to classify SZ 

subjects. The brain's functional networks were constructed first using the connectivity 
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matrices. There were direct and indirect links to represent the functional connectivity. 

The Pearson correlation coefficient was calculated for all possible pairs. Then the network 

was measured using the binary adjacency matrices. Using the small worldness index, 

which measured functional segregation and integration, the modularity index, the 

centrality measure, resiliency measures, and synchronizability measures, the brain graph 

network was built to classify. The statistical difference between the SZ and HVs was 

measured by the Wilcoxon rank sum test. 

In [56], using the extracted inherent spatial pattern network (SPN) features of the 

resting state and P300 task state, it was constructed to differentiate SZ from HVs. EEG 

data analysis started with noise removal, and then P300 trails were trail averaged for each 

patient. Brain networks were built using the PLV. Brain network properties such as 

characteristic path length, global efficiency, and local efficiency clustering coefficient 

were measured. The SPN approach was used to pick the discriminative spatial patterns of 

the brain network. A 16 × 16 adjacency matrix was constructed to compute SPN filters. 

Then the SPN filters were used for training to separate SZ from HV. 

2.6 Comparative Result and Analysis 

EEG is a promising tool to work with neurodegenerative disorders. One can say that it is 

an electrophysiological brain monitoring system [99]. It is not only cheaper [92] than 

other modalities like MEG, PET, MRI, etc. but also easy to deploy. And it has been using 

it for almost 100 years now. Hans Berger [35] recorded the first human EEG recording in 

1924. Since then, EEG has become a trendy tool for biomedical researchers. A 

summarized comparative result and analysis based on recent literature in relation to the 

MCI detection are narrated below: 

Table 2.2 presents some of the recent studies done using the EEG data to detect 

MCI. It has been noticed that not all the studies manage to have a healthy sample size to 

work with. And that is the main reason for choosing ML algorithms for the classification 

task. Traditional ML algorithms (e.g., SVM, KNN, LR, DT, LDA, NB, etc.) perform well, 

but the sample size is not large. Recently proposed ELM architecture has outperformed 

all the methods with 98.78% accuracy. A DL-based BLSTM network achieved high 

accuracy, though. And from the summary, it is observed that SVM has been used in most 

of the studies, and it performed excellently while classifying MCI subjects. DL-based 

approach BLSTM performed well with a small dataset, and ELM exhibits the highest 
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performance in terms of accuracy. Other [92] ELM, KNN, and LR performed well. As 

FFT is not suitable for non-stationary signals like EEG, it had an impact on the accuracy. 

Very few recent studies were conducted to detect dementia. Table 2.3 reports 

those studies where KNN with CWT showed promising results. But failed to produce 

high accuracy when the subjects were more than [92] 70 years old. For the below-70-

year-old group, the same models accuracy decreased, but again, with CWT, it had better 

accuracy. The proposed models were not compared with any of the existing solutions. 

One of the studies did not mention the sample size. 

Most of the state-of-the-art literature was on AD detection using EEG data, which is 

portrayed in Table 2.4. Some studies managed to have a good sample size, but some 

struggled. ML algorithms were mostly used for the classification task, and among them 

SVM and DT performed well. There were some DL approaches that ended up having 

good accuracy as well. New and modified approaches like dNAT, EPNN, sLORETA, 

AMAT, etc. have shown promising results too. But some of the studies did not show any 

performance comparison with their proposed method. 

Table 2.5 provides a summary of some recent works that were conducted to detect 

schizophrenia from the EEG data. I have found that most of these studies struggled to 

have a good sample size. Graph theory has been used for the first time to detect SZ and 

has shown promising accuracy. Again, ML algorithms like SVM, LDA, and DT were 

used and performed well. Altered approaches like Ensemble Bagged Tree (EBT) proved 

their ability to classify SZ subjects quite accurately. A cubic kernel-based SVM achieved 

the highest accuracy of 98.9% with 28 subjects (14 SZ subjects and 14 HVs). These 

algorithms are not suitable when working with a larger dataset or if the dataset contains 

some artifacts. 

Only a few recent studies have used EEG data to automatically classify Parkinson 

patients. Table 2.6 illustrates those studies and their methods and classifiers, along with 

their performances. CNN and SVMrbf did well in classifying PD subjects. In one of these 

studies, SVMrbf achieved 99.62% accuracy, but the sample size was not large. 
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2.7 Challenges in Identifying Brain Disorders 

EEG signals are not periodic and stationary like other regular signals. There are certain 

features and attributes in EEG signals. It has five frequency bands: delta (δ) from 0.1 Hz 

to 4 Hz, theta (θ) from 4 Hz to 8 Hz, alpha (α) from 8 Hz to 12 Hz, beta (β) from 12 Hz 

to 30 Hz, and gamma (γ) > 30 Hz [106]. Possible challenges starting from EEG recording 

to EEG classification are reported below:  

2.7.1 Challenges in EEG Data Recording 

Previous efforts to detect those five neuro-diseases have suffered from poor performance, 

instability, and cost effectiveness in terms of time. It is because I am not working with 

the raw EEG signals properly and tuning the classifier ineffectively. In this effort, I have 

also reported those challenges and tuning points that need to be taken care of attentively 

to ensure an accurate and efficient neuro-disorder detection method. 

Managing medical data for research is quite hard. So, the initial challenge is to 

find a good number of case subjects and HVs. Here, case subjects indicate patients with 

any neuro-diseases that I want to automatically differentiate from HVs. And HVs mean 

humans of any gender without brain diseases. Researchers need to find a sufficient 

number of subjects to conduct the EEG recording sessions. While selecting the subjects, 

there are some exclusion criteria that need to be followed: 

• Head trauma 

• A yesteryear of major psychiatric disorders 

• Substance misuse 

• Any medication that affects cognition 

• Other special requirements based on the case 

• Other significant medical condition 

The Petersen criteria means a neuropsychiatric interview named the Mini-mental State 

Examination (MMSE) has to be performed for each of the subjects. Usually, the MMSE 

score of the HVs stays higher than 26, and less than 26 is the score of the case subjects. 

After all these criteria have been met, ethical approval has to be obtained from each of 

the subjects and the hospital or managing authority. After doing so, an EEG cap can be 

placed on the subject's scalp. Just before that, it has to be determined how many electrodes 

will be used to record the electrical activity of the brain. There are a couple of options, 
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like the international 10-20, 10-10, 10-5, etc. systems. They have 21, 64, and 128 

electrodes set up, respectively. To find the perfect set up according to the work is a big 

challenge in EEG recording. Fig. 2.6 illustrates the positioning of the 21 electrodes (Fp1, 

Fp2, F7, F3, Fz, F4, F8, A1, T3, C3, Cz, C4, T4, A2, T5, P3, Pz, P4, T6, O1, O2) 

according to the international 10-20 system, which is the most widely accepted and used 

set up to conduct EEG recordings. 

 

Fig. 2.6: Electrodes position according to international 10-20 system. 

The next thing to work on before recording is setting the electrodes skin impedance. It is 

preferable to set fewer than 5 kΩ, otherwise, there might be some white noise included in 

the signal. Then, choosing the right sampling frequency is another decision to make. The 

standard sampling frequency for the aforementioned five neuro-disease studies is 128–

256 Hz. Finally, and lastly, the most challenging part of EEG recording is keeping the 

subject conscious, as it may last for 10–30 minutes. 

2.7.2 Challenges in EEG Signal Pre-processing 

This stage is to process the raw data before feeding it into the classifier for classification. 

Raw EEG recordings are frequently contaminated by artifacts or "unwanted signals". 

Some of the most typical reasons for contaminating an EEG recording are outlier 

readings, baseline drift, electrode-pops, power supply fluxes and interference (50 Hz), 

breathing, eye blinking, or muscle electrical activity, among others. If I want to create an 

accurate detection system, I must first remove the noise from the recording. It is reported 

as research problem #1 in this dissertation. Now the initial struggle begins with the noise 

reduction algorithm. There are several methods for removing artifacts that have been 
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proven to work. Buttherworth filtering, Wavelet Transform (WT), Furrier Transform 

(FT), Independent Component Analysis (ICA), Wavelet Enhanced Independent 

Component Analysis (wICA), etc. are some of the common options for noise and 

dimensionality reduction. Fig. 2.7 is a showcase of an MCI subject's (a) raw EEG signal 

and (b) de-noised signal. 

 

Fig. 2.7: EEG recording of an MCI subject (a) raw EEG signal (b) de-noised EEG signal of the 

same MCI subject [105]. 

Based on the classifier and computational resources, the next steps vary. If a traditional 

machine learning (TML) classifier is picked, then it requires features from the data to be 

manually extracted using time, frequency, or time-frequency domain methods. This 

additional feature extraction and selection add computational burden and it is reported as 

research problem #2. Some of the time-domain options for feature extraction include: 

Phase Locking Value (PLV), P300, Event Related Potential (ERP), Auto regressive (AR) 

coefficients, etc. are some of the time-domain options for feature extraction. Candidate 

Feature Vector (CFV), relative power (RP), Hilbert transform (HT), fast Furrier 

transformation (FFT), etc. are widely used frequency domain methods. WT, Music-

Empirical wavelet transformation (EWT), CWT, DWT, etc. are some time-frequency 

domain analysis methods. 

Now, considering the computational power, some extra pre-processing is 

required, like segmentation, compression, or down-sampling. The motivation for these 
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steps is to break down the massive EEG dataset without losing important features. There 

is no well-established method for segmentation. Segmentation is mostly done based on 

epoch size. E.g., from 30 minutes of EEG recording of a subject, I will consider each 

epoch of 5 seconds in duration, which will be a temporal segment. For compression 

Piecewise Aggregate Approximation (PAA) is a widely used method for EEG data. Well-

known average [7] or median filtering [9] can be used for down-sampling. But it is not 

recommended to down-sample the data, as it compromises important features if the 

computational power can handle the data size. After completing this pre-processing stage, 

all the filtered data or features are fed into the classifier. 

2.7.3 Challenges in EEG Classification 

Establishing and improving ML algorithms has taken a lot of time and effort. DL, which 

is the latest branch of ML, has enabled us to work with huge datasets like EEG. Though 

there has been a lot of work done using classical ML classifiers like SVM, KNN, LR, 

NB, DT, LDA, etc. Due to their shallow architecture and linear pattern, these classical 

ML algorithms struggle to deal with huge amounts of EEG data. The shallow TML 

classifiers are regarded as research problem #4 in this dissertation. Additionally, when 

it comes to multi-class classification, TML classifiers failed miserably. Therefore, lack 

of accurate multi-classifier has been noted as research problem #3. And from there, DL 

comes to enhance its support. So far, DL methods have not been explored like classical 

ML methods. Few studies have been done using CNN, recurrent neural network (RNN), 

the Boltzmann machine (BM), and the extreme learning machine (ELM). 

Choosing the right classifier is the very first challenge here. Though it is like a 

"black box" problem. It is hard to predict the performance of the chosen classifier at the 

beginning. And there are many parameters associated with the classifier itself. Some of 

the parameters vary from classifier to classifier. The performance often got affected due 

to inappropriate classifier and its parameter selection. Hence, it is selected as research 

problem #5 in this dissertation. This study reports the common struggles in EEG 

classification. The least complicated task is to divide the dataset for training, testing, and 

validation purposes. 10-fold, 5-fold, and leave-one-out cross-validation (LOOCV) are 

some of the preferred and accepted validation methods to prove the stability of the 

classifiers. 
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2.8 Discussion 

Fine-tuning the parameters of the classifier can increase its performance. But it requires 

a lot of time. To reduce the training time, normalization can be done with the dataset. It 

will reduce the size of the data and provide redundancy over the main memory. Fine 

tuning involves changing the kernel, order, batch size, number of epochs, activation 

function, window size, etc. Another challenge lies in the coding. MATLAB and Python-

based editors like Pytorch, Spider, Pycharm, and Jupyter Notebook are some of the 

commonly used tools for EEG classification. As Python has better support for DL, most 

recent studies have been done in a Python environment. 

EEG analysis has drawn the attention of many researchers for neuro-disease 

detection. Multiple EEG classification frameworks have been demonstrated in [104], 

[105], and [107]. All the steps discussed in this study have taken place inside [104], [105], 

and [107]. But there are certain things that need to be taken care of carefully to ensure a 

quality detection mechanism. It all starts with the EEG data recording. Arranging a 

sufficient number of subjects for the study is one of the big challenges here. Certain 

exclusion criteria are there to eliminate illegitimate subjects from the study. As the EEG 

recording goes on for a long time, keeping the selected subjects stable and quiet for a long 

time is another challenge. 

After EEG signal recording, the artifacts have to be removed from the signal for 

further processing. Removing these noises with a proper noise filter is a hard task. Further 

processing involves feature extraction, segmentation, compression, etc. If a DL-based 

classifier is chosen, then just after de-noising, the data is ready to be fed into the classifier. 

Otherwise, features have to be manually extracted using some time- or frequency-domain 

algorithms. Selecting the right feature extraction algorithm is challenging, and the quality 

of the extracted features mostly depends on the quality of the data after de-noising. 

Segmentation and compression are done to reduce the computational overhead. 

This effort also explores recent state-of-the-art literature that was done using EEG 

signal data to detect neurodegenerative disorders. The elementary aim of this work is to 

review the recent studies that were designed for predicting or detecting MCI, dementia, 

AD, SZ, and PD. It is found that most of the studies tussled to have a good sample size 

for their work, as I know it is not easy to acquire medical data for research. As the 

availability of the internet has increased, people have become even more dependent on it 



 

82 

 

[12]. The trend is now towards EEG-based online automation. The existing tools like 

PET, MRI, and MEG are expensive and time-consuming as well. Therefore, scholars are 

now mostly interested in finding any pattern using the inexpensive EEG data for 

neurological diseases. 

Among the literature, ML-based algorithms are very illustrious and have shown 

promising accuracy in classifying. More specifically, SVM, DT, and KNN had 

impressive performance over classifying neuro-biomarkers. This is because of the sample 

size. SVM, DT, and KNN algorithms perform well when the dataset is not large. Deep 

learning approaches were used in very few works and demonstrated competitive 

performance. But DL algorithms are computationally expensive, and they perform better 

when the sample size is large. On the other hand, PNN, BN, NB, and NN did not perform 

well in any of these five neuro-disorders classification. 

Succeeding studies should focus on working collaboratively with hospitals and 

other researchers in this field, which can help in having a diverse and large dataset. One 

MCI study [70] was found with a decent data size. There were few AD studies [32], [96], 

[5], [42], [13], and [33] that were conducted with a reasonable sample size. Three SZ 

works [85], [67], and [17] had passable data sizes. On the other hand, [50], [52], [100], 

[58], [32], [16], [18], [41], [24], [45], [56], and [28] had a small sample size. Having a 

diverse and large dataset enables the model to be more accurate while classifying the 

subjects. And also, ML algorithms need the extracted features to be fed into the system 

as input, which is another reason not to have a good, accurate system. I have seen some 

DL approaches such as neural networks (NN) used by [24], CNN proposed by [61], [27], 

[67], DCssCDBM utilized by [18], probabilistic neural networks (PNN) introduced by 

[101], [45], enhanced probabilistic neural networks (EPNN) implemented by [13], deep 

neural networks (DNN) employed by Kim and Kim [53], bidirectional long short-term 

memory (BLSTM) applied by [86], etc. The raw data consist of artifacts and other noises. 

And these noises are not mixed with the raw signal in a unified manner. Therefore, first 

detecting the noise and then removing it from the signal should be the goal. These types 

of algorithms are known as adaptive noise-removing algorithms. Having a good quality 

adaptive noise removing algorithm plays an important role in achieving high accuracy. 

Moreover, DL algorithms are good when the sample size is large, and they do not need 

the extracted features to be fed. DL algorithms extract features for themselves according 

to the requirements. But these algorithms are computationally expensive. 
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2.9 Essence 

The classification stage does not have the huge challenges of the previous stages 

if the EEG data is processed properly. The classifier may struggle to perform well. 

But proper fine tuning can increase the performance, which is the challenging part. 

There are lots of parameters when I talk about fine-tuning a classifier. Parameters 

include kernel, order, batch size, number of epochs, activation function, window 

size, etc. These have an impact on the learning rate of the classifier as well as the 

training time. 

EEG has opened a new door towards brain disease research. There has been 

an extensive amount of work going on to detect different brain diseases at an early 

stage. Some neuro-patients only live for 5–8 years after being medically 

confirmed. EEG is a very easy biomarker to investigate. This study is a pathway 

for upcoming EEG research. Challenges and common struggles are discussed, 

along with possible solutions. New studies will find it interesting and easy to work 

with EEG data. 

It is an important area of medical science that needs to be taken seriously 

and with high priority. And the properties of the brain signal data, which are also 

known as EEG data, have been well studied and better understood. Having an 

automated and well-accurate system for the elderly is a must now. After analyzing 

efforts to classify neuro-diseases like AD, MCI, dementia, SZ, and PD, I have seen 

hand-engineered ML algorithms dominate the ladder. They are preferable if the 

sample size is not too large. But they cannot extract the features by themselves. 

This is where the DL methods rule out the TML methods. DL methods have the 

ability to extract the features by themselves and feed them into the system. But 

they really perform well when I have a large dataset, ensuring there is enough data 

left for the training. Few of the reported studies used DL algorithms, and they 

performed well because the authors segmented the dataset. Segmentation helped 

those DL methods increase the number of samples. From the reviewed articles, I 

have implied five open research questions (ORQs): (1) How can I manage to have 

a large dataset for a universal classifier? (2) How can I reduce the noises and 
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artifacts using a suitable method from the EEG data? (3) What are the 

modifications required in the DL models to save time in terms of identifying cases? 

(4) How can I accumulate the huge volume of EEG data in the classifier more 

efficiently? Which algorithm suits well with the EEG data so that I get good 

accuracy? Therefore, succeeding studies must pay attention to having an 

automated system that will have good accuracy in detecting neurodegenerative 

disorders. ML algorithms with a shallow architecture have performed well with a 

small sample size. Almost every study struggles to have a large dataset. Some 

studies also grappled with the noise of the EEG data. Therefore, succeeding work 

should place more emphasis on having a large dataset and an adaptive noise-

removing filter for EEG data. 

From the next chapter onwards, I have reported all the investigations and 

frameworks that I have developed. Each of those methodologies has been compared 

and justified with proper validations and performance matrices. Furthermore, with the 

exception of Chapter 7, all of them have been published in top journals and at previous 

conferences.  
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CHAPTER 3 : A LONG SHORT-TERM MEMORY BASED 

FRAMEWORK FOR EARLY DETECTION OF MILD 

COGNITIVE IMPAIRMENT FROM EEG SIGNALS 

 

3.1 Overview 

Mild cognitive impairment (MCI) is an irreversible progressive neuro-degenerative 

disorder that seems to be a precursor to Alzheimer's disease (AD) and may lead to 

dementia in elderly people. It is a major public health challenge for healthcare in the 21st 

century. Because there is no cure or therapy to halt or reverse the course of MCI, early 

identification is critical for successful treatment programmes to enhance patients' quality 

of life. Currently, electroencephalography (EEG) has emerged as an efficient tool to 

investigate MCI. Traditional methods for finding MCI from EEG data use shallow 

machine learning (ML)-based architectures that cannot find important biomarkers in 

deep, hidden layers of the data and also have trouble dealing with a large amount of EEG 

data. To reduce this issue, this research will use EEG data to provide a deep learning 

(DL)-based framework using the long short-term memory (LSTM) model for effective 

identification of MCI individuals from healthy volunteers (HVs). The suggested 

framework consists of four phases: de-noising, segmentation, down-sampling, 

uncovering deep hidden features using the LSTM model, and identifying MCI patients 

with the sigmoid classifier. This study has designed 20 different LSTM models and 

investigated them in a publicly available MCI database to find the best one. After 

performing 5-fold cross validation, the best model achieved 96.41% accuracy, 96.55% 

sensitivity, and 95.95% specificity. The proposed LSTM-based DL model provides a 

robust biomarker and will guide technologists in creating a new automatic diagnosis 

system for MCI detection. It also upholds the answer to research problems 4 and 5. 

 The contents of this chapter have been published in the IEEE Transactions on 

Emerging Topics in Computational Intelligence [105]. 
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3.2 Introduction 

Mild cognitive impairment, sometimes referred to as MCI, is a gradual neurological 

illness that is characterized by cognitive degradation. Memory loss is more severe in those 

with MCI than in others in a comparable age group. Continuous memory degradation, 

decreased vocabulary, and a lessened potentiality to fulfil accurate motor movements, 

which all damage carrying out day-to-day affairs, are the root of what causes MCI [100]. 

Neuronal cell death and malfunction are the main causes of this neurological illness. 

According to findings from recent research, individuals with MCI have an increased risk 

of developing dementia and, in particular, AD [108], [109], [110]. It usually happens to 

people over 65, and the severity rate goes up by a factor of 10 with age [62], [30], [104], 

and [111]. Dementia is one of the top reasons for impairment and reliance among the 

elderly across the globe. MCI and dementia are growing worldwide and forecasted to 

escalate proportionately more in developing countries [112], [107]. It is Australia's 

second-leading root of mortality [113] and ranks as the 7th biggest cause of death globally 

[114]. By 2021, it is anticipated that 472,000 Australians would be suffering from 

dementia [38]. This number is expected to increase to 590,000 by 2028 and 1,076,000 by 

2058 if they do not get any medical innovation. As per a survey published by Alzheimer's 

Disease International (ADI), there were more than 50 million dementia patients globally 

in 2019, with that number expected to rise to 152 million by 2050 [115]. Until now, both 

dementia and MCI have no known treatment options; only early diagnosis can 

temporarily slow the worsening of symptoms, intending to enhance the patients' and 

carers' wellbeing [116]. Thus, it is very important to identify MCI at an early stage so that 

they can get prompt medical treatment, and this is an ongoing area of research now. A 

patient’s life can be saved and improved by performing suitable methods with a rapid and 

timely diagnosis. 

To diagnose MCI, there are several tools in current medical systems, such as the 

Mini-Mental State Examination (MMSE), Magnetic Resonance Imaging (MRI), 

Computed Tomography (CT) scan, blood tests, Positron Emission Tomography (PET), 

spinal fluid, and EEG [107]. Among these, because of its low cost, noninvasive nature, 

and accessibility, the EEG is commonly used to study MCI, whereas PET, MRI, and CT 

scan are expensive options, and the MMSE test is a manual question-answer option. EEG 

recordings preserve the electrical movements in the cerebral cortex relative to time, which 

are the primary motivators for evaluating neurological conditions. In light of this, I have 
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addressed the use of EEG as a valuable technique for detecting MCI at a preliminary 

phase. 

Numerous investigations have been undertaken over the last several decades to 

diagnose MCI at an early stage so that it does not evolve into AD or other cognitive 

illnesses. Kashefpoor et al. [50] worked with the spectral features of EEG data, fed them 

to the Takagi-Sugeno neuro-fuzzy (NF) inference method with the K-nearest neighbor 

(KNN) classifier, and reached 88.89% accuracy in detecting MCI. The same research 

team had proposed a dictionary-based method [117] with a larger MCI dataset of 61 

subjects, where they claimed 88.9% accuracy. Hadiyoso et al. [118] designed a KNN 

method to identify MCI and wrapped up with 81.5% accuracy. A continuous multi-stream 

hidden Markov model (MS-CHMM) was developed in [116]. But this study was done 

with only 14 subjects and achieved 95.9% accuracy. A DL-based approach was proposed 

in [119], where synchronization-based measurements were used to design a brain 

network. The connectivity matrix organization was done before supplying the data to the 

convolutional neural network (CNN). A total of 107 people took part in this investigation, 

which concluded with 92.06% accuracy. Khatun et al. [52] measured the event-related 

potentials and candidate feature vector (CFV) and extracted 590 features for their 

proposed support vector machine (SVM) with a radial-basis kernel. Their study obtained 

87.9% accuracy. Mazaheri et al. [120] investigated oscillatory analyses and connections 

between theta and alpha/beta bands at different frequencies for pre-processing the EEG 

data and designed linear discriminant analysis (LDA) and SVM with a Gaussian kernel 

for classification. This study reported 80% sensitivity and 95% specificity. Poil et al. 

[121] performed de-noising of the EEG data using the JADE ICA algorithm and 

developed a supervised logistic regression (LR) model. This LR-based classifier achieved 

88% sensitivity and 82% specificity. Seventy-four patients participated in an enhanced 

probabilistic neural network (EPNN)-based study [13], where the empirical wavelet 

transform (MUSIC-EWT) was used for feature extraction. This method ended up having 

90.3% accuracy. Yang et al. [122] developed a four-layer CNN model to classify MCI 

patients and achieved 90.37% accuracy. 

I have reviewed related literature inside this section, and a comparative discussion 

has been reported in Section 3.5. Most of the studies struggle to balance satisfactory time 

efficiency and accuracy for real-time applications. Moreover, previous approaches are 

based on manual feature extraction techniques and ML algorithms with shallow 
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architectures, which cannot draw out dense hidden characteristics of EEG signals from 

several ledges. Additional processing components, difficult-to-model complicated 

notions, and multi-level metaphors are all required by these approaches. So far, after 

analyzing previous studies, I have found that previous proposed models either have good 

accuracy by costing time or poor accuracy by minimizing time complexity. Our study has 

developed a new method to balance accuracy with minimum cost and time. 

To resolve these issues, the paradigm proposed in this effort is based on LSTM 

for automatic detection of MCI from EEG signals. The main motivation for considering 

LSTM in this framework is because LSTM is best suited to sequential data like EEG. A 

deep LSTM network is composed of hidden LSTM layers that have the potential to 

selectively memorise essential data for a prolonged period of time and are often 

implemented for sequential prediction. EEG data are sequential data by nature. In our 

proposed framework, EEG data are de-noised using the Butterworth filtering technique. 

In the passing bands, it also allows for additional linear stage retort and an overall smooth 

report. To ensure our lodged model is quick enough at detecting MCI, the average filter 

has been employed to partition and down-sample the filtered EEG data. When there are 

no or few oddities in the dataset, the average filter outperforms all other filters. And the 

EEG dataset is de-noised before applying the average filter. I have designed our study so 

that it is a balanced algorithm by being an accurate model with less time complexity. 

Below is a synopsis of the accomplishments of this experiment: 

• This effort is the first to use EEG signal data to construct an LSTM-based DL 

system for rapid identification of MCI. 

• I explored average filtering technique for down-sampling to further help for faster 

fulfillment of the suggested framework. 

• The optimal LSTM prototype for MCI detection has been obtained by evaluating 

twenty LSTM models. 

• Our model is able to enhance classification accuracy with less computation time. 

The following is the order in which the remainder of the chapter is organised: The 

suggested MCI identification architecture is described in detail in Section 3.3. Section 3.4 

provides comprehensive results and findings. Section 3.5 offers a discussion of 

alternatives. This effort ends with a mention of the limitations, succeeding work plan, and 

essence in Section 3.6.  
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3.3 Proposed Framework 

This study presents a LSTM-based MCI detection framework using EEG data. Fig. 3.1 

displays the architecture of the suggested MCI detection framework. The framework 

consists of four major parts: (1) EEG data acquisition; (2) data pre-processing (collected 

EEG data is then de-noised using Butterworth filtering, segmented, and down-sampled 

using the Average filter); (3) LSTM-based architecture development for feature 

extraction and detection of MCI subjects; and (4) performance evaluation. A detailed 

description of this entire framework’s major parts is reported below: 

 

Fig. 3.1: An illustration of the MCI diagnosis system based on LSTM. 

3.3.1 EEG Data Acquisition 

This study employed an EEG dataset of 27 participants from the cardiac catheterization 

units of Sina and Nour Hospitals, Isfahan, Iran [50], [123]. This EEG dataset includes 16 

HVs and 11 MCI subjects, aged between 60 and 77 years. This data collection was 

ethically approved by the deputy of research and technology at the Isfahan University of 

Medical Sciences, Isfahan, Iran, and all the subjects were well informed and gave their 

consent. Petersen’s criteria, meaning a neuropsychiatric interview for the MCI disease 

had been performed for each subject. To authenticate the participants, the MMSE value 

was employed. MCI participants had an MMSE score of 21 to 26, whereas HVs had a 

score greater than 26. Drug abuse, dementia, a serious medical condition, a history of 

significant mental problems, or head trauma were all considered excluding factors. Table 

3.1 summarizes the gathered dataset's demographic characteristics. 

The recordings were conducted in the morning in a silent room for 30 minutes 

while all the subjects kept their eyes closed and were in a relaxed state. The 19 electrodes 

(Fp1, Fp2,F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2) were placed  
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Table 3.1: Details Related to the Dataset’s Demography. 

Features HV MCI 

Age (in years) (mean ± SD) 65.3 ± 3.9 66.4 ± 4.6 

Education (years) (mean ± SD) 11.1 ± 3.0 10.3 ± 3.8 

MMSE score (mean ± SD) 29.0 ± 0.8 27.6 ± 0.9 

NUCOG score 91.1 ± 3.0 82.4 ± 3.6 

GHQ Scores 17.9 ± 6.6 20.5 ± 9.4 

BMI (kg/m2) 26.6 ± 3.6 25.7 ± 2.2 

Fasting glucose (mg/dl) 121.8 ± 36.9 115.5 ± 24.3 

Total cholesterol (mg/dl) 169.1 ± 42.6 170.6 ± 61.4 

Triglycerides (mg/dl) 160 ± 80.7 157.3 ± 100.9 

Creatinine (mg/dl) 1.3 ± 0.3 1.2 ± 0.2 

Gensini scores 20.3 ± 21.7 33.3 ± 31.9 

GHQ – General health questionnaire; BMI – Body mass index; MMSE – Mini-mental state examination; NUCOG –Neuropsychiatry 

unit cognitive assessment tool 

 

Fig. 3.2: Fresh EEG recordings of (a) an MCI person and (b) a HV for 2 seconds at the Fp2 

electrode location.  
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over the head following the International 10-20 system, and EEG data were processed 

using a 32-channel EEG instrument with 256 Hz sampling frequency (Galileo NT, 

EBneuro, Italy). Fig. 3.2 shows two seconds of EEG data from an MCI and a HV at the 

Fp2 electrode site. The electrodes' skin had an impedance that was lower than 5 kΩ. The 

medical expert ensured all the subjects were conscious while EEG recordings were being 

made to avoid drowsiness. 

3.3.2 Data Pre-processing 

To prepare EEG data for analysis, there are three stages to follow: (i) de-noising, (ii) 

segmentation, and (iii) down-sampling. All these three steps are elaborated below: 

3.3.2.1 De-nosing the EEG data 

EEG recordings are often corrupted by artifacts or so-called unwanted signals [9]. 

Electrode-pops, eye blinking, outlier readings, power supply fluxes and interference (50 

Hz), baseline drift, breathing, or muscle electrical activity, among other things, are some 

of the most typical causes of EEG recording contamination. Therefore, it is a must to 

deduct the noise from the recording if I want to have a good classifier. This study has 

employed the Butterworth filter to deal with the noise. The Butterworth filter is used in 

this work to exclude undesired high-frequency signals caused by eye blinks, body 

movement, heartbeats, power grid inference, and other sources. And as I also know, the 

Butterworth filter helps to produce additional linear stage retort while maximizing the 

smooth reaction. 

In this study, I received the raw EEG recordings of the 27 subjects in EDF. The 

MATLAB EEGLAB toolbox [124] is used to view the recordings and clean the noise. 

Butterworth is a low-pass filter mostly used to remove higher-frequency signals and is 

applied in [125], [126]. To eliminate artifacts, the recorded EEG data are broadband-

refined between 0.5 and 50 Hz using a third-order Butterworth filter. Then, all 27 

recordings are digitized with a length of 60Seconds×30Minutes×256Hz each and stored 

as .mat files. 

The initial EEG recordings contain some unnecessary signals. After de-noising all 

the recordings, the EEG data become more valid and usable. Fig. 2.7 illustrates a visual 

differentiation of untouched EEG recordings from an MCI participant with de-noised 
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recordings from the same participant. After cleaning the signals, I have just segmented 

the whole dataset and down-sampled it to 4 Hz. 

3.3.2.2 Data segmentation 

The signals produced by an EEG are not periodic, they are not steady, and they have a 

very large magnitude. As a result, even if the recording is segmented, representative 

information can be extracted from each data segment. In this study, I have digitized the 

signal for each subject; there are 460800 rows, and all 19 electrodes are in the columns. 

For processing this huge dataset of 27 subjects, I need very high computational support, 

which is also time-consuming. Therefore, I planned to segment each of the 30 minutes of 

recording and take 6 seconds of data for each segment. But the sampling frequency has 

remained the same, which is 256 Hz. Following the segmentation of each participant, I 

constructed 300 new temporal segments from each individual's recording, all of which 

are clearly identified with the matching participant's tag (MCI/Normal). Then, I have 

8,100 segments of size 19 (channels) × 1,536 (samples), where 1,536 equals 6 seconds × 

256 Hz. 

3.3.2.3 Average filter to down-sample temporal segments 

Our main goal is to have an accurate, DL-based MCI detection framework that can 

quickly generate results. For this purpose, I have reduced the sampling frequency. This 

study employs average filtering for down-sampling. The average filter is effective if such 

a dataset is devoid of distortion and oddities. Therefore, I have found it suitable for our 

dataset and employed it. 

In this study, before feeding the filtered data to the classifier, I further down-

sample it. I set the new sampling frequency to 4 Hz, and for this reason, I used the well-

known Average filter. For each cycle, the sliding window approach has been employed, 

with a window size of 64 × 1. Fig. 3.3 explains this down-sampling method. The 

algorithm has run 24 times for each channel, and the number of channels has been kept 

constant, which is 19. 
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Fig. 3.3: 64 × 1 sliding window of the Average filter. 

3.3.3 LSTM-based architecture for feature extraction and detection of MCI 

subjects 

The primary goal of this effort is to differentiate MCI individuals from HVs with 

satisfactory accuracy using non-stationary data like EEG. I explore the LSTM network 

model to work with EEG data for two main reasons. (1) EEG is a very huge volume of 

data, and (2) the characteristics of EEG data are non-steady and chaotic. Deep learning-

based classifiers perform well when fed with huge volumes of data, and they can handle 

non-stationary signal data like EEG well, whereas ML-based algorithms need separate 

feature extractions and high processing times. Because of the nature of the EEG data, I 

considered recurrent neural network (RNN) for its memory hosting option. Particularly, 

an RNN version with LSTM has been chosen. 

3.3.3.1 Design of LSTM 

Memorizing the history of sequential data is the unique strength of LSTM, and it helps to 

have more accurate prediction. LSTM is designed to resolve the declining slopes when 

fault derivatives are back-transmitted across several layers over time in recurrent 

networks [127]. The intimate state of each LSTM unit illustrates its memory. Based on 

the past internal states' history and the most recent input, the cells become skilled enough 

to publish, clean their storage, or replace it. The LSTM regulates the flow of data into and  
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Fig. 3.4: Basic LSTM architecture. 

out of its memories using three gates. The input signals at time t are represented by x, the 

output signals by y, the entry gate by I, the forget gate by f, and the output gate by o in 

Fig. 3.4. 

Python has been chosen to build up the LSTM architecture because it provides 

excellent DL assistance with richer packages such as Scikit-Learn, Keras [128], Pandas, 

SciPy, and NumPy. 

After finishing all pre-processing procedures, processed data are stored in 

MATLAB's CSV format. And these CSV files are taken as input to the system with the 

help of the Pandas library. The NumPy module is then used to transform all of the data 

frames into double-dimensional matrices. I have also ensured that all the labels for each 

of the subjects are kept in another NumPy array. After that, I reduced the dimension of 

the input data with the reshape function of the NumPy library. Next, the dataset is split 

randomly into the training and testing sets using the Scikit-Learn library. I have taken 

25% of the data in our testing set. Finally, an LSTM model is developed using the Keras 

library with a TensorFlow backend [129]. There are many parameters available for adding 

layers. Twenty different models are designed with different parameters in each of those. 

There are 1–5 layers presented in those 20 models, with different numbers of neurones 

present in every layer with the same "tanh" activation function for all the input layers. 

Prior to the scheduled thick layer, there is a flattening layer. "Sigmoid" is employed as the  
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activation function for the dense layer, which is just one neurone in size. The loss function 

remains the same for all twenty models, which is "binary_crossentropy". "Adam" 

optimizer and accuracy metrics are used for all these models. Across the model 

compilation, a check pointer is used to indicate when the model should be cut short and 

ensure a time-efficient model has been established. Early stopping is done by monitoring 

the validation loss value, and for that reason, the min_delta parameter has been set at 

0.001 and the tolerance quantity to 10. The best model is also saved in HDF5 format for 

further validation. The batch size and number of epochs remain constant throughout all 

these 20 models, which are 300 and 100, respectively. 

3.3.3.2 Evaluation of Different LSTM models 

I have actually designed and run more than 30 different LSTM models with different 

parameters. But only the top twenty models are reported in this study due to poor 

performance Table 3.2 displays those twenty models with the different combinations of 

nodes along with their performances. In addition, Fig. 3.5 portrays Model 13 which has 

stood top inside Table 3.2. All the layers (input, output, flatten, dense) along with their 

shape have been visualized in Fig. 3.5. 

 

Fig. 3.5: Proposed LSTM architecture’s input-output layers along with their shapes. 
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3.3.4 Performance Evaluation 

In this study, various performance measurements are used to justify the performance of 

the models I have created. I have measured the performance of each of the models by (6), 

(7), (8), (9), (10), (11), (12), (twelve), the receiver operating characteristic (ROC) graph, 

and the area under the ROC curve (AUC). The plots of sensitivity (true positive rate) vs. 

false positive rates are illustrated on the ROC curve. [84]. 

                                  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                                        (9) 

                                            𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                  (10) 

                                 𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑆𝑒𝑛𝑠𝑖𝑖𝑣𝑖𝑡𝑦
                                                 (11) 

                                            𝐴𝑈𝐶 = 1 − 𝑅𝑂𝐶                                                                       (12) 

Hither, 

TP: True Positive (number of MCI individuals recognized accurately as MCI) 

TN: True Negative (number of HV recognized as HV) 

FP: False Positive (number of HV recognized inaccurately as MCI) 

FN: False Negative (number of MCI individuals recognized inaccurately as HV) 

3.4 Experiments and Results 

The EEG was recorded with the use of 19 separate electrodes that were positioned 

according to the 10-20 international standard [89], and 27 people participated. All the 

EEG recordings are transformed and stored in the European Data Format (EDF). This 

study has introduced the Butterworth filter for signal de-noising and converted the data 

into MATLAB format. After segmenting all of the artifact-free data, the average filter is 

applied to each segment for down-sampling. Each of the filtered temporal segments has 

been stored as a comma-separated value (CSV) file using MATLAB. Finally, down-

sampled temporal partitions are used to categorize MCI patients using a deep LSTM 

model. All of the tests are executed on a Windows computer with an Intel Core i5-8400T 

CPU running at 1.70 GHz and 8GB of RAM. 
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The whole experiment set up is evaluated multiple times to check for consistency. 

After getting the EEG recordings of 27 subjects, I pre-processed the EEG data to ensure 

the data quality and features remained good enough to produce an accurate classification 

result. Finally, I have used that filtered data to feed into the LSTM models and checked 

the performance of the classifiers. 

I have designed 20 different LSTM models and checked their performance. Table 

3.2 summarises the effectiveness of all 20 prototypes. It is seen from Table 3.2 that Model 

13 achieved the highest accuracy of 96.41%, the highest specificity of 95.95%, the highest 

precision of 94.29%, the highest F1 score of 95.39%, the highest AUC value of 96.25%, 

and the lowest false positive rate (4.04%). In model 13, each epoch took only 1242 

seconds on average for compilation and only 280 seconds to evaluate. Model 13 LSTM 

network composed of an input layer, two hidden LSTM layers having "tanh" activation 

function and 1024 and 512 nodes, respectively, one flattening layer, and a dense layer 

having "sigmoid" activation function. Model 2 yields the highest sensitivity of 96.84% 

and has an input layer, one hidden LSTM layer with 256 neurones and "tanh" activation 

function, one flattening layer, and a dense layer with "sigmoid" activation function. 

Among all the twenty models, I found model/experiment 20 (having five hidden LSTM 

layers with 32, 64, 128, 64, and 32 nodes, respectively) did not perform well compared 

to the other 19 models. 

 

Fig. 3.6: Visual comparison of accuracy, sensitivity and specificity of 20 different LSTM 

models. 
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An important pattern is discovered in Fig. 3.6. The performance matrices 

(accuracy, sensitivity, and specificity) of the LSTM models remain above 90% when I 

have 2–3 hidden LSTM layers, and performance starts decreasing when I increase the 

number of hidden layers and neurons. Experiment/Model 13 has overall stability with 

good performance. And that is why I have considered and proposed this model for MCI 

classification. 

 

Fig. 3.7: Histogram of weight distributions as per kernel and gate. 

Now talking about the architecture of the proposed LSTM model, I had to try so many 

different parameters and values to find out the optimal architecture for this MCI detection 

problem. To be able to further assess the learning speed of the propounded framework, I 

visualized the weight distributions per gate, kernel, and direction. Fig. 3.7 portrays the 

weight distribution per gate, kernel, and direction. The load variations per kernel and 
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inside each kernel per gate are shown in a histogram subplot grid. From this histogram, I 

can see how well the weight is distributed, like a bell curve. The weight distribution of 

the kernel and recurrent gates remain within the (-0.1, 0.1) range. A very low bias range 

for both kernel and recurrent gates indicates that learning occurred quickly. Fig. 3.8 

illustrates a heatmap of the identical loads, complete with gate displacements indicated 

by vertical lines and bias weights. From the heatmap of the weight distribution, it is also 

clear that the LSTM architecture is very efficient in terms of low bias and learning rate, 

as color variation in the heatmap is almost constant, remaining between light blue (-0.1) 

and light red (0.1). 

 

Fig. 3.8: Heatmap of the same weights distribution as per kernel and gate. 

To validate the proposed LSTM architecture, I have carried out 5-fold cross-validation. 

Each of the five rounds of the 5-fold cross validation yielded comprehensive data for the 

LSTM model (Table 3.3), allowing me to assess its precision, adequacy, sensitivity, 

specificity, and false-positive rate in more detail. According to Table 3.3, there are no 

significant differences between the five obtained outcome levels. Except for fold 5, which 

offers 97.28 percent accuracy, all of the 5-fold alternatives have classification accuracy 

over 96 percent. The false positive rate is well under 4% in most of the folds, which 

confirms the stability and reliability of the proposed LSTM framework. 

 Fig. 3.9 illustrates the confusion matrix of our proposed study. It took only 31 

epochs to reach such accuracy. 1126 (96.41%) of the 1168 healthy testing examples are 

accurately identified as HVs, whereas 42 (3.59%) are incorrectly labelled as MCI. 
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Furthermore, 827 (96.55%) of 857 MCI testing samples are correctly classified as MCI, 

while 30 (3.50%) are misclassified as HVs. According to the stated performance, the 

erroneously labelling rate is quite low, and it begins to decline as the number of testing 

examples grows. 

Table 3.3: 5-Fold Cross Validation Procedure of the Proposed LSTM-Based Classifier. 

Folds Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

False 

Positive 

Rate (%) 

Precision 

(%) 

F1 Score 

(%) 

AUC 

(%) 

1 96.42 94.47 97.67 2.33 96.30 95.37 96.07 

2 96.17 97.30 95.38 4.61 93.65 95.44 96.34 

3 96.11 96.80 95.64 4.36 93.81 95.28 96.22 

4 96.05 96.63 94.83 5.17 92.66 94.60 95.73 

5 97.28 97.54 96.24 3.76 95.05 96.28 96.89 

Average 96.41 96.55 95.95 4.04 94.29 95.39 96.25 

 

 

Fig. 3.9: The recommended LSTM model's confusion matrix. 

The ROC curve represents how well the classification operates. It illustrates how 

sensitivity and specificity are related. The formula for the ROC curve is as follows: 1—

specificity = FP / (FP+TN) and sensitivity = TP / (TP+FN) on the y-axis. In Fig. 3.10, the 

ROC curve is shown in blue. The value of the area that lies under the ROC curve is 

referred to as the AUC value. The AUC value ranges from 0 to 1. The effectiveness of 
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the suggested scheme is better when the AUC value is closer to 1 and the standard 

deviation value is lower than 0 [84]. The AUC is shown in Fig. 3.10 as the region beneath 

the blue ROC curve. And model 13 achieved a 96.05% AUC value. 

 

Fig. 3.10: The presented LSTM model's ROC curve. 

3.5 Discussion 

This thorough study has been done to identify MCI at an early stage. Many studies have 

been conducted with the same public MCI dataset that I used in this study and also with 

other private MCI datasets. Next, I discuss some of the significant recent works. 

3.5.1 Previous Attempts 

3.5.1.1 With Same Dataset 

I have reported eight recent studies conducted with this same MCI dataset along with our 

previous works in Table 3.4. A few of these studies have already been described in 

Section 3.2. Yin et al. [100] ameliorated the categorization accuracy of 96.94% compared 

with the first work done using this dataset in [50] by using the 3D evolution method for 

feature picking and SVM as a classifier. But this study had a reduced number of subjects 

(11 MCI and 11 HVs), and it was a computationally expensive model because of its’ 

preprocessing steps. Hadiyoso et al. [130], [126] put forth multiple efforts with this same 

dataset to detect MCI subjects and denoise the raw EEG data. They used the Hjorth 
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descriptor and K-NN for classification and achieved 80% accuracy. While denoising the 

raw EEG data, the study finished with a mean Root Mean Squared Error (RMSE) value 

of 0.0295. Our recent work [84] outperformed all the previous works and achieved 

98.78% accuracy using the Extreme Learning Machine (ELM) as a classifier. Stationary 

wavelet transform (SWT) for noise removal, Piece-wise Aggregate Approximation 

(PAA) for compression, Permutation Entropy (PE), and an auto-regressive (AR) model 

are all part of the pre-processing phases. This study achieved high accuracy but was 

computationally expensive. 

It can be deduced from these previous literatures using this same EEG dataset that 

most of the studies struggle to have satisfactory results. Our previous work outperformed 

all the studies, but in that study, I sacrificed time. In this proposed work, I came up with 

a balanced framework that not only performs better but is also time-efficient. More details 

about the literature using the same dataset are described in Table 3.4. 

Table 3.4: List of previous research works for the same EEG dataset of MCI patients (that is 

used in this study). 

Studies Subjects Methods Performance 

M. Kashefpoor, 

H. Rabbani, and 

M. Barekatain 

[50] 

27 subjects (11 

MCI and 16 

HVs) 

- A correlation based pursuit 

- NF inference system with 

KNN 

Accuracy: 88.89% 

Sensitivity: 100% 

Specificity: 83.33% 

S. Siuly et al. 

[84] 

27 subjects (16 

cognitively HVs 

and 11 MCI 

patients) 

- Noise removing using SWT 

- Data compression using PAA 

- Permutation entropy (PE) 

and auto-regressive (AR) 

model 

- ELM 

Accuracy: 98.78% 

Sensitivity: 98.32% 

Specificity: 99.66% 

J. Yin et al. 

[100] 

22 subjects (11 

MCI and 11 

HVs) 

- Noise removing using SWT 

- Spectral-temporal feature 

extraction 

- Feature selection via 3-D 

evaluation 

- SVM classifier 

Accuracy: 96.94% 

Sensitivity: 96.89% 

Specificity: 96.99% 
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S. Hadiyoso et 

al. [118] 

27 subjects (16 

HVs and 11 

MCI) 

- Spectral Analysis 

- K-Nearest Neighbor (K-NN) 

as the classifier 

Accuracy: 81.5% 

Sensitivity: 81.82% 

Specificity: 81.25% 

S. Hadiyoso, 

and T. Latifah 

[130] 

5 MCI 

participants and 5 

HVs 

- Normalized to get a signal in 

the range -1 to +1. BPF filters 

(0.5 - 40 Hz) are applied to 

reduce noise artifact, DC and 

AC frequencies 

- Hjorth Descriptor 

- K-Nearest Neighbor (K-NN) 

as the classifier 

Accuracy:80% 

F. Jamalooa, M. 

Mikaeilia, and 

M. Noroozian 

[116] 

EEG data of 

fourteen subjects 

(7 MCI and 7 

HVs) 

- Blinking artifacts were 

repaired using independent 

component analysis 

- Multi-stream continuous 

Hidden Markov Model (MS-

CHMM) 

- Multi-metric functional 

connectivity analysis based on 

MS-CHMM 

- Phase Locking Value(PLV) 

Accuracy: 95.9 ± 

0.4 alpha % 97.2 ± 

0.5 gamma 

Sensitivity:97.2% 

Specificity: 97.2% 

S. Hadiyoso, 

and I. Wijayanto 

[126] 

16 HVs and 11 

MCI patients 

- Empirical Mode 

Decomposition 

- Finite Impulse Response 

(FIR) 

Mean RMSE  

0.0295 

Standard deviations  

RMSE  0.0665 

M. 

Kashefpoora, H. 

Rabbania, and 

M. Barekatain 

[117] 

32 HVs and 29 

MCI subjects 

- Dictionary learning(DiL) for 

Pre-processing: K-SVD stands 

for K-means and singular 

value decomposition (SVD) 

- Label Consistent KSVD (LC-

KSVD) is one of the most 

recent DiL-based classification 

- Correlation-based LC-KSVD 

(CLC-KSVD) another 

classifier 

Accuracy: 88.9% 

Sensitivity: 83.3% 

Specificity: 100% 
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3.5.1.2 With Different Dataset 

It has been an ongoing effort to detect MCI, and there has been extensive work going on. 

In this subsection, I have reported fifteen recent efforts conducted utilizing the EEG data 

for MCI detection in Table 3.5. Using 408 subjects and the penalized logistic regression 

algorithm as a classifier, Farina et al. [125] developed a multiclass classifier and achieved 

65% sensitivity and a 0.77 AUC value. No other performance matrices were reported, 

and the performance was not good enough. Another multiclass model was proposed in 

[131] using 189 subjects (63 AD participants, 63 MCI patients, and 63 HVs), where 

Multi-Layer Perceptron (MLP) was used as the classifier. The model earned 96.24% 

accuracy, 95.31 ± 0.8% precision, and a 95.58 ± 0.6% F1 score. This MLP-based study 

had a shallow architecture, and the MCI patients data used here had similar patterns closer 

to the AD category. Khatun et al. [52], [132] proposed two event-related potential (ERP) 

studies with SVM classifiers achieving 87.9% accuracy in both studies having 23 subjects 

(15 HV and 8 MCIs) and 17 subjects (10 HV and 7 MCIs), respectively. Sharma et al. 

[75] performed the continuous performance test (CPT) and finger tapping test (FTT) 

while recording the EEG signal of 44 subjects (15 dementias, 16 MCIs, and 13 HVs) and 

processed the data with power spectral density, skewness, kurtosis, spectral skewness, 

spectral kurtosis, spectral crest factor, spectral entropy (SE), and fractal dimension (FD) 

methods. Finally, they implemented the multiclass SVM classifier and achieved 89.8% 

accuracy, 84% sensitivity, and 94% specificity. Using the fuzzy neighborhood preserving 

analysis with QR decomposition (FNPAQR) dimensionality reduction technique, the 

patterns of 35 subjects (five vascular dementia (VaD) patients, fifteen stroke-related MCI 

patients, and fifteen control subjects) EEG recordings were preserved. SVM and KNN 

were both employed, but SVM outperformed them with an accuracy and sensitivity of 

91.48%. S. J. Ruiz-Gómez et al. [133] reported a LDA, quadratic discriminant analysis 

(QDA), and multi-layer perceptron artificial neural network (MLP)-based study with 111 

subjects (37 AD patients, 37 MCI patients, and 37 elderly HV patients) to develop a 

multiclass classifier. The accuracy, sensitivity, and specificity were 78.43%, 82.35%, and 

70.59%, respectively. Another LDA-based study [134] was reported with 40 participants 

(27 HV and 13 MCIs) and scored 86.5% accuracy, 66.7% sensitivity, and 96% specificity. 

From these related works with different MCI datasets, it is clear that our proposed 

study has outperformed all these other works. Most of these studies did not even end with 
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satisfactory results and struggled with the sample size as well. More details about the 

literature using the different datasets are described in Table 3.5. 

Table 3.5: List of previous research works for the different EEG datasets of MCI patients. 

Studies Subjects Methods Performance 

F. R. Farina et 

al. [125] 

408 volunteers 
(102 

AD subjects, 

121 MCI 

patients, and 

185 HV) 

1. Band-pass filtered between 
0.1 and 70 Hz, notch filtered 
at 

50 Hz and average referenced 

across all scalp electrodes 

2. Spectral analysis 

3. EEG weighted phase lag 

index calculation 

4. Penalized logistic 

regression algorithm with a 

well- established 

regularization technique 

known as the Elastic Net 

Sensitivity: 65% 

AUC: 0.77 

H. Chen, Y. 

Song, and X. Li 

[119] 

107 subjects (50 
chil- 

dren with 

ADHD, 57 HV) 

1. EEG segmentation 

2. Synchronization 

measurement 

3. Brain network 

4. Connectivity matrix 

organization 

5. CNN for classification 

Accuracy: 92.06 ± 
1.50% 

AUC: 0.977 ± 

0.0064 

C. Ieracitano et 

al. [131] 

189 subjects (63 
suf- 

fering from 

AD, 63 MCI 

patients, and 63 

HV) 

1. Artifact removing and 
segmentation 

2. Continuous Wavelet 

Transform (CWT) 

3. Bispectrum analysis (HOS 

analysis) 

4. Multimodal (CWT+BiS) 

features) is used as input, 

the MLP classifier 

Accuracy: 96.24% 

Precision: 95.31 ±  

0.8% 

F1 Score: 95.58 ±  

0.6% 

S. Khatun, B. I. 

Morshed, and G. 

M. Bidelman 

[52] 

23 subjects 
(fifteen 

were HVs and 

eight 

participants 

were found to 

have MCI) 

1. Event-Related Potential 
Processing 

2. Candidate feature vector 

(CFV) 

3. SVM method with radial 

basis kernel (sigma = 

10/cost = 102) 

Accuracy: 87.9% 

Sensitivity: 84.8% 

Specificity: 95% 

S. Khatun, B. I. 

Morshed, and G. 

M. Bidelman 

[132] 

A total of seven- 

teen subjects ( 

ten persons 

were con- trol 

and seven per- 

sons had MCI) 

1. Event Related Potential 
(ERP) 

2. Neural Feature Extraction 

3. Behavioral Feature 

Extraction 

4. SVM was applied as a 

classifier 

Accuracy: 87.9% 

Sensitivity: 85% 

Specificity: 90% 

F1 Score: 94% 

N. Sharma et al. 

[75] 

A total of 44 (15 
de- 

mentia, 16 

MCI, and 13 

HVs) 

1. Power spectral density, 
skewness, kurtosis, 
spectral skew- 

ness, spectral kurtosis, 

spectral crest factor, spectral 

entropy (SE), fractal 

Accuracy: 89.8% 

Sensitivity: 84% 

Specificity: 94% 
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dimension (FD) 

2. Finger tapping test (FTT) 

and continuous performance 

test (CPT) 

3. SVM was applied as a 

classifier 

A. Mazaheri et 

al. [120] 

36 patients (with 
25 

amnestic MCI 

and 11 normal 

elderly con- 

trols) 

Within three 

years, 15 of the 

25 individ- uals 

with MCI had 

progressed to 

AD 

1. Oscillatory analyses: 
Time-frequency 
representations 

(TFRs) 

2. Cross-frequency 

coupling between theta and 

alpha/beta: one-sample t-

test of the Fisher r-to-z 

transformed correlations 

3. ANOVA test 

4. Theta power increase 

related to lexical processing 

was attenuated in MCI 

converters 

5. Facilitatory effects of 

lexical processing due to 

repeated  word presentation 

6. Alpha suppression 

attenuates with each word 

repetition, but only for HVs 

and not for either MCI 

patient group 

7. LDA and SVM with 

Gaussian kernels, i.e.  

radial-basis  functions 

(SVMrbf) 

Sensitivity: 80% 

Specificity: 95% 

S. Poil et al. 

[121] 

86 patients (25 

patients 

had converted 

to AD, 39 

subjects 

remained MCI, 

9  subjects 

were diagnosed 

with subjective 

complaints and 

13 patients with 

other 

disorders) 

1. JADE ICA algorithm 

2. Hjorth’s activity, mobility 

and complexity parameters 

3. Wackermann’s global 

field strength, global 

frequency, and spatial 

complexity 

4. Time domain Parameters 

5. Barlow’s amplitude, 

frequency and spectral 

purity 

6. Absolute, relative power, 

and power ratios, 

furthermore, the central 

frequency, power in central 

frequency, band width and 

spectral edge 
7. Student’s t-test 

8. Logistic regression 

Sensitivity: 88% 

Specificity: 82% 
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J. P. Amezquita-

Sanchez et al. 

[13] 

Seventy-four 
patients 

(37 with AD and 

37 with amnestic 

MCI) 

1. Empirical wavelet 
transform (MUSIC-EWT) 

2. Fractality dimension (FD) 

from the chaos theory 

3. Enhanced probabilistic 

neural network (EPNN) 

Accuracy: 90.3% 

Sensitivity: 92.1% 

Specificity: 87.9% 

N. K. Al-Qazzaz 

et al. [135] 

35 participants 
(5 
VaD subjects, 

15 stroke-

related MCI 

participants, 

and 15 HV) 

1. ICA-WT denoising 

2. Fractal dimension 

3. Two-way ANOVA was 

conducted 

4. SVM and K-NN 

Accuracy: 91.48% 

Sensitivity: 

91.48% 

S. J. Ruiz-

Gómez et al. 

[133] 

111 subjects: (37 
AD 

patients, 37 

MCI pa- tients, 

and 37 elderly 

HV) 

1. Relative power in the 
conventional frequency 
bands, median 

frequency, individual alpha 

frequency, spectral entropy, 

Lem- pel–Ziv complexity, 

central tendency measure, 

sample entropy, fuzzy 

entropy, and auto-mutual 

information 

2. Relevance and 

redundancy analyses were 

also conducted through the 

fast correlation-based filter 

(FCBF) to derive an optimal 

set of them 

3. LDA, quadratic 

discriminant analysis (QDA) 

and multi-layer perceptron 

artificial neural 

network (MLP) 

Accuracy: 78.43% 

Sensitivity: 

82.35% 

Specificity: 

70.59% 

R. Pozˇar, B. 

Giordani, and V. 

Kavcic [134] 

40 participants 
(27 of 

them being 

HVs and 13 

with MCI) 

1. A combination of 
functional connectivity, 
topological and 

cognition measurements is 

powerful for prediction of 

MCI 

2. Linear discriminant 

analysis 

Accuracy: 86.5% 

Sensitivity: 66.7% 

Specificity: 96% 

D. Yang et al. 

[122] 

24 participants 
(15 

MCI patients 

and 9 HV) 

1. Three mental tasks: N-
back, Stroop, and verbal 
fluency (VF) 

tasks 

2. Examining the 

oxygenated hemoglobin 

changes (∆HbO) in the 

region of interest 

3. During the tasks and 

seven temporal feature maps 

(i.e., two types of mean, 

three types of slope, 

kurtosis, and skewness)   in 

the prefrontal cortex were 

Accuracy: 
90.37% 

Precision: 82.19% 

F1  Score: 84.04% 
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investigated 
4. A four-layer 

convolutional neural 
network (CNN) was 

applied to identify the 

subjects into either MCI or 

HV 

C. J. Huggins et 

al. [136] 

52 AD 
participants, 

37 MCI patients, 

and 52 HV 

1. ICA for denoising 

2. CWT to create time- 

frequency graphs with a 

wavelet coefficient scale 

range of 0–600 
3. AlexNet, a deep CNN 

model of five hidden 
convolutional 

layers used for three class 

classification 

Accuracy: 98.9 ± 
0.4% 

J. Poza et al. 

[137] 

37 AD subjects, 
19 

MCI

 partici

pants, and 29 

HV 

1. CWT to model non-
stationary EEG data 

2. Relative Power (RP) to 

analyses spectral 

distribution of the EEG 

oscillatory components 

3. Spectral Flux (SF) to 

measure changes in time-

frequency spectra and 

within- and between-

electrode spatio-temporal 

fluctuations 
4. Grand-mean RP and SF 

values over all channels 
were 

analysed using one-way 

MANOVAs 

Accuracy: 77.3% 
(HV vs 

AD: 

combination of 

RP and within-

electrode SF at 

the beta band) 

Accuracy: 79.2% 

(HV vs MCI: 

within-electrode 

SF at beta and 

gamma bands) 

L. T Timothy et 

al. [138] 

18 MCI patients 
and 

18 HV 

1. Recurrence quantification 
analysis (RQA) to extracts 
and Characterizes various 
aspects of a nonlinear 
system. The recurrence rate 
(RR) is an effective 
indication of the regularity 
or predictability of a 
particular time series 
provided by RQA. 

2. Cross recurrence 

quantification analysis 

(CRQA) to deter- mine the 

similarity of states between 

dynamical systems 

3. ANOVA was applied to 

compare RQA RR and 

CRQA RR for different 

pairs of regions 

4. The experiments were set 

out on EEG from two 

states 

(i) resting eyes closed (EC) 

Efficiency: 80.6% 
(EC: 

RQA RR) 

Efficiency: 

72.2% (EC: 

CRQA RR) 

Efficiency: 

72.2% (EC: 

combination of 

RQA and 

CRQA) 

Efficiency: 

72.2% (STM: 

RQA RR) 

Efficiency: 

86.1% (STM: 

CRQA RR) 

Efficiency: 91.7% 

(STM: 

combination of 

RQA and 
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and (ii) short term memory 

task (STM) 

5. LDA as classifier 

CRQA) 

 

3.5.2 Summary of the Proposed Work 

Our main goal is to differentiate MCI patients from HVs with high accuracy and quickly. 

All the experiments have been conducted in a very ordinary computational setting with 

no GPU. Our model can run on any normal or regular PC. No external GPU or high RAM 

is required. And with such a computational setup, the best model was still proposed, 

compiled, and evaluated very quickly. It is not like I want to save money by 

compromising an algorithm’s performance. I wanted to assure both time efficiency and 

accuracy. On average, our proposed model took 1242 seconds to compile for each epoch 

and only 280 seconds to evaluate the entire model. And still, it achieved 96.41% accuracy, 

96.55% sensitivity, 95.95% specificity, 4.04% false positive rate, 94.29% precision, 

95.39% F1 score, and 96.25% AUC value in 5-fold cross validation. To justify our 

proposed framework, I built 20 different LSTM models to identify the best parameters, 

and the performance of those 20 models is also reported in this study. The proposed 

LSTM architecture is well visualized in Fig. 3.7 and Fig. 3.8. To prove the stability and 

reliability, I have carried out 5-fold cross validation, as reported in Table 3.3. There are 

no huge variations in the cross-validation results of the performance matrices. 

The presented LSTM model has one input layer, two concealed LSTM layers with 

a total of 1024 and 512 neurons, one flattening layer, and a dense layer as part of its 

overall design. The tanh activation function has been used inside the hidden layers and 

the "sigmoid" activation function inside the dense layer. 

I have reported previous studies done with the same publicly available MCI data 

and also with other different MCI datasets. Our proposed algorithm performed better 

compared to all the previous work done with different MCI datasets. This proposed 

LSTM-based MCI detection classifier also beats all the previous literature done with the 

same dataset except our ML-based previous works [84, 100], where the focus was only 

on accuracy. They required an extra step, which is feature extraction, and those models 

are very computationally costly. [100], [130], and [116] used fewer subjects, and [117] 

worked with more subjects, including those 27 subjects for their experiments. This MCI 
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dataset has not yet been studied using the LSTM approach, to our knowledge. Our 

proposed LSTM model has shown promising results in an efficient time. 

3.6 Essence 

The presented MCI detection framework has the ability to identify MCI patients very 

quickly. In this study, I focused on two things together: time and accuracy. It is a big 

challenge to work with DL-based classifiers and expect them to perform well. I pre-

processed the EEG dataset quite well, and that ensured a time-efficient MCI classifier. 

The model has been compared with previous literature, and it is still well ahead if I 

consider both time and accuracy. 

 There have been extensive amounts of experiments done to find out the pattern 

and an accurate model for identifying MCI subjects from HVs using the EEG data. 

Around 35 experiments and models have been built, and in this study, I have reported the 

top 20 of them. All the experiments have been conducted on an ordinary computer without 

a graphics card. Another fruitful discovery I have made from the experiments is that the 

performance matrices (accuracy, sensitivity, and specificity) of the LSTM models remain 

above 90% when I have 2-3 hidden LSTM layers, and performance starts decreasing 

when I increase the number of hidden layers and neurons. Model 13, with two concealed 

LSTM layers with 1024 and 512 nodes, fared well in comparison to the other 19 models, 

according to our findings. It took only 1242 seconds on average for each epoch while 

building up the model, and only 280 seconds to test the whole model. The performance 

matrices are satisfactory as well, with 96.41% accuracy, 96.55% sensitivity, 95.95% 

specificity, 4.04% false positive rate, 94.29% precision, 95.39% F1 score, and 96.25% 

AUC value in five-fold cross-inspection. There is no significant variation found in the 

five-fold cross-inspection. It would have been better if I could manage to have a big EEG 

dataset, and that would have been even better for our proposed LSTM model as they tend 

to perform better with huge data. Another lacking or succeeding work plan of ours is to 

run this model with other publicly available MCI datasets or work collaboratively with 

the same field researchers. I also plan to extend our work to other neuro-diseases like AD, 

Parkinson's disease, schizophrenia, etc. I plan to work on other neuro-diseases and finally 

build a web-based, automated neuro-disorder system. 

Since LSTM is an expensive variant of RNN, I want to explore further RNN 

variants like gated recurrent unit (GRU). GRUs are lightweight and consume less power 
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than LSTMs. In the next chapter, I have documented the next MCI detection framework 

using a GRU model and the same EEG data to see the improvement in performance and 

in computational expense. 
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CHAPTER 4 : DEVELOPING A DEEP LEARNING BASED 

APPROACH FOR ANOMALIES DETECTION FROM EEG 

DATA 

 

4.1 Overview 

Electroencephalography (EEG) plays a leading role in brain studies, mental and brain 

disease diagnosis, and treatment. Traditional machine learning (TML) approaches are 

employed in most of the recent efforts in identifying anomalies from EEG data. But their 

scalloped architecture is one of the reasons why they fail to detect correctly and 

efficiently. Furthermore, these systems need to be fed the discriminant features manually. 

To overcome these issues, this study aims to develop an EEG data analysis system 

involving a multi-layer gated recurrent unit (GRU) for mild cognitive impairment (MCI) 

anomaly detection. There are four steps to the suggested framework: (1) collecting raw 

EEG data; (2) data pre-processing (de-noising, segmenting, and down-sampling); (3) 

discovering hidden significant characteristics of EEG data and classification using a 

GRU-based scheme; and (4) evaluating the model’s performance. Our proposed model 

was tested on a publicly available EEG dataset and achieved 96.91% accuracy, 97.95% 

sensitivity, 96.16% specificity, and 96.39% F1 score. This study will guide future bio-

medical researchers and technology experts towards a deep learning (DL)-based 

automated anomaly detection system for EEG data. Research problems 1, 2, 4, and 5 

have their solutions in this chapter. 

The contents of this chapter have been published in the Proceedings of 

Developments of Artificial Intelligence Technologies in Computation and Robotics: 

Proceedings of the 14th International FLINS Conference (FLINS 2020) [9] and also in 

the Proceedings of Web Information Systems Engineering–WISE 2021: 22nd 

International Conference on Web Information Systems Engineering, WISE 2021 [104]. 

4.2 Introduction 

Artificial intelligence (AI) has received a lot of attention from researchers in recent years. 

AI, machine learning (ML), and DL appear in a slew of technology-focused articles [140]. 

DL is allowing change and innovation in many aspects of our modern lives. It is at the 
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heart of the majority of AI advancements reported in recent tech news [143]. Different 

AI fields, for example, genomics [149], graph theory [148], computer vision [145], 

natural language processing [94], cloud computing [182], sentiment analysis [147], 

automation [141], big data [139], and so on, are filled with DL applications. It has placed 

its foot not only in the tech world but also in the agricultural [142], health care [81], and 

business [144] sectors. Many AI, ML, and DL algorithms have been developed over the 

years. Talking about ML algorithms, they perform well with supervised learning with 

decent data sizes. To expand the area of AI and overcome some of the limitations of ML 

algorithms, DL algorithms were introduced. As I report, the computational support has 

increased as time goes on, and that makes DL algorithms even more efficient. 

Electroencephalography is a tool to record electrical activity in the brain. Cerebral 

electrical potentials are measured by electrodes placed on the scalp. EEG is a non-

invasive, portable, non-stationary, easy to use and interpret instrument mostly suitable for 

brain-related abnormality detection [106], [188]. 

Most of the EEG studies have at least three basic steps: deducting noises from the 

collected raw EEG signal without losing much data, extracting important features out of 

the filtered data, and EEG classification [186] with the extracted features. Due to the 

complex nature of EEG data, TML algorithms find it hard to extract the features properly. 

EEG holds multiple channels’ data, and that makes the behaviour complex. TML cannot 

extract deep characteristics out of the data, and separate feature extraction and selection 

methods become mandatory for this job. On the other hand, DL algorithms can handle 

feature extraction and selection by themselves. By nature, DL algorithms have multiple 

hidden deep layers, which can easily tackle complex data like EEG. In recent years, as 

DL has advanced, a growing number of DL-based EEG investigation algorithms have 

been developed [183]. The size of the recorded data is enormous, and discovering the 

pattern of the data requires enough computational assistance. TML algorithms, having a 

shallow architecture, fail to work with huge data. And I know how well the DL algorithms 

can perform if I have a lot of data. 

While recording the EEG data, artifacts and different types of noise get mixed 

with the signal. Therefore, a noise-removing stage is always there to ensure the data only 

contains Bain’s electrical potentials. The feature extraction step looks after the bold 

features, which are important for the classifiers’ training. There are many time-, 
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frequency-, and time-frequency-based algorithms to help the researchers in feature 

extraction. Finally, separated features are set as an input to the planned classifier for EEG 

classification. Various TML algorithms have been employed for EEG classification, such 

as K-nearest neighbour (KNN), support vector machine (SVM), linear regression (LR), 

random forest (RF), linear discriminant analysis (LDA), and so on. 

To handle the noise, stationary wavelet transformation (SWT) was performed in 

[84]. For compressing filtered EEG data, the authors used piecewise aggregate 

approximation (PAA). Permutation entropy (PE) and the auto-regressive (AR) model 

were selected for feature extraction, and the extreme learning machine (ELM) was 

introduced for EEG classification. Independent component analysis (ICA) was used for 

discarding eye blinking artifacts in [116]. The same study installed a multi-stream 

continuous hidden Markov model (MSCHMM) and multi-metric functional connectivity 

analysis based on MSCHMM for identifying the discriminant features. 

Kashefpoor et al. [50] conducted an EEG study with a correlated-based pursuit 

for feature extraction and employed the Takagi-Sugeno neurofuzzy (NF) inference 

system with KNN This study achieved 100% sensitivity, but the accuracy and specificity 

fell short at 88.89% and 83.33%, respectively. Yin et al. [100], [84] removed the artifacts 

using SWT and introduced a spectral-temporal way of feature extraction. Extracted 

features were evaluated and selected based on a 3-D evaluation algorithm. Finally, a SVM 

classifier was displayed and achieved 96.94% accuracy. Another effort [118] using 

spectral analysis and KNN was reported and attained 81.5% accuracy. EEG classification 

was done using the phase locking value (PLV) and achieved 95.9% accuracy. Dictionary 

learning had been introduced in [117] for pre-processing the EEG data. K-means and 

singular value decomposition (K-SVD), label consistent KSVD (LC-KSVD), and 

correlation-based LC-KSVD (CLC-KSVD) were three classifiers tried in that study, and 

CLC-KSVD achieved 88.9% accuracy among those three. 

There were a couple of DL-based studies that tried to work with EEG 

classification. Amezquita-Sanchez et al. [13] used the empirical wavelet transform, also 

known as MUSIC-EWT, for noise reduction and the fractality dimension (FD) from the 

chaos theory for data compression. Finally, processed EEG data were fed into an 

enhanced probabilistic neural network (EPNN) and achieved 90.3% accuracy. A four-

layer convolutional neural network (CNN) was designed for EEG classification along 
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with a biological experimental set-up to measure the oxygenated haemoglobin changes 

[122]. The performance of this CNN model was 90.37% accurate at differentiating 

abnormalities in the EEG signals. Chen et al. [119] reported a graph theory-based EEG 

classification where they performed segmentation and created a brain network, a 

connectivity matrix. After completing the pre-processing steps, CNN was brought into 

play for classifying EEG subjects. 92.06 ± 1.5% of the time, the CNN classifier was 

correct. LeCun’s general LeNet CNN architecture was selected with an EEG dataset that 

was filtered with Fast Fourier Transformation (FFT) to classify EEG healthy volunteers 

(HVs) in [146] and performed very poorly. The accuracy of this work was just 69.23%, 

but the specificity was high at 88.89%. 

It can be concluded from the reviewed literature that the TML algorithms 

performed consistently and better compared to a few of the DL-based efforts. But TML 

algorithms are not a time-effective option when it comes to feature extraction. An extra 

step is always required when it comes to TML algorithm-based studies. And having the 

complex nature of EEG data, it requires more attention for identifying discriminant 

features. The shallow architecture of TML methods makes it more time consuming and 

difficult to handle large amounts of data such as EEG. 

To overcome the reported research gaps, I have introduced a GRU-based EEG 

classification framework. GRU is a DL algorithm and a variant of the recurrent neural 

network (RNN). To our best knowledge, GRU has never employed any EEG study 

containing MCIs in it. I know RNN is best suited to sequential data like EEG. And GRU 

is a memory-efficient DL model, as it does not hold much memory like long short-term 

memory (LSTM), which is another variant of RNN. A deep GRU network is designed 

with hidden GRU layers that may selectively memorise important input for a certain 

amount of time decided by the reset gate and are commonly used in sequential prediction. 

Our proposed framework starts with reducing the noise using the Butterworth filter, 

which has the potential to achieve a more linear phase reaction and a comprehensive flat 

response. Then, I have segmented the filtered data and down-sampled it using a newly 

developed adaptive filter to reduce the computational overhead. The proposed adaptive 

filter works fine with any dataset when there are no or a minimum number of outliers. 

Finally, a two-layer GRU network has been designed to classify EEG data. The main 

efforts of this study can be summarised as follows: 
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• For the first time, I have reported GRU based DL study for EEG classification. 

• I have developed an adaptive filtering as a down-sampling approach to aid the 

suggested model's computational overhead. 

• Our proposed model is computationally inexpensive to design and achieve 

efficient and competitive retrieval results when compared to the existing DL 

models. 

The rest of the chapter is sorted as follows: Section 4.3 provides a description of the 

proposed model framework. A detailed result and analysis are given in Section 4.4. A 

comparative discussion is provided in Section 4.5. Finally, this study finishes by adhering 

to the essence in Section 4.6. 

4.3 Proposed Framework 

The DL-based anomaly detection framework from EEG data is designed with 4 sub-

modules: (1) collecting raw data; (2) data pre-processing (de-noising, segmenting, and 

down-sampling); (3) discovering hidden significant characteristics of data and 

classification using a GRU-based scheme; and (4) evaluating the model’s performance. 

Fig. 4.1 illustrates the overall framework in a nutshell. I have collected a publicly 

available raw EEG dataset from 27 subjects. Data pre-processing has three inner steps: 

(1) de-noising the raw EEG data, (2) EEG data segmentation, and (3) down-sampling the 

segmented data using an adaptive filter [7], [9]. Processed data is fed into the GRU 

classifier for feature extraction and anomaly detection. There are eight standard  

 

Fig. 4.1: Overview of the GRU based anomaly detection framework from EEG data. 
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evaluation matrices used to validate the performance of our proposed model. All the sub-

modules are described in detail below: 

4.3.1 Collecting Raw EEG Data 

This proposed anomaly detection framework is tested with a publicly available EEG 

dataset of 27 subjects, where there are 16 HVs and 11 MCI subjects ageing between 60 

and 77 years. These EEG data were collected in the Sina and Nour Hospitals, Isfahan, 

Iran [50], [123]. All the participants gave their consent, and the deputy of research and 

technology at the Isfahan University of Medical Sciences, Isfahan, Iran, ethically 

approved this EEG data collection. Each of the subjects underwent a neuropsychiatric 

interview for MCI illness according to Pererson's criteria. The participants were validated 

using the Mini-mental State Examination (MMSE) score. Subjects with an MMSE score 

of 21 to 26 were treated as MCI, while those with a score of more than 26 were considered 

HV. Head trauma, dementia, and a history of significant mental problems, serious medical 

conditions, or drug abuse were all considered exclusion criteria. 

 

Fig. 4.2: Raw EEG recordings of (a) an MCI subject and (b) a HV for 5 seconds at the Fz 

electrode location. 

The EEG recordings took place in the morning in a quiet room for 30 minutes, with all of 

the subjects in a relaxed state. The 19 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, 

Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2) were placed over the scalp using the International 
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10-20 system, and EEG data were digitised using 32-channel EEG equipment with a 

sampling frequency of 256 Hz. Fig. 4.2 shows 5-second EEG recordings of an MCI and 

a HV at the Fz electrode location. The electrodes' skin impedance was less than 5 kΩ. To 

avoid sleepiness, the medical professional made sure that all of the participants were 

awake during the EEG recording. 

4.3.2 Data Pre-processing (De-noising, Segmenting, and Down-sampling) 

The raw EEG data often gets mixed with unwanted signals and other outliers. And for an 

individual subject, the recording lasted for 30 minutes. So, I can understand the size of 

the data. These huge EEG datasets need to be segmented for smooth processing. Our 

proposed pre-processing sub-module has three inner steps: (a) de-noising using the 

Butterworth filter, (b) segmentation, and (c) down-sampling using an adaptive filter to 

ensure smooth feature extraction and classification. 

4.3.2.1 De-noising the EEG Data 

Artifacts or so-called undesirable signals, frequently contaminate EEG recordings. 

Outlier values, electrode pops, breathing, power supply fluxes and interference (50 Hz), 

baseline drift, eye blinking, or muscle electrical activity, among other things, are some of 

the most prevalent causes of EEG recording contamination. As a result, if I want a decent 

classifier, I must first remove the noise from the recording. 

Our proposed study engaged the Butterworth filter to de-noise the unwanted 

signals. The Butterworth filter used in this work excludes undesirable high-frequency 

signals such as those caused by body movement, electricity grid inference, eye blinks, 

and heartbeats. It aids in the production of more linear phase reactions while also 

optimizing the flat response. 

The recordings were viewed, and noise was removed using the MATLAB 

EEGLAB [124] package. To remove artifacts, a low-pass, third-order Butterworth filter 

with a cut-off frequency of 50 Hz was employed. Each having a duration of 60 seconds 

× 30 minutes × 256 Hz. I digitized each subject's signal, which has 460800 rows and all 

19 electrodes representing the columns. The recordings were saved as .mat files. 
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4.3.2.2 Segmentation 

By character, EEG signals are non-stationary, non-periodic, and massive in size. We'll 

need a lot of computer power to analyze this big dataset of 27 people, and it will take a 

long time to build a model. To deal with this type of data, segmentation is a good option. 

It also helps to increase the sample size by not losing any data, as each segment still 

contains important features. 

For our work, I intended to split each of the 30 minutes of recording and capture 

6 seconds for each segment by keeping the sampling frequency the same, which is 256 

Hz. Following the segmentation of each subject, I produced 300 additional segments from 

each subject's recording, all of which are clearly labelled with the appropriate subject's 

label (MCI/Normal). Finally, I had a total of 27 × 300 = 8,100 individuals, each with 

1,536 rows and 19 columns. For our work, each of these temporal segments is treated as 

a digital image for further processing. 

4.3.2.3 Down-sampling using adaptive filter 

Image processing is still being challenged by noise. Noise causes the intensity 

manipulation of the image. So, removing or reducing the noise from the image is a must 

before working with it. It is an active area of research because none of the established or 

proposed noise-reducing methods can bring back the original image. And also, there are 

different types of noises. Different proposed algorithms work fine with different types of 

noise and also up to a certain level of noise. In this part of the work, an adaptive noise 

removal algorithm is proposed that works fine with impulse noises and does not blur the 

edges of the inputted image. While removing the noises, the algorithm uses an adaptive 

mask, which is n × n squared or crossed mu, where n is usually an odd number. Our 

proposed algorithm has achieved a peak signal-to-noise ratio of 15.38 dB, outperforming 

the existing filters. 

Noise is a bug that can be added while capturing the image. Image noise is the 

variation of color and brightness information in an image [91], [168]. The latest cameras 

have the noise-removing algorithms installed within them. But still, the capturing sensors 

and lighting factors, i.e., sunlight, nighttime mood, etc., can help in acquiring the noises. 

The real intensity values of the image are being replaced by the noise. When a sensor 

captures an image, it filters the image with different smoothing algorithms. 



 

127 

 

            𝑓(𝑥, 𝑦) =  𝑟𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒(𝑥, 𝑦) ∗  𝑖𝑙𝑙𝑢𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛(𝑥, 𝑦)                             (13) 

An image is created in Eq. (13), where f(x, y) represents the intensity level at position (x, 

y), the reflectance data range is [0, 1], and the illumination’s range is [0, ∞]. This is how 

an image is created. Digital image-capture devices have better support for noise reduction. 

Nowadays, those devices have a good image-capturing sensor. Image noise can be 

produced by the circuitry of a scanner, digital camera, or sensor [161]. 

Applications of digital imaging are increasing day by day. Starting from a 

magnetic computed tomography scan, aerospace, satellite television, resonance imaging, 

astronomy, a vision system, a vision-based robotic system, etc. The most sensitive and 

vast use of digital image processing is in the biomedical sector. Identifying a disease takes 

more time because of long testing examinations. At present, several diseases are 

identified; also, proper treatments are prescribed later than a sequence of long 

examinations [162]. Taking blood samples and using different scans and diagnoses to 

detect a disease is the regular or manual procedure. Biomedical imaging is playing a role 

here to reduce the time for detecting the diseases. Hair cracks, eye cataracts, and tissue 

damage detections are some of the biomedical applications of digital imaging. If these 

images are corrupted with noise, that can cause a lot of harm to a patient. So, removing 

the noise from the image is a must for all these important applications of digital imaging. 

In the related works section, it is used to briefly discuss the related previous works 

of noise removal algorithms. Our proposed method has been elaborately described in the 

proposed method section. In the experiments and findings section, our proposed 

algorithm’s performance is measured and comparisons are shown with respect to the 

existing previous works. This sub-study ends with an essence. 

Analogue and digital are the two types of signals I mostly work with. Both of the 

signals are corrupted with noise while capturing. So, removing noise is a prerequisite for 

any type of signal processing. Noise removal is an active area of research in Signal 

Processing. There have been several works done regarding noise removal from images. 

And still, it is an ongoing research area as the noise and image acquisition devices vary. 

Wang et al. [163] had used the non-local means (NLM) and the bilateral filters to 

reduce the noise in color images. They introduced a weight function as texture 

information with the NLM and bilateral filters. The mean squared deviation (MSD) was 
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used to distinguish the edge areas from the smooth areas. This algorithm showed better 

performance in reducing Gaussian multiplicative noise from color images. 

  Among all the well-established noise removal filters, the median filter performs 

better at restoring the fine details of the image. There have been lots of works done with 

the median filters [167, 168]. Finally, when the mask is fixed, the algorithm calculates 

the average value of the selected mask, visits each pixel, and compares it with the average 

value. If any of the pixels values were greater than the average value, then the algorithm 

replaced them with the median value of the selected mask. This algorithm showed better 

performance in terms of time complexity. 

In a recent work [164], salt and pepper noise was targeted to reduce grayscale 

images. Recursive adaptive switching median filter (RASMF) was proposed to do the 

task, which has two parts: noise detection and noise cancellation. A pixel is corrupted if 

it has the maximum or minimum intensity level, and the noise detection function assigns 

candidate value 1 to a noisy pixel otherwise 0. The noise cancellation part replaced a 

noisy pixel with the median value of eight non-noisy pixels within the mask. The filtering 

window was switching until it had eight noise-free pixels inside it. 

Depending on the probability density function of the impulse noise, noisy pixels 

had been replaced with the difference between the median value of the floating window, 

which has four members: (i-1, j), (i, j-1), (i, j+1), (i+1, j), and the level of rejection in 

[166]. A distortion function is used to identify noise, and 1 value is assigned if the pixel 

is noisy and 0 otherwise. From the level of rejection, which was calculated by the variance 

of the pixels, each noisy pixel’s replacement value was calculated. 

Very few works have been done with the mean filter to reduce the noise, as this 

filter is very sensitive to salt and pepper noise [8], [167]. In [165], an adaptive decision-

based mean filter was proposed for only salt and pepper noise. It was a decision-based 

noise filtering model that replaced the noisy pixel with the mean of the four noise-free 

pixels in the north, south, east, and west directions. 

Fuzzy logic has been used for image noise removal as well. The Fuzzy Inference 

System (FIS) was used to determine the noise level of the pixel of the current mask in [7]. 

There were 97 fuzzy if-then rules inside the FIS to decide the noise level. Maximum, 

minimum, median, and mean intensity values were passed as an input to the FIS. 
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Prabu, Balamurugan, and Vengatesan [162] had also used the FIS to filter out the 

noise from medical images. It was actually a histogram-based algorithm that had been 

equalized and input into the FIS. Based on the FIS decision, noisy pixels get replaced by 

the median value of the current window. 

Proposed Method. In this chapter, I have proposed an adaptive noise removal filter that 

has two basic parts. a) Noise Detection Unit; b) Noise Removal Unit Based on the noise 

detection, different filters are applied to the centered pixel. 

 

Fig. 4.3: Proposed algorithm’s flowchart. 

Dataset. All the experiments are done with a Kodak color image dataset. 

Algorithm. The system takes as input a color image. After reading a color image, it 

separates the three channels (red, green, and blue) and then filters them separately. The 

filtered channels are finally combined to build the colored image. The algorithm plan is 

shown in Fig. 4.3. The algorithm is divided into two units: (a) noise detection and (b) 

noise removal. The proposed adaptive filtering requires the following steps: 
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Algorithm 1 The pseudo-code of the noise removal method 

Step 1:  input a noisy image (im_noisy) 

Step 2:  compute [H W] ← size (im_ noisy), 

             max ← 0, min ← 0   // two variables to store the maximum and 

             minimum intensity value within the 3 × 3 mux window. 

Step 3:  for each i € H-1 and j € W-1, store the 9 pixel’s intensity in P matrix and 

             also compute the max and min intensity value.  

Step 4:  compute the difference between max and min, compute maximum 

             occurred intensity from the P matrix. 

Step 5: Judgement: if max_occurence_intensity >= mode threshold value, then 

             apply mode filter; 

              if  max_occurence_ intensity < mode threshold & & difference between 

             max and min > average threshold && difference between max and min 

             <= median threshold, then apply average filter; 

             if max_occurence_intensity < mode threshold  &&  difference between 

  max and min > median threshold, then apply median filter 
 

Experiments and Findings. The above adaptive algorithm works fine with all types of 

additive noise, depending on the threshold value given. The algorithm beats all the 

existing smoothing algorithms when the image has multiplicative noise. It also gives 

satisfactory output for salt and pepper noise. The peak signal-to-noise ratio (PSNR) value 

is measured for comparing the performance of this algorithm. 

 

Fig. 4.4:  Visual comparison on a grayscale image. 

Fig. 4.4 illustrates a compassion among the mean, median, and our proposed filter applied 

to a grayscale image. Another color image comparison is shown in Fig. 4.5. Table 4.1 
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represents the mathematical comparison where our proposed algorithm beats the existing 

filters. 

 

Fig. 4.5:  Visual comparison on a colour image. 

Table 4.1: PSNR and MSE comparison. 

Filters MSE (Mean Square Error) PSNR in dB 

Median Filter 1.929738601684570e+03 15.275818764893970 

Average Filter 2.031163055419922e+03 14.789564798109934 

Our Algorithm 1.884438812255859e+03 15.378983203988462 

 

Summary. In this work, I have proposed an adaptive algorithm that is more powerful at 

reducing the noise, particularly the multiplicative noise. I have shown the comparison of 

two different images and their peak signal-to-noise ratio (PSNR) and mean square error 

(MSE) values, where it is proved to work better than existing algorithms. This adaptive 

algorithm works fine with all types of images and all types of noise, but only at certain 

thresholds that I have mentioned in the algorithm section. 
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Applying This Filter. To ensure an efficient DL model, I need to have a large dataset. 

But I had only 27 subjects. From these 27 EEG recordings, I created 8,100 subjects by 

segmenting the dataset. Now, I want to resolve the computational power issue because I 

want a cost-effective model that can be trained on a regular machine. 

To reduce the computational overhead, I down-sampled the data using the 

proposed adaptive filter. The adaptive filter works fine when the data is outlier- and noise-

free. So, this filter fits perfectly with our dataset and helped me reduce the data dimension. 

Initially, the sampling frequency was 256 Hz, and by using the adaptive filter, I down-

sampled it to 4 Hz. The sliding window method was employed, with a window size of 64 

× 1 for each iteration. Fig. 3.3 is a showcase of the sliding window. While keeping the 

number of channels constant, I run the window column-wise. For each of the channels, 

the window ran for 24 times, giving me a new row number for each of the subjects. I 

saved the data in CSV format after performing all of the pre-processing processes in 

MATLAB. 

4.3.3 Discover Hidden Significant Characteristics of Data and Classification 

using GRU based Scheme 

The main goal of this study is to develop a simple, computationally cheap, DL-based 

model that performs efficiently. To investigate further, I introduced a GRU-based 

classifier in this study to identify the hidden features and differentiate HV EEG signals 

from abnormal ones. To our best knowledge, this dataset has never been subjected to 

GRU analysis. I find GRU suitable for this EEG study due to the nature of EEG data and 

the characteristics of GRU. As I know, EEG is a huge, non-stationary, chaotic dataset, 

and it suits well with DL-based methods. It is suitable for any recurrent network-based 

method. As LSTM, which is a variant of recurrent networks, has a tendency to hold the 

memory for a long time, it is not suitable if I want a cost-effective model. When it comes 

to GRU, in particular, it becomes a perfect match as it has a forget gate inside its 

architecture, which helps to set free the memory. 

To build up our proposed GRU network, I used Jupyter notebook as an IDE and 

Python as the programming language, as it has good support for DL with libraries like 

Keras [128], SciPy, Pandas, NumPy, and Scikit Learn. 
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Fig. 4.6: Proposed GRU Architecture. 

With the aid of the Pandas library, all pre-processed CSV files were read into the system. 

The NumPy library was then used to transform all of these data frames into two-

dimensional arrays. At the same time, each subject's category label was stored in a 

separate NumPy array. Then, using the NumPy library's reshape function, I decreased the 

input data's dimension. With the Scikit-Learn package, the dataset was then randomly 

split into the training and validation sets. In our validation set, I included 20% of the data. 

Finally, the Keras library with a Tensor Flow backend [129] was used to construct the 

proposed GRU network. 

Our proposed GRU network had two deep, hidden layers and a dense layer. The 

dense layer had a single neuron, and the first hidden layer of the GRU network had 1024 

neurons, and the second one had 512 neurons in it. I had used "tanh" as the activation 

function in both of the deep hidden layers and ‘sigmoid’ in the dense layer. There was a 

flattening layer employed just before the dense layer. Fig. 4.6 illustrates the architecture 

of the GRU network. "Binary_crossentropy" was used as the loss function as it is a binary 

classification problem that I was trying to solve. I had picked the "Adam" optimizer for 

our work. 
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To ensure our proposed GRU network did not overfit, I deposited early and kept 

a checkpoint throughout the training process. The check pointer was set on the validation 

loss and validation accuracy, with the min_delta set to 0.001 and patience to 10. For fitting 

the data, I set the batch size to 300 and the epoch to 100. After every check point, it sorted 

the best model in "hdf5" format, which was later used for further model evaluation. 

4.3.4 Model’s Performance Evaluation 

Our proposed GRU-based model has been tested with eight standard evaluation matrices. 

Accuracy, sensitivity, specificity, false-positive rate, precision, the F1 score, the receiver 

operating characteristic (ROC) curve, and the area under the ROC curve (AUC) are the 

performance measure matrices used to justify our proposed study. The plots of sensitivity 

(true positive rate) vs. false positive rates are shown on the ROC curve in Fig. 4.9. 

4.4 Result and Analysis 

All the raw EEG data was stored in European Data Format (EDF). For the pre-processing 

steps, I have used MATLAB as a tool. Using the Butterworth filter, I have de-noised the 

raw EEG data and saved it as MATLAB-formatted data (.mat). After that, all of the 

artifact-free data was segmented, and each segment was down-sampled using the 

proposed adaptive filter. Comma-separated value (CSV) files were created for each of the 

filtered segments. Finally, these segments are input into the GRU network for feature 

extraction and classification. All the experiments are performed on a MacBook Pro with 

a 2.6GHz Intel Core i7 CPU, 16GB RAM, and a 4GB graphics card. 

There were 100 epochs with a batch size of 300 while training the model. To 

ensure our model does not overfit, I have set an early stop on validation loss and accuracy. 

The min_delta value was set to 0.001 and patience to 10. Finally, our model achieved 

96.91% accuracy within only 36 epochs. Fig. 4.7 depicts both the training and validation 

accuracy and loss over epochs. In the beginning of the training process, the training loss 

was very high, but it dropped drastically just after the 1st epoch. The validation loss 

decreased from 42.82% to 12.59% over the 36 epochs. The validation accuracy improved 

from 66.05% to 96.91% over the training process. The overall performance of our 

proposed model is reported in Table 4.2. The model has achieved 96.91% accuracy, 

97.95% sensitivity, 96.16% specificity, 3.84% false positive rate, 94.89% precision, 

96.39% F1 score, and 97.05% AUC value. 
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Fig. 4.7: Proposed Model’s Accuracy and Loss over epochs. 

Table 4.2: Overall performance of the proposed GRU model. 

Evolution Matrixes  Predicted Outcome  

Accuracy  96.91%  

Sensitivity  97.95%  

Specificity  96.16%  

False Positive Rate  3.84%  

Precision  94.89%  

F1 Score  96.39%  

AUC  97.05%  

 

Fig. 4.8 shows the confusion matrix of our GRU-based classifier. There were 938 HVs 

and 682 MCI testing samples to measure the performance. Among the HV testing 

samples, 902 (96.16%) samples were correctly identified as HVs, and 36 (3.83%) samples 

were misclassified as MCI. Again, among the MCI testing samples, 668 (97.95%) 

samples were correctly recognized as MCI, and 14 (2.5%) samples were misclassified as 

HV. It can be said that the misclassification rate is very low compared to the properly 

identified rate. And the false alarm rate tends to decrease if I increase the number of 

testing samples. 
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Fig. 4.8: Confusion matrix of the GRU based model. 

The receiver operating characteristic (ROC) curve is a measure to recognize a classifier’s 

performance. It demonstrates the relationship between sensitivity and specificity. The 

ROC curve is shown by the x-axis, which depicts 1 – specificity = FP / (FP+TN), and the 

y-axis, which depicts sensitivity = TP / (TP+FN). The blue curve in Fig. 4.9 illustrates 

the ROC curve, and the area under the ROC curve is known as the AUC value. The bigger 

the value, the better the model is. The AUC value always stays between 0 and 1. In our 

case, after multiplying by 100, the AUC value I have is 97.05 percent, which proves the 

efficiency of our proposed model. 

4.5 Discussion 

This study is committed to differentiating HV EEG signals from irregular EEG signals. 

For that purpose, I have chosen 27 EEG recordings (16 HVs and 11 MCIs). The 

framework I have designed performed really well in differentiating HV EEG samples 

from the abnormal ones, with an accuracy of 96.91%. It is observed that the false alarm 

rate is 9.84%, which is very low. The reason behind it could be a smaller dataset and 

artifacts affecting the EEG data recording. To our best knowledge, the GRU model has 

never been set up with this dataset, and it has shown promising performance. Previous 

attempts to classify EEG data with TML methods had shown promising performance, but  
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Fig. 4.9: ROC curve showing the efficiency of the proposed model. 

the computational expense to build the shallow architectures and feature extraction 

methods made it costly. An overall comparison with previous attempts including both 

TML and DL methods alongside our proposed method is reported in Table 4.3. 

Previous studies with a shallow architecture failed to have a cost-effective and 

efficient model. From the literature, it can be said that very few studies have used DL-

based models to separate the regular EEG signals from the abnormal ones. Most of the 

previous attempts evolved with TML algorithms like SVM, KNN, and LR, etc., which do 

not have the power to extract the features for themselves. They need to be fed manually 

extracted features by different feature extraction methods. It is one of the main reasons 

for missing important features, which has an impact on the classifier’s performance. And 

due to this extra step of feature extraction, the cost of the model increases, whereas the 

DL-based model can do this feature extraction by itself. But it often leads to a non-

efficient model if the sample size is too small. 

Our proposed GRU model with two deep hidden layers and a dense layer is too 

simple to design. It has 1024, 512, and 1 neurons respectively. The hidden layers have 

tanh," whereas the dense layer has "sigmoid" as activation functions. With such a simple 

design, it achieves very good accuracy. It took 36 epochs to reach such efficiency, and on 

average, each epoch lasts for only 1120 seconds. 
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Table 4.3: Comparison with previous efforts. 

Studies Accuracy Sensitivity Specificity 

Kashefpoor et al. [50] 88.89% 100% 83.33% 

Yin et al. [100] 96.94% 96.89% 96.99% 

Hadiyoso et al. [118] 81.5% 81.82% 81.25% 

Kashefpoor et al. [117] 88.9% 83.3% 100% 

Chen et al. [119] 92.06% Not reported Not reported 

Jamalooa et al. [116] 95.9% 97.2% 97.2% 

G. Vrbancic and V. 

Podgorelec [146] 

69.23% 25% 88.89% 

Amezquita-Sanchez et al. 

[13] 

90.3% 92.1% 87.9% 

Yang et al. [122] 90.37% Not reported Not reported 

Proposed method 96.91% 97.95% 96.16% 

 

4.6 Synopsis 

Our proposed GRU-based anomaly identification framework has proven its capability in 

differentiating HV EEG data. GRU has never used this publicly available EEG dataset to 

separate the anomalies. It is a big challenge to work with a smaller sample size, 

particularly when I use a DL-based model as a classifier. So, I had to pre-process the raw 

data with some de-noising, segmentation, and down-sampling. De-noising helped me to 

remove the unwanted signals from the raw data, and segmentation helped me to increase 

the sample size. As I wanted to have a simpler model that could be trained on a regular 

machine with a simple configuration, I down-sampled the segmented data. This down-

sampling helped me reduce the data dimension, and while doing this, I had to sacrifice 

some of the data. That is one of the main reasons I do not have a perfect model. But while 

down-sampling, I tried our best not to lose much of the data that may cause me to have a 

less efficient model. 

In the end, I can say that our proposed GRU-based anomaly detection framework 

is a balanced model with a simpler architecture, not much cost to design, and high 

performance in identifying HV EEG signals from the irregular ones. The succeeding 

study should focus on having a larger dataset and investigating this GRU architecture 

with different amounts of hidden layers and activation functions. I believe that this 

chapter will provide future EEG researchers with a pathway towards a perfect HV EEG 

identification model. 
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At the end of this framework, I still had some further fine-tuning in mind with this 

same EEG data and GRU classifier. Though this proposed GRU-based framework has 

outperformed all previous MCI efforts with the same EEG data as well as our own LSTM-

based MCI detection effort, I wanted to give it further tries to improve this current GRU 

framework. There are a few new EEG pre-processing methods along with three other 

classifiers, and I have proposed an improved GRU-based MCI detection framework in 

the next chapter using the same EEG data. 
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CHAPTER 5 : A DEEP LEARNING BASED FRAMEWORK 

FOR DIAGNOSIS OF MILD COGNITIVE IMPAIRMENT 

 

5.1 Overview 

Detecting mild cognitive impairment (MCI) from electroencephalography (EEG) data is 

a challenging problem as existing methods rely on machine learning (ML)-based shallow 

architectures that are unable to successfully uncover relevant biomarkers from deep 

hidden layers of data. This study will design a deep learning (DL)-based framework, 

including a gated recurrent unit (GRU) model, for effective detection of MCI participants 

from healthy volunteers (HVs) utilising EEG data. MCI is a gradual, irreversible 

neurodegenerative illness that is frequently a precursor to Alzheimer's disease (AD) and 

can result in dementia in the elderly. There is no cure or treatment to stop or reverse the 

course of MCI; early identification is critical for the successful application of treatment 

strategies to enhance the quality of life of patients. The proposed framework consists of 

four steps: gathering raw EEG data; pre-processing of the raw data (de-noising, 

segmentation, and down sampling); uncovering hidden features and classification of MCI 

subjects from HVs; and performance evaluation of the proposed model. The proposed 

GRU model has been compared with long-short-term memory (LSTM), support vector 

machine (SVM), and K-nearest neighbour (KNN) classifiers. The stability of the 

framework is evaluated through 5-fold cross-validation. The suggested GRU-based DL 

model serves as a reliable biomarker and aids technicians in developing a new automatic 

MCI detection method. This chapter also shares answers to research questions 2, 4, and 

5. 

The contents of this chapter have been published in the Knowledge-Based Systems 

[107]. 

5.2 Introduction 

MCI is a neurological disorder engendered by cognitive decline. Memory loss is far more 

severe in those with MCI than it would be in someone of a similar age group. MCI is 

caused by memory loss, a reduction in vocabulary, and a diminished ability to make 

precise motor motions, all of which have an impact on day-to-day activities [106]. The 
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primary causes of this neurologic illness are neuronal cell death and malfunction [66], 

[65]. According to recent research, MCI patients are more likely to acquire dementia, 

particularly AD [108], [109], [110]. Dementia is one of the leading sources of impairment 

and reliance among the elderly across the world. MCI and dementia are on the rise 

globally, with emerging nations expected to have a greater increase [112], [10]. It is 

Australia's second most common cause of death [113] and the world's seventh most 

common cause of death [114]. If no medical breakthroughs are made, the anticipated 

472,000 Australians living with dementia in 2021 would rise to 590,000 by 2028 and 

1,076,000 by 2058 [135]. The Alzheimer's Disease International (ADI) report estimates 

that there were more than 50 million dementia sufferers globally in 2019, with that 

number expected to rise to 152 million by 2050 [115]. There is currently no permanent 

cure for MCI or dementia; however, early detection can temporarily halt the progression 

of symptoms, therefore improving patient and caregiver quality of life [139]. Therefore, 

it is critical to diagnose MCI early on so that patients may receive quick medical attention, 

and it is a study topic that is still being explored. The life of an MCI subject can be saved 

and enhanced by using the right procedures and getting a quick and accurate diagnosis. 

Mini-Mental State Examinations (MMSE), Magnetic Resonance Imaging (MRI), 

Computed Tomography (CT) scans, blood tests, Positron Emission Tomography (PET), 

spinal fluid, and EEG are some of the instruments used in today's medical systems to 

identify MCI. PET, MRI, and CT scanning are expensive alternatives, whereas the 

MMSE exam is a manual question-and-answer test. EEG, on the other hand, is widely 

acknowledged as a standard instrument for examining MCI since it is a cost-effective, 

non-invasive, and portable instrument. EEG recordings reflect the electrical activity in 

the cerebral cortex over time. It is one of the most useful tools for assessing cognitive 

issues. Therefore, this study looks at the use of EEG as a technique for early detection of 

MCI. 

Two traditional machine learning (TML) and two DL-based approaches to detect 

MCI have been presented to address the mentioned research gaps. This is an extension of 

our previous GRU-based MCI detection framework [104]. This proposed study starts with 

discarding unwanted signals and artifacts from the acquired public EEG data using the 

stationary wavelet transform (SWT). Filtered signals have been segmented and down-

sampled from 256 Hz to 4 Hz using an average filter. Finally, LSTM, GRU, SVM, and 

KNN classifiers have been designed to differentiate MCI subjects from HVs. SVM and 
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KNN have used the LSTM-extracted features. This extensive work has introduced a 

different EEG signal de-noising technique and three new classifiers compared to our 

previous effort to identify MCI at the preliminary stage. The following are the major 

contributions of this study: 

• For the first time, an LSTM and GRU-based DL study for MCI classification has 

been accomplished. 

• I have utilized the LSTM-extracted features for SVM and KNN instead of using 

separate feature extraction methods to save computational cost. 

• To enhance the suggested model's quicker performance, I have examined the 

average filtering strategy for down sampling. 

• With reduced calculation time, our approach improves classification accuracy, 

and the consistency of the performance has been checked by 5-fold cross 

validation scheme. 

The rest of the chapter is assembled as follows: Background reviews are presented in 

Section 5.3. The suggested model framework is described in detail in Section 5.4. Section 

5.5 contains the full outcomes and analyses, as well as the results of the investigations. 

Section 5.6 has a qualitative discussion. Finally, in Section 5.7, this study concludes with 

a summary of findings and recommendations for further investigations. 

5.3 Background Studies 

Many studies have been undertaken over the last few decades to diagnose MCI at an early 

stage so that it does not progress to AD or other forms of dementia. Siuly et al. [84] used 

the piecewise aggregate approximation method to compress the EEG data, permutation 

entropy and auto-regressive to extract the features, and an extreme learning machine 

(ELM) to classify MCI subjects. Recently, a multiclass study to diagnose MCI, AD, and 

HVs using discrete wavelet transform (DWT), power spectral density (PSD), and 

coherence for feature extraction has been proposed [152]. The bagged tree was chosen as 

the classifier for this study. Amezquita-Sanchez et al. [135] performed the empirical 

wavelet transform, also known as MUSIC-EWT, for noise reduction and fractality 

dimension (FD) from the chaos theory for data compression. Processed data was fed into 

an enhanced probabilistic neural network (EPNN) and achieved 90.3% accuracy. A single 

channel-based MCI study [52] was conducted with 23 subjects, and event-related 
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potential (ERP) was measured to capture the features. SVM attained 87.9% accuracy, 

84.8% sensitivity, 95% specificity, and an 85% F score in leave-one-out cross validation. 

Al-Qazzaz et al. [135] studied 5 vascular dementia (VaD) subjects, 15 patients 

with MCI, and 15 HVs to develop a multiclass MCI-dementia detection model. 

Independent component analysis (ICA) and wavelet transform (WT) were used for EEG 

analysis. Linear features were extracted using relative powers (RP) and power ratios of 

ANOVA analysis, and non-linear features were uncovered using permutation entropy and 

FD. KNN and SVM were applied, and SVM outperformed KNN and achieved 91.48% 

accuracy. Another SVM-based study [75] was conducted where finger tapping test (FTT), 

continuous performance test (CPT), power spectral density (PSD), skewness, kurtosis, 

spectral skewness, spectral kurtosis, spectral crest factor, spectral entropy (SE), and FD 

were measured for EEG analysis of 44 subjects. This study achieved 89.8% accuracy in 

FTT mode. 

A DL-based approach [86] along with wavelet analysis was recently proposed to 

classify MCI patients. A bidirectional long short-term memory (BLSTM) network had 

been developed and gained 69.53% accuracy. Meghdadi et al. [153] measured PSD at 

each channel, spectral coherence between pairs of channels, principal component analysis 

(PCA), and linear discriminant analysis (LDA) for classification. This model obtained an 

AUC value of 0.85 for cross-validation. Using the statistical pattern recognition (SPR) 

method, another MCI prediction [154] was accomplished where logistic regression (LR) 

was used for differentiating MCI subjects and received a 0.78 AUC value, 71% 

sensitivity, and 69% specificity. 

Kashefpoor et al. [50] used a Takagi-Sugeno neurofuzzy (NF) inference system 

with KNN to perform an EEG investigation using a correlation-based pursuit for feature 

extraction. Although the study's sensitivity was 100 percent, its accuracy and specificity 

were only 88.89 percent and 83.33 percent, respectively. The EEG data was preprocessed 

using dictionary learning [117]. The study used three classifiers: K-means and singular 

value decomposition (K-SVD), label-consistent KSVD (LC-KSVD), and correlation-

based LC-KSVD (CLC-KSVD), with CLC-KSVD achieving the highest accuracy of the 

three. Chen et al. [119] published a graph theory-based EEG classification that included 

segmentation and the creation of a brain network connectivity matrix. A Convolutional 

neural network (CNN) was used to categorize EEG individuals once the preprocessing 
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stages were completed. The CNN classifier was right 92.06 percent of the time. For EEG 

categorization, a four-layer CNN was created, combined with a medical experiment to 

assess variations in oxygenated hemoglobin [122]. This CNN model was 90.37 percent 

accurate in identifying MCI subjects from HVs. 

According to the examined literature, TML algorithms outperformed a few DL-

based attempts more consistently and effectively. But when it comes to feature extraction, 

TML algorithms are not a time-saving alternative. An extra step is always necessary when 

it comes to studying the TML algorithm. Furthermore, due to the complexity of EEG data, 

detecting discriminant characteristics requires greater attention. The shallow design of 

TML approaches makes it more time-consuming and difficult to manage large amounts 

of data, such as EEG. 

5.4 Proffered Framework 

This extended study has submitted a comprehensive MCI identification framework using 

EEG data. The proffered framework consists of four steps, and Fig. 5.1 exhibits them in 

a nutshell. (i) Accumulating EEG Data; (ii) Pre-processing Raw Data; (iii) Uncovering 

Hidden Features and Classification of MCI and Normal Subjects; and (iv) Performance 

Evaluation are the four steps towards the entire framework described in the following 

sub-sections. 

 

Fig. 5.1: A comprehensive MCI identification framework. 

  



 

147 

 

5.4.1 Accumulating EEG Data 

This MCI study has exercised a publicly available EEG dataset of 27 subjects from the 

Sina and Nour Hospital, Isfahan, Iran [50], [123]. 16 HVs and 11 MCI subjects were part 

of this EEG data collection. All of these subjects were aged between 60 and 77 and had 

given their consent for the study. The deputy of research and technology, Isfahan 

University of Medical Sciences, Isfahan, Iran, had ethically approved the data collection. 

A neuropsychiatric interview, also known as a mini-mental state examination (MMSE), 

was performed for each subject following Petersen’s criteria. The MMSE scores of MCI 

and HVs were between 21 and 26, respectively. None of these 27 subjects had head 

trauma, dementia, or a history of major psychiatric disorders, serious medical disease, or 

substance misuse. Table 5.1 provides the demographic and psychiatric information of the 

participating subjects. 

Table 5.1: Demographic and Psychiatric Information of the Dataset. 

Characteristic MCI Normal 

Age (years) 66.4 ± 4.6 65.3 ± 3.9 

Education (years) 10.3 ± 3.8 11.1 ± 3 

GHQ Scores 20.5 ± 9.4 17.9 ± 6.6 

BMI (kg/m2) 25.7 ± 2.2 26.6 ± 3.6 

Fasting glucose (mg/dl) 115.5 ± 24.3 121.8 ± 36.9 

Total cholesterol (mg/dl) 170.6 ± 61.4 169.1 ± 42.6 

Triglycerides (mg/dl) 157.3 ± 100.9 160 ± 80.7 

Creatinine (mg/dl) 1.2 ± 0.2 1.3 ± 0.3 

MMSE scores 27.6 ± 0.9 29 ± 0.8 

NUCOG scores 82.4 ± 3.6 91.1 ± 3 

Gensini scores 33.3 ± 31.9 20.3 ± 21.7 

GHQ – General health questionnaire; BMI – Body mass index; MMSE – Mini-mental state examination; NUCOG – 

Neuropsychiatry unit cognitive assessment tool 

Following the international EEG recording standard also known as international 10-20 

system, 19 electrodes (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, 
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T6, O1, O2) were used to capture the electron movement across the scalp. All subjects 

were instructed to close their eyes and feel relaxed and conscious to avoid drowsiness 

during the EEG recordings. For each subject, recording lasted for 30 minutes, and signals 

were digitised using a 32-channel EEG device with a sampling frequency of 256 Hz, 

keeping the impedance of the electrodes skin less than 5 kΩ. Fig. 5.2 displays 2 seconds 

of EEG recordings at the Fp2 electrode position of an MCI and a HV. 

 

Fig. 5.2: 2 seconds EEG signal at Fp2 electrode position of (a) an MCI, (b) HV. 

5.4.2 Preprocessing Raw Data 

To ensure the quality of the acquired EEG dataset, recorded signals have been processed 

with different mechanisms. (i) Discarding unwanted signals, (ii) Segmentation of the 

Filtered Data, and (iii) Down-sampling the Segmented Data are the processing steps that 

are followed and discussed below. 

5.4.2.1 Discarding Unwanted Signals 

It is a very common scenario when unwanted signals, so-called noises, get mixed with 

signals while recording [9], [7]. These noises corrupt the original signals and make it 

mandatory to de-noise the signal before further processing. Some common artifacts and 

noises that contaminate EEG signals are electrode pops, outlier values, baseline drift, 

power supply fluxes and interference (50 Hz), breathing, eye blinking, muscular electrical 
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activities, etc. To ensure a high quality of EEG signal processing, it is a must to employ 

a noise remover to discard unwanted signals and artifacts. 

This MCI study has performed SWT to remove unwanted artifacts and signals. 

SWT is capable of dealing with both high and low-frequency noises, and it can maximise 

the flat response of the given signal. To eradicate DC components (0–0.5 Hz) and base 

line drift in each of the channels, the symmetrized wavelet "sym9" with an 8th order has 

been deployed. Finally, high-frequency noises (32–128 Hz) and decomposition of the 

stationary wavelets have been carried out with second-order approximations for each of 

the channels. 

After de-noising, 27 filtered signals are digitized with a length of 60 seconds x 30 

minutes x 256 Hz each and saved as .mat files. Each of these 27 .mat files contains 460800 

rows representing voltage amplitude and 19 columns representing channels. All these 

operations have been brought to pass in MATLAB. There is a visual comparison of (a) 

the raw EEG signal of an MCI subject and (b) the de-noised signal of that same MCI 

subject shown in Fig. 2.7. 

5.4.2.2 Segmentation of the Filtered Data 

By nature, EEG signals are non-stationary, non-periodic, and huge in size. Therefore, for 

smooth processing of EEG data, it is a very common practice in EEG studies to segment 

the data. It reduces the computational overhead a bit and increases the sample size while 

not losing any features. 

In this study, I have segmented the whole 30-minute recordings of each subject, 

giving me 300 temporal segments out of each subject's recording. The new duration of 

each temporal segment is 6 s, which gives me 1536 rows and 19 rows for new temporal 

subjects. After segmenting 27 subjects, I now have 8,100 temporal subjects. 

5.4.2.3 Down-sampling the Segmented Data 

I was able to expand the sample size thanks to segmentation, but I still have a massive 

quantity of data to cope with. And these massive datasets have impacts on training and 

testing time. It requires a lot of computational power to process the data. It is a 

compromise between losing data in bulk and preserving critical characteristics at the same 

time. To overcome this situation, I exert the average filtering method. 
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The segmented dataset has been down-sampled using the average filter, which 

reduces computational cost. The average filter works well when the dataset is outlier- and 

noise-free. Therefore, this filter suits our dataset and accomplishes the job. An average 

filter with a sliding window of size 64 x 1 has been used to reduce the sampling frequency. 

I execute the sliding window column-wise while maintaining the number of channels 

constant. Up until the last segmentation step, all the temporal segments held a sampling 

frequency of 256 Hz. Now, the sample frequency has been changed to 4 Hz, giving me 

24 rows (6 seconds x 4 Hz) and 19 columns (channels). Each of the down-sampled 

temporal segments has been saved in comma-separated values (CSV) format in 

MATLAB. 

5.4.3 Uncovering Hidden Features and Classification of MCI and Normal 

Subjects 

Hidden features are event-relevant potentials that convert acquired EEG signals into a 

compact number of related values. This MCI study aims to discover important features 

of DL and identify MCI subjects based on those discriminative features. For feature 

extraction, no separate method is used, and for classification, four different ML models 

are tested with the processed EEG dataset. LSTM, GRU, SVM, and KNN are the four 

ML classifiers chosen for this study. Pre-processed EEG data from the previous down-

sampling step is used as input to the classifiers. For all four classifiers, training, testing, 

and validation sets remain constant at 70%, 20%, and 10%, respectively. To ensure no 

overfitting occurs during the training process, early stopping has been set to monitor 

validation loss, and min_delta was set to 0.001 while keeping the patience value of 10. 

The batch size and number of epochs have been set to 300 and 250, respectively, for all 

the classifiers. 

5.4.3.1 Long Short-Term Memory (LSTM) 

LSTM is a variant of the recurrent neural network (RNN) and works well with sequential 

data like EEG. RNN's distinctive strength is its ability to remember the past of successive 

data, which aids in more accurate prediction. Each LSTM unit's deep state demonstrates 

its memory. Cells develop the ability to output, clean their memory, or replace it 

depending on the history of their internal states and the most recent input. In Fig. 3.4, x 

denotes the input signals at time t, y denotes the output signals, and I, f, and o denote the 
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input, forget, and output gates, respectively. The stream of data into or out of LSTM's 

memory is managed using those three gates. 

Working with a sequence s = (s1, s2, s3,..., st), the RNN modifies its recurrent 

covert state ct at each time step t depending on the current input vector st and the previous 

covert state ct-1, as shown in (14) where m denotes a nonlinear function. RNNs have 

hidden layers whose activation is based on the preceding time. Because part of the 

network's linkages form a directed cycle, this is a recurrent design in which the current 

time step t considers the network's state in time step t – 1. The layers share properties 

based on different time steps, making them suitable for use with sequential data. 

                                     𝑐𝑡 =  {
0                                  𝑖𝑓 𝑡 = 0

𝑚(𝑐𝑡−1, 𝑠𝑡)              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                               (14) 

RNNs have hidden layers whose activation is based on the preceding time. Because part 

of the network's linkages form a directed cycle, this is a recurrent design in which the 

current time step t considers the network's state in time step t – 1. The layers share 

properties based on different time steps, making them suitable for use with sequential 

data. In LSTM, the recurrent covert unit of (14) is altered as given in (15). 

                                                   𝑐𝑡 = 𝑓 (𝑊1𝑠𝑡 + 𝑊2𝑐𝑡−1 + 𝑥)                                                      (15) 

W1 and W2 are two weight matrices, and x is a bias vector, with f serving as a pointwise 

nonlinear activation function. Equation (15) allows an LSTM to operate with orders of 

any length, and the gradients of f may grow exponentially as the network is being trained. 

When the error derivatives are back-propagated across multiple layers, LSTM cells are 

modelled to capture the influence of diminishing gradients. 

In this study, multiple experiments have been run with different LSTM networks 

set up. Among them, an LSTM network with two hidden layers having 1024 and 512 

nodes, respectively, has performed well. It also has a flat, dense layer with a "sigmoid" 

activation function and a single node. Hidden layers are set up with the "tanh" activation 

function, "binary_crossentropy" as the loss function, and "Adam" as the optimizer. 

5.4.3.2 Gated Recurrent Unit (GRU) 

GRU is another RNN variant and a cost-effective option in terms of data memorization. 

LSTM and GRU are comparable; however, GRU contains fewer parameters. Similarly, 

both the LSTM and GRU have gates. The update gate ut is one, while the reset gate rt is 
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the other. ut specifies which of the candidate's previous states will be replaced with a new 

value, and rt specifies how much of the candidate's previous state should be ignored while 

determining the candidate's hidden state. A sample GRU architecture in Fig. 5.3 is 

characterized by two internal variables that keep track of the prior h and present h inner 

states, respectively. GRU maintains the stream of data without the need for a memory 

unit to guard against the diminishing gradient issue. 

The current value of the covert state ct is derived using linear interpolation 

between the immediate candidate covert state c ̃t and the old value of covert state ct-1. 

From (15), c ̃t is calculated. 

                      𝑐𝑡 = (1 − 𝑢𝑡) ⊙ 𝑐𝑡−1 + 𝑢𝑡 ⊙ 𝑐�̃�                                                (16) 

                      𝑐�̃� = 𝑔(𝑊1𝑐𝑠𝑡 +  𝑊2𝑐(𝑟𝑡 ⊙ 𝑐𝑡−1) + 𝑥𝑐)                                   (17) 

                                    𝑢𝑡 =  𝜎 (𝑊1𝑢𝑠𝑡 + 𝑊2𝑢𝑐𝑡−1 + 𝑥𝑢)                                          (18) 

                                     𝑟𝑡 =  𝜎 (𝑊1𝑟𝑠𝑡 + 𝑊2𝑟𝑐𝑡−1 + 𝑥𝑟)                                           (19) 

Here, g and 𝜎 are nonlinear GRU activation functions. The ⊙ operator represents the 

multiplication of individual elements. 

 

Fig. 5.3: Architecture of a simple GRU. 

This study works with EEG data, and it requires extra attention for its sequential and 

complex data pattern. GRU is another updated version of the classical RRN that is famous 

for working with sequential and complex data patterns like EEG. There are hidden layers 
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in the recurrent network that are very good at capturing the complex EEG data's hidden 

features, like how the brain waves change over time. These recurrent networks also help 

keep the information from the previous layer safe and sound. But unlike LSTM, GRU 

does not hold redundant information in its memory. By using the update and reset gates, 

it efficiently controls the data flow in the memory. The GRU network that has been 

designed for this study has the exact same configuration as the LSTM network. But this 

GRU network is light in terms of memory holding and training processes. The GRU 

algorithm used in this study has been reported below: 

 

Algorithm 2 The pseudo-code of GRU 

Input: Down-sampled CSV files from the pre-processing step 

Output: Trained model in hdf5 format 

1. Repeat  

2.     store each CSV file in pandas dataframe 

3. Until any temporal segments are left 

4. repeat  

5.     initialize Q, convert all the dataframes to numpy arrays and store in Q 

6. until any temporal segments are left 

7. Store the labels in a numpy array named L 

8. Reshape Q and make it one dimensional 

9. Split the dataset into train, test, and validation sets 

10. Build the model 

      Add a sequential layer 

      Add a hidden layer with 1024 neuron and ‘tanh’ activation function 

      Add a hidden layer with 512 neuron and ‘tanh’ activation function 

      Add a flatten layer 

      Add a dense layer with ‘sigmoid’ activation function 

11. Initialize: The early stopping with min_delta=0.001, patience=10, monitor = ‘val_loss’ 

12. Fit the model with the training dataset, epoch 250, batch size 300 
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5.4.3.3 Support Vector Machine (SVM) 

SVM is very popular among EEG researchers. From the background study, it can be 

concluded that many MCI studies were conducted using an SVM classifier. The common 

and traditional ML practise for EEG studies is to extract the hidden features for the SVM 

classifiers using different time- or frequency-domain methods. But in this MCI study, I 

have kept it simple and computationally inexpensive by extracting the hidden features 

using an LSTM network. Using the predefined SVC function in the Scikit-Learn library, 

an SVM classifier has been executed. 

The feature extraction and classification layers have been separated and stored in 

the "getFeature" vector. Then, x_train and x_test sets have been reorganised from the 

"getFeature" vector. Polynomial has been set as the kernel function, regularisation 

parameter C has been holding a value of 2, kernel scale is set to auto, and degree of the 

polynomial kernel is set to 2. 

5.4.3.4 K-nearest Neighbor (KNN) 

KNN is another TML algorithm often used for EEG studies. Using the Scikit-Learn 

library, the KNN algorithm has been implemented. The same extracted features from the 

LSTM network have been fitted to this KNN classifier. Different values for the number 

of neighbours have been tried out, and the best result is when the number of neighbours 

is 10. The algorithm to compute the nearest neighbour has been set to auto, the 

"Manhattan" distance metric has been chosen, and weights have been selected to 

"distance". The rest of the parameters have been holding their default values. 

5.4.4 Performance Evaluation 

Numerous experiments have been conducted with the mentioned classifiers and their 

different configurations to achieve the best possible result. To check the stability and 

consistency of those results, 5-fold cross validations have been done for each of those 

four classifiers. These four models have been examined with eight standard evaluation 

matrices. (6), (7), (8), (9), (10), (11), the receiver operating characteristic (ROC) curve, 

and (12) the area under the ROC curve (AUC) are the performance evaluation matrices 

picked to find the best model. The ROC curve depicts the graph of sensitivity (true 

positive rate) versus false positive rates. 
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5.5 Investigations and Outcomes 

A publicly available EEG dataset of 16 HVs and 11 MCI subjects has been used to test 

our study. EEG recoding of those 27 subjects took place in accordance with the 

international 10-20 system, with 19 electrodes placed across the scalp and stored in 

European Data Format (EDF) format. 

The proposed pre-processing steps are done using the MATLAB 2019b version, 

and after the down-sampling stage, EEG data are saved as CSV files for easy access to 

the feature extraction and classification part. The code for the hidden feature extraction 

and classification parts has been written in Python, and Jupyter Notebook has been used 

as the IDE. All the investigations were accomplished on a MacBook Pro machine with a 

2.6GHz Intel Core i7 CPU, 16GB of RAM, and a 4GB graphics card. 

Table 5.2: Overall Performance of Various ML Classifiers. 

Classifiers Accuracy % Sensitivity % Specificity % F1 Score % AUC % 

LSTM 95.47 ± 1.17 96.31 ± 0.91 95.18 ± 1.29 94.53 ± 1.13 95.42 ± 1.03 

GRU 95.51 ± 3.11 97.52 ± 0.96 96.50 ± 0.97 95.69 ± 2.26 96.48 ± 1.85 

SVM 92.31 ± 2.04 95.06 ± 0.30 90.53 ± 0.91 91.25 ± 2.25 92.33 ± 2.02 

KNN 80.85 ± 1.78 87.58 ± 0.84 80.71 ± 1.46 82.53 ± 1.12 81.65 ± 3.62 

 

Table 5.2 reports the overall performance of the four classifiers mentioned. To validate 

the performance, a 5-fold cross-validation scheme has been measured for each of these 

classifiers. Performance metrics (accuracy, sensitivity, specificity, F1 score, and AUC) 

with a 5-fold standard deviation have been revealed in Table 5.2. It can be seen from 

Table 5.2 that GRU has outperformed all other classifiers with the highest accuracy of 

95.51 ± 3.11%, sensitivity of 97.52 ± 0.96%, specificity of 96.50 ± 0.97%, F1 score of 

95.69 ± 2.26%, and an AUC value of 96.48 ± 1.85%. Two TML algorithms, SVM and 

KNN, have failed to perform well in terms of performance metrics. KNN has achieved 

the lowest accuracy of 80.85 ± 1.78%, a sensitivity of 87.58 ± 0.84%, a specificity of 

80.71 ± 1.46%, an F1 score of 82.53 ± 1.12%, and an AUC value of 81.65 ± 3.62%. 

LSTM was close to the lead with GRU, but SVM has fallen far behind. 
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Fig. 5.4: Overall accuracies over folds of LSTM, GRU, SVM, and KNN classifiers. 

The accuracy versus folds graph has been plotted in Fig. 5.4. GRU has remained in the 

top position with an average accuracy of 95.51% for most of the folds except 3 and 4. 

LSTM has gained the highest accuracy in the 3rd and 4th folds. Another observation is 

that, apart from KNN, the accuracy of the remaining classifiers gradually decreased in 

the fourth fold. In Fig. 5.5, sensitivity versus folds is shown. GRU has maintained the top 

position among the other classifiers. 

There are enough distances among the plotted sensitivity lines. Fold-wise 

specificity has been illustrated in Fig. 5.6. In the first fold, the LSTM and GRU specificity 

lines almost have the same value. Fig. 5.7 shows the fold-wise false positive rates of the 

mentioned classifiers. GRU has the lowest average false positive rate of 4.11%. In the 

1st, 3rd, and 4th folds, LSTM and GRU almost have the same false-positive rates. 
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Fig. 5.5: Overall sensitivities over folds of LSTM, GRU, SVM, and KNN classifier. 

 

 

Fig. 5.6: Overall specificities over folds of LSTM, GRU, SVM, and KNN classifiers. 

In Fig. 5.8, ROC curves show the quality of the designed classifiers. Curves of LSTM 

and GRU are almost overlapping with each other. The AUC value is a reference for the 

classifier’s quality, meaning a higher area under the ROC curve is better in terms of 

performance. AUC values for different classifiers are presented in Table 5.2. 
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Fig. 5.7: Overall false positive rates over folds of LSTM, GRU, SVM, and KNN classifiers. 

 

Fig. 5.8: ROC curves of LSTM, GRU, SVM, and KNN classifiers. 

5.6 Discussion 

This study aims to identify MCI subjects from HVs using a portable, cost-effective tool 

like the EEG. 27 subjects (16 HVs and 11 MCIs) participated in this study. Recorded 

EEG signals from those 27 subjects are preprocessed and fed into four different classifiers 

named LSTM, GRU, SVM, and KNN. GRU has achieved the highest accuracy of 

96.91%, sensitivity of 97.95%, and specificity of 96.16%. It can be deduced from Fig. 

5.7 that GRU has the lowest false alarm rate as well, which is 4.11%. The false alarm rate 
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is still in a considerable range, and it is because of proper pre-processing of the recorded 

EEG data. This is an extensive extension of our previous GRU-based MCI detection 

framework [104]. To our knowledge, the LSTM and GRU models have never been used 

with this dataset but have shown encouraging results. Previous attempts to categorize 

EEG data using TML approaches have yielded promising results, but the computational 

cost of creating shallow structures and feature extraction algorithms renders it too 

expensive. Therefore, no feature extraction method has been applied, and the designed 

SVM and KNN reused the extracted features from the introduced LSTM network. 

Table 5.3: Comparison with Previous MCI Efforts. 

Studies Accuracy % Sensitivity % Specificity % 

Kashefpoor et al. [50] 88.89 100 83.33 

Amezquita-Sanchez et al. 

[135] 
90.3 

92.1 87.9 

Chen et al. [119] 92.06 Not reported Not reported 

Yang et al. [122] 90.37 Not reported Not reported 

Kashefpoor et al. [117] 88.9 83.3 100 

Khatun et al. [52] 87.9 84.8 95 

Al-Qazzaz et al. [135] 91.48 91.48 Not reported 

Sharma et al. [75] 89.8 84 94 

Sridhar and Manian [86] 91.93 Not reported Not reported 

Engedal et al. [154] 69 71 69 

Proposed GRU Model 96.91 97.95 96.16 

 

An overall comparison with previous attempts, along with our proposed method, is 

reported in Table 5.3. GRU has not only outperformed the rest of the designed classifiers 

but also previous MCI efforts mentioned in the table. For cross validation and consistency 

checking, 5-fold cross validation has been followed for each of the designated classifiers. 

Previous experiments that used a shallow design failed to provide a model that was both 

cost-effective and efficient. According to the literature, there have been relatively few 
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studies that have used DL-based models to classify MCIs from HVs. Most earlier attempts 

used typical ML methods such as SVM, KNN, and LR, which lack the ability to extract 

features on their own. Different feature extraction methods must be used to feed them 

with manually extracted features. It's one of the most common causes of missing critical 

characteristics that affect the classifier's performance. The cost of the model rises as a 

result of this extra feature extraction phase, whereas a DL-based model can accomplish it 

on its own. If the sample size is too small, it will almost always result in a non-efficient 

model. 

The GRU model I propose contains two deep, hidden layers and a dense layer that 

is far too easy to create. It has a total of 1024, 512, and 1 neuron. The hidden layers' 

activation functions are "tanh," whereas the dense layer's activation function is "sigmoid". 

It maintains excellent accuracy despite its modest construction. It took 36 epochs to 

achieve such efficiency, with each epoch lasting just 1120 seconds on average. 

5.7 Synopsis and Hereafter Work 

Our proposed GRU-based MCI detection system has demonstrated its capacity to 

distinguish between HV and MCI subjects. Working with a reduced sample size is 

difficult, especially when using a DL-based model as a classifier. As a result, I had to de-

noise, segment, and down-sample the raw data before I could use it. I was able to 

eliminate undesirable signals from the raw data using SWT, and I was able to expand the 

sample size using segmentation. Because I needed a simpler model that could be trained 

on a standard computer with a simple setup, I down sampled the segmented data. I was 

able to minimize the data size by using this down-sampling, but I had to sacrifice some 

of the data in the process. One of the key reasons for the lack of a flawless model is this. 

However, in down-sampling, I made every effort to avoid losing too much data, which 

may have resulted in an inefficient model. 

Finally, I can state that our suggested GRU-based MCI detection framework is a 

well-balanced model with a simple architecture, low construction cost, and great 

performance in distinguishing HV EEG signals from MCI ones. Succeeding research 

should concentrate on obtaining a larger dataset and examining this GRU architecture 

with other hidden layer counts and activation parameters. I hope that this chapter will 

pave the way for oncoming EEG researchers to develop a flawless normal EEG 

identification model. 
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This was the last MCI detection study with the EEG data I have received from 

[50], [123]. In the next chapter, I have incorporated a multiclass EEG dataset containing 

109 subjects (49 ADs, 39 MCIs, and 23 HVs) and developed a novel multiclass AD-MCI 

detection framework named the deep residual Alzheimer’s disease and MCI detection 

network (DRAM-Net). It is the very first breakthrough of its kind, breaking multiclass 

accuracy by a long margin. 
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CHAPTER 6 : DRAM-NET: A DEEP RESIDUAL 

ALZHEIMER’S DISEASES AND MILD COGNITIVE 

IMPAIRMENT DETECTION NETWORK 

 

6.1 Overview 

Mild cognitive impairment (MCI) and Alzheimer’s disease (AD) are two common 

neurodegenerative disorders that belong to the dementia family and are mostly found in 

elders. There is evidence that MCI may lead to AD. Since there is no treatment for AD 

after it has been diagnosed, it is a significant public health problem in the twenty-first 

century. Existing CML methods fail to detect AD and MCI more efficiently and 

accurately because of their shallow and limited architecture. Electroencephalography 

(EEG) is emerging as a portable, non-invasive, and cheap diagnostic tool to analyse MCI 

and AD, whereas other diagnostic tools like computed tomography, positron emission 

tomography, mini-mental state examination, and magnetic resonance imaging are 

expensive and time-consuming. To address these obstacles, a deep residual Alzheimer’s 

disease and MCI detection network (DRAM-Net)-based framework has been introduced 

to detect MCI and AD using EEG data. This multi-class study contains EEG data 

collection, pre-processing (down-sampling, de-noising, and temporal segmentation), 

DRAM-Net architecture to classify AD, MCI, and healthy volunteers (HVs), and 

experiment evaluation stages. Our proposed DRAM-Net framework has obtained 96.26% 

overall multiclass accuracy, outperforming existing multi-class studies, and has also 

claimed accuracy of 96.66% for the HV class, 98.06% for the MCI class, and 97.79% for 

the AD class. This study will create a new pathway for succeeding neuro-disease 

researchers and technology experts. Research questions #2, 3, 4, and 5 are solved inside 

this chapter 6. 

The contents of this chapter have been published in the Proceedings of Health 

Information Science: 11th International Conference, HIS 2022 [171]. 
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6.2 Introduction 

MCI and AD are linked to dementias induced by neurodegeneration. These neurological 

conditions are mostly caused by the loss and dysfunction of neurons in the brain's cells. 

Symptoms of MCI and AD include memory loss, decreased vocabulary, and a decreased 

ability to perform accurate motor movements [107]. Approximately 50 million 

individuals worldwide are expected to suffer from dementia, and 60 percent of those 

instances are linked to AD [156]. MCI is treated as the preliminary stage of AD [105]. 

People with AD or MCI have a wide variety of brain processes impaired, including 

memory and learning, as well as the ability to do complicated tasks like executive and 

motor skills and the ability to pay attention to others [155]. With age, the likelihood of 

experiencing it increases by a factor of 10 and often affects those over the age of 65 [62]. 

AD and MCI are currently untreatable, and once diagnosed with AD, patients live for 5–

8 years [37], [39]. However, early detection may delay the progression of the disease and 

improve the quality of life for patients and their caregivers. 

Existing tools including computed tomography, positron emission tomography, 

mini-mental state examination, and magnetic resonance imaging to detect MCI and AD 

are expensive, invasive, and time-consuming [106], [160]. Whereas, EEG is a newly 

emerging portable, low-cost, easy to understand and access, and quick tool to identify 

neuro-disorders like AD and MCI [104]. EEG recordings retain the electrical movements 

in the cerebral cortex relative to time, which are the fundamental drivers for assessing 

neurological disorders. The procedure for capturing EEG data means placing electrodes 

on the scalp according to a specific design, with the international 10–20 system being the 

most popular setup [155]. In account of this, I have addressed the use of EEG as a useful 

approach for identifying MCI and AD at an earlier stage. 

In order to identify MCI early and prevent it from progressing into AD or other 

cognitive diseases, several studies have been conducted in the last few decades. Morabito 

et al. [157] had performed a binary (AD vs. MCI) epoch-based classification using a 

convolutional neural network (CNN) with 11 MCI and 4 AD subjects. Recorded EEG 

data were preprocessed by Power Spectral Density (PSD), and then a multi-dimensional 

CNN with a softmax classifier model was employed to complete the binary classification. 

This effort gained an accuracy rate of up to 98.97% (95% confidence range: 98.68%–

99.26%). A recent deep learning (DL)-based approach [159] proposed two DL models: 
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modified CNN and convolutional auto encoder (Conv-AE) neural networks (NNs) to 

differentiate 61 HVs, 56 MCI, and 63 AD participants. Time–frequency representation 

(TFR) with continuous wavelet transform (CWT) has been used for processing the EEG 

data prior to feeding to the NNs. The CNN and Conv-AE NN models achieved 92% and 

89% average accuracy, respectively. Ieracitano et al. [131] carried out an AD-MCI study 

with multiple machine learning (ML) methods with 63 ADs, 63 MCIs, and 63 HVs. CWT 

and higher order statistics (HOS) from the bispectrum (BiS) features were extracted and 

fed into multi-layer perceptrons (MLP), auto encoders (AE), logistic regression (LR), and 

support vector machines (SVM). MLP outperformed the rest of the ML [132] and [8] 

classifiers used in this study with an accuracy of 89.22%. Another traditional machine 

learning (TML)-based effort [139], [132] with 109 participants (49 AD, 37 MCI, and 23 

HVs) had been introduced, where Fast Fourier Transform (FFT) and Discrete Wavelet 

Transform (DWT) were performed to obtain the spectrum features and de-noise the 

signal. A Decision Tree (DT) with the C4.5 algorithm was applied to perform the 

classification task, and it received 83%, 92%, and 79% accuracy while differentiating HV 

vs. AD, HV vs. MCI, and MCI vs. AD, respectively. Pirrone et al. [155] proposed a DT, 

SVM, and K-nearest neighbor (KNN)-based AD-MCI study with 48 AD, 37 MCI, and 

20 HVs, and KNN remained at the top with 97%, 95%, 83%, and 75% accuracy (HV vs. 

AD, HV vs. MCI, MCI vs. AD, and HV vs. AD vs. MCI). 

The studies I have reviewed have used the same multi-class EEG dataset that I 

have used. While analyzing these studies, I have concluded that most of the studies were 

conducted using TML algorithms [65], [66] and most importantly, the multi-class 

performance is poor (below 90%). TML algorithms have the tendency and limitation to 

overlook some important features of the complex EEG data because their architecture 

does not allow them to capture those. To resolve these problems, I have come up with a 

DL-based effort to not only enhance the performance but also extract those extra hidden 

complex features of EEG data that have significant involvement in the classifier’s 

learning rate. I have proposed the DRAM-Net framework consisting of four stages: EEG 

data collection, pre-processing, DRAM-Net architecture to identify MCI, AD, and HVs, 

and experiment evaluation. Below is the key contribution of this proposed DRAM-Net 

framework: 

• For the first time, I have introduced a deep residual network (DRN), customly 

designed for AD-MCI detection 
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• Our experiment uses 5 seconds temporal segments and 5 seconds of EEG data is 

good enough to decide the patient’s condition 

• This proposed DRAM-Net framework has outperformed all the existing multi-

class AD-MCI studies with this EEG dataset 

The rest of the chapter is organized as follows: Section 6.3 introduces the proposed 

DRAM-Net framework. Results and discussion are elaborated in Section 6.4. Finally, this 

study finishes with a oncoming study and essence in Section 6.5. 

6.3 Proposed DRAM-Net Framework 

This study represents the DRAM-Net framework using EEG data. Fig. 6.1 outlines the 

whole framework in a nutshell. This proposed DRAM-Net framework is made up of four 

steps. In the EEG data collection step, I gathered the raw EEG data of 109 subjects, Pre-

processing includes down-sampling, noise removal, and temporal segmentation to ensure 

that the EEG data is clean and ready to feed to the network, DRAM-Net architecture, 

where the pre-processed data is fed and classifications are performed, and finally, the 

quality of the proposed model is checked in the experiment evaluation step. A detailed 

talk about DRAM-Net is reported below. 

 

Fig. 6.1: DRAM-Net Framework for AD, MCI, and HV’s detection. 

6.3.1 EEG Data Collection 

This multi-class study uses an EEG dataset containing 109 subjects enrolled in the IRCCS 

Centro Neurolesi "Bonino-Pulejo" [155], [132]. Among these 109 subjects, 49 AD, 39 

MCI, and 23 HV were present. The average age of patients with AD and AD is 78.4 

(6.4%) and 74.1 (9.4%), respectively, whereas the average age of HVs is 65.6 (7.4%). 
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The inclusion criteria were the diagnosis of AD or MCI, while the exclusion criteria were 

the existence of neurological or psychiatric illnesses that may cause cognitive imbalance, 

complicated systemic disorders, and the presence of epileptiform patterns in the EEGs, 

hydrocephalus, stroke, traumatic brain injuries, or other neurological abnormalities. The 

objective of these EEG recordings was explained to all the participants, and everyone 

signed the consent form. Following the World Health Organization’s standard, the 

recording tool was placed in place and approved by the local Ethics Committee of the 

RCCS Centro Neurolesi "Bonino-Pulejo". All the participants were in a resting condition, 

keeping their eyes closed. 19 electrodes (Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, 

F8, T3, T4, T5, T6, Fz, Cz, and Pz) were placed across the scalp of each subject following 

the international 10-20 standard. The recording took place for about 300 seconds for each 

subject, with a sampling frequency of 256 or 1024 Hz. 

6.3.2 Preprocessing 

6.3.2.1 Down-sampling 

The collected raw EEG data were not uniform in terms of sampling frequency. Therefore, 

I have made it uniform by down-sampling the sampling frequency to 256 Hz for all 

subjects using MATLAB. 

6.3.2.2 De-noising with SWT 

EEG recordings may be contaminated by a variety of factors, including electrode pops, 

eye blinks, outlier readings, power supply fluxes and interference (50 Hz), baseline drift, 

breathing patterns, and other electrical activities [9], [7], and [37]. To remove these 

artifacts, Stationary Wavelet Transformation (SWT) has been applied to the down-

sampled EEG recordings. A detailed description of this de-nosing process can be found 

in [107]. 

6.3.2.3 Temporal Segmentation 

This study starts with an EEG dataset of 109 subjects. However, just to increase the 

number of training and testing samples and also to create a quick and efficient model, I 

have segmented the dataset. As mentioned in the EEG data collection step, each recording 

tool records for about 300 seconds. For this work, each subject’s 300 seconds of de-noised 

recordings were segmented into 5-second chunks. After this segmentation process, 4525 
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AD, 3789 MCI, and 1663 HV temporal segments have been generated. All the newly 

created segments are stored as comma-separated values (CSV) files using MATLAB. 

6.3.3 DRAM-Net Architecture to Identify AD, MCI, and HVs 

This proposed DRAM-Net framework aims to discover AD, MCI, and HVs more 

accurately and efficiently. To ensure our objectives, the raw collected data have been 

properly pre-processed. I have introduced a DRN for the first time with any EEG study 

and designed it specifically for AD, MCI, and HVs detection. 

 This classification process starts with importing all the temporal segments stored 

as CSV files. With the help of Python’s Pandas library, these CSV files and corresponding 

labels are inputted. All the dataframes were converted to two-dimensional matrices using 

the NumPy library. Then, data are randomly divided into testing and training sets using 

the Scikit-Learn library. 85% of the data has been used for training and 15% for testing. 

Lastly, the DRAM-Net architecture has been created with the Keras module having 

TensorFlow as the backend. 

 

Fig. 6.2: Residual block of the proposed DRAM-Net. 
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DRAM-Net starts with a SeparableConv2D layer having 16 neurons. I have kept the 

kernel size and strides fixed for all the layers, which are (4, 4) and (1, 1), respectively. A 

batch normalization has been performed using the BatchNormalization() function in the 

Keras library. A ReLU activation function has been added after that. There are four 

residual blocks present in our proposed DRAM-Net architecture. Fig. 6.2 illustrates a 

single residual block. I have included a MaxPooling2D layer before and after each of 

those residual blocks. Each of these four residual blocks is composed of 3 

SeparableConv2D layers having 16, 32, 64, and 96 neurons respectively. Inside the 

residual block, SeparableConv2D layers are activated with the ELU function. The final 

convolutional layer of each residual block is combined with the shortcut connection, and 

then a RELU activation layer is applied [158]. Lastly, a global average pooling function 

is carried out to create a 1D vector, which is subsequently fed into a fully connected layer. 

 To stop over fitting, an early stopping set up has made by monitoring validation 

loss. The min_delta and patience parameters have been holding 0.001 and 10 values, 

respectively. The best model has been stored in HDF5 format. The batch size and number 

of epochs have been set to 32 and 150, respectively. 

 The training and testing process has been run on a Windows PC having 256 GB 

of RAM, an AMD Ryzen Threadripper PRO 3995WX 64-Core 2.70 GHz processor, and 

an NVIDIA RTX A6000 graphics card. 

6.4 Results and Discussions 

This study aims to establish a DL-based method for efficient detection of AD, MCI, and 

HVs using EEG data. The pre-processing steps of this proposed study have produced 

9977 temporal segments (4525 AD, 3789 MCI, and 1663 HVs). This has enabled me to 

have an accurate and efficient model as I have enough samples to extract the deep hidden 

features and use them while training the DRAM-Net. 

                                  𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒 =
𝑇𝑁

𝑇𝑁+𝐹𝑁
 × 100                               (20) 

                                      𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑁

𝑇𝑃+𝐹𝑁
 × 100                                        (21) 

                                 𝐹𝑎𝑙𝑠𝑒 𝐷𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝑇𝑃+𝐹𝑃
 × 100                                      (22) 
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Following (6), (7), (8), (9), (10), (11), (12), (20), (21) and (22) are the performance 

matrices used in experiment evaluation, where TP, TN, FP, and FN stand for true positive, 

true negative, false positive, and false negative, respectively. 

Our proposed DRAM-Net framework took only 32 epochs to beat the existing 

efforts accuracy with the same EEG data set. Fig. 6.3 shows the overall accuracy of 

DRAM-Net over 32 epochs. Initially, the accuracy was below 60%. As the learning rate 

increases, the accuracy grows. It is important to mention that the pre-processing steps 

have helped the DRAM-Net architecture to learn very quickly by removing the artifacts 

and extracting hidden but important features. 

 

Fig. 6.3: Epoch vs Overall Accuracy of the proposed DRAM-Net. 

After the splitting, there were 1497 samples in the testing set. The overall confusion 

matrix of the proposed DRAM-Net is portrayed in Fig. 6.4. Samples from 240, 537, and 

664 have been correctly identified as HVs, MCIs, and ADs, respectively. And the 

misclassification rate is very low. A class-wise performance report has been noted in 

Tables 6.1–6.3. 

While classifying the HVs, the accuracy has dropped a bit compared to the other 

two classes. Table 6.1 represents the performance report for HV class. DRAM-Net 
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achieved 96.66% accuracy, 89.55% sensitivity, 98.21% specificity, 1.79% false positive 

rate (FPR), 91.60% precision, 90.57% F1 score, 97.73% negative predictive value (NPV), 

10.45% false negative rate (FNR), 8.40% false discovery rate (FDR), and 93.88% area 

under the ROC (AUC) curve value. 

 

Fig. 6.4: Confusion Matrix of the proposed DRAM-Net. 

Table 6.1: Classification report of HV class. 

Confusion Matrix Performance Matrixes 

True Positive 240 Accuracy 96.66% 

True Negative 1207 Sensitivity 89.55% 

False Positive 22 Specificity 98.21% 

False Negative 28 False Positive Rate 1.79% 

 

Precision 91.60% 

F1 Score 90.57% 

Negative Predictive 

Value 

97.73% 

False Negative Rate 10.45% 

False Discovery Rate 8.40% 

AUC 93.88% 
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DRAM-Net has performed so well while identifying MCI participants. The overall 

performance report of the MCI class is reported in Table 6.2. DRAM-Net gained 98.06% 

accuracy, 97.99% sensitivity, 98.10% specificity, 1.90% FPR, 96.76% precision, 97.37% 

F1 score, 98.83% NPV, 2.01% FNR, 3.24% FDR, and 98.05% AUC. 

Table 6.2: Classification report of MCI class. 

Confusion Matrix Performance Matrixes 

True Positive 537 Accuracy 98.06% 

True Negative 11 Sensitivity 97.99% 

False Positive 18 Specificity 98.10% 

False Negative 931 False Positive Rate 1.90% 

 

Precision 96.76% 

F1 Score 97.37% 

Negative Predictive 

Value 

98.83% 

False Negative Rate 2.01% 

False Discovery Rate 3.24% 

AUC 98.05% 

 

Table 6.3: Classification report of AD class. 

Confusion Matrix Performance Matrixes 

True Positive 664 Accuracy 97.80% 

True Negative 17 Sensitivity 97.50% 

False Positive 16 Specificity 98.04% 

False Negative 800 False Positive Rate 1.96% 

 

Precision 97.65% 

F1 Score 97.57% 

Negative Predictive 

Value 

97.92% 

False Negative Rate 2.50% 

False Discovery Rate 2.35% 

AUC 97.77% 



174 

 

 

Table 6.3 presents the overall classification report for the AD class. While testing AD 

samples after model creation, DRAM-Net has received 97.80% accuracy, 97.50% 

sensitivity, 98.04% specificity, 1.96% FPR, 97.65% precision, 97.57% F1 score, 97.92% 

NPV, 2.50% FNR, 2.35% FDR, and 97.77% AUC. The confusion matrix for the AD class 

is also part of Table 6.3, where 664 samples were correctly identified as AD. 

It is possible to visualize the effectiveness of a classification system by looking at 

the ROC curve. Fig. 6.5 displays all three ROC curves generated by each of the three 

classes. The green, blue, and yellow ROC curves represent the HV class, MCI class, and 

AD class, respectively. 

 

Fig. 6.5: ROC curves of HV, MCI, and AD classes. 

This study has been conducted with 109 participants, and our proposed DRAM-Net has 

achieved satisfactory performance. From the literature, it can be seen that most of the 

studies performed binary classification tasks using this multi-class dataset. When it comes 

to the multi-class classification, all the previous efforts failed to perform well. Moreover, 

the binary classification performances were not satisfactory. Previous efforts used TML 

methods like SVM, KNN, LR, and DT to perform this complex task. But the nature and 

pattern of EEG are too complex, and they require extra attention. In addition, TML efforts 
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require extra steps to trim down the features for the classifier. And while doing this, 

important features got mixed up and lost. 

Table 6.4: Comparison with previous AD and MCI studies with the same EEG dataset. 

Efforts Classes Accuracy % 

Morabito et al. 

[157] 

AD vs MCI 98.97% (95% confidence 

range: 98.68%–99.26%) 

Fouladi et al. [159] HV vs MCI vs AD 92% 

Ieracitano et al. 

[131] 

HV vs MCI vs AD 89.22% 

Fiscon et al. [132] 
HV vs AD, HV vs MCI, and 

MCI vs AD 

83%, 92%, and 79% 

respectively 

Pirrone et al. [155] 
HV vs AD, HV vs MCI, MCI 

vs AD, HV vs MCI vs AD 

97%, 95%, 83%, and 75% 

respectively 

Our Proposed 

DRAM-Net 

Framework 

HV vs MCI vs AD 96.26% 

 

DL-based methods are so advanced that they can take care of the feature extraction step 

by step by themselves. And connected hidden layers of DL methods allow for the 

extraction of hidden complex features from the EEG data. Our proposed DRAM-Net, 

consisting of four hidden residual blocks that also have multiple SeparableConv2D 

layers, is capable of trimming down important features from the non-stationary EEG data. 

A compilation of existing efforts using the same EEG dataset as our proposed DRAM-

Net is reported in Table 6.4. Morabito et al. [157] performed binary classification, which 

performed well but did not solve the multi-class problem. Fouladi et al. [159], Ieracitano 

et al. [131], and Pirrone et al. [155] performed multi-classification and achieved 92%, 

89.22%, and 75%, respectively. On the other hand, our proposed DRAM-Net has 

outperformed, achieving 96.66% accuracy for the HV class, 98.06% accuracy for the MCI 

class, 97.79% accuracy for the AD class, and 96.26% overall accuracy. 

6.5 Succeeding Study and Essence 

Our proposed DRAM-Net framework focuses on efficient detection of MCI, AD, and 

HVs using EEG data. Previous efforts have struggled to perform well while solving multi-

class problems. And also, pre-processing steps are causing extra time and effort for 
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existing TML-based efforts. From these issues, I was motivated and developed a DL-

based effort named DRAM-Net. DRAM-Net achieved 98.06%, 97.79%, and 96.66% 

while classifying MCI, AD, and HVs. Overall accuracy of our proposed framework is 

96.26%.Oncoming studies should focus on increasing the number of subjects and the pre-

processing steps to enhance the data quality and the model’s learning rate. Choosing a 

DL method over TML algorithms can help to extract hidden complex EEG data features. 

This effort will guide the technology and medical experts to continue EEG research at a 

new level and develop new ideas and methods for neurological disorders. 

Further investigations have been done with the same multi-class EEG dataset to 

improve the multi-class performance and computational speed. Therefore, I have worked 

with a custom-designed CNN model to construct the final AD-MCI identification 

framework. The final AD-MCI detection framework that I created is in the following 

chapter. Using the current multi-class EEG dataset, I have developed the ultimate solution 

to the AD-MCI identification problem. I have named it the Cognitive Decline 

Recognition Network (CDR-Net). It has reached over 99% accuracy in both 10-fold and 

leave-one-out cross validation.  
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CNNCHAPTER 7 : CDR-NET: A COMPUTERIZED 

FRAMEWORK TO DETECT ALZHEIMER’S DISEASES 

AND MILD COGNITIVE IMPAIRMENT 

 

7.1 Overview 

Alzheimer's disease (AD) and mild cognitive impairment (MCI) are two dementia-related 

brain illnesses that are prevalent among elders in the twenty-first century. MCI is treated 

as the initial stage of AD, and once the illness reaches the AD stage, there is no escape 

from certain death. The accuracy and efficacy of current multiclass computer-based 

approaches to diagnose AD and MCI are constrained by traditional machine learning 

(TML) classifiers due to their shallow architecture. This makes it challenging to make a 

prompt and accurate diagnosis of AD and MCI. This research proposes a framework 

employing electroencephalography (EEG) to diagnose MCI, AD, and healthy volunteers 

(HVs) to boost multiclass performance and efficacy. EEG is a portable, non-invasive, and 

affordable means to identify brain problems as compared to expensive and time-

consuming techniques like computed tomography (CT) scans, positron emission 

tomography (PET), magnetic resonance imaging (MRI), and the mini-mental state 

examination (MMSE). To circumvent these issues, the Cognitive Decline Recognition 

Network (CDR-Net) architecture has been developed to identify MCI, AD, and HVs 

using EEG data. The proposed architecture allows for the acquisition of EEG data, data 

pre-processing (down-sampling, noise cleaning, segmentation, and digital picture 

construction), feature extraction and classification using CDR-Net, as well as 

performance assessment and cross-validation stages. Our suggested CDR-Net 

architecture produced better multiclass accuracy, sensitivity, and specificity of 99.25%, 

99.13%, and 99.32%, respectively. By using 10 folds and leave-one-out cross validations, 

stability, consistency, and data overfitting and underfitting concerns are addressed. This 

chapter will pave the way for oncoming modules that recognise several brain disorders. 

Chapter 7 also resolves research questions #2, 3, 4, and 5. 

The contents in this chapter have been submitted for publication to the IEEE 

Transactions on Cognitive and Developmental Systems. 
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7.2 Introduction 

MCI and AD are both linked to dementias caused by neuronal damage. The death or 

malfunction of brain cells, called neurons, is a major contributor to these neurological 

disorders. Loss of memory, a reduced vernacular, and a diminished capacity for precise 

motor motions are all signs of MCI and AD. Recent discoveries from studies indicate that 

patients with MCI have a significantly increased risk of developing dementia, in 

particular AD [108], [109], [110]. MCI is regarded as the antecedent phase of AD [105]. 

With age, the likelihood of experiencing it increases by a factor of 10 and often affects 

those over the age of 65 [62], [30], [71]. The prevalence of MCI and AD is rising globally, 

with emerging nations expected to have a proportionally greater increase [112], [107]. It 

ranks as Australia's second-most common cause of death [113] and the seventh top death 

factor worldwide [114]. According to the 2018 World Alzheimer Report, 60 percent of 

dementia cases are attributable to AD. More than 50 million people worldwide are 

suffering from dementia. It is projected that there would be 152 million new cases by the 

year 2050, representing a more than threefold increase [156]. A patient with AD has a life 

expectancy of 5–8 years after being diagnosed, and MCI is also presently incurable [21], 

[39]. Nonetheless, the disease's course may be slowed and the quality of life for patients 

can be enhanced by caretakers if the diagnosis is made early. 

 To diagnose MCI and AD, there are currently costly, invasive, and time-

consuming methods available, including magnetic resonance imaging (MRI), computed 

tomography (CT)), positron emission tomography (PET), and the mini mental state 

examination (MMSE) [106], [160]. In contrast, EEG is a recently developed, portable, 

affordable, simple to use and comprehend, and rapid technology to diagnose neurological 

illnesses, including AD and MCI. The relative timing of brain waves in the cerebral cortex 

is preserved by EEG recordings, which is the key to determining the severity of 

neurological illnesses. The technique for collecting EEG data entails putting electrodes 

on the scalp in a specified pattern, with the international 10-20 approach being the most 

widely used configuration [99]. In light of this, electroencephalography's potential as a 

tool for early diagnosis of MCI and AD has been emphasised. 

Numerous investigations were conducted over the past few decades in an effort to 

diagnose MCI at an early stage and prevent its progression to AD or another cognitive 

disorder. With 11 MCI and 4 AD participants, Morabito et al. [157] chose a convolutional 
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neural network (CNN) to accomplish a binary (AD vs. MCI) epoch-based classification. 

Power Spectral Density (PSD) was utilised to pre-process the acquired EEG data, and a 

multi-dimensional CNN with a softmax classifier model was then employed to conclude 

the binary classification. This attempt had an accuracy rate of up to 98.97% (95% 

confidence interval: 98.68%–99.26%). Two deep learning (DL) models—modified CNN 

and convolutional auto encoder (Conv-AE) neural networks (NNs)—were utilised in a 

recent study [159] to differentiate between 61 HVs, 56 persons with MCI, and 63 people 

with AD. The EEG data were processed using time-frequency representation (TFR) and 

continuous wavelet transform (CWT) before being submitted to the NNs. Both the CNN 

and Conv-AE NN models had average accuracy of 92% and 89%, respectively. 

Ieracitano et al. [131] undertook an AD-MCI investigation using several machine 

learning (ML) techniques using 63 ADs, 63 MCIs, and 63 HVs. CWT and higher order 

statistics (HOS) from the bispectrum (BiS) features were retrieved and loaded into multi-

layer perceptrons (MLP), auto encoders (AE), logistic regression (LR), and support vector 

machines (SVM) classifiers. MLP fared better than the other ML classifiers in this 

investigation, surpassing them with an accuracy of 89.22%. Fast Fourier Transform (FFT) 

and Discrete Wavelet Transform (DWT) were implemented to acquire the spectrum 

characteristics and de-noise the data in another TML-based attempt [32] with 109 

participants (49 ADs, 37 MCIs, and 23 HVs). The categorisation challenge was handled 

by a decision tree (DT) using the C4.5 algorithm, which distinguished between HV and 

AD, HV and MCI, and MCI and AD with 83%, 92%, and 79% accuracy, respectively. 

Another recent TML effort has been reported with 48 ADs, 37 MCIs, and 20 HVs, where 

investigators used PSD, finite impulse response (FIR), and 2nd order Butterworth filters 

for EEG data pre-processing. The classification task was carried out using the classifiers 

K-nearest neighbor (KNN), DT, and SVM. KNN outperformed the rest of the two 

classifiers by gaining 97%, 95%, 83%, and 75% while performing HV vs. AD, HV vs. 

MCI, MCI vs. AD, and HV vs. MCI vs. AD classifications. 

To provide a binary identification system utilising a cubic-SVM, Puri et al. [172] 

laboured with 12 ADs and 11 HVs and reached a classification accuracy of 98.5%. The 

unprocessed EEG signals were divided into sub-bands by applying low-complexity 

orthogonal wavelet filter banks with vanishing moments. The Kruskal-Wallis test was 

adopted to extract and examine the two characteristics, Higuchi's fractal dimension (HFD) 

and Katz's fractal dimension (KFD), from EEG sub-bands. A new study [173] employing 
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MLP with 6 MCIs, 11 ADS, and 9 HVs was suggested and achieved an 88% F1 score. 

Using autoreject and independent component analysis (ICA) techniques, the investigators 

de-noised the EEG data. The last step was to feed MLP with the extracted power, entropy, 

and complexity attributes. Poil et al. [70] presented a study with 86 subjects (25 ADs and 

61 MCIs) to forecast the development of AD at the MCI stage. The authors extracted the 

features and passed them to the LR classifier for classification using the ICA and Hilbert 

transform (HT). This binary categorisation study achieved 88% sensitivity and 82% 

specificity. 

Another binary classification study [86] based on DL with 28 ADs and 7 MCI 

participants was reported. A bidirectional long short-term memory (BLSTM) classifier 

was used after principal component analysis (PCA) was used to identify the features. With 

those aged 40 to 60, it had increased by 91.93%, and with those beyond 60, by 65.73% 

accuracy. Amezquita-Sanchez et al. [13] proposed an Enhanced Probabilistic Neural 

Network after studying 37 MCI and 37 AD participants (EPNN). ANOVA, Hurst 

Exponent (HE), Fractal Dimension (FD), and the Music-Empirical Wavelet 

Transformation (EWT) were all investigated as ways to extract characteristics. To 

compare the classification outcomes, the DT, Naive Bayes (NB), and KNN were also 

applied. The EPNN outperformed the other used classifiers, with an accuracy of 90.3%. 

A limited sample size of four ADs, four HVs, and four MCIs was adopted by Bi and 

Wang [18]. The discriminative convolutional high-order Boltzmann machine 

(DCssCDBM) classifier received the features after being liberated by the FFT. 95.04 

percent accuracy was achieved in this investigation. 

From the reviewed articles, it is clear that none of the studies are able to break 

through multiclass AD-MCI detection with high accuracy and efficiency. Most of the 

reported efforts struggled to have a satisfactory sample size. Another significant finding 

is that effective research either identified standard ML approaches as a poor solution for 

multiclass issues or employed DL methods to address binary classification problems. And 

here comes one of the research problems that I intend to resolve: the studies that 

performed better and used TML methods utilised feature extraction and selection methods 

for those ML classifiers. This extra step is always required when it comes to TML 

methods like SVM, LR, DT, KNN, and so on. Moreover, TML classifiers are limited and 

old-fashioned due to their shallow architecture and often fail to work with complex 

structured data like EEG. As a result, they were unable to extract and link deep data layers' 
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crucial hidden properties. One of our objectives is to reduce this computational expense 

by picking a suitable DL classifier that will not ask for any feature extraction or selection 

method. DL methods have passed the test of working with EEG data with flying colours 

[104], [107], [105], and [171]. Though the performance of previous multiclass AD-MCI 

studies is really poor, Therefore, our goal is to set a high-performance standard for AD-

MCI detection using EEG data. 

In the past, I have explored long- and short-term memory (LSTM) [105], gated 

recurrent unit (GRU) [107], and deep residual networks (DRN) [171] using EEG data to 

investigate for these sorts of brain illnesses. This study incorporates multiple well-known 

CNN models like AlexNet [178], InceptionNet [179], ResNet50 [180], RSISC-16 Net 

[189], and VGG16 [181]. After evaluating the performance and being inspired by the 

computational disadvantage, I am motivated to design a custom CNN model. 

To address these problems, I offer the CDR-Net framework, which uses a 

specially created CNN model to conduct AD, MCI, and HV identification using EEG 

data. Both AD and MCI share the same symptoms of cognitive decline. Inspired by this, 

I named our framework the Cognitive Decline Recognition Network. It is well known 

that the CNN model works better with images, so the EEG data I collect is processed and 

turned into images before being sent to the classifier. CNN [190] is a compact classifier 

that uses less memory while processing pictures than other DL techniques. Moreover, by 

itself, it is capable of extracting and choosing significant and in-depth characteristics. 

These considerations led to CNN being selected as the classifier for our CDR-Net 

framework. With the pre-processing steps, CNN parameters, and layers I have proposed, 

this is a whole new, inexpensive framework in terms of our nobility. 

Our recommended CDR-Net structure contains four phases, the first of which is 

the primary EEG data collection phase. I was successful in gathering EEG data from 109 

participants (23 HVs, 37 MCIs, and 49 ADs). Then, because there weren't many EEG 

signals collected at a sampling frequency of 1024 Hz, the raw signals that were collected 

were down-sampled to 256 Hz to keep things consistent. To eradicate artifacts and noises 

from the raw signals, the stationary wavelet transform (SWT) has been performed. SWT 

is widely renowned for its ability to handle both high- and low-frequency noises. 

Afterwards, cleansed signals are segmented into 5-second frames in order to increase the 

sample size and acquire key information quickly. Before sending the segmented frames 
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to the classifier, they are finally converted to 8-bit colour pictures. A specially created 

multi-layer CNN model with a softmax classifier completes the CDR-Net architecture. 

Different performance measures have been used to evaluate this proposed CDR-Net 

system, which can identify multiple classes of cognitive abnormalities. To verify the 

consistency and stability of our presented CDR-Net architecture, the 10-fold and leave-

one-out cross validations (LOOCV) were also carried out. An overview of this chapter's 

achievements can be seen below: 

• Developed and underpinned a modern, precise, reliable, and effective CDR-Net 

framework for detecting AD, MCI, and HV using EEG data. 

• Increased the accuracy of multi-class classification compared to earlier methods 

on same and different EEG datasets. 

• Examined the consistency and stability of this proposed CDR-Net by performing 

10-fold and LOOCV cross validations. 

• Conducted ablation tests to discover the best-suited CNN classifier, which is the 

heart of the CDR-Net framework. 

The remaining sections of this study are arranged as follows: Section 7.3 talks about the 

proposed CDR-Net framework in detail. Afterwards, Section 7.4 reports on the 

experiments and findings. Following that, the discussion of this research is included in 

Section 7.5. Finally, Section 7.6 of this chapter provides an essence and a strategy for the 

hereafter. 

7.3 Proposed CDR-Net Framework 

This proposed CDR-Net framework has been built for the detection of multiple brain 

diseases using EEG data. Fig. 7.1 showcases the proposed CDR-Net framework. It has 

four interconnected stages towards EEG data classification. The CDR-Net framework 

begins with EEG data acquisition. Then, collected EEG signals are pre-processed before 

feeding into the proposed CDR-Net model. CDR-Net consists of multiple convolutional 

and max pooling layers for feature extraction. There is a fully connected layer for the 

classification purpose from the selected features. Finally, the performance of the proposed 

method has been evaluated by multiple ranking matrices and cross-validation methods 

like LOOCV and 10-fold cross-validation. A comprehensive description of the four stages 

along with their sub-stages is reported below: 
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Fig. 7.1: CDR-Net Framework. 

7.3.1 EEG Data Acquisition 

The CDR-Net framework has been tested and trained with a multiclass EEG dataset 

holding 109 subjects’ EEG recordings. Out of 109 subjects, 23 HVs, 39 MCIs, and 49 

AD subjects participated in this data collection at the IRCCS Centro Neurolesi "Bonino-

Pulejo" [155], [32]. The ethical committee of IRCCS Centro Neurolesi "Bonino-Pulejo" 

authorised this data collection (reference number: 40/2013), and all the participants had 

given their consent by signing the consent form. 

This multiclass EEG data acquisition was performed using 19 electrodes (Fp1, F3, 

C3, P3, O1, F7, T3, T5, Fz, Cz, Pz, Fp2, F4, C4, P4, O2, F8, T4, T6) placed across the 

scalp following the international 10-20 system’s guidelines. All the subjects were advised 

to keep their eyes closed and remain rested until the data collection is done. Collected 

brain signals were evaluated with reference to electrical potentials (µV). Each recording 

lasted for 5 minutes (300 seconds), keeping the sampling frequency at either 256 Hz or 

1024 Hz. This uneven sampling frequency has been fixed in the pre-processing step. 

Following the World Health Organization’s standard, all the participating subjects 

are classified as AD, MCI, or HV. Any subjects with a history of head trauma, drug abuse, 

serious medical conditions, or other forms of dementia were excluded from this study. 

The average ages of patients diagnosed with AD and MCI are 78.4 ± 6.4 and 74.1 ± 9.4 

years, respectively, while the average age of HVs is 65.6 ± 7.9 years. Table 7.1 represents 

the demographic data of the participants. 
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Table 7.1: Demographic Data of Participated Subjects. 

Classes 

Number of Subjects (%) Mean age (standard deviation) in 

years 

Male Female Total Male Female 
Total 

MCI 
17(46%) 20(54%) 37 75.7±9.7 72.7±9.1 

74.1 ± 9.4 

AD 
20(41%) 29(59%) 49 78.6±4.1 78.2±7.6 

78.4 ± 6.4 

HV 
13(56%) 10(44%) 23 68.1±6.9 62.3±8.3 

65.6 ± 7.9 

Total 
50(46%) 59(54%) 109 74.9±8.2 73.6±9.9 

74.2 ± 9.1 

 

7.3.2 Data Preprocessing 

Collected raw signals were digitised and converted to MATLAB files, which were then 

prepared for further processing. There are three pre-processing techniques applied. 

Initially, the recorded raw signals are down-sampled to 256 Hz. Down-sampled signals 

were de-noised using the SWT method. Cleaned signals are segmented into 5-second 

chunks for better learning and time savings. Lastly, temporal segments are converted to 

Joint Photographic Experts Group (JPG) images. An elaborate description of these pre-

processing steps is reported below: 

7.3.2.1 Signal Down-sampling 

EEG data collection took place over multiple days, and this is one of the big EEG primary 

data sets with AD, MCI, and HVs. A total of 109 subjects participated in this EEG study, 

and 256 Hz and 1024 Hz sampling frequencies were used for collecting their brain 

potentials. 

As there were different sensors used, the sampling frequency was not consistent. 

To bring consistency, I have down-sampled the 1024 Hz sampling frequencies to 256 Hz 

using MATLAB. From the literature, it can be said that 256 Hz is the standard sampling 

frequency [32], [171], [159], [131]. Now, all 109 subjects' EEG recordings have the same 

sampling frequency, which is 256 Hz. 
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7.3.2.2 Signal De-noising 

EEG data collection is often affected by some external or internal factors known as 

artifacts or noises, which may corrupt the actual data. Eye blinks, muscle movement, 

electrode pops, breathing patterns, power supply fluxes, interference (50 Hz), outlier 

readings, and other electrical activities are some of the internal and external sources of 

noise. Actual signal gets contaminated with these and often misleads to a different essence 

if they are not removed from the actual signal [9]. Therefore, it is a must to discard the 

noise before further processing. 

Our proposed CDR-Nett employs CDR-Net to dispel artifacts and other 

undesirable signals. SWT is suitable for trading with both low- and high-frequency 

unwanted signals, keeping the flat response at the highest position of the passing signal. 

Previous efforts have used SWT, DWT, CWT, etc. frequency domain noise-removing 

methods to clean the input signal. Apart from that, the most valuable frequency bands 

that carry important features are from 0.5 Hz to 32 Hz [170]. 

An 8th-order Symlet wavelet "sym9" filter has been chosen for exterminating DC 

components of the input signal (0–0.5 Hz) and the baseline electric drift in each of the 

electrode channels. On the other hand, high-frequency artifacts (32-128 Hz) along with 

the decomposition of stationary wavelets have been performed with second-order 

estimation for each of the 19 channels. 

After the de-noising phase, 109 cleaned signals are digitised, representing 

electrical potentials (µV). Each signal has a length of 60 seconds × 5 minutes × 256 Hz 

and is stored as a MATLAB (.mat) file. That gives me approximately 76800 rows 

representing voltage amplitude (µV) and 19 columns referring to 19 electrode channels 

for each subject. This phase of the proposed CDR-Net has been performed in MATLAB, 

and a visual comparison of the P4 electrode position of (a) the raw EEG signal of an AD 

subject (3841 to 4240 seconds), (b) the de-noised signal of the same AD subject (3841 to 

4240 seconds), (c) the raw EEG signal of an MCI subject (21761 to 22160 seconds), (d) 

de-noised signal of the same MCI subject (21761 to 22160 seconds), (e) the raw EEG 

signal of a HV (75521 to 75920 seconds), (f) de-noised signal of the same HV (75521 to 

75920 seconds) are shown in Fig. 7.2. It is a 400-second window, which has remained 

constant in all 6 sub-plots in Fig. 7.2. 
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Fig. 7.2: Visual comparison of P4 electrode position of (a) raw EEG signal of an AD subject, (b) 

denoised signal of the same AD subject, (c) raw EEG signal of an MCI subject, (d) denoised 

signal of the same MCI subject, (e) raw EEG signal of a HV, (f) denoised signal of the same HV. 

7.3.2.3 Data Segmentation and Image Creation 

Segmentation is a technique that increases the sample size and reduces the computation 

expenses without losing any important features or information. As shown in our earlier 

works, executing segmentation has a positive impact on the entire computing cost, which 

includes feature extraction, learning, model construction, classification, and testing [105], 

[171]. It is well known that EEG data are a bit different than electrocardiogram (ECG) or 

magnetoencephalography (MEG) data. EEGs are complex, non-periodic, non-stationary, 

and huge in terms of size compared to ECGs and MEGs. Moreover, managing enough 

medical data is a huge task. To address such a challenge, multiple studies [104], [107], 

[105], and [171] used data segmentation to increase sample size and deal with such 

complex EEG data. 

In this proposed CDR-Net, EEG recordings are segmented into short time 

windows and tagged with the same label as the native signal. As noted in the section on 

EEG data acquisition, each recording lasted around 300 seconds. Investigations on 10, 5, 

and 3 second segments show that 5 second segments are the best choice for keeping 
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important features intact and easing with time. In the context of this study, the 300-second 

de-noised recordings of each participant are cut up into 5-second pieces. 

The final tally of segments produced by this technique is 4525 for AD, 3789 for 

MCI, and 1663 for HV. Each newly created temporal segment includes 1280 rows (5 

seconds × 256 Hz) and 19 columns (19 channels). Using MATLAB’s imwrite function, 

all the temporal segments are converted to 8-bit color images (.JPG) for better feature 

picking by the CNN classifier. In summary, the sample size for this study has increased 

from 109 to 9977. Furthermore, these small temporal segment images help the classifier 

select and extract important features easily. 

7.3.3 Feature Extraction and Classification of Participated Subjects using 

CDR-Net 

The fundamental objective of this multiclass work is to discriminate between persons 

with MCI and AD and HVs with an accuracy and efficiency that are sufficient when using 

non-stationary data such as EEG. Having said that, I have investigated multiple CNN 

models for this multiclass EEG dataset. CNN has grown its effective range from regular 

color or grayscale imaging to medical imaging like computed tomography images, x-ray 

images, spectrogram images, and magnetic resonance images. EEG data to identify brain 

diseases like MCI and AD is yet to be unraveled. 

 

Fig. 7.3: The structure of a classical ANN. 
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CNN is a subtype of DL, which is an enhanced form of artificial neural networks (ANNs). 

A classical ANN looks like Fig. 7.3, where it consists of 3 layers (input, hidden, and 

output layers). Inspired by the human brain’s neurons, ANN is a collection of connected 

neurons, which I call nodes in DL. The scaled total provided by the neurons in the 

preceding layer is applied to the output of the neurons. The weights and biases of the prior 

layers in the network structure are utilized to determine the final outcome choice of the 

CNN model, much as the ANN [174]. Therefore, considering (23) and (24), the biases 

and weights are adjusted for every layer where W, B, u, L, s, C, m, λ, and t stands for 

weight, bias, upgrading step, learning rate, strata number, cost function, momentum, 

regularization parameter, and training samples in total, respectively. 

                               ∆𝑊𝑠(𝑢 + 1) =  − 
𝐿𝜆

𝑟
𝑊𝑠 −  

𝐿

𝑡
 

𝜕𝐶

𝜕𝑊𝑠
+ 𝑚∆𝑊𝑠(𝑢)                                  (23) 

                                            ∆𝐵𝑠(𝑢 + 1) =  − 
𝐿

𝑡
 

𝜕𝐶

𝜕𝐵𝑠
+ 𝑚∆𝐵𝑠(𝑢)                                          (24) 

CNN is made up of three different types of layers: convolutional layers, pooling layers, 

and completely linked layers [143]. The feature extraction process makes use of 

convolutional and max-pooling layers. Max-pooling layers are intended for feature 

selection, while convolution layers are aimed at feature recognition. When an image 

doesn't need all the high-resolution information or when a reduced output with CNN-

extracted areas is required after a down-sampling procedure on the input data, max-

pooling layers are used [175]. The fully connected layers receive the outputs from the 

convolution and pooling layers and utilize them to categorize the input. 

Our proposed CDR-Net employs a custom CNN model that consists of four 

feature extraction blocks. A convolution layer, a relu activation function, and a max-

pooling layer make up each feature extraction block. There are 32 filers in each 

convolution layer, and the kernel size is 3 × 3, while the pool size of the max-pooling 

layer is 2 × 1. There are two 25% dropout layers present after the 2nd and 4th feature 

extraction blocks. Prior to sending the extracted features to the fully linked layer, there is 

a 50% dropout layer. Our custom-built CNN model incorporates the softmax classifier, 

the adam optimizer, and categorical cross_entropy as the loss function. Fig. 7.4 depicts 

this custom-built CNN in a visual manner, along with the output shapes of each layer. 
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Fig. 7.4: The proposed configuration of CNN classifier. 

To make sure the classifier does not overfit and has the best model, I have brought early 

stopping into play. It has kept an eye on the validation loss and accuracy. The min_delta 

has been set to 0.001 and the patience to 15. Fig. 7.5 represents CDR-Net framework’s 

hidden layers (conv2d, max_pooling, input, output, activation, dropout, flatten, dense, 

etc.) along with their shapes. 

 

Fig. 7.5: Proposed CDR-Net framework’s hidden layers along with their shapes. 

7.3.4 Performance Evaluation and Cross Validation 

The fundamental objective of this multiclass work is to discriminate between persons 

with MCI and AD and HVs with an accuracy that is sufficient by using non-stationary 

data such as EEG. In light of this, I looked at more than twenty distinct CNN setups and 

reported the top five configurations and their performances in Table 7.5. 
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To make sure the best model gets reported, multiple performance matrices are in 

place. All of the explored setups are verified through (6), (7), (8), (9), and the receiver 

operating characteristic (ROC) graph. The ROC curve represents the relationship between 

the true positive rate (sensitivity) and the false positive rate (1 - specificity) on a graph. 

Often, the effectiveness of the classifier is shown by the ROC curve. The area under the 

ROC curve (AUC) is a statistical measure of how well the curve predicts the true 

outcome. The AUC value runs between 0 and 1. An AUC value around 1 and a standard 

deviation below 0 indicate that the proposed method is performing optimally [84]. 

TP, TN, FP, and FN are the four parameters that have been generated for each of 

the three classes. A sample confusion matrix of how the TP, TN, FP, FN are calculated 

for class MCI is shown in Table 7.2. The green colored cell is representing TP (number 

of MCI samples correctly classified as MCI), the purple colored cells are standing for TN 

(number of non-MCI samples classified as either AD or HV), the light blue colored cells 

are referring to the FP value (number of AD or HV samples incorrectly classified as MCI), 

and the yellow colored cells are offering the FN value (number of MCI samples 

incorrectly classified as either AD or HV) for MCI class. The confusion matrices have 

multiple cells for TN, FP, and FN. Therefore, all the matching cells need to be summed 

together in order to calculate TN, FP, and FN. Similarly, for the AD and HV classes, the 

same calculations can be applied to obtain TP, TN, FP, and FN. 

Table 7.2: Sample Confusion Matrices for Three Classes of Classification While 

Classifying MCI. 

 Predicted Class  

  HV MCI AD  

HV TPHV IHV, MCI IHV, AD  

MCI IMCI, HV TPMCI IMCI, AD FN 

AD IAD, HV IAD, MCI TPAD TN 
*I = Incorrect Classification FP TP  

 

Additionally, 10-fold and LOOCV are in place to test the performance consistency and 

stability of the proposed CDR-Net framework. Both approaches guarantee that the 

classifier is impartial and does not become too fitted to the data during the training 

process. While 10-fold cross validation is in progress, the entire preprocessed data are 

split into 10 chunks. During each fold, 9 split slices are utilized for training the model, 
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and one slice is kept for testing the model. Each of the data segments is examined once 

by repeating this method 10 times. The statistics of this 10-fold cross-validation confirm 

that the model is unbiased and consistent in terms of categorizing AD, MCI, and HV. 

Lastly, LOOCV has been carried out to further guarantee the stability and absence 

of overfitting of the planned CDR-Net framework. As stated in the sub-sub-section 

7.3.2.3, each of the subject’s EEG recordings is segmented into 5-second chunks and 

converted to 8-bit color images. Now, all the segments (color images) from a subject are 

left out from training the model and used for testing the trained model to predict the left-

out subject [176]. All of the dataset's individuals go through this procedure once. Despite 

being a computationally costly approach, it validates the stability, constancy, and 

impartiality of the suggested CDR-Net structure. 

7.4 Experiments and Outcomes 

The goal of this study is to develop an accurate model for detecting cognitive 

abnormalities from EEG data. For this process, CNN has been chosen because it is 

lightweight when it comes to images. This makes it possible for me to do the study in a 

quick manner. The setup and findings of the investigations are covered in this section. 

7.4.1 Experimental Setup and Tools 

The CDR-Net structure is constructed and tested primarily using only two tools. Utilizing 

MATLAB R2021B, all pre-processing procedures are accomplished, including signal 

down-sampling, de-noising, segmentation, and the production of 8-bit colour images. The 

Python environment is used by Jupyter Notebook to carry out the feature extraction, 

classification, performance assessment, and cross validation phases. A Windows 

computer with 256 GB of RAM, an AMD Ryzen Threadripper PRO 3995WX 64-Core 

2.70 GHz CPU, and an NVIDIA RTX A6000 graphics card were employed for all the 

investigations. 

7.4.2 Findings 

Our proposed CDR-Net framework has proven its capability of distinguishing MCI, AD, 

and HV quite accurately and efficiently. In this part, I have reported class, fold, and batch 

size (BS)-wise performance for each of the three classes. To examine the performance 

pattern and choose the optimal BS, several BSs were employed. For each of the three 

classes, the outcomes of four BSs—32, 64, 125, and 256—are presented and contrasted. 
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In Fig. 7.6, the classification report for the HV class has been visualized. This 

figure demonstrates that, when data overfitting and underfitting are taken into 

consideration, a BS of 128 is the optimal choice. The proposed CDR-Net has received the 

highest average accuracy of 99.59%, sensitivity of 99.49%, specificity of 99.67%, and 

FPR of 0.33% when the batch is set to 128. The second fold of BS 128 has performed 

better compared to the rest of the folds. The average accuracy, sensitivity, specificity, and 

FPR of 10 folds with a 32-BS are 95.43%, 95.38%, 95.47%, and 4.53%, respectively. 

When compared to the other folds of this kind, the 6th fold of BS 32 has had the worst 

performance. On the other hand, the 10-fold average accuracy, sensitivity, specificity, 

and FPR values of BS 64 are 97.18%, 97.39%, 97.02%, and 2.98%, respectively, and 

those of BS 256 are 97.87%, 97.14%, 98.47%, and 1.53%, respectively. The BSs of 64 

and 256 almost achieved similar performance, but 256 performed better than 64 in terms 

of accuracy, specificity, and FPR. It can also be seen that BS 32 did not perform well 

compared to the other 3 BSs, and it is due to data underfitting. The sample size has been 

raised from 109 to 9977 since the preprocessing phase. And this action has enabled the 

classifier to capture features from a larger BS.  However, due to the overfitting issue, the 

performance of the proposed CDR-Net starts to decrease when the BS goes beyond 128. 

The classification report for the MCI class has been illustrated in Fig. 7.7. The 

CDR-Net has been successful in discriminating MCI from other samples 98.92% of the 

time on average when the BS is set to 128. The average performance of CDR-Net while 

classifying MCI is: 98.92% accuracy, 97.58% sensitivity, 99.18% specificity, and 0.82% 

FPR, keeping the BS at 128. The maximum accuracy of this setup, over 99%, has been 

obtained by the 5th and 8th folds. The 10-fold average performance has decreased when 

the BS is kept at 64, giving an accuracy of 96.30%, a sensitivity of 90.28%, a specificity 

of 97.50%, and a FPR of 2.50%. The proposed framework has improved the 10-fold 

average performance when the BS is increased to 256, giving accuracy of 97.24%, 

sensitivity of 92.42%, specificity of 98.21%, and FPR of 1.79%. The poorest 10-fold 

average performance has been reported when the BS is set to 32, returning accuracy of 

94.49%, sensitivity of 84.45%, specificity of 96.46%, and FPR of 3.54%, with the 6th, 

7th, and 10th folds reporting the lowest. Again, BS 128 has won the race, outperforming 

the rest of the BSs by 10 folds on average. 
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Fig. 7.6: Fold-wise accuracy, sensitivity, specificity, and FPR visualization of HV class. 

 

Fig. 7.7: Fold-wise accuracy, sensitivity, specificity, and FPR visualization of MCI class. 
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Fig. 7.8: Fold-wise accuracy, sensitivity, specificity, and FPR visualization of AD class. 

The classification report for the AD class is no different, delineating that BS 128 is the 

optimal one shown in Fig. 7.8. The 10-fold average performance has again crossed over 

99% when the BS is kept at 128. Such a BS setup produced an accuracy of 99.31%, a 

sensitivity of 99.36%, a specificity of 99.27%, and a FPR of 0.73%. All the folds in this 

setup have reported over 99% accuracy, but the sixth has the highest. For this contest, the 

BS of 256 is likewise quite close, with reported averages of 98.26% accuracy after 10 

iterations, 97.72% sensitivity, 98.58% specificity, and 1.42% FPR. The BS of 64 has 

come in third place, obtaining an average accuracy of 97.37%, a sensitivity of 96.63%, a 

specificity of 97.82%, and a FPR of 2.18% across a 10-fold range. A 32-BS has an 

average 10-fold accuracy, sensitivity, specificity, and FPR of 95.69%, 93.99%, 96.72%, 

and 3.28%, respectively, with the most accuracy being contributed by the sixth fold and 

the lowest by the seventh. Again, it is a clear win for CDR-Net when the BS is set to 128. 

Table 7.3: Overall Multiclass Classification Report. 

BS 32 64 128 256 

Fold 

No 

ACC SEN SPE ACC SEN SPE ACC SEN SPE ACC SEN SPE 

1 95.09 94.97 95.19 97.39 98.37 96.66 99.20 99.18 99.21 98.00 97.29 98.56 

2 94.89 94.75 95.00 96.49 96.11 96.79 99.20 98.94 99.36 98.10 97.52 98.56 

3 95.19 93.92 96.21 96.79 96.15 97.31 99.50 99.49 99.50 97.70 96.67 98.54 
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4 95.29 95.25 95.32 97.29 97.48 97.15 99.30 99.26 99.33 98.00 97.85 98.10 

5 95.59 95.24 95.87 97.19 96.83 97.48 99.20 98.94 99.36 97.70 97.19 98.13 

6 94.39 94.33 94.43 96.99 96.82 97.13 99.30 99.20 99.36 98.00 97.33 98.54 

7 94.89 94.58 95.14 97.09 97.25 96.97 99.80 99.74 99.84 97.80 96.65 98.85 

8 95.09 94.98 95.17 97.19 97.93 96.62 99.10 98.57 99.38 98.09 97.46 98.66 

9 95.59 95.45 95.69 96.99 97.25 96.79 99.00 98.99 99.00 97.79 96.61 98.74 

10 96.09 96.36 95.88 97.19 97.48 96.97 98.90 98.87 98.91 97.49 96.88 98.06 

AVG 95.21 94.98 95.39 97.06 97.16 96.99 99.25 99.13 99.32 97.87 97.14 98.47 

 

The overall multiclass classification debriefing reported in Table 7.3 tells me about the 

consistency and high classification performance of our proposed CDR-Net framework. 

The excellent detection accuracy illustrates how well CDR-Net can cope with a variety 

of brain illnesses. In addition, Table 7.3 showcases fold-wise multiclass performance. 

For BSs of 32, 64, 128, and 256, the average multiclass accuracy is 95.21 percent, 97.0 

percent, 99.25 percent, and 97.87 percent, respectively. The CDR-Net framework's 

average multiclass sensitivity for BSs of 32, 64, 128, and 128 is 94.98%, 97.16%, 99.13%, 

and 97.17%, correspondingly. Additionally, the average multiclass specificities for BSs 

of 32, 64, 128, and 256 are 95.39%, 96.99%, 99.32%, and 98.47%, accordingly. Once 

again, the 128-BS has edged out the competitors. BS 256 outperforms BS 64 in terms of 

performance. 

Table 7.4: Fold and BS wise Time Complexity Report. 

BS 32 64 128 256 

Fold 

No 

#Epoch

s 

Avg time 

per epoch 

(seconds) 

#Epochs Avg time 

per epoch 

(seconds) 

#Epochs Avg time 

per epoch 

(seconds) 

#Epochs Avg time 

per epoch 

(seconds) 

1 27 3.22 30 3.28 33 2.84 22 2.98 

2 30 3.14 28 3.18 36 1.97 29 2.66 

3 28 3.14 40 3.18 24 2.47 18 2.73 

4 20 3.16 25 3.18 25 2.50 41 2.68 

5 19 3.16 31 3.18 29 2.37 23 2.69 

6 33 3.14 33 3.18 36 2.43 31 2.72 

7 32 3.14 29 3.22 26 2.37 25 2.81 

8 17 3.17 31 3.21 27 2.53 18 2.61 

9 21 3.16 25 3.18 20 2.59 38 2.76 

10 22 3.15 24 3.22 18 2.57 20 2.96 

AVG 24.9 3.158 29.6 3.201 27.4 2.464 26.5 2.76 

 

In this study, I have not only considered the accuracy of our proposed CDR-Net 

framework but also its efficiency. Table 7.4 showcases the efficiency of each fold and 

different BSs. In comparison to the other BSs, the 32 BS has needed the fewest average 

training epochs (24.9), on average. On the contrary, the BS of 64 spent the most time 

training the model, averaging 29.6 epochs.  The BSs of 128 and 265 have consumed 27.4 
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and 26.5 epochs on average, respectively. Again, according to Table 7.4, the shortest 

average time per epoch for a BS of 128 is 2.46 seconds. The BSs of 32, 64, and 256 have 

recorded averages of 3.16, 3.2, and 2.76 seconds per epoch, respectively. These 

evaluations show that training with a BS of 128 has taken less time overall for each fold. 

Despite the fact that this configuration has taken more than 27 epochs on average in each 

fold, which is the third lowest of the four BSs, it is well ahead of its league. 

To validate the stability and absence of overfitting, LOOCV has been performed. 

All segments of a subject have been kept aside from training and used for testing to predict 

the subject’s status. This strategy continues until all the subjects are checked. With the 

use of LOOCV, I have conducted subject-wise detection on the main EEG data that were 

obtained from 109 participants in this study. Along with the earlier 32, 64, 128, and 256 

BSs, I have also documented the performance of BSs 16 and 512 in this LOOCV phase. 

The average accuracy for batches of 16, 32, 64, 128, 256, and 512 is 88.61 percent, 94.1 

percent, 97.0 percent, 99.10 percent, 98.0 percent, and 95.0 percent, respectively. 

Different BSs and subject-wise accuracy are visualized in Fig. 7.9, where the X axis 

represents the subject numbers, and the Y axis represents the corresponding accuracy. 

The 16, 32, 64, 128, 256, and 512 subject-wise accuracy of BSs are shown in Fig. 7.9 by 

the orange, yellow, green, black, brown, and blue lines respectively. Among different 

BSs, 128 and 256 have performed better when LOOCV is in action. The worst 

performance has been reported for BS 16 due to data underfitting. 

 

Fig. 7.9: Subject-wise Classification Report. 
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Table 7.5: Ablation Study. 

Configurations 
AVG 

Accuracy_10_Folds % 

AVG Subject-wise 

Accuracy / LOOCV % 

Proposed baseline setup 99.25 99.09 

Added a feature extraction block 96.87 98.49 

Removed a featured extraction block 94.60 93.03 

Halved the filters in the convolution 

layers 

98.19 97.54 

Doubled the filters in the 

convolution layers 

98.78 98.10 

Changed the kernel size to 5 x 5 98.53 97.47 

AlexNet [178] 74.38 69.44 

InceptionNet [179] 81.92 76.63 

ResNet50 [180] 94.35 89.86 

VGG16 [181] 89.47 87.30 

 

In order to strengthen the suggested CDR-Net framework, several performance matrices, 

including 10-fold and LOOCV, are being used. It is abundantly evident from both the 10-

fold and LOOCV results that a BS of 128 is the best option for this dataset. Apart from 

that, over twenty CNN configurations have been investigated, and the top five setups are 

listed in Table 7.5 before I recommend the best CNN configuration for our CDR-Net 

architecture. In the context of ML, and particularly sophisticated deep neural networks, a 

technique where certain components of the network are deleted or added in order to better 

understand the behavior of the network has been referred to as "ablation studies". Table 

7.5 compiles the results of the ablation investigation performance while maintaining a BS 

of 128. Here are the top five configurations along with well-established and popular CNN 

models depicted in Table 7.5, where a feature extraction block has been inserted and 

eliminated, the filters in the convolution layers are cut in half and doubled, and then the 

kernel window size has been raised to 5×5. All these configurations’ 10-fold and LOOCV 

performances indicate that the proposed baseline CNN configuration is the optimal one. 

The classifier's performance suffered significantly when a feature extraction block was 

added or removed, but less so when the filter or kernel size was altered. Moreover, when 

trained on our EEG multiclass dataset, the popular CNN models AlexNet [178], 
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InceptionNet [179], ResNet50 [180], and VGG16 [181] failed to provide satisfactory 

results. Additionally, since they are complicated, layered CNN models, extra time was 

spent on training and testing. Only ResNet50 has achieved an average 10-fold and 

LOOCV multiclass accuracy of 94.35% and 89.86%, respectively, with the other CNN 

models lagging behind at 90%. Hence, the suggested design has been justified by the 

ablation work. 

Since the feature extraction process is so intricate and hard to comprehend, DL is 

sometimes referred to as a "black box". T-distributed stochastic neighbor embedding (t-

SNE) [177] is a widely used dimension reduction method which allows to visualize high 

dimensional like EEG by mapping it to a 2-D space. DL investigators often use t-SNE to 

visualize the categorization process. In Fig. 7.10, the layer-by-layer visualization of the 

second fold of the proposed CNN configuration's testing phase with a BS of 128 model 

is illustrated. This image shows that all of the samples are initially clustered together in 

the input layer for this testing, and that as it advances through the feature extraction 

blocks, the testing samples become dispersed. The proposed four feature extraction 

blocks make sure all the AD, MCI, and HV samples are clustered away from each other 

to have an accurate model. The testing samples are all clearly segregated from one another 

by the time they reach the dense layer. 

Moreover, the class-wise ROC curves are showcased in Fig. 7.11. The ROC 

curves in yellow, blue, orange, and grey represent BSs of 32, 64, 128, and 256. The orange 

ROC curve, which reflects the 128-BS, has a substantially larger area underneath it in all 

3 classes. This indicates a higher AUC reading. The ROC curve and the AUC value both 

complement one another and elevate the classifier. 

7.5 Discussion 

This CDR-Net system has been developed to diagnose AD, MCI, and HV using EEG data 

swiftly and correctly. To do so, I have accumulated the EEG data of 109 people, 49 of 

whom have AD, 39 have MCI, and 23 have HV. In order to clean the data and increase 

the sample size, the raw EEG data was down-sampled, de-noised by SWT, segmented, 

and transformed into an 8-bit color image before being sent to the CNN model. The CNN 

model has been tested in several setups, and Table 7.5 reports the results. Our proposed 

CDR-Net structure has a 99.25%, 99.13%, and 99.32% average multiclass classification 
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accuracy, sensitivity, and specificity. 10-folds, LOOCV, and other performance matrices 

have been employed to demonstrate the performance. 

Performance issues and computational complexity impeded earlier efforts to 

diagnose MCI or AD. The majority of the studied literature used TML techniques to 

successfully conduct binary classification. However, the performance drastically 

deteriorates when trying to identify various brain illnesses. It is caused by data noise, a 

limited sample size, the drawbacks of TML techniques, and, last but not least, the absence 

of crucial features. MCI and AD share some similar symptoms. The majority of earlier 

multiclass initiatives muddled up MCI with AD since they share several symptoms. 

Moreover, TML classifiers also need distinct techniques for choosing features and 

identifying them. Such two additional processes often muck things up or leave out key 

features, and they have some computing expenses associated with them. Since they are 

unable to extract features on their own, the TML classifiers rely heavily on these feature 

extraction techniques. 

Table 7.6 provides a comparative summary between our proposed CDR-Net 

architecture, earlier investigations, and other well established CNN models. The majority 

of earlier work used the TML classifiers SVM, DT, KNN, MLP, and LR [155], [32], 

[131], [172], [173], [70], [13]. For the preprocessing stage, the bulk of ML-based efforts 

used CWT, FFT, PSD, ICA, and PCA algorithms. With DL classifiers like CNN, 

BLSTM, DCssCDBM, and EPNN, four investigations were included [171], [157], [159], 

[86], [13], [18]. In addition, the majority of the investigations that are reported on 

employed binary classification and have an average accuracy rate of above 90%. 

Furthermore, only half of the twelve recently published relevant studies employed 

multiclass categorization. Our prior work [171] among them had the greatest multiclass 

classification accuracy, with a score of 96.26%, utilizing identical EEG dataset. The 

second-best multiclass model was constructed by Bi and Wang [18] for predicting MCI, 

AD, and HV. With a multiclass accuracy of 75% and the KNN as the classifier, Pirrone 

et al.’s [155] model has been found to be the least accurate for multiclass performance. 

This is due to the classifiers' usage having a simplistic design, which resulted in improper 

feature extraction. Another important finding is the difficulty [172], [173], and [18] have 

had in obtaining a sufficient sample size. 
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After doing an analysis of the literature, I have come to the essence that, owing to 

their restricted design, TML approaches cannot effectively handle complicated data, such 

as EEG. It is challenging for such techniques to penetrate deeply into intricate layers and 

retrieve the vital characteristics. However, since these approaches require additional 

processing for feature extraction, they have high computational costs. These are the 

driving forces behind our study's decision to use a DL classifier that does not need 

additional feature extraction techniques and reduces processing expenses. Additionally, 

the methodologies used by NNs make it possible to extract important elements from very 

complicated and deep layers of data. Specifically, CNNs are often employed in digital 

image processing research and save a significant amount of time during training and 

testing. Since the deep layers of the NNs are all linked, feature extraction does not need 

human processing. Our classification performance makes it clear that the proper decisions 

I have taken have allowed me to achieve less than 1% FPR and over 99% accuracy. 

Consequently, this high performance is an indication of a good feature extraction and 

classification process. With an average of 27.4 epochs and 2.46 seconds per epoch, our 

suggested CDR-Net trained and tested the model for each fold in 67.404 seconds. It is a 

pointer to the effectiveness of our proposed framework. Comparatively to existing 

methods, CDR-Net is a simple and highly accurate framework for classifying AD, MCI, 

and HV using EEG data. 

Table 7.6: Comparison with Earlier Efforts. 

Efforts Dataset Method Classifier Classes Performance 

Fouladi et al. 

[159] 

61 HV, 56 

MCI, and 63 

AD 

TFR, CWT CNN, Conv-

AE neural 

networks 

HV vs MCI 

vs AD 

CNN 92% 

Conv-AE 

89% 

Ieracitano et 

al. [131] 

63 AD, 63 

HV, and 63 

MCI 

CWT, HOS, 

BiS 

MLP, AE, 

LR, SVM 

HV vs MCI 

vs AD 

89.22% 

Fiscon et al. 

[32] 

23 HV, 49 

AD, and 37 

MCI 

Discrete 

Fourier 

Transforms, 

DWT 

DT HV vs AD, 

HV vs MCI, 

and MCI vs 

AD 

83%, 92%, 

and 79% 

respectively 

Pirrone et al. 

[155] 

48 AD, 37 

MCI, 20 HV 

PSD, FIR & 

Butterworth 

filter 

KNN, DT, 

SVM 

HV vs AD, 

HV vs MCI, 

MCI vs AD, 

HV vs MCI 

vs AD 

97%, 95%, 

83%, and 

75% 

respectively 

for KNN 

Perez-Valero 

et al. [173] 

6 MCIs, 11 

ADS, and 9 

HVs 

Autoreject, 

ICA 

MLP HV vs MCI 

vs AD 

88% F1 

score. 
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Puri et al. 

[172] 

12 ADs and 

11 HVs 

HFD, KFD SVM AD vs HVs accuracy of 

98.5% 

Sridhar and 

Manian [86] 

28 ADs and 

7 MCI 

participants 

PCA BLSTM AD vs MCI With those 

aged 40 to 

60, it had 

increased by 

91.93%, and 

with those 

beyond 60, 

by 65.73% 

accuracy 

Amezquita-

Sanchez et 

al. [13] 

37 MCI and 

37 AD 

ANOVA, 

HE, FD, and 

MUSIC-

EWT 

EPNN, DT, 

NB, and 

KNN 

AD vs MCI accuracy of 

90.3% by 

EPNN 

Bi and Wang 

[18] 

four ADs, 

four HVs, 

and four 

MCIs 

FFT DCssCDBM HV vs MCI 

vs AD 

95.04 percent 

accuracy 

Poil et al. 

[70] 

25 ADs and 

61 MCIs 

ICA, HT LR AD vs MCI 88% 

sensitivity 

and 82% 

specificity 

DRAM-Net 

[171] 

Our Dataset SWT deep residual 

network 

HV vs MCI 

vs AD 

Accuracy 

96.26% 

Our 

Proposed 

CDR-Net 

Framework 

Our Dataset SWT CNN HV vs MCI 

vs AD 

Accuracy 

99.25% 

 

7.6 Synopsis 

The designed CDR-Net system presented here is particularly efficient and accurate in 

recognizing patients with AD and MCI from EEG data. The emphasis in this study is on 

decreasing diagnosis time, improving performance over existing efforts, increasing trust 

in EEG data, and selecting the best classifier to reduce the number of false positives and 

negatives. Since the initial EEG data I have gathered includes artifacts and is inconsistent, 

the preprocessing step is given more attention. The raw signals are cleaned using SWT, 

which has taken care of both high- and low-frequency noises. By down-sampling the data 

to 256 Hz, the unevenness has been addressed. For more effective feature extraction, the 

data were divided into 5-second chunks and converted to 8-bit colored pictures at the 

completion of the preprocessing stage. Before settling on the CNN design with the 

maximum accuracy, I investigated over twenty different CNN setups. The suggested 

CNN model has just taken over a minute to complete the training and testing process for 

each round. In order to verify our suggested framework, the performance of the CDR-Net 
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architecture has been evaluated using 10-folds, subject-wise detection, and other 

considerable performance matrices. The final results show that the overall multiclass 

accuracy, sensitivity, and specificity for CDR-Net are 99.25%, 99.13%, and 99.32%. 

Succeeding investigations should concentrate on expanding the sample size and 

multiclass performance. A smaller sample size has an impact on the classifier’s 

performance. The more data I supply to the classifier, the more it can learn and predict 

correctly. Moreover, it will be more ideal if more brain disorders like autism, 

schizophrenia, Parkinson's, etc. can be detected using a single model. I intend to develop 

a web-based technology that can identify many brain abnormalities using EEG data. 

The essence of this dissertation is coming up in the next chapter. It contains a 

summary of each of the methodologies and frameworks proposed by us. The next chapter 

ends with the future research direction. 
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CHAPTER 8 : SUMMARY AND FUTURE RESEARCH 

DIRECTION 

 

8.1 Overview 

Enhanced support for the healthcare industry is required as the average lifespan of humans 

rises thanks to scientific and technological advancements. This is followed by the 

emergence of age-related illnesses. Electroencephalography (EEG) is the sole instrument 

that shows promise and is effective, affordable, portable, and rapid to help the enormous 

population that suffers from mental and neurological diseases. The categorisation of EEG 

data is crucial in biomedical research for identifying and evaluating brain activity. 

Determining and analysing the various kinds of EEG signals is a challenging endeavour 

that requires the examination of vast amounts of EEG data. Extreme caution is required 

when extracting information and characteristics from the EEG's deep, hidden, 

complicated layer. In this dissertation, I developed EEG data processing and 

categorisation algorithms by analysing two large EEG datasets of mild cognitive 

impairment (MCI), Alzheimer's disease (AD), and healthy volunteers (HVs) with the 

following objectives: 

• Enhance performance from previous initiatives. 

• Create a noise reduction method that will guarantee the EEG characteristics are 

preserved and available for extraction for further processing. 

• Offer methods and strategies for handling the enormous amount of EEG data. 

• Develop rapid, computationally inexpensive diagnostic techniques for mental 

illnesses like MCI and AD from HVs. 

• Construct and contrast many deep learning (DL)-based approaches for detecting 

different types of brain disorders. 

8.2 Contribution Synopsis 

Chasing our objectives, I have built six methods in this dissertation. The remainder are 

EEG classification algorithms, with one approach being for noise reduction. Every time, 

I made an effort to do better and beat our previous mark. Finally, I have shown the best 
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DL-based multiclass classifier that is light and precise enough to identify AD, MCI, and 

HVs. 

Chapter 3: A framework for long short-term memory (LSTM)-based MCI 

detection is what we've proposed as our initial attempt. EEG data are de-noised using the 

Butterworth filtering method in our suggested framework. The average filter has been 

used to partition and down-sample the filtered EEG data in order to guarantee that our 

lodged model is rapid enough to diagnose MCI. I believe that our method strikes a good 

middle ground between speed and accuracy in its modelling. I have reported on the 

leading 20 of the approximately 35 tests and models that have been developed during the 

course of this investigation. The studies have all been carried out on a regular PC that 

does not have a graphics card. The tests have also shown me that keeping the number of 

hidden LSTM layers between two and three keeps the performance matrices (accuracy, 

sensitivity, and specificity) of the LSTM models at 90%, while increasing the number of 

hidden layers and neurons cause performance to decline. In comparison to the other 19 

models, our data indicate that Model 13, which consists of two hidden LSTM layers and 

a total of 1024 and 512 nodes, performed very well. During the process of developing the 

model, it took an average of 280 seconds to complete each epoch, and it took a total of 

1242 seconds to test the whole model. The performance matrices also meet expectations, 

scoring 96.41% accurate, 96.55% sensitive, 94.95% specific, 4.04% false positive rate, 

94.29% precise, 95.39% F1 score, and 96.25% AUC value in five-fold cross-inspection. 

The results of the five-fold cross-inspection did not reveal any variations that were 

statistically significant. It also upholds the answer to research problems 4 and 5. An 

overview of this chapter's successes may be seen below: 

• This work is the first of its kind to make use of EEG signal data in the construction 

of an LSTM-based DL system for the quick detection of MCI. 

• I investigated the use of a method called "average filtering" for down-sampling in 

order to further assist with the speedier completion of the recommended 

framework. 

• Twenty LSTM models were evaluated in order to find the best LSTM prototype 

for MCI detection. 

• Our approach has the ability to improve classification accuracy while 

simultaneously reducing the amount of time required for calculation. 
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Chapter 4: I have continued our work on the same EEG dataset, and this time I have 

created an adaptive denoiser method in addition to a second novel DL-based framework. 

A gated recurrent unit (GRU)-based framework for the categorisation of EEG data. The 

GRU algorithm is a variation of the recurrent neural network (RNN) and belongs to the 

domain of DL. According to our most reliable sources, the GRU has never conducted an 

EEG research with participants who had modest cognitive impairments. It is well 

knowledge that RNN performs better with sequential data, such as EEG. And the GRU is 

a memory-efficient DL model due to the fact that it does not carry as much memory as 

the LSTM model, which is another member of the RNN family. It is usual practise to 

utilise a deep GRU network for sequential prediction, and the architecture of such a 

network has hidden GRU layers that may selectively recall significant information for a 

period of time determined by the reset gate. The Butterworth filter, which is used to 

reduce noise and has the ability to generate a more linear phase reaction as well as a 

thorough flat response, is the first step in the suggested architecture that I have developed. 

After that, in order to cut down on the amount of work that needed to be done 

computationally, I down-sampled the filtered data and segmented it using a newly 

designed adaptive filter. When there are no or a minimal amount of outliers, the suggested 

adaptive filter performs well with any dataset. Last but not least, a two-layer GRU 

network has been designed to categorise EEG data. The peak signal-to-noise ratio of the 

adaptive noise remover algorithm that I have presented has reached 15.38 dB, exceeding 

the filters that are already in use, while the overall GRU-based framework has achieved 

96.91% accuracy, 97.95% sensitivity, 96.16% specificity, and 96.39% F1 score. 

Research problems 1, 2, 4, and 5 have a solution in it. The following is a concise 

summary of the primary efforts that have been made throughout this chapter: 

• A GRU-based DL investigation for EEG categorisation is something that I 

have reported on for the very first time. 

• To reduce the computational burden of the proposed model, I have devised 

our very own designed adaptive filtering as a down-sampling strategy. 

• When compared to the other DL models, the retrieval results achieved by our 

proposed model are both efficient and competitive, while the construction of 

our model requires just a minimal amount of computing resources. 

Chapter 5: Expanding on our prior research, I conducted an in-depth study that improved 

performance using the same GRU-based architecture. As opposed to our prior attempt to 
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diagnose MCI at the early stage, this substantial study has included a different EEG signal 

de-noising approach and three new classifiers. The aforementioned research goals have 

been addressed by the presentation of two techniques based on traditional machine 

learning (TML) and two approaches based on DL, respectively, for the detection of MCI. 

This is an enhancement of our prior approach for the identification of MCI that was based 

on the GRU [104]. This study's first steps include removing noise and distortions from 

the EEG data using a technique known as the stationary wavelet transform (SWT). After 

using an average filter to do the down-sampling from 256 Hz to 4 Hz, the filtered signals 

were then segmented. Finally, classifiers such as LSTM, GRU, support vector machine 

(SVM), and K-nearest neighbor (KNN) have been developed to discriminate MCI 

patients from HVs. Both SVM and KNN have utilized the characteristics that were 

retrieved using LSTM. GRU surpassed all other classifiers in this investigation, achieving 

the greatest levels of accuracy 95.51 ± 3.11%, sensitivity 97.52 ± 0.96%, and specificity 

96.50 ± 0.97%, as well as an F1 score of 95.69 ± 2.26% and an AUC value of 96.48 ± 

1.85%. SVM and KNN, two of the most used machine learning (ML) algorithms, have 

both been shown to perform poorly in terms of performance measures. KNN has obtained 

the lowest accuracy score possible, which is 80.85 ± 1.78%, a sensitivity score of 87.58 

± 0.84%, a specificity score of 80.71 ± 1.46%, an F1 score of 82.53 ± 1.12%, and an AUC 

value of 81.65 ± 3.62%. LSTM and GRU were neck and neck for the lead, but SVM has 

dropped a significant distance behind. It also shares answers to research questions 2, 4, 

and 5. The following is a list of the most significant contributions that this chapter has 

made: 

• An LSTM and GRU-based DL research for MCI classification has been 

successfully completed for the very first time. 

• Instead of employing two distinct feature extraction techniques, I have used the 

LSTM-extracted features for SVM and KNN to save computational overhead. 

• In order to improve the proposed model's fast performance, I have looked at the 

average filtering approach for down-sampling. 

• In addition to enhancing classification accuracy while decreasing computation 

time, our method has been thoroughly tested for consistency of performance using 

a 5-fold cross validation procedure. 

Chapter 6: A big leap has been taken after the previous study. New multi-class EEG data 

has been a focus as I attempt to develop a multi-class AD, MCI, and HVs detection 
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system. In the process of pursuing our goals, I have devised a DL-based attempt to not 

only improve the performance, but also to extract those additional hidden complicated 

characteristics of EEG data that have a substantial participation in the classifier's learning 

rate. I propose a deep residual Alzheimer's disease and MCI detection network (DRAM-

Net) framework consisting of four steps: acquiring EEG data, processing that data, using 

the DRAM-Net architecture to distinguish between people with MCI, AD, and HVs, and 

assessing the results of the experiment. In the step of EEG data collection, I collected the 

raw EEG data of 109 subjects. In the pre-processing step, I did things like down-sampling, 

noise removal, and temporal segmentation to make sure the EEG data was clean and ready 

to feed to the network. I did this by utilising the DRAM-Nett architecture, which is the 

place where the pre-processed data are fed and the classifications are done. Previous 

attempts had a difficult time doing adequately when trying to solve issues involving 

several classes. Additionally, preprocessing processes are leading current TML-based 

attempts to take more time and effort than they should. In response to these problems, I 

created DRAM-Net, a DL-based initiative. While classifying MCI, AD, and HVs, 

DRAM-Net achieved success rates of 97.79%, 98.06%, and 96.66% respectively. Our 

suggested framework has a 96.26% overall accuracy rate. Research questions #2, 3, 4, 

and 5 are responded inside this chapter. The primary contribution that this DRAM-Net 

framework enhancement offers is outlined below: 

• To identify AD-MCI, I present a novel deep residual network developed 

specifically for this purpose. 

• Our investigation uses temporal segments that are five seconds in length, and 

analyzing the patient's status with only five seconds' worth of EEG data is 

sufficient. 

• Using this particular EEG dataset, the DRAM-Net architecture that was just 

introduced has outperformed every other known multi-class AD-MCI study. 

Chapter 7: The Cognitive Decline Recognition Network (CDR-Net) architecture is our 

last and most comprehensive answer to the difficulties of EEG data processing as well as 

the detection of AD and MCI. This design makes use of a convolutional neural network 

(CNN) model that was developed specifically for the purpose of identifying AD, MCI, 

and HV using EEG data. The CDR-Nett structure that I suggest consists of four stages, 

the first of which is the primary data collecting phase for EEG readings. I was able to 

collect EEG data from 109 subjects (23 HVs, 37 MCIs, and 49 ADs). After then, the raw 
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EEG signals that were recorded were down-sampled to 256 Hz in order to maintain 

consistency. This was done since there weren't many EEG data acquired at a sampling 

frequency of 1024 Hz throughout the study. The raw data have been processed using the 

stationary wavelet transform, often known as SWT, in order to eliminate artifacts and 

sounds. The versatility of SWT in handling both high- and low-frequency disturbances is 

well known. After the signals have been cleaned, they are segmented into 5-second frames 

and then reassembled so that the sample size may be increased and important information 

can be located more rapidly. Converting the segmented frames to 8-bit colour images is 

the last step before submitting them to the classifier. The CDR-Nett architecture is 

finished off with a custom-made multi-layer CNN model that employs a softmax 

classifier. This suggested CDR-Net system, which has been shown to be capable of 

detecting many kinds of cognitive impairments, has been evaluated using various 

performance metrics. The 10-fold and leave-one-out cross validations (LOOCV) were 

also carried out as part of our efforts to validate the consistency and stability of the CDR-

Nett architecture that I have provided here. Over twenty various CNN configurations were 

looked at before I decided on the CNN design with the highest accuracy. The proposed 

CNN model has just taken over a minute to finish the training and testing procedure for 

each cycle. According to the final findings, CDR-Net has an overall multiclass accuracy, 

sensitivity, and specificity of 99.25%, 99.13%, and 99.32%. Chapter 7 also solves 

research questions #2, 3, 4, and 5. The accomplishments of this chapter are summarised 

below: 

• Developed and upheld a cutting-edge, accurate, dependable, and efficient CDR-

Net system for identifying AD, MCI, and HV using EEG data. 

• Improved the accuracy of multi-class categorisation in comparison to prior 

approaches on both the same EEG dataset and distinct EEG datasets. 

• Performed both 10-fold and LOOCV cross validations in order to investigate the 

consistency and stability of the suggested CDR-Net. 

• Undertook ablative experiments in order to find the CNN classifier that worked 

best for the CDR-Net system, which serves as its core component. 

Table 8.1 illustrates the contribution of this dissertation at a glance. Chapter, method, 

detected disease, and performance are reported inside Table 8.1. It can be concluded from 

Table 8.1 that I have gradually improved the performance of the proposed method to 

identify MCI and AD. 
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Table 8.1: Contribution at a Glance. 

Chapter Number Method Disease Detected Performance 

3 LSTM MCI + HV Accuracy: 96.41% 

Sensitivity: 96.55% 

Specificity: 95.95% 

4 Adaptive denoiser + 

GRU 

MCI + HV Accuracy: 96.91% 

Sensitivity: 97.95% 

Specificity: 96.16% 

5 GRU MCI + HV Accuracy: 95.51 ± 3.11 % 

Sensitivity: 97.52 ± 0.96 % 

Specificity: 96.50 ± 0.97 % 

6 DRN MCI + AD Accuracy: 96.26% 

Sensitivity: 95.01% 

Specificity: 98.11% 

7 CNN MCI + AD Accuracy: 99.25% 

Sensitivity: 99.13% 

Specificity: 99.32% 

 

8.3 Future Work 

In the realm of EEG data categorization, I believe that the method and frameworks that 

are outlined in this dissertation will prove to be useful in producing positive outcomes. 

The classification of EEG signals will be the subject of more study in the near future, 

specifically focusing on the viability of employing the aforementioned methods.  In order 

to assist and make use of these proposed techniques, I have brought to future researchers’ 

attention a few key points, which will now be explained. 

Datasets play a vital role in any model's training and decision-making processes. 

It would have been better if I had been able to collect a dataset that was substantial in 

size, rich in variety, comprised of many classes, and included EEG data. This would have 

been especially advantageous for the frameworks that I had suggested, given that such 

frameworks often function more effectively when presented with large amounts of data. 

The performance of the classifier is affected when there is a reduced number of 

observations in the sample. The more information I provide the classifier, the more it is 
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able to learn and the more accurate its predictions will be. Therefore, the data sample size 

should be given priority in succeeding studies. 

Integration of other neurological illnesses is a further important step that may be taken 

towards improvement. Running this model on EEG datasets from individuals with 

different brain disorders or cooperating with experts in the same field is another area 

where I need to improve or hereafter work plans I have. In addition, I want to broaden the 

scope of our research to include a variety of other neurological conditions, such as 

epilepsy, Parkinson disease, schizophrenia, autism, seizure disorders, and so on.  Also, it 

would be beneficial for researchers in this area to combine their efforts and work together 

in order to collect EEG data from persons who have autism, schizophrenia, Parkinson's 

disease, and other conditions. In the future, I want to establish a concept that I call "one 

framework for all neuro-disorders." This indicates that a single model may be used to 

diagnose many types of brain illnesses. Last but not least, multiclass performance need 

also to be one of the key focus of any succeeding study. 

Occasionally, the preprocessing of EEG data is unnoticed. In further research, the 

preprocessing processes need to likewise be the primary emphasis, with the goals of 

improving both the data quality and the pace at which the model is able to learn. The use 

of a DL approach rather than traditional ML methods may be beneficial for the purpose 

of extracting deeper complicated EEG data elements. In the future, studies of our 

proposed LSTM, GRU, and CNN architectures with a variety of additional hidden layer 

counts and activation parameters will be able to be carried out to see whether or not there 

are any benefits.  

This endeavor will direct those working in technology and medicine to continue 

EEG research at a higher level and create new ideas and approaches for treating 

neurological illnesses. With the help of succeeding EEG researchers, I expect that they 

will be able to create a perfect EEG identification model. I intend to create a web-based 

application that detects several brain issues using EEG data. 
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