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High performance computing is now a major area where business and computing technologies need resi-
lient high performance to meet business continuity and real-time needs. However, many top-level busi-
ness and technology organizations are still in the process of improving high performance and traffic
resiliency to ensure the availability of the system at all times. Machine learning is an important advance-
ment of computer technology that helps in decision making by prediction and classification mechanism
based on historical data. In this paper, we propose and integrate the concept of high-performance com-
puting with artificial intelligence machine learning techniques in cloud platforms. The networking and
computing performance data are used to validate, predict and classify the traffic and performance pat-
terns and ensure system performance and continuous traffic flow resiliency decisions. The proposed inte-
grated design approach has been analyzed on different step actions and decisions based on machine
learning regression and classification models, which auto-correct the performance of the system at real
run time instances. Our machine learning integrated design simulated results show its traffic resilience
performs proactively 38.15% faster with respect to the failure point recovery along with 7.5% business
cost savings as compared to today’s existing non-machine learning based design models.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction ing business success. While anymechanical system could not commit
Today, many businesses and critical applications based on cloud
network communication demand zero failure systems to maintain
business continuity and application resiliency (Voros, 2021). In this
context, in recent years multiple authors (Sarangarajan et al., 2021;
Sefati et al., 2022; Ghobaei-Arani and Shahidinejad, 2021) emphasize
on the automation, resiliency and reliability of the cloud systems
towards the journey of high-performance cloud platforms for ensur-
to the non-failure cloud system but an attempt can be made to auto-
mate the corrective actions to resolve any real time failures. High per-
formance and continuous traffic flow resiliency are specific areas of
analysis and research where more ideas and thoughts are coming
up to resolve this problem. As shown in Fig. 1 in the next section, cli-
ent applications interact with other back-end systems through cloud
middleware systems. In this case, the business continuity completely
depends on the system availability and the network availability. Sys-
tem availability is a key element of the system’s performance, and
network availability is key in network performance. One of the rea-
sons of system unavailability (Walker et al., 2021) is hardware fail-
ures, which is unknown and caused due to several different reasons
(Chen et al., 2020) e.g., electricity supply, sudden failures of network
interface cards or memory disk failures and other equipment etc.
Keeping aside the hardware malfunction and failures (due to multiple
unknown reasons (Chen et al., 2020) in both achieving the high sys-
tem performance and network performance, it is required to maxi-
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Fig. 1. Application Multi-Tier Architecture.
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mize these performances by studying the system and traffic behavior
patterns. In any existing system, especially in cloud platforms (Voros,
2021), the system performance is measured through the computing
unit’s CPU usage and memory usage. Similarly, traffic flow is mea-
sured with the network packets/bytes forwarded, request processing
time, and response processing time.Table 1.

The previous research study provides information on the comput-
ing unit system performance improvements and the traffic handling
unit, e.g., load balancers unit system performance. A recent research
study emphasizes on the docker component-based clusters which
improves the computing cluster performance significantly. Another
designapproachofhybridapplication (Caíno-Lores et al., 2019) segre-
gates the application clusters from business applications. This design
is significantly improving the system performance. Similarly,
research progress (Afuwape et al., 2021) improves the system perfor-
mance by clustering the computing and traffic load balancer unit
based on the computing and resource units. Such research (Chen
et al., 2020) is currently going on for the machine’s system perfor-
mance, which handles the machine learning high usage data to
improve the components of computing and traffic units in use scope.

The research motivation for this article is summarized as below,

a. Recent reviews (Voros, 2021; Caíno-Lores et al., 2019;
Afuwape et al., 2021) emphasize that business and mission
critical research in real-time need a high-performance resili-
ence and uninterrupted traffic flow.

b. Multiple research advancements on the big data application
(Caíno-Lores et al., 2019; Akusok et al., 2015) and cloud plat-
forms (Sefati et al., 2022) intensified the common challenge
of high performance faster and reliable communications

c. Network intelligentization is the most acceptable solution to
address the challenge of network interconnection and is
one of the top 10 recent challenges as emphasized by author
(Kato et al., June 2020).

The major research gap is related to the resiliency of the current
traffic and the mechanism of how to correct a platform that is
Table 1
Test Environment Tools and Versions.

Environment/Tool Name & Version

Programming Language JAVA openjdk 64-Bit version ‘‘1.8.0_282”
Framework Spring Boot 2.0.3, Spring 5.0.7. RELEASE
Storage Amazon S3
Computing Units Amazon EC2, 1 CPU Unit, 512 MB

Container Memory
Operating System Linux OS
Performance Tool Apache JMeter Version 5.4.1
Monitoring Tool New Relic
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experiencing commutation failure in real time. It is also found that
cloud platform load balancing (Sefati et al., 2022) plays a major
component role in cloud platform performance, resilience and reli-
ability context scope. Many Business models, Science, Medical and
Engineering real-time components, big data analysis (Akusok et al.,
2015) cannot sustain (Chen et al., 2020) a single minute data traffic
communication failure. Similar situations when the computing and
network components in a critical remote area, its traffic flow
requires to be auto corrected where no human correction could
be provided. The resolution to auto correct the failure of such a
problem situation really aims and goals of this research article.

The primary objective of this research is to propose and build a
resilient design model that will be corrected automatically during
any system components failures by evaluating the available correc-
tive decisions. To achieve this, there is a high scope to integrate the
existing traffic flow systems with the machine learning models to
gather the information on the future prediction of whether the sys-
tem will experience a failure situation and it requires any auto cor-
rective actions. Once the decision is predicted, then the system
again evaluates and provides the specific action from available clas-
sified correction options. These prediction and classificationmodels
are based on the network and computing units’ performance data.
Machine Learning models study those historical pattern behavior
and provide the system’s respective decisions to auto-correct the
real-time High-Performance Computing Platforms.

Here is the list of the major contribution to this article.

a. The approaches of achieving the high perform systems resi-
liency is studied from the various literatures

b. A design is developed to solve the problem of how to auto-
correct the platform and retain its resiliency

c. Machine Learning approach is integrated to self-enabled the
platform and to take the intelligent decisions-based auto-
correct actions.

d. Mathematical analysis and the program are developed to
simulate and verify the design approach.

The main purpose and advantages of this article is as follows.

a. To learn the till date advancements made for cloud high per-
formance systems

b. To focus more on how to use machine learning concepts for
the cloud components e.g., load balance, computing units’ data

c. To improve the load balance resilience design with artificial
machine learning based design model

d. To compare the performance of traffic resiliency and recovery
mechanism using the proposedmachine learningmodel design.

In this article, different reviews of the progress of high-
performance computing is studied in our literature survey section.
The existing and proposed cloud platform architectures are pre-
sented in the following section. The proposed architecture section
shows the design model of the newly proposed solution that fits in
the existing cloud platform. In the Proposed Method Models and
Algorithms section, different machine learning specific network
and computing unit data fields and related algorithms to integrate
with machine learning models are explained. The algorithm spec-
ifies the prediction and classifications used in the system to
auto-correct the systems resiliency mechanism.
2. Literature Survey

Multiple research thoughts and projects are currently progress-
ing on high performance and cloud computing. The key area of
high-performance research is based on how to achieve high perfor-
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mance in computational units based on different business require-
ments, resource optimizations, computational modernization etc.
In this section of the article, the research progress on achieving
the high computation, especially in cloud computing is presented.

Author Voros (2021) in 2021 proposed the model which shares
the high-end hardware specific resources through cloud based
dockers and microservices. Similarly, Author Sarangarajan et al.
(2021) discuss the training and competency automation for busi-
ness and customers with machine learning models to achieve the
high computational performance. In the same year, Author
Walker et al. (2021) distinguishes the concept which provides to
accept between the choice of high resiliency and the high perfor-
mance. Resiliency is a more structural and acceptable phenomenon
in most of the business, medical and real-time domains whereas
high performance is the effective phenomenon in engineering,
research, and simulated scientific domain. Zhang et al. (2019) have
achieved facial expression recognition by integrating artificial
intelligence with high-performance computing. The CNN (Convo-
lutional Neural Network) is being trained with high performance
computing resources. Chen et al. (2020) researched and performed
the high-performance computation on power grid operations
through machine learning algorithms. The author had researched
the regression algorithms, logical regression, and classification
models on the high-performance computing systems and achieved
better performance in the high-performance computing environ-
ment. Author Caíno-Lores et al. (2019) has discussed the conver-
gence of high-performance computing with big data analytics.
The author focused on the key design aspects of the big data and
high-performance models, which generate the unified interface
for the hybrid applications. Author Afuwape et al. (2021) has
explained the importance and complexity of network traffic classi-
fications concerning network resource management. The author
discussed the various virtual private networks’ traffic detection
and classification algorithms. Furthermore, the author has added
more algorithms to verify and classify the traffic patterns for high
performed traffic and the security patterns.

Jhaveri et al. (2021) has shed light on traffic bandwidth man-
agement and has provided a thoughtful vision on how to improve
fault resiliency through software-defined network models. The
authors in this article introduced a resiliency manager, which
solves the bandwidth problem and the fault resiliency based on
the severity and faults flow into the networks. Author Ali et al.
(2020) reviews the traffic flow, the high usage, and the anomaly
security detection of networks. The authors also summarize the
underlying open issues for the different systems, including the
high-performance computing environment. Kakadia et al. (2020)
9993
discusses customer satisfaction based on the network service pro-
viders’ network service quality. This article focuses on how to take
corrective actions for the disturbances imposed by the network
layer and how to provide a better user experience.

Author Renggli et al. (2019) focuses on the high-performance
machine learning techniques applied to fast-growing business
data. The design approach is promising to solve the communica-
tion bottlenecks of the parallel and distributed computation that
are evolved to get applied on dynamic, growing business data onto
the machine learning model. Author Kato et al. (2020) shares the
top 10 highly complex challenges in network communication.
There is a high necessity of network and performance
‘intelligentization’, which is a new trend for addressing heteroge-
neous network mobile devices’ high growing traffic models. Author
Potok et al. (2018) has evaluated the deep learning model tech-
niques for addressing the training issues for complex topologies
to determine the network topologies and the low power hardware
problems. This architecture model is suitable for low power hard-
ware. Authors Diana et. al. (Diana and Robert, 2021) have discussed
the importance of recovery point objective (RPO) and recovery
time objectives (RTO). Authors emphasize the information technol-
ogy average cost down time is 5600 USD per minute. Few compa-
nies have more than hour(s) of downtime which costs a significant
amount and may lead to heavy business loss. Authors also argue
that with the latest technology models, the system recovery is
highly reduced with the new database-based recovery strategy to
4.5 seconds post failure.

Author Almiani et al. (2022) discussed the security model,
mainly emphasizing on DDos attack for the native cloud compo-
nents. The significance of the virtual and physical machines place-
ments, grouping the machines to optimize the power in the cloud
is intensively discussed by the author Ghobaei-Arani et al. (2017).
Ghobaei-Arani and Shahidinejad (2021) discussed the identifica-
tion of user submitted heterogeneous QoS (Quality of Service)
workloads through the Generic and fuzzy C-means technique. Sim-
ilarly, author (Ghobaei-Arani, 2021) emphasizes on the resource
provisioning based on the heterogeneous workloads using the pro-
posed biogeography-based optimization (BBO) technique. The time
series based predictive decision to choose the load balancers from
different cloud environments is discussed by author Divakarla et al.
(2022). Author Shahidinejad et al. (2020) proposed the elastic con-
troller which was required to control the over-provisioning or
under-provisioning cloud resources problems.

The below table provides a summary note on most relevant
latest developments on cloud and machine learning
Author
 Year
 Emphasized on
 Methods/Techniques/Tools
A. S. Voros et al. (Voros, 2021)
 2021
 High-Capacity Resources
 Using the dockers and containers

X. Zhang et al (Zhang et al., 2019)
 2019
 Facial Expression Recognition
 Artificial Intelligence and high-

performance computing

Afeez Ajani Afuwape et. Al. (Afuwape

et al., 2021) in 2021

2021
 Importance on Classification of Network

Traffic

Machine Learning Methods to
identify the the VPN Networks
Cedric Renggli et. al. (Renggli et al.,
2019)
2019
 scalability bottleneck for most machine
learning workloads
SparCML Techniques
Sefati, S. et. al. (Sefati et al., 2022)
 2022
 Load balancing for resource reliability
capability
Grey Wolf Optimization Algorithm
Muder Almiani et. al. (Almiani et al.,
2022)
2022
 Security Model
 DDos attack for the native cloud
M. Ghobaei-Arani et. al. (Ghobaei-Arani
et al., 2017)
2017
 Virtual & Physical Machines placements and
clustering for optimization
Clustering Techniques
(continued on next page)
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a (continued)
Author
 Year
 Emphasized on
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Methods/Techniques/Tools
M. Ghobaei-Arani et. al. (Ghobaei-Arani
and Shahidinejad, 2021)
2021
 Identification of heterogeneous QoS (Quality
of Service) workloads
Generic and fuzzy C-means technique
U. Divakarla et. al. (Divakarla et al.,
2022)
2022
 Heterogenous cloud environment
 Predictive and Time Series
Techniques
Shahidinejad, A. et. al. (Shahidinejad
et al., 2020)
2020
 control the over-provisioning or under-
provisioning cloud resources
elastic controller technique
M. Ghobaei-Arani et. al. (Ghobaei-Arani
and Shahidinejad, 2021)
2021
 resource provisioning based on the
heterogeneous workloads
biogeography-based optimization
(BBO) technique
It is observed the following major research gaps that require study
and development attention in all the recent research advancements
and studies.

1. There is a high need for network traffic optimization to meet
the next generation’s needs. Machine learning techniques are
applied to different specific applications but need to be applied
to improve the real-time system and network traffic flow per-
formance with high resiliency which mainly target zero down
time.

2. Computing unit system performance was studied by many
researchers and requires a close study of the causal behavior
of the network and the impacts of the system performance on
the network traffic. This statistical data behavior study provides
information how to achieve resiliency in computing unit
performance.

3. The integration of network data with system performance data
to study and analyze by machine learning models and frame
regression and classification decisions.

4. Today’s world, the minimum recovery time is 4.5 seconds on
the failure systems. An end-to-end design model to handle
and auto correct the platform with zero down time to manage
the high-volume user data and also to mitigate next generation
user & data volumes.

In summary, any critical platform that serves for high perfor-
mance computing application involves in high-speed data commu-
nication. In such platform systems, the data flow traffic behavior
and the computing unit performance behavior is required deep
analysis and thorough study. As it is commonly being aware that,
machine learning is such a computer science technology where
its applied mechanism solves this traffic and performance behav-
ioral pattern problem. The methods, current architecture, proposed
models, and the integration algorithms are presented in our next
section of the article.
3. Methods, models and algorithms

This section of the article is segregated into two major subsec-
tions i.e., Cloud Platform Architecture and proposed method and
models. In Cloud Platform Architecture, the existing cloud platform
architecture and the existing backup/disaster recovery platform
model are explained. In the next subsection the proposed design
model integrated with machine learning components is presented.
In the same subsection, it also presents the machine learning inte-
grated model usage for prediction and classification modules to
auto correct the platform failure issues before the actual platform
failure occurs.
3.1. Cloud platform architecture

In Fig. 2, a cloud platform architecture is shown. The traffic from
any client system is hitting the route management component, and
then there are two platforms maintained, i.e., an active platform
and the other one is an inactive platform. Some organizations
maintain the inactive platform in the same zone (near area) cloud
data center or in a different geographical region (Fig. 3).

This provides backup or disaster recovery options in case of any
failure happening in the active system platform; and then, the
inactive platform will become an active platform by allowing the
traffic to the inactive platform.

The routing mechanism is controlled at the route management
system (shown as route 53 in the amazon cloud environment). If
the active zone is not functioning or is down due to the platform
or back-end issues, then the route management records will be
updated to flow the traffic to the inactive region to correct the
cloud infrastructure.
3.2. Proposed method, model and algorithms

The proposed approach is a traffic pattern learning based mech-
anism, for example a daily bike rider changes his route to destina-
tion based on his experience on the traffic on his regular route. For
example, the bike rider experiences that at 2:00 PM there a train
obstructs his route on the way to destination. Hence, he detours
his riding from the regular route. In the next instance the rider
experiences that the train obstructs his route only on two days a
week. So, this pattern the riders learn and only those 2 days he
chooses to go via a different route. This way he intelligently avoids
the obstruction and decides which route to travel on instead of
being obstructed due to the regulator’s occasional train schedule.

As stated in previous section, the existing model has a load bal-
ancer attached to the route management component, which routes
the trend for addressing the high traffic to the computing cluster
through the load balancer. The computing cluster will process
the request and send the response back to the client through the
load balancer and route management component. In our proposed
model, each request’s metadata are captured and stored it in a stor-
age unit/bucket (in amazon web services, it is commonly known as
simple storage service buckets, i.e., s3 buckets). Similarly, the per-
formance matrix of the compute units was also captured from the
API monitoring tool. These two meta datasets were merged and
retrieved by the machine learning unit, i.e., sage maker, and built
the model to provide a prediction and classification to make better
decisions by the machine learning unit to take action for correcting
the platform at the time of need.
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The following steps are summarized as part of the new meth-
od’s process flow.

1. Every client’s request & response metadata is captured and
stored in s3 buckets

2. All computing units under the computing cluster are being cap-
tured in the API monitoring tool

3. Machine learning unit extract & merge the data set
Algorithm for the Proposed Model: Algorithm 1: buildMLDataSet (tsf, tst)
4. In case data is not found from respective stores or monitoring
tools, then the process will end

5. Machine learning unit cleans the data and build the Intelligent
model

6. The built model will lead to Data Regression to predict the traf-
fic future behavior

7. The model will be repetitively built to find the best fit model for
the captured data set design

8. The end-point will be exposed for the use of lambda events to
decide on actions.

This summary of the model is shown in the flow diagram as
shown in Fig. 4. As it is seen in the design model, the data from
the load balancing unit and the application service computing
unit’s data will be captured. The ML Model builder will pull the
data from s3 buckets through the bucket API call and pull the API
watcher data through the API Watcher API call. If the data is found
for the time configured period for each second, then the data sam-
ples are averaged and merged to a single data source. Then the
merged data for the specific time period is filtered with important
data fields and partitioned into X: Y percent for training and test
data sets. Now the results to be compared, and the final instance
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model will be exposed. This process is repetitive, and the model
will become intelligent as time progresses. Here is the definition
of the parameters used in the algorithm.

tsf : time stamp at the time f tick.
tst : time stamp at time t tick

Dl : Load balancer Data Set
Dc : Computing Unit Data Set
The complexity of the algorithm is O
tst�tsf½ �
tsd

� �
¼ OðkÞ; that is if tsd

chosen a higher value then the ML Data Setup will become Oð1Þ.
There are 3 types of action steps triggered from the watcher

unit as shown in Fig. 5 to the machine learning built model. They
are as follows.

a. W-Triggers: The Load balancer watcher (cloud watch in
amazon cloud platform) or API Monitoring tool (e.g., Newre-
lic or AppDynamics or DataDogs tools) mainly plays in 3
scopes. Informational scope, Warning scope, and Action
Scope. The W-Triggers are mainly tied to the warning scope
where the watcher will invoke the machine learning model
unit. The machine learning unit then performs by invoking
the machine learning unit to find the decision. If the decision
is found to take any action, then the decision will be the trig-
ger to correct the traffic routing mechanism or capacity
adjustment mechanism.

b. I-Triggers: This trigger is mainly invoked for any abnormal
behavior of the load balancer or computing units that
occurred. For example, if a CPU usage of 40% is captured in
the instance watcher tool, the CPU usage is considered nor-



Fig. 5. Informational, Warning and Decision Trigger Events.

Fig. 2. Cloud Platform Architecture with Active & Inactive Zone.

Fig. 3. Proposed ML Integrated Architecture.

Fig. 4. Proposed Design Process flow.
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Fig. 6a. ML Data Fields from Load Balancers and Computing Units.

Fig. 6b. Capture of ML Data Fields with System Sequence Diagram.
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mal. But at certain times, if the instance monitoring tool ele-
vated the CPU usage to 50%, though there are not certain
issues of request processing failures, an informational trig-
ger event could be triggered to the machine learning unit.

c. D-Triggers: The D Tigger is only issued frommachine learning
units based on the informational and informational event trig-
gered by the Load Balancer Watcher or the Instance Watcher.
The machine learning unit issues this D-Trigger to correct the
traffic switch to another cluster or adjust the existing cluster’s
capacity to handle the incoming traffic patterns.

Let’s discuss the data fields that require for this machine
learning.

Initially, data from two sources are captured, i.e., from Load Bal-
ancer request and response filtered data and the Computing units
CPU, memory, and packets performance data as shown in Fig. 6a.
After data extraction, the principal component analysis is being
used to retain the following fields to be used for our proposed
machine learning models.
Fig. 6c. ML Filtered Extraction of Da
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From load balancers filtered dataset:

- Request processing time
- Target processing time
- Response processing time
- Received bytes
- Sent bytes

From Computing units’ performance data

- CPU percent
- Memory percent
- Network Received Packets Per Secs
- Network Transmission packets Per Secs

In Fig 6b a system sequence diagram is shown. The Service Cli-
ent interacts with Load Balancer, the load balancer access different
fields in the API request e.g., request processing time, target pro-
cessing time, response processing time sent bytes and received
bytes and sends asynchronously to a storage unit known as s3
bucket. The same requests when processed by the server (service
provider/computing unit) the agent of the API Monitoring tool
sends the metadata e.g., the cpu usage, memory usage, network
received packets, transmitted packets to the API Monitoring tool
asynchronously. This interaction diagram shows the different
fields of the metadata captured from the load balancer and from
the computing units, which are the feature fields for our proposed
machine learning algorithm.

The elb status code field is featured as the output result dataset.
Fig. 6c shows 3 requests’ data sets that were extracted for the

machine learning model as input data set and output. The data
which are captured from two data sources are being integrated
into one data model through time intervals. For our program
experiment, 1-second interval is taken to capture the average of
ta Fields for 3 Sample Records.
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both sources and merged into the machine learning data set mod-
els. The application and platform engineers could choose the more
optimized time interval for this purpose of data integration.

The class level sequence diagram is shown in Fig. 7.
The MLDataSetBuilder class which is responsible for accumulating
the machine learning data as described in algorithm 1
buildMLDataSet. The s3Client and the APIWatcherClient are the
client class responsible to collect data from the s3 bucket (for
load balancer access metadata) and the APIWatcherTool (for
Computing unit’s metadata). The DecisionPublisher class is to
build the ML Model for regression (refer algorithm 3
buildNPublishRegressionDecision) and classification (refer algorithm
4 buildNPublishClassificationDecision). MLModel class represents
the published Machine Learning Model which interacts by the
DecisionAction class by the events triggered in the system which
is described in our Event Trigger Model Design section of this arti-
cle. The DecisionAction is a base class for RegressionDecisionAction
(refer algorithm 2) and ClassificationDecisionAction (refer algo-
rithm 5).

The limitation and scope of this design model and article is as
follows.

a. This proposed model and algorithms are scoped only to han-
dle the text api (application programming interface) calls
i.e., for homogeneous traffic. For audio, video streaming
and heterogeneous traffic data are not scope of this article
and be treated as an extended scope of this design model.
Fig. 8. Event Trigger flow and Differ

Fig. 7. Class Sequence Diagra
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b. The design model conceptualizes on a single cloud platform
e.g., Amazon Web Services. Multi-cloud environment could
be taken as an extension of this model, where the design
and proof of concept (not part of the scope of this article)
could be intensively studied.
ent ML Classified Action cases.

m for Proposed Design.

Fig. 9a. Code Snippet for the XGB Regression Model use for ML Regression Decision.
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c. The proof of concept is an added part of the proposed gener-
alized model and we accept that further optimization could
be possible in the existing model and in the proposed model.
We scope our proposed design to ensure that the integration
of multiple cloud components’ metadata (in this article it’s
load balancers and computing unit data) with use of artifi-
cial intelligence machine learning mechanism provides a
failure prevention decision for real-time business traffic to
achieve resilience and disaster recovery.

d. The comparison to optimize this design approach based on
different ML algorithms and deep learning algorithms could
be an additional extension of this research work. We adopt
the XGBoost whichworks best fit for the identified data fields
on the regression trees with gradient descent method. This
ML algorithm and the deep learning algorithms may differ
in different traffic data types and use cases, but the base
design of themachine learning failurepredictiondecisionwill
remain the same, which is the focused purpose of this article.

3.3. Event trigger model design

There are two triggering event models are designed for this pur-
pose. They are as follows.

3.3.1. Prompt scheduler triggers
In this design model, a lambda scheduler is created (refer to Fig. 8)

to invoke the Sagemaker ML end-points to trigger the events to vali-
date and verify the incoming request average input to activate the ML
model to trigger any Decision events. In the case of a normal case, the
MLwill have no action andwill issue a log event to provide to capture
the event and no action being taken. However, in case of any issues,
there will be a warning event that will be the trigger that will activate
the application leads if the model is predicting any future issues.

Once the Lambda event triggers in each specified interval, Sage-
makers activates theMLunit andamodel decision results. Therewill
Algorithm 2: regressionActionDecision()

Initialization: 
Result:
be 3 categories of results e.g. No Action (noted in the figure as ‘N’),
Warning Action (noted as ‘W’), and Activated Action (noted as ‘A’).
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There will be only logs written in the log file for No Action. An email
or phone call notificationwill be triggered as a warningmessage for
Warning action. For activated action, the result will be categorized
into four sub-categories i.e., IS (increase service counts), IE (increase
Ec2 counts), RS (Replace/Restart the service), and RR (Route the traf-
fic to replica/disaster servers).

The regression action decision algorithm is shown in algorithm 2.
For every 60 seconds, this algorithm calls the buildMLDataSets() func-
tional module. This algorithm retrieves the data from the load balancer
data from file store source (in the amazon cloud environment, it is
retrieved from a simple storage source (s3 bucket)) and the application
performance data from the application watch monitoring tool.

Here is the definition of the parameters used in the regres-
sionActionDecision() algorithm.

tsd : time stamp dimension. In our scope we keep 1 for captur-
ing data for 1 minute
tsc : current time stamp
Dtsc : Combined Data of Load balancer and Computing Unit,
returns from buildMLDataSet.

As part of the next step, this regression action decision algorithm
calls to ML regression decision functional module to get the regres-
sion decision dr . Based on the case returned from the regression
decision module, different actions e.g., logs writing, sending notifi-
cations, and the classification action decision module to be called.
As this is a regression action-based decision, so the complexity of
this algorithm is evaluated to O 1ð Þ þ OðkÞ. The worst-case scenar-
ios, the complexity is OðnÞ.

Here is the definition of the parameters used in the
buildNPublishRegressionDecision() algorithm.

Sr: Split Ratio, Split between Training and Test Data Set.
rpt: request processing time, tpt: target processing time, rst:
response processing time, rb: received bytes, sb: sent bytes,
cpu: cpu usage, mem: memory usage, ntr: network received
packets, ntt: network transmitted packets, esc: elb status code.
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Algorithm 3: buildNPublishRegressionDecision()
Algorithm 4
buildNPublishClassificationDecision()
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The build and publish regression decision algorithm is shown in
algorithm 3. In this algorithm, the split of the independent data sets
and dependent datasets can be observed. This captures 3 days (this
number could be modified based on the traffic loads and
application-specific case) of data and applies the Regressor algo-
rithm to predict the results. For example, the training and test data
sets are split into the range of 70% as training data with 30% of test-
ing data. If the root mean square error is less than 2% (this also
could be modified based on further optimizations), then the
regression model is published to an end-point to be used for
the actual data. The complexity of the algorithm
buildNPublishRegressionDecision is OðkÞ for the interval size of
tsc � 30d with respect to tsc . However, with high time interval and
low tsc , the complexity will become OðnÞ. So it is required to opti-
mize the traffic data load and time interval to optimize the algo-
rithm’s performance.
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In the Fig. 9a, the code snippet implementation using machine
learning regression mechanism is shown which predicts whether
an action requires to be taken or not. The code is used to split the
captured data set into training and test data where the XGBRegres-
sor is applied to validate the model accuracy. The results of this
code snippet will be discussed in our simulation and results section.

In the buildNPublishClassificationDecision() algorithm, is defines
as increase service count, ie defines as increase in ec2(elastic cloud
computing) count, rs defines as replaces service(s), rr defines as
route to replica service(s). All other parameters definition remains
as described in previous algorithms.

The build and publish classification decision algorithm retrieves
the data of 3 days and splits the data set the ratio to 30% testing
data set and 70% of training data sets. Each record set examines
and sets the resultant flags as per the human experience and intel-
ligence. For example, if the CPU and memory percent increases
beyond 70% of the thresholds, then this algorithm sets the rs flag
to 1. Flag rs represents the replace service decision. The complexity
of the algorithm is OðjDmjÞ þ OðkÞ. In worst case scenario the com-
plexity will be OðnÞ.

In Fig. 9b, the code snippet implemented with XGBClassifier
mechanism is shown, which classifies which type of class of action
is required to correct the system. Similarly, to how the XGBRegres-
sor is implemented, the same split mechanism is used to split the
data set for training and test. Accuracy score is measured, and
based on the accuracy, the model end-point will be published to
be used by the event triggers to determine the action type to be
taken in the failure prediction situation.
Algorithm 5
classificationActionDecision()
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Similarly, if the transmission and receive packets processing goes
higher, the ‘ie’ (increase computing unit) flag is set to 1. If one of
the loads increases from CPU use and memory use, then the ‘is’ (in-
crease the application services) flag is to be set to 1. In the same
way, if there is no load increase but the service does not respond
with 2XX (Success cases), nor with 4XX (bad data cases), there is
some infrastructure or network problem. Hence the ‘rr’ (change
the route to point to disaster recovery infrastructure) flag is set to
1. With all these dependent variable flag sets, the classification
model runs. With this, if the score standard deviation is less than
1, the model will be published with an end-point for future events
triggered by the lambda or application watcher events. The com-
plexity of the classification action-based decision algorithm is
O 1ð Þ þ OðkÞ. The worst-case scenarios, the complexity will be OðnÞ.

In algorithm 5, the classification action-based decision is
shown, where it will call to capture the last (most recent) 60 sec-
onds data from the load balancer and the application instances.
This last 60 seconds of data will invoke the ML Classification Deci-
sion end-point published by algorithm 4. Once it returns a decision,
it’ll invoke the corresponding action, e.g., reroute the route,
increase the computing units, replace the services, or increase
the service counts. A log and the notification will be sent to the
application stakeholders and/or application owners in each of the
actions.

The limitation of Prompt Scheduler Triggers event model is that
it’ll trigger the events promptly to verify if there are any specific
issue behaviors the model detects. It though helps in early detec-
tion of the issue behaviors pattern and inform the application own-



Fig. 9b. Code Snippet for the XGB Classification Model use for ML Classification Decision.
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ers but there is high probability the application owners notified
with multiple false positive notifications. Also due to high number
of triggering events, the cost effectiveness could be maintained in
our alternate Monitoring Rule Event Triggers model.

3.3.2. Monitoring rule event triggers
The triggering point is not the scheduler, but the watch moni-

tors in this design model (refer to Fig. 10). There are cloud watch
monitors associated with the load balancers, EC2 instances, ECS
Services, and any Lambda services that serve the traffic as an
API/Middleware service. Through CloudWatch triggering points,
the lambda unit is activated to follow the rest of the action, as
explained in the previous section. Cloud Watch is a prime trigger-
ing point to the lambda events, which will aggressively take care of
any issues/errors that are required to be detected and the correc-
tive action commands to be issued.

This model resolves the limitation of the earlier discussed
model i.e., prompt Scheduler Triggers event model and also opti-
mizes the prompt model’s event triggering cost. However, it noti-
fies to application owner which is very close to actual issue
occurrence. The model is self-enabled to take the auto-corrective
actions. The thresholds settings of the equally important to avoid
auto-corrective actions in false positive scenarios.

4. Mathematical models and analysis

The following mathematical models are used in implementing
the algorithms stated above and performing computational exper-
iments in this study.

The loss function hl is determined as the function of ðyi; piÞ
Fig. 10. ML Action Activation from Application Watcher Events.
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hlðyi;piÞ ¼
1
2

yi � pið Þ2

hlðy;pÞ ¼ 1
2

X
yi � pið Þ2

yi is the actual output, and pi is the predictive output. The
Machine Learning XGBoost use the loss function as

hgðy;pÞ ¼ hlðy; pÞ þ 1
2
kO2

v

Ov is the output value. With initial prediction of learning
parameter k ¼ 0

hgðy;pÞ ¼ hlðy; p0 þ OvÞ

hl y; p0 þ Ov
� � ¼ X

hl yi;p
0
i þ Ov

� �
In general, when it is required to study the estimate of each

points value of the above discrete function, Taylor’s expansion ser-
ies is applied. Taylor expansion is considered to be applied so as to
get the continuity of the discrete functional model of the expres-
sion. Here, Taylor series up to second degree polynomial is consid-
ered to minimize the complexity of the model. However, this study
could be extended for higher degree polynomial consideration in
future. So, applying Tyler’s expansion to the hl yi; p0

i þ Ov
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function
up to second degree, we’ve
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Fig. 11b. Memory vs status code – 2XX Cases.

Fig. 12a. CPU vs status code – 5XX Cases.

Fig. 12b. CPU vs status code – 2XX Cases.
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Minimization of loss function is an absolute necessity to ensure
the machine learning algorithm correctness optimization. As the
Taylor expansion is modeled with the output value, so in order
to evaluate the minimization expression, the mathematical deriva-
tive to be applied with respect to output value. To minimize the
XGBoost loss function for our output values, we have
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@Ov

¼ 0

@
P

hl yi;pið Þ þ Ov
P
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The gradient descent ðgiÞ is;

gi ¼
@hl yi; pið Þ

@pi

� �
andhlðyi; piÞ ¼

1
2

yi � pið Þ2

gi ¼
@ 1

2 yi � pið Þ2
h i

@pi
¼ � yi � pið Þ ð3Þ

Also, the Hessian function ðhiÞ which is a second-order partial
derivative of the loss function with respect to predictive values.
This function mainly defines the local curvature of the loss func-
tion. Similar consideration has been used in the study of opinion
dynamics in social networks (Shang, 2021). So, by applying the
Hessian function to our loss function, we get

hi ¼ @2hl yi; pið Þ
@p2

i

" #
¼

@2 1
2 yi � pið Þ2
h i

@p2
i

hi ¼ @ � yi � pið Þ½ �
@pi

¼ 1 ð4Þ

Hence, by applying the values derived from Eqs. (3) and (4), the
expression as shown in Eq. (2) now becomes,X

gi þ Ov kþ
X

hi

h i
¼ 0
Fig. 11a. Memory vs status code – 5XX Cases.
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Ov ¼ �
X

gi= kþ
X

hi

h i
¼ �
X

� yi � pið Þ= kþ
X

1
h i
Ov ¼
X

ri=ðkþ nÞ ð5Þ
i.e.,Ov ¼ sumofresiduals=ðnumberofresidualsþ

regularizationparameterÞ
This is the output value calculated in the XGBoost algorithm to

evaluate each step. The output values now expressed with the
residuals i.e., the difference between the actual output and the pre-
dicted output. The expression is optimized with the value of sum of
all residuals over the number of residuals and the regularization
parameter. This output value helps in determining XGBoost
prediction.



Fig. 13b. CPU vs Memory – 5XX Cases.

Fig. 13a. CPU vs Memory – 2XX Cases.
Fig. 14b. 2XX Predictions – Original Vs Predicted.

Fig. 14a. 5XX Predictions – Original Vs Predicted.

Fig. 16a. Received Packets Vs 5XX Status.

Fig. 15b. Transmitted Packets Vs 2XX Status.

Fig. 15a. Received Packets Vs 2XX Status.
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5. Simulation and results

Our proposed and developed approach is simulated through a
sample API Application and ran the API calls through the JMeter
tools. A higher percent CPU usage and memory in the cloud API
instance is executed and the results are captured through the
new relic API monitoring tools. The network loads are simulated
by elevating the API payload to 4K bytes per second and more.

Fig. 11a and Fig. 11b show a lower percent load is being dis-
tributed for the http success code e.g., 2XX, and the http error
codes, e.g., 5XX. However, there is a higher percent memory load
when there is http error code 5XX.

Similarly, as observed in Fig. 12a and Fig. 12b, the higher and
lower load of CPU is observed in both http success code and http
10004



Fig. 16b. Transmitted Packets Vs 5XX Status. Fig. 18a. 5XX Prediction with Packets Data.

Fig. 18b. 2XX Prediction with Packets Data.
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error codes. Http error codes are observed where there is a higher
percent of CPU usage.

Fig. 13a shows that when there is a low percent of usage, the
API unit works and serves the client requests as expected. In the
case of an error scenario (refer to Fig. 13b), there is a higher load
for memory or CPU, or both usages are observed.

So, data set is split into two datasets, i.e., the predictions results
were compared for all 5XX cases and all 2XX cases as shown in
Fig. 14a and Fig. 14b respectively.

The XGB Regressor is applied onto the 5XX cases with 20% split-
ter training datasets and 80% testing data sets. With more than
100K samples, it is observed that the training score is 0.
9672470583645411, with a mean cross validation score of -0.31
and K-fold CV average score of -0.33 and mean square error and
root mean square error is 3.10 and 1.76, respectively. Similarly,
for the 2XX cases, the training score is 0. 99 with a mean validation
Fig. 17a. 5XX-Transmitted Vs Received Packets.

Fig. 17b. 2XX-Transmitted Vs Received Packets.
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Fig. 19b. Group Classification for 2XX Vs 5XX.

Fig. 19a. Accuracy with Records Counts.
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score of -0.74 and a K-fold CV average score of -0.51. The mean
square error is 3.89, and the root mean square error comes to 1.97.

In Fig. 15a and Fig. 15b, it is observed that, the network trans-
mitted packets and network received packets are processed as
expected, and the http status code 2XX is achieved without any
errors. At the same time when the size of the packet of both trans-
mitted and received are increased, the 5XX errors are surfaced.
Fig. 20a. High CPU & Normal Memory Load.

Fig. 21a. High CPU & Normal Memory Load.

Fig. 20b. Traffic Count during High CPU Load for Existing Model.
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The Fig. 16a and Fig. 16b shows that when the received packets
and transmitted packets have high loads, then there is a 5xx http
status code observed along with 2XX http status codes. In other
scenarios (e.g., only high packet transmission loads or only packet
with high receive loads or low loads of packet transmission and
packet receive), the http Status code 2XX is observed. In summary,
there is no 5XX cases where the network load is low, and other
computing unit resource usage is low.
Fig. 22a. Traffic Count during High CPU Load for Existing Model.

Fig. 21b. Traffic Count in High CPU Load for Proposed ML Model.
Fig. 22b. Traffic Count in High Memory Load for Proposed ML Model.
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The scatter plot of the 5xx case is shown in Fig. 17a. This
explains when there is a 5xx case, the network loads of transmitted
and received are high. Fig. 17b shows the scatter of transmitted
load cases vs received load cases. In our simulation model, the
5xx cases happened only when the transmitted and received loads
observed high. All other three cases, the system operate with as
usual and the http status code was 2xx.
Fig. 23a. ML Model Regression Decision Response time.

Fig. 23b. ML Model Classification Response Time.

Fig. 24. High Performance Tr
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So, with the accumulated data, when it is applied with ML
Model XGBRegressor for all the HTTP status code 5XX, we observe
that the training score is 0.99 with a mean cross validation score of
�0.56 and K-fold CV average score -0.54. The mean square error is
2.31, and the root mean square error is approximated to 1.52. The
comparison of original vs predicted for 5xx cases with the test data
set in ML model is shown in Fig. 18a.

Similarly, for the 2XX cases, the training score is 0.91 with a
mean cross-validation score of -0.31and K-fold CV average score
of -0.35. As a result, the mean square error is 3.84, and the root
mean square error comes to 1.96. Fig. 18b shows the comparison
of original vs predicted for 2xx cases with the test data set.

In the Fig. 19a, as shown, it is observed that our proposed model
achieves the higher classification accuracy when number of
requests increases. Initially, when the request count was below
10K, it was with �40% accuracy, but as the requests crossed
200K, it crossed the accuracy level of �80%. This accuracy was
measured with all classes of http status codes, i.e., 2XX and 5XX
series. However, when it is measured against the 200 as one group
(includes https status code as 200, 201, etc.) and 500 as another
group (includes http status code as 500, 501, etc.) as shown in
Fig. 19b, it is found that �99% accuracy is achieved in classifying
the request.

The simulated environment results show that while the pro-
posed machine learning model can classify the requested category
with �99% accuracy and predict the results with approximately a
testing average score of �0.975 and �1.5 RMSE. This provides that
the ML accuracy predicts and classifies the data captured by the
Load Balancer Units and Application Monitoring tools which will
be highly useful to auto-correct the system platform. Our scope
of validation was only to measure the traffic data prediction and
classifications for http status code. The similar simulation could
be measured against the CPU usage, memory usage, transmitted
packets per seconds, and received packets per seconds. This could
predict and classify the results used to correct the platform in real-
time error or issues.

As shown in Fig. 20a, the High CPU load imposed in the comput-
ing units, and at the same time, the traffic recovery transactions
per seconds captured. We observe that the traffic becomes very
low for a few seconds before it recovers and switches to its recov-
ery site (Fig 20b.Fig 21a.).

The same scenario is simulated for our proposed ML based rout-
ing model, and we observe that the event triggers as it expects the
high memory load and the ML decision routes the traffic to its
alternate recovery site before it becomes a low transaction per sec-
onds. The max low TPS was 81 while we observed the max low TPS
affic Failure Comparison.



Fig. 25. High Performance Error Percentage Comparison.
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in the previous case as 0. This shows that the proposed artificial
intelligence machine learning model predicts the scenario and acts
with the faster recovery process instead of waiting for the actual
failure to happen.

The test is further executed under high memory load, and we
observe that the transactions count is reduced to �25 transactions
per seconds for 10s before it recovers to normal traffic flow (refer
Fig. 22a). On the other hand, the proposed model attains its normal
state transactions i.e., �100 transactions per seconds as observed
in Fig. 22b. The little downward curvature of reduced transaction
patterns in Fig. 21b shows the additional time consumed for event
triggering, traffic routing ML decisions and routing executions to
prevent the real-time low transaction and failure scenarios.

We executed the performance of the proposed ML Model API
and we observe that the ML API response time varies between 38
to 164 ms (refer Fig. 23a) for the regression decision and 69 ms
204 ms for the classification decision as observed in Fig. 23b. The
average regression decision response time for the proposed ML
Model class is 101.48ms and the average classification decision
response time is 136.27ms.

The base traffic recovery mechanisms followed as mentioned by
the author in (Resilience in Elastic Load Balancing, AWS Elastic
Load Balancing, 2022) and we applied our proposed model on
top of this base traffic recovery mechanisms. We ran 15 rounds
of tests with failure and recovery mechanisms. The results com-
pared with the existing model to correct the traffic as depicted in
(Diana and Robert, 2021), A significant improvements is observed
in post failure script-based execution vs our proposed auto correc-
tion resilient mechanism (refer Fig. 24). The proposed model takes
an approximate average of 2.776s for the corrective actions auto-
matically before system enters to the failure situation; and make
the system resilient and ensures a zero downtime. This signifies
that our proposed machine learning prediction and classification
mechanism models work better and recover at an average of
7.276 seconds earlier than the minimum recovery time (4.5 sec)
and 12.056 seconds earlier than the in our existing models.

Similarly, the error percentage during the failure time is signif-
icantly less as shown in Fig. 25 (average of 8.29% in existing model
vs 0.57% in proposed model), as the proposed model intelligently
auto recovered before any error occurred due to high usage of
resources.

In summary, our proposed model proactively works 38.15% fas-
ter with respect to the failure point recovery at 99% of the ML deci-
sion making correctness. This saves a significant cost of 7.5% post
failure cost of the business and mission-critical communication
due to real-time network cloud platform failure and confirms the
zero-downtime (with 90.08% reduced error percentage as com-
pared to existing recovery model) to the advanced and high per-
formed platforms.
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6. Conclusion

In this article, we presented a machine learning based design
model for cloud platforms based on the load balancer and comput-
ing unit’s metadata to achieve the traffic resilience and auto
recover from the traffic failures scenarios. The resilience and per-
formance of the cloud network traffic is based on machine learning
regression and classification techniques. The test results show that
the proposed approach works efficiently with 38.15% faster resi-
liency which confirms our proposed failure-prevention design
model. These achieved results also confirms that the decisions
are at �99% of results accuracy where the system detects and
switch the traffic to the alternate cluster before any failures occurs.
The errors during the failure recovery model are with 90.08%
reduced error percentage as compared to existing recovery model.
This proposed design achieves the self-enabled auto-correction
mechanism of traffic flow issues in cloud platforms and improves
the cloud platform performance.

The below items are the future scope of this article.

a. This model could be extended to include more cloud compo-
nents metadata so as to handle the video & audio stream
data and heterogeneous traffic data

b. The design approach could be further validated to categori-
cally optimize based on different traffic data types and traffic
loads in a multi-cloud environment.

In summary, automation to adopt the intelligent model for dif-
ferent traffic data types; and the design of distributed multi-cloud
systems with machine & deep learning methodology is a future of
this research work; which can improve the cloud platform resili-
ence and recovery mechanism with zero failures commitments.
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