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Abstract: The impact of global climate change is a challenge to the sustainability of many ecosystems,
including soil systems. However, the performance of soil properties under future climate was rarely
assessed. Therefore, this study was carried out to evaluate selected soil processes under climate
change using an agri-environmental modeling approach to Sri Lanka. The Agricultural Production
Systems Simulator (APSIM) model was used to simulate soil and plant-related processes using recent
past (1990–2019) and future (2041–2070) climates. Future climate data were obtained for a regional
climate model (RCM) under representative concentrations pathway 4.5 scenarios. Rainfalls are
going to be decreased in all the tested locations under future climate scenarios while the maximum
temperature showcased rises. According to simulated results, the average yield reduction under
climate change was 7.4%. The simulated nitrogen content in the storage organs of paddy declined
in the locations (by 6.4–25.5%) as a reason for climate change. In general, extractable soil water
relative to the permanent wilting point (total available water), infiltration, and biomass carbon lost
to the atmosphere decreased while soil temperature increased in the future climate. This modeling
approach provides a primary-level prediction of soil dynamics under climate change, which needs to
be tested using fieldwork.

Keywords: agri-environmental modelling; APSIM; crop nutrition; food security; nutrient cycling

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC), in its latest communication
(6th Assessment Report), reported that the global mean surface temperature has increased
by 1.1 ◦C in the 2011–2020 period compared to 1850–1900 with an alarming rate where
larger increment was observed over the land compared to the ocean [1]. The IPCC expected
that the global mean surface temperature would be increased by 0.8–1.7 ◦C during mid-
century (2041–2060) and 0.7–4.0 ◦C at the end of this century (2081–2100), compared to the
1995–2014 period [2]. These rapid changes in the climate have adverse consequences on
agriculture and food security, water availability, the economics of the countries, transport,
energy systems, health, and many other aspects [3–8], which positions mankind in danger.

Soil, a natural resource that has many environmental functions and benefits, cannot
escape from the consequences of climate change [9,10]. Climate change has both direct and
indirect impacts on soil systems. The changes in rainfall (amount and pattern), elevated
temperatures, and increased carbon dioxide concentrations alter the hydrological and
biogeochemical cycles of the earth and alter soil processes directly [9]. Climate change has
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indirect impacts on the soil through ecosystem functioning [9,10] and affects soil properties
in various ways. For example, increased temperature accelerates soil salinity, ammonia
volatilization, and loss of organic carbon and reduces cation exchange capacity. Intensive
and heavy rainfall destroys soil aggregates, increases erosion, causes acidification, and
leaches nutrients. Reduction of rainfall reduces water availability, increases salt content,
reduces nutrition acquisition capacity, and N-fixation in legumes [11]. Therefore, using the
past observed data, the impact of climate on various aspects of soil properties was assessed
in different geographic regions of the world. It was reported that the soil biodiversity has
been negatively impacted by the changes in climate [12,13]. Climate change has an impact
on soil carbon stocks [14] and soil erosion [15]. Since a significant portion of global food
and fiber needs are accomplished by soil-used agriculture, any impact on the soil has the
potential to threaten global food security [11]. Therefore, soil also plays a critical role in the
climate system [13].

Reduction of soil moisture due to climate change can increase the irrigation water
requirement in agriculture, which leads to yield reduction, negatively impacting food
production. Thus, any change to soil systems under current and future climates negatively
affects the food and nutritional security and sustainability of food systems [16]. Prolonged
changes in climate on soil can aggravate desertification [17]. On the other hand, misman-
agement practices related to the soil, such as burning biomass and extensive tillage, can
accelerate climate change. Agricultural productivity depends on soil health, which is
defined by a set of measurable chemical, physical, and biological properties and associated
processes [18]. Thus, any negative impact on these properties will create soil health-related
issues on which agricultural productivity would be in danger.

Different methods have been used to assess the response of soil properties to climate
change [19]. Thus, the impact of climate change on soil properties is assessed using envi-
ronmental models and crop models [1,20]. Crop models are mathematical algorithms that
are used to simulate plant growth, development, and yield using predefined environmental
(climate and soil), crop management, and genetic information [21–23]. They can be used
in several disciplines, including environmental and climate change research [24]. Due to
its diverse range of capabilities, crop models have been used to assess various soil-related
processes such as soil physical properties (water, compaction, etc.), chemical properties,
nutrient dynamics, greenhouse gas emission, and soil temperature [25].

However, according to the understanding of the authors, the impact of climate change
on soil systems was rarely assessed in the world and never in the context of Sri Lanka
using future climate and crop models. This is highly important as the whole country
is still based on agriculture. With 23 million people having rice as its staple food, Sri
Lanka needs heavy attention on agricultural products. Thus, conserving the soil system is
highly important. Nevertheless, the country is under serious pressure due to the changing
climate. It is one of the most affected countries in the world due to ongoing climate
change [1]. Therefore, the objective of this paper is to assess the performance of some
of the soil physicochemical properties under future climate using an agri-environmental
modeling approach in Sri Lanka. The findings of the study would create multiple research
avenues for soil-crop-climate-related studies. In addition, the policymakers, including
other stakeholders, can be on alert for recent changes and include the outcome of this paper
in their future planning processes.

2. Materials and Methods
2.1. Study Area

This study was conducted in Sri Lanka, which is an island situated in the Indian Ocean.
Being a tropical country, no severe seasonal temperature variations were observed in the
country. Sri Lanka is divided into three major climate zones based on the annual rainfall:
wet zone (WZ) (>2500 mm annual rainfall), dry zone (DZ) (<1750 mm annual rainfall),
and intermediate zone (IZ) (1750–2500 mm annual rainfall). The country is divided into
46 agroecological zones according to the climate and altitudinal characteristics [26]. Due to
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the diversity of the climate in the country, soils with different physicochemical properties
can be observed in Sri Lanka [27]. As was stated in the introduction, the country has a rich
profile for its agricultural products with high water resources. However, the management
of water resources and soil structure is not at its best due to many drawbacks in policies.

2.2. Soil Data Collection

Five locations with observed soil data were used in this study, as shown in Figure 1
(Puttalam, Katunayake, Galle, Hambantota, and Badulla). The observed soil data were
obtained from the SRICANSOL project [28–31], which is the most up-to-date and compre-
hensive soil database in Sri Lanka. These locations were selected to cover all three climate
zones of the country: WZ, DZ, and IZ. Figure 1 shows the distribution of the soil sample
collected sites. All five locations contain observed bulk density (g/cm3), pH, sand, silt, and
clay content (%), organic carbon (%), cation exchange capacity (cmol(+)/kg), volumetric
water content (VWC) at 0.33 bars pressure (field capacity) and 15 bars pressure (permanent
wilting point) for different depths. Since the soil depth varies among locations, the depths
were standardized for 6 standard depths such as 0–5, 5–15, 15–30, 30–60, 60–100, and
100–200 (in cm) using the method followed by Wimalasiri et al. [32].
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Figure 1. Distribution of soil sample collection sites and meteorological stations.

2.3. Climate Data

The closest meteorological stations to the soil sample collection sites were used (refer
to Figure 1). Two types of climate data, such as recent past observed climate and future
climate data, were used in this study. Observed daily rainfall and minimum and maximum
temperature data for the 1990–2019 period were collected from the Department of Meteorology,
Sri Lanka. Since these locations do not have solar radiation information, the data were obtained
from the National Aeronautics and Space Administration Prediction of Worldwide Energy
Resources NASA POWER database (https://power.larc.nasa.gov/; accessed on 1 May 2023).
Daily future climate data for the 2041–2070 (mid-century) period were obtained from the
Coordinated Regional Climate Downscaling Experiment (CORDEX), Copernicus Climate
Change Service [33]. The regional climate model (RCM) developed for the South Asian region
“RCM IITM-RegCM4-4”, which is available in the database, was used under the Representative
Concentration Pathway (RCP) 4.5 scenario. The horizontal resolution of the dataset is 0.44 ×
0.44 degrees [33]. The grid cell that includes the meteorological station was used.

https://power.larc.nasa.gov/
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2.4. Crop Model Parameterization

Paddy (Oryza sativa) was used as the test crop, which is the major crop in Sri Lanka.
The crop is available throughout the country, covering different agroecological zones of
the country. A locally improved paddy variety BG 357 which is good for local climate
conditions, was used here. The crop is usually harvested within three and half months,
where it gives a potential yield of 9.5 t/ha. Even though the crop is cultivated two times
per year based on the availability of water, the crop cultivated in the major season (October
to March) is considered in this study. The pre-calibrated Agricultural Production Systems
Simulator (APSIM) Oryza model was utilized in this study to simulate crop and soil
processes [2,3]. The APSIM requires daily weather (rainfall, minimum and maximum
temperatures, and solar radiation) data, soil data, and crop management information. The
genetic coefficients of paddy cultivar BG 357 published by Zubair et al. [34] were used
to parameterize the APSIM model. These genetic coefficients include development rate
during the juvenile phase (DVRJ), development rate during the photoperiod-sensitive phase
(DVRI), development rate during the panicle development phase (DVRP), development rate
in the reproductive phase (DVRR), and maximum optimum photoperiod (MOPP). Then, the
observed soil and climate data were used as input data, where all other management options
and parameters were adjusted as described by Wimalasiri et al. [32]. The management
practices include plant density and fertilizer application rates and dates.

Under both current and future climatic conditions (described in Section 2.3. Climate
Data), the simulations were performed for a 30-year period separately. Different crop and
soil-related parameters were simulated using the crop model. These parameters include
paddy yield, nitrogen content in the storage organs of paddy plants, extractable soil water
relative to permanent wilting point, infiltration, soil temperature, amount of annual nitrous
oxide (N2O) produced by denitrification and biomass carbon lost to the atmosphere. Finally,
the model outputs were compared after the simulations. The overall methodology followed
in this research is presented in Figure 2.
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3. Results
3.1. Climate Data Analysis

Variations of current and future climates in the tested locations are shown in Figure 3.
During the period considered, the highest and the lowest mean annual rainfall under
the observed climates were reported from Galle (2316 ± 426.1 mm) and Hambantota
(1129.7 ± 234.0), respectively. However, the mean annual rainfall in all five locations
decreased as per the RCM-generated climate data. The mean annual rainfall decreased by
55.1% in Galle, followed by 53.9% in Katunayake. Both locations belong to the Wet Zone of
the country. However, Hambantota showcased a lower reduction in rainfall (16.1%). The
mean annual rainfall decreased by 45.1% and 25.3% in Badulla and Puttalam, respectively.
However, these are based on modeled data (refer to Figure 3a). Therefore, as usual, there
may be some uncertainty in the climate analysis.
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The mean maximum annual temperature increased in all the locations where the
highest maximum temperature (refer to Figure 3b) was reported from Galle and Katunayake
(32.1 ◦C) followed by Puttalam (31.9 ◦C) under future climates. The highest and the lowest
increment of the maximum temperature was observed from Badulla and Galle (2.1 ◦C)
and Puttalam (0.2 ◦C), respectively. In contrast, the mean annual minimum temperature
(refer to Figure 3c) showed an increment in future climate only in Badulla (22.5 ◦C), which
increased by 3.8 ◦C. Out of the five locations, the highest and lowest minimum temperatures
were reported from Katunayake (23.6 ◦C) and Badulla (22.5 ◦C) under future climate. The
mean minimum temperature decreased by 1.9 ◦C in Galle and Hambantota (the highest
reduction) and 0.6 ◦C in Katunayake (the lowest reduction). The annual variation of rainfall
and maximum and minimum temperatures are shown in Appendix A.

3.2. Paddy Yield Simulation Results

Simulations were carried out to develop the paddy yield from observed and forecasted
climate data. Figure 4a showcases the average yields for simulated and observed scenarios
from 1990 to 2019. However, it should be noted that observed average yields are for the
whole area, whereas the simulated yields are for point locations based on the point data
inputs. Therefore, a clear comparison of these two cannot be justified. Nevertheless, the
authors have presented these two results to showcase the acceptability of the simulations.
The yields are in the same range for most of the locations; thus, an acceptability of the
simulated results can be seen.
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The simulated yields for the future scenarios (2041–2070) and their changes to sim-
ulated yields for the recent past (1990–2019) are given in Figure 4b,c. According to the
simulated paddy harvest, the highest yield of 6092 ± 531 kg/ha was reported from Badulla
(in the IZ), followed by Galle (5304 ± 450 kg/ha) in the WZ under the current climate. Out
of the tested locations, the lowest yield of 2692 ± 280 kg/ha was reported from Puttalam.
Except for Hambantota, the yields declined in other locations studied. The future paddy
yields of Hambantota increased by 5.9%. The highest (5173 ± 999 kg/ha) and the lowest
(2244 ± 710 kg/ha) paddy yields under the future climate were reported from Galle and
Puttalam, respectively. The highest and the lowest yield reductions were reported from
Puttalam (16.7%) and Galle (2.5%), respectively. Relatively higher variation was observed
for paddy yield under the future climate, where the coefficient of variation (CV) was
higher at 31.6% (Puttalam). The yields under both the current and future climates differed
significantly (p < 0.05) among locations.

3.3. Plant Nutrition Related Parameters

The variation of the simulated nitrogen content in the storage organs of paddy plants
under recent past climate and the change of nitrogen content in future climate scenarios are
shown in Figure 5. Accordingly, the nitrogen content in the storage organs of the paddy
declined in all the tested locations under the future climate, where the highest reduction of
25.5% was reported from Puttalam. Hambantota reported the lowest yield reduction of
6.4%. It should be noted that the same amount of nitrogen fertilizer was added on the same
dates after sowing in both current and future climate conditions.
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3.4. Soil Water Related Parameters
3.4.1. Extractable Soil Water Relative to Permanent Wilting Point (ESW)/Total
Available Water

The extractable soil water relative to the permanent wilting point (ESW) decreased
under the future climate scenarios in four locations except Galle, on which the value
increased by 0.1% (refer to Figure 6). The highest and the lowest ESW under the current
(278.8 ± 3.4 mm) and future (272.3 ± 5.5 mm) climate were reported at Badulla, where the
lowest ESW under the current (187.1 ± 1.1 mm) and future (187.3 ± 0.3 mm) climates were
reported at Galle. The highest reduction of the ESW under future climate was reported
from Badulla (2.4%), followed by Puttalam (2.1%) and Katunayake (1.6%).
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3.4.2. Infiltration

The mean annual infiltration of water in the soil decreased in all five locations under
future climate conditions (refer to Figure 7). The highest annual infiltration under the recent
past (6382.5 ± 219.6 mm) and future (5472.3 ± 138.9 mm) climate conditions were reported
from Galle. The lowest infiltration under the current and future climate conditions was
reported from Puttalam, where the values were 5496.0 ± 179.7 mm and 5238.1 ± 340.7 mm,
respectively. The annual infiltration reduced from 14.3% (Galle) to 2.8% (Hambantota)
under the future climate. The reductions in annual infiltration for Badulla, Katunayake,
and Puttalam were 14.1%, 12.2%, and 4.7%, respectively.
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3.5. Soil Temperature

The simulations showcased both the increments and reductions of soil temperatures
for future climate scenarios (refer to Figure 8). The highest and the lowest mean soil
temperatures under the future climate were reported at Galle (32.3 ◦C) and Badulla (29.5 ◦C).
The mean soil temperature increased by 2.1 ◦C in Badulla and 1.1 ◦C in Galle. The mean soil
temperature decreased by 0.5 ◦C in Puttalam and 0.1 ◦C in Hambantota and Katunayake.
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3.6. Soil Nitrogen Related Parameters

The annual nitrous oxide (N2O) produced by denitrification was reported at three
locations only: Badulla, Galle, and Hambantota (refer to Figure 9). Denitrification within
the APSIM model is controlled by soil water content and flow, which is simulated from the
SoilWat model. The denitrification rate within the model is calculated using the amount of
NO3

- N present, active carbon present, and moisture and temperature coefficients. Due to
the variation of these properties, the denitrification can be varied. Thus, denitrification was
observed for three locations only.

Out of three locations, the total N2O produced by denitrification during the study
period was higher in future climate in two locations: Badulla and Galle. At Badulla, the
N2O produced by denitrification was 1.0 kg/ha and 2.4 kg/ha under the current and future
climates, respectively. At Galle, the N2O was not reported under current climates, while
the amount under future climates was 0.6 kg/ha. In contrast to Galle, the N2O production
was reported under current climates only, where the value was 0.1 kg/ha.



Soil Syst. 2023, 7, 82 11 of 17Soil Syst. 2023, 7, x FOR PEER REVIEW 12 of 18 
 

 

  
(a) (b) 

 
(c) 

Figure 9. Variation of the simulated annual nitrous oxide (N2O) produced by denitrification: (a) 
Badulla; (b) Galle; (c) Hambantota. 0 to 30 years indicates 1990–2019 (shown in solid lines) and 2041–
2070 (shown in dotted lines) periods. 

3.7. Soil Carbon Related Parameters 
Finally, one of the most important parameters related to agriculture was obtained for 

future climate scenarios. The annual variations of biomass carbon lost to the atmosphere 
are shown in Figure 10. The highest mean biomass carbon loss under the current climate 
was observed in Badulla (552.4 ± 201.1 kg ha−1), followed by Galle (549.0 ± 182.9 kg ha−1). 
The mean annual biomass carbon lost to the atmosphere increased in all five locations. 
The highest increment was reported from Badulla (11.6%), followed by Hambantota 
(3.9%) and Galle (2.7%). The lowest increment of mean annual biomass carbon lost was 
reported from both Katunayake and Puttalam, where the value increased by 0.3%. 

  
(a) (b) 

Figure 9. Variation of the simulated annual nitrous oxide (N2O) produced by denitrification:
(a) Badulla; (b) Galle; (c) Hambantota. 0 to 30 years indicates 1990–2019 (shown in solid lines)
and 2041–2070 (shown in dotted lines) periods.

3.7. Soil Carbon Related Parameters

Finally, one of the most important parameters related to agriculture was obtained for
future climate scenarios. The annual variations of biomass carbon lost to the atmosphere
are shown in Figure 10. The highest mean biomass carbon loss under the current climate
was observed in Badulla (552.4 ± 201.1 kg ha−1), followed by Galle (549.0 ± 182.9 kg ha−1).
The mean annual biomass carbon lost to the atmosphere increased in all five locations. The
highest increment was reported from Badulla (11.6%), followed by Hambantota (3.9%) and
Galle (2.7%). The lowest increment of mean annual biomass carbon lost was reported from
both Katunayake and Puttalam, where the value increased by 0.3%.
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4. Discussion

Agri-environmental modeling approaches are important to understand the agriculture-
environment-related processes, their interactions, and their effects on other systems [25,35].
Understanding the soil dynamics under future climate using modeling approaches is
important in decision-making regarding the best use and conservation of soil properties.
This is highly important in achieving sustainable development goals (SDGs) for the future
world. Therefore, this research was carried out to investigate the soil processes for future
climate scenarios, thus understanding the food security of tomorrow’s world. Important
results are obtained from this research and presented in the preceding section. However,
these results are based on the RCM-generated climate scenarios where there is uncertainty
in the future data. Nevertheless, many researchers have used these RCM-generated future
climate scenarios to understand and forecast the important parameters for the future. The
whole idea may not be to reach perfection for the future but to reach some understanding
of what the future would be.

According to the selected RCMs, the rainfall showed a reduction in the future com-
pared to the current climate. However, both the increment and reduction of rainfall under
future climates were reported in Sri Lanka [36–38]. Since rainfall determines the soil water
availability and related processes within the soil system in countries such as Sri Lanka,
this needs to be validated using future climate models to obtain efficient model outputs
related to soil. Soil water availability determines most of the chemical properties of soil.
Agricultural soils receive water by either irrigation or rainfall. Since the rainfall amount
under the future climate is lower compared to the recent past climate, the natural water
supply to agricultural soils is lower, which can hinder some of the processes in the soil.
This is evident from the fact that infiltration of water under future climate scenarios is
lower in all the locations compared to the recent past climate. Since the availability of
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soil water is one of the major constraints under future climate, management practices that
retain water are important. Some soil amendments, such as biochar, can be used in this
regard [39]. According to the study, soil evaporation decreased in all the tested locations
under future climate. In APSIM, evaporation is calculated in two stages based on the
potential evaporation determined using the Priestley–Taylor method [40]. Thus, surface
energy flux, atmospheric pressure, and surface air temperature determine the values [41].

Compared to other parameters assessed, soil temperature showed both increment and
reduction irrespective of the location or the climate zone. To simulate soil temperature,
APSIM uses air temperature from the input file, water from the soil water module, and
evaporation and incident net radiation [42]. Soil temperatures have a great effect on plant
growth by influencing nutrient and water uptake, root growth, and other physiological
processes of plants [43,44]. Increased temperature and reduction of moisture as a reason
for declined rainfall influence the biological transformation between inorganic and organic
pools in the soil [11]. Elevated temperature and carbon dioxide concentration affect the soil
microbial activity and nutrient cycling in the soil [11,45,46]. Since soil microbes are sensitive
to temperature, increased temperature increases their activity and respiration, releasing
nitrogen and phosphorus from organic matter in bioavailable forms [11,45]. Moreover,
it decreases both the quality and the quantity of organic matter in the soil [45], which
negatively affects the soil-plant interactions. Increased microbial activity can be suggested
as the reason for increased atmospheric carbon loss. Through the carbon cycle–climate
feedback, soil microbial activity contributes to climate change, triggering human-induced
climate changes [47]. Therefore, it is important to improve soil carbon sequestration to
mitigate climate change [48].

5. Conclusions and Recommendations

This study was carried out for the first time in Sri Lanka to understand the soil pro-
cesses under changing climates. The consequences of global climate change are expected to
impact the soil’s physical, chemical, and biological properties worldwide. Nevertheless,
such studies have not been paid enough attention by many researchers, leading to poor
directions to policymakers. Therefore, this initiative would open up the possibility of en-
hancing more research along these lines and achieving food security for future generations
under the SDGs.

This modeling approach showed that soil evaporation, extractable soil water relative
to a permanent wilting point, infiltration, soil temperature, annual nitrous oxide produced
by denitrification, and biomass carbon lost to the atmosphere changed under future climate
in different magnitudes. The reduced future rainfall that limits available soil water will
cause a threat to agriculture. It is important to take measures to conserve soil moisture
and sequestration of carbon in the soil. The initial level data generated using the modeling
approach should be validated using field experiments before use in decision-making.

Even though there are several other soil parameters, few physicochemical properties
were assessed in this study. As a reason for the uncertainty of climate models, varied
results for the same outputs can be expected under the same climate [36,49]. Different
models perform in different ways to model structural uncertainty [22,50]. Therefore, we
expected to conduct the study using several future climate scenarios, environmental mod-
els, and soil properties. Therefore, a comparative analysis is proposed to understand the
model with different climatic scenarios comprehensively. In addition, in process-based
crop models such as APSIM, different processes are governed by different biophysical
models or modules [22,51]. For example, soil water processes in the model are governed
by the SoilWat model [52,53]. The inputs, outputs, and capabilities of such models de-
pend on several factors. Therefore, the model output should be validated before use in
decision-making.
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