
Analysis of a Casimir-driven parametric amplifier with
resilience to Casimir pull-in for MEMS single-point 
magnetic gradiometry

This is the Published version of the following publication

Javor, Josh, Yao, Zhancheng, Imboden, Matthias, Campbell, David K and 
Bishop, David (2021) Analysis of a Casimir-driven parametric amplifier with 
resilience to Casimir pull-in for MEMS single-point magnetic gradiometry. 
Microsystems & Nanoengineering, 7 (1). ISSN 2055-7434  

The publisher’s official version can be found at 
http://dx.doi.org/10.1038/s41378-021-00289-4
Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/47347/ 



Javor et al. Microsystems & Nanoengineering            (2021) 7:73 Microsystems & Nanoengineering
https://doi.org/10.1038/s41378-021-00289-4 www.nature.com/micronano

ART ICLE Open Ac ce s s

Analysis of a Casimir-driven parametric amplifier
with resilience to Casimir pull-in for MEMS
single-point magnetic gradiometry
Josh Javor 1✉, Zhancheng Yao2, Matthias Imboden 3, David K. Campbell2,4,5 and David J. Bishop1,2,4,5,6

Abstract
The Casimir force, a quantum mechanical effect, has been observed in several microelectromechanical system (MEMS)
platforms. Due to its extreme sensitivity to the separation of two objects, the Casimir force has been proposed as an
excellent avenue for quantum metrology. Practical application, however, is challenging due to attractive forces leading
to stiction and device failure, called Casimir pull-in. In this work, we design and simulate a Casimir-driven metrology
platform, where a time-delay-based parametric amplification technique is developed to achieve a steady-state and
avoid pull-in. We apply the design to the detection of weak, low-frequency, gradient magnetic fields similar to those
emanating from ionic currents in the heart and brain. Simulation parameters are selected from recent experimental
platforms developed for Casimir metrology and magnetic gradiometry, both on MEMS platforms. While a MEMS offers
many advantages to such an application, the detected signal must typically be at the resonant frequency of the
device, with diminished sensitivity in the low frequency regime of biomagnetic fields. Using a Casimir-driven
parametric amplifier, we report a 10,000-fold improvement in the best-case resolution of MEMS single-point
gradiometers, with a maximum sensitivity of 6 Hz/(pT/cm) at 1 Hz. Further development of the proposed design has
the potential to revolutionize metrology and may specifically enable the unshielded monitoring of biomagnetic fields
in ambient conditions.

Introduction
Quantum fluctuations in an electromagnetic field give

rise to forces between conductors at the same potential
when their separation is near 100 nm. Known as the
Casimir force, this phenomenon was first predicted by H.
B. G. Casimir1 and was later expanded to arbitrary
materials2,3. Since then, the Casimir force has been
measured experimentally many times4–11 and has been
proposed as a practical metrology platform using micro-
and nanoelectromechanical systems (MEMS/NEMS)4–
6,12. The Casimir force is attractive for metrology

applications due to its extreme sensitivity to the separa-
tion between two objects and the ability to be measured in
ambient conditions5. One of the most critical challenges
in the development of practical platforms is resilience to
Casimir pull-in, which results in stiction in MEMS/NEMS
devices and typically irreversible damage13,14. Notably,
Casimir pull-in is only an obstacle in devices that employ
an attractive force4–6,8–11,13, but a specific combination of
materials can generate a repulsive force as well7,15. The
repulsive force configuration, however, has only been
observed in liquid, which is not ideal for many common
MEMS/NEMS applications such as resonant sensing. As
such, many have proposed avoiding pull-in in attractive
force platforms by optimizing the material dielectric
properties16, the radius of curvature in a sphere-plate
configuration17, and the roughness of interacting sur-
faces18,19. A device capable of leveraging the attractive
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Casimir force while resilient to pull-in would realize great
utility for quantum metrology.
Quantum metrology has longstanding application in the

measurement of very weak magnetic fields. A super-
conducting quantum interference device (SQUID) mea-
sures changes in the magnetic field associated with a flux
quantum20. An atomic magnetometer (AM) measures a
quantum effect involving the magnetic spin states of
atoms in a vapor cell21. The list of applications for such
high-resolution magnetic sensors is vast, spanning the
biomagnetic detection of cardiac contractions22,23, elec-
tromagnetic brainwaves24, and solid cancerous tumors25

to astronomical observations such as Jupiter’s magneto-
sphere26. Sensitive magnetometry is often challenged by
interference from ambient geomagnetic fields and nearby
electromagnetic sources. For real-time measurements, the
most common methods to reduce the effects of inter-
ference are magnetic shielding and gradiometry. Shielding
is both expensive and cumbersome, so there is a great
effort to conduct unshielded measurements23,24. Today,
gradiometry is only applied via differential measurement,
measuring the subtraction from two closely spaced sen-
sors. Such a technique increases immunity to interference
by reducing sensitivity to temporal fluctuations in mag-
netic intensity. This is especially effective for measure-
ment near a magnetic source (such as the heart23,24),
where magnetic gradients are high, and for use with
magnetic sensors which are robust and reliable. In our
recent work, we demonstrate magnetic gradiometry
without subtraction at single point27, and at a resolution
in the range of magnetocardiography (MCG).
Existing gradiometer technology is reviewed in Fig. 1,

which is repurposed from ref. 27 for this work. The fields
are illustrated in gradients, assuming the sensors of each
technology can be separated by 1 cm. All technologies
involve subtraction between two sensors to calculate the
gradient, except the MEMS single-point gradiometer27.
The first-order gradients of the geomagnetic field (E, 500
pT/cm) and geomagnetic noise (GMN, 500 fT/cm) are
illustrated by dash-dotted lines. SQUID and AM tech-
nology clearly lead the group in resolution. Myriad other
techniques are used to sense magnetic fields, where the
bottom band (in purple) represents MEMS designs.
MEMS magnetic sensors are typically resonant sensors
with high-quality factors (Q greater than 1000), where
impressive sensitivity has been achieved at higher fre-
quencies in the kHz range27–29. To detect low-frequency
biomagnetic fields, nontrivial techniques are necessary to
employ resonant sensors.
The sensitivity of resonant MEMS devices can be tuned

by many techniques such as parametric amplifica-
tion12,30,31 and modal coupling32,33. Conceptually, para-
metric amplification is typically achieved by modulating a
parameter of the equation of motion at two times the

frequency of resonance and controlling the phase relation
between the driven mode and the modulated parameter.
When applied to the drive system of a MEMS cantilever30,
thermomechanical noise was reduced in one phase by
4.9 dB. A Lorentz force MEMS magnetometer was para-
metrically driven to enhance sensitivity at resonance by
over 80-fold31. The gain in such electrostatic systems is
typically 10−1000. Parametric modulation can also be
applied to coupled resonators, where one object, or mode,
oscillates at twice the frequency of another. Parametric
pumping was shown to dynamically tune the coupling of
two modes in a gyroscopic ring resonator, with applica-
tion in inertial sensing32. In the design of a Casimir-
coupled resonator12, a gold sphere was used to para-
metrically pump the oscillation of a torsional oscillator,
proposed to amplify a DC voltage measurement up to ten
orders of magnitude. Using an attractive Casimir force
design, the challenge of avoiding Casimir pull-in was also
discussed in depth. The tunability of such systems is often
critical for experimental utility and to account for small
fabrication asymmetries, which have a significant impact
on the coupling12,32.
In this work, we propose a coupling between two

resonators by a quantum-derived Casimir force. Funda-
mentally, we combine two metrology platforms: a MEMS
Casimir platform and a MEMS single-point gradiometer
platform. The Casimir platform5 comprises a MEMS
accelerometer functionalized by a gold sphere, where the
voltage potential can be controlled. A Casimir force
measurement is achieved when a gold plate is brought
within 100 nm of the sphere. The MEMS gradiometer
platform27 comprises a MEMS accelerometer functiona-
lized by a cube micromagnet. Measurement is achieved by
detecting an oscillating force on the permanent magnet at
resonance, where the force is proportional to a gradient
magnetic field. Both resonators can also be electro-
statically driven in an analog environment5,27,34. In
essence, these two systems, on the same central axis and
within 100 nm of separation, form a Casimir-coupled
resonator. Similar to a Casimir oscillator using a torsional
plate12, this design is highly sensitive to small changes in
DC separation due to Casimir coupling. Therefore, DC
forces from gradient magnetic fields are intensely ampli-
fied by the coupling. Then, instead of using parametric
amplification to further amplify the sensitivity, we design
a technique to achieve a steady-state Casimir oscillator
resilient to pull-in. In this work, we propose and simulate
a highly tunable Casimir-driven gradiometer that is sen-
sitive to slowly varying magnetic fields and resilient to
pull-in.

MEMS Casimir gradiometer design
The design in this work is a nontrivial combination of

an experimental MEMS gradiometer platform27, an
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experimental MEMS Casimir force metrology platform5,
and a coupling method12 that parametrically modulates
the interaction between the two platforms. To approach
the divergent gain of this physical design, we anticipate
that a tunable experimental platform with precise posi-
tional control of the two microobjects (magnet and
sphere) is required. When the separation is reduced to
near 100 nm, the Casimir force contribution becomes
significant, as has been shown previously4,5. If the
separation decreases much past this point, the system is
predicted to experience Casimir pull-in, an event that is
caused by the attractive Casimir force overcoming the
restoring force of the spring and causing the device to
malfunction.
The proposed sensing platform is illustrated in Fig. 2a.

Each device is fabricated individually as described pre-
viously5,27 using commercially available MEMS accel-
erometers. This is accomplished using precise control of a
vacuum pick-and-place system and feedback from a live
sensor (postrelease MEMS). The micromagnet used in the
gradiometer design is functionalized with a gold plate on its
side that faces the microsphere. The sensor with the
microsphere is inverted such that the sphere has a clear
pathway to come into close proximity to the plate. Both
platforms enable control of static position, oscillation
amplitude, frequency, phase, and detection. The drive
parameters are controlled via a built-in electrostatic self-test
feature on the ADXL 203 platform, which can be used for

analog control of the microobjects via pulsed width mod-
ulation34. This feature is also used to calibrate and negate
the effect of an anticipated electrostatic coupling between
the plate and sphere, as has been shown previously5.
The functional diagram of this design, shown in Fig. 2b, is

based on the interaction of two resonators. The first reso-
nator includes an attached gold microsphere, and the second
includes the micromagnet/gold mirror assembly. Indepen-
dently, both resonators act as damped, driven harmonic
oscillators. The coupling of the two resonators is based on
the Casimir force, which is dependent on their separation.
Assuming that out-of-plane forces are minimal, we analyze a
uniaxial system of equations (Eqs. 1–3) along the central axis
of the magnet.

mS€xS þmSω0S

QS
_xS þ k0SxS ¼ FDr�SðtÞ þ FCasðxSM; tÞ ð1Þ

mM€xM þmMω0M

QM
_xM þ k0MxM ¼ FDr�MðtÞ þ FCas xSM; tð Þ þ FMðtÞ

ð2Þ
xSM tð Þ ¼ s0 þ xSðtÞ � xMðtÞ ð3Þ

Here, Eq. 1 relates to the sphere, Eq. 2 to the magnet, and
Eq. 3 to their separation. In Eq. 1, xS is the displacement of
the sphere,mS is the mass, ω0S is the natural frequency, QS is
the quality factor, and k0S is the unperturbed spring con-
stant. The sphere is driven electrostatically by FDr-S and

Magnetic sensor technology Detectable magnetic field range (T cm–1)

Hall-effect
GMN E

Magnetoresistive

Magnetic tunnel junction

MEMS–GMR hybrid

Fluxgate

Search coil

SQUID

Atomic magnetometer

MEMS lorentz force

MEMS compass

MEMS single-point gradiometer

1 aT cm–1 1 fT cm–1 1 pT cm–1 1 nT cm–1 1 μT cm–1 1 mT cm–1 1 T cm–1

MEMS single-point casimir
gradiometer (this work)

Fig. 1 Magnetic gradiometer technology. All magnetic fields are illustrated as gradients. Existing sensor technology is adjusted by taking the best
resolution in literature and assuming two sensors can be separated by 1 cm, which can measure a gradient field. E is Earth’s field gradient and GMN is
the gradient geomagnetic noise. The devices shaded in purple at the bottom are microelectromechanical systems (MEMS) technology. Our previous
MEMS single-point gradiometer design27 experimentally achieved a resolution of 100 pT/cm, with a calculated best-case resolution of 30 fT/cm at
resonance. This work (bottom) proposes a quantum-derived enhancement to this design, which suggests a 10,000-fold improvement in the best-
case resolution with a measurement near DC. This figure is repurposed from ref. 27.
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experiences an attractive coupling force FCas when the
separation is small (on the order of 100 nm). Similarly, in Eq.
2, xM is the displacement of the magnet, mM is the mass,
ω0M is the natural frequency, QM is the quality factor, and
k0M is the spring constant. The magnet is also driven elec-
trostatically by a force FDr-M and experiences an equal and
opposite coupling force to the sphere FCas at small separa-
tions. In addition, a slow, time-varying gradient magnetic
field imposes a force FM. In Eq. 3, xSM is the real-time
separation distance between the sphere and magnet, and s0
is the separation in the absence of the Casimir coupling
force. The forcing terms are expanded in Eqs. 4–7 below.

FDr�S tð Þ ¼ k0SAS sin ω0Cðt þ τ1f Þ
� � ð4Þ

FDr�M tð Þ ¼ k0SAM sin 2ω0Cðt þ τ2f Þ
� � ð5Þ

FM ¼ M
dB
dx

� �
cos θð Þ ð6Þ

FCas ¼ �π3�hc
360

R
x3SM

ð7Þ

In Eq. 4, AS is the forcing amplitude of the sphere, ω0C

is the natural frequency of the coupled system, and τ1f
defines the fixed starting time. Similarly, in Eq. 5, AM is

the forcing amplitude of the magnet, and τ2f is the time
delay of magnet actuation. Most works12,30,31 involving
parametric pumping use a phase delay, and we describe
our rationale for a time delay system later, in conjunc-
tion with Fig. 3. The magnet is forced at 2ω0C for
parametric amplification. Equation 6 describes the force
on the magnet from a gradient magnetic field pre-
dominantly along its polarized axis, where M is the
moment, B is the magnetic field intensity, and θ is the
angle between them27. The Casimir force for a sphere-
plate geometry is displayed in Eq. 7, where ℏ is Plank’s
constant, c is the speed of light, R is the radius of the
sphere, and xSM is the separation between the sphere
and plate as defined above. It should be noted that Eq. 7
is ideal (assuming absolute zero temperature and per-
fectly smooth infinitely conducting surfaces) and should
be modified to reflect real experimental conditions4–11

such as temperature, roughness, and dielectric proper-
ties. The nominal values for simulation inputs are
shown in Table 1, where the primary tuning parameters
are indicated. The magnet’s mass (typically 150 µg; see
ref. 27) is not a direct input to the simulation, as the
magnet’s dynamics are controlled by feedback (dis-
cussed later in Fig. 3).
When the two resonators are coupled as described in

Eqs. 1–3, there is a spring softening effect analogous to

Resonating at f

a

Resonating at 2f

ks + kp

Strong Casimir coupling
when xSM ≈ 100 nm

XSM

Vs

Vp

M

M

Magnet

Sphere, plate

Microassembly

Proof mass

MEMS force transducer

XS XM

kM

b

Fig. 2 Proposed MEMS Casimir gradiometer design. The free body diagram a shows a sphere positioned in close proximity to a magnet, where the
resonant modes are coupled by the quantum-derived Casimir force. Both objects are driven at resonance, where the micromagnet is driven at two times
the frequency of the microsphere, to accomplish parametric modulation. The force from a weak gradient magnetic field induces a small deflection of the
magnet, decreasing the separation xSM and inducing a frequency and amplitude shift in the sphere oscillation via the Casimir coupling. The proposed
experimental design (b) and the accompanying parameters are chosen based on existing experimental platforms5,27. To successfully couple these two
systems, a highly tunable design is necessary. By assembling the sphere and magnet on independent MEMS force transducer platforms, their independent
actuation is completely controlled. By inverting the sphere platform, a separation between the sphere and plate of near 100 nm can be achieved.
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the electrostatic spring softening observed in capacitive
systems30. The coupling may then be modulated by tun-
ing the parameters of the magnet resonator. This is
necessary to access the most sensitive region of parameter
space while preventing Casimir pull-in. Following the
analytical model outlined earlier12, the equation of motion
for the sphere (Eq. 1) in a Casimir coupled system then
becomes Eq. 8 below, where the parametric spring con-
stant kp is defined in Eqs. 9 and 10. For simplicity, we
maintain the assumption of a linear spring model because

the amplitudes of oscillation are small (<100 nm).

mS€xS þmSω0C

QC
_xS þ k0S þ kp xSM; tð Þ� �

xS ¼ FDr�S tð Þ þ FCas xSM; tð Þ

ð8Þ

kp s0; tð Þ ¼ dFCas xSM; tð Þ
dxSM

ð9Þ

kp s0ð Þ ¼ π3�hc
120

R
x4SM

ð10Þ

The effect of the modulated spring constant may be best
illustrated by the potential energies of a quasi-static sys-
tem (Fig. 4). The magnet is fixed (Fig. 4a), and the sphere,
connected to a spring, is moved to set the gap between it
and the conducting plate. The gap is the Casimir cavity
size s0, which is defined by the equilibrium position of the
spring in the absence of the Casimir force. This has been
described earlier4 for a Casimir oscillator where s0 is
constant. In this work, the cavity s is influenced by the
movement of both the magnet and spring. The overall
potential energy curve is a summation of the elastic
potential energy of the spring and the potential energy of
the Casimir force as a function of the sphere displacement
xS from the equilibrium position. At greater displace-
ments, the Casimir attraction overcomes the restoring
force, and pull-in occurs as the overall potential decreases
rapidly. The overall potential energy curve is shown for
varying Casimir cavity sizes (Fig. 4b), where each curve
(from red to blue) represents the cavity decreasing by
1 nm (this is quasistatic, so the cavity size is represented
by s). Now that the quasistatic system is understood, it is

Fig. 3 Quasistatic illustration of Casimir coupling. Inset: diagram of a simple, nonlinear Casimir oscillator with a a fixed magnet and b an
oscillating magnet adhered to a conducting plate. a Potential energy of the sphere spring without the Casimir force (blue) and related to the Casimir
force (red). The overall potential energy (black) is shown as a function of sphere position xS. The separation s0 denotes the initial separation when the
spring is at equilibrium in absence of the Casimir force. Casimir oscillators with a fixed plate have been discussed previously4,12. b Overall potential
energy of sphere spring with a dynamic cavity size s, modulated by movement of the magnet (decreases 1 nm per curve from red to blue). In this
work, the cavity is highly dynamic as both the sphere and magnet oscillate, and so we use xSM in the text to represent the real-time distance between
the sphere and plate.

Table 1 Parameter Inputs for Simulation of Casimir
Gradiometer Design.

Parameter Symbol Nominal value

Uncoupled resonant frequency ω0S/(2π) 1 kHz

Quality factors (both resonants) Q 1000

Sphere spring constant k0S 25 mN/m

Magnet spring constant k0M 25 mN/m

Sphere mass ms 1 μg

Sphere radius R 60 μm

Sphere AC amplitude AS 20 nm

Sphere time delay τ1f 1.02 ms

Magnet AC amplitude AM 10 nm

Magnet time delay τ2f 750 μs

Separation s0 ~100 nm

The values are largely chosen based on reasonable implementation to existing
experimental platforms5,27. Although not directly an input to the simulation, the
typical mass mM of the cube micromagnet in this design (with 250 µm side
length) is 150 µg (ref. 27).
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straightforward that the potential energy curve changes
dynamically as the sphere and magnet both move in real-
time (a dynamic cavity is represented by xSM). Thus, with
the appropriate tuning of the magnet oscillation, one can
modulate the sphere oscillation via Casimir coupling.
Furthermore, one can make a trade-off to tune the sta-
bility and sensitivity of the system as a larger amplitude
pushes the sphere close to pull-in, which makes the sys-
tem more unstable but more sensitive to small pertur-
bations on the magnet.
The system described is a complex combination of

several physical phenomena, leading to a highly nonlinear
system and a large parameter space. Therefore, simula-
tions using MATLAB’s Simulink and Simscape are chosen
to characterize the system. A simplified block diagram is
illustrated (Fig. 3), and a detailed block diagram is pro-
vided in the Supplementary Material (Fig. S1). In essence,
the nominal parameters in Table 1 are input to the sys-
tem, and the outputs are tracked in real-time. The sphere
amplitude xS is reported to gather a clear sense of the
operation of the device, and the change in the coupled
system resonant frequency ω0C is the ultimately proposed
detection method. These values are gathered at some
point in the time response after the initial transients have
settled (typically 0.35 s). We designed the simulation only
with tools we typically use in the laboratory to facilitate
the translation to experimental measurement. A feedback
approach is employed, where the sphere’s frequency is
detected by a zero-crossing (negative slope). A waveform
at double the frequency involving the Casimir coupling

and a gradient magnetic field is fed back into the actua-
tion of the sphere.
At the start of the simulation (t= 0), we assume that the

sphere is resonating at the unloaded resonance frequency
ω0S, and the magnet is resonating at 2ω0S. The objects are
proposed to incrementally approach each other from a
large separation distance (>1 μm, where the Casimir force
is minimal) to reach the prescribed separation. This
approach is based on the experimental observation5 of the
Casimir force using a similar platform. As Casimir cou-
pling begins to interact, our feedback system adjusts the
actuation of the sphere (Fig. 3). The resonant mode of the
system is pumped such that there is little amplitude decay
due to damping, a technique35 that is well characterized in
both simulations and experiments. Previous analytical12

and experimental30,31 works have controlled the phase of
objects in a parametrically amplified system, but this is
challenging to do in dynamic simulation experiments,
such as with Simulink.
This is ultimately why we choose a time delay approach,

where the translation to experiment is straightforward
with a precision digital delay generator (such as the
DG645, SRS). It is worth noting, however, that a constant
time delay will result in a changing phase delay for a
system with changing oscillation frequency (as is our
case). Therefore, this design is notably different from a
phase delay parametric pumping system.
A gradient magnetic field is introduced to the system in

Fig. 3 by a force FM on the magnet. This results in a linear
deflection of the magnet by Eq. 6, changing xM, and
dynamically altering the separation xSM. This force is
imposed statically in Figs. 5 and 7 and is imposed dyna-
mically in Fig. 6. The sphere amplitude is reported to
intuitively convey the behavior of the device, but the
resonant frequency of the coupled system is measured to
infer the measurand, a gradient magnetic field. As such,
we define a sensitivity Sfreq (Hz/pT/cm), shown in Eq. 11,
as the ratio between the natural frequency of the coupled
system f0C and the change in gradient magnetic field ∇Bx.
In Fig. 7, this is computed by taking the slope between two
consecutive data points.

Sfreq ¼ Δf0C
Δð∇BxÞ ð11Þ

Parametric pumping is expected to enhance the cou-
pling of the Casimir force. Analytically, sphere-plate
Casimir coupling showed a maximum gain proportional
to the inverse of the 5th power of the separation when a
phase delay of 0° (or time delay of 0 s) was used and the
sphere amplitude was detected12. To our knowledge,
there is no experimental observation of parametrically
amplified Casimir coupling. Due to the anticipated danger
of pull-in at maximum amplification, we identify a region

XS Zero
crossing

sin (��0C)

sin (2�0C)

XSM

XM
FM

FDr –M

FCas

FDr –S

�1f

A1f

A2f�2f

Fig. 4 Simulation schematic. The simulation is designed based on
instruments readily available in a standard electronics laboratory.
Following Eqs. 1−7 in the text, a feedback scheme is employed to
tunably synchronize the f and 2f drive waveforms. The detailed
schematic can be found in Fig. S1.
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of design space resilient to pull-in and with parametrically
amplified Casimir coupling. We leverage a shift in the
coupled resonant frequency to propose a frequency
detection scheme.

Results: Magnetic sensing with the MEMS Casimir
gradiometer
The system is characterized by simulation (Fig. 5),

where the results from the dynamics of the sphere are
analyzed. The uncoupled and Casimir coupled systems
are illustrated using Bode plots (Fig. 5a). As shown in
Table 1, the resonant frequency of the unloaded system is
designed to be 1 kHz with a quality factor of 1000. Casimir
coupling causes a pronounced decrease in the resonant
frequency (tens to hundreds of Hz). The high-quality
factor of the system facilitates frequency shift detection.
Recall that the uncoupled case occurs when the separa-
tion between the sphere and magnet is larger than 1 µm.
At such separations, the sphere responds to a harmonic
drive with symmetric oscillations shepherded by the
spring’s linear restoring force. The coupled case occurs
when the separation between the magnet and sphere is in
the range of 100 nm. In this regime, the spring’s restoring
force deviates from parabolic, becoming asymmetric (Fig.
4) and leading to nonlinear dynamics.
In the coupled configuration, the parameters are tuned

to characterize the system and investigate useful areas of
design space. The first parameter of interest is the time
delay of the magnet’s oscillation τ2f. In Fig. 5b, we show
the temporal response to various time delays, labeled pull-
in (τ2f= 0 µs), Controlled (τ2f= 750 µs), and Deamplified
(τ2f= 150 µs). This characterizes three responses for dif-
ferent values of τ2f, and the responses to finely swept
values are characterized (Fig. 5c) by the AC amplitude of
the sphere after transients have settled (t= 0.35 s). We
find a maximum amplification at τ2f= 0 µs (correspond-
ing to a phase delay of 0°), which is consistent with the
previous analytical analysis12 of a phase delay system.
While the τ2f= 0 µs delay is the most sensitive region of
the design space, we find that the two resonators in the
Casimir coupled system always result in pull-in if left to
interact for an arbitrarily long time. This indicates mal-
function and destruction of the sensor. Consequently, we
avoid this region of design space and investigate nonzero
time delays for a sensitive controlled condition. For
nonzero time delays, however, this system is different than
a phase delay system and may not be directly compared.
We find a maximum deamplification at τ2f= 150 µs fol-
lowed by two other maxima (Fig. 5c). After the peak at τ2f
= 1200 µs, the pattern repeats with slightly decreased
amplitudes due to energy lost per cycle (not shown). At
τ2f= 750 µs, we report a stable, controlled oscillation of
the sphere (Fig. 5b), which is expanded in Figs. 6 and 7.
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Fig. 5 Characterized system response. a Bode plots of uncoupled
(xSM > 1 μm) and coupled configuration (xSM ~100 nm). The quality
factor is near 1000 in both cases and the resonant frequencies are
1000 and 850 Hz, respectively. The decrease in frequency can be
explained by the asymmetric interaction with the nearby plate, which
imposes the attractive Casimir force. b, c Are in the coupled
configuration, with nominal parameters from Table 1, except τ2f. b A
phase delay of the parametrically amplified magnet system can yield a
highly unstable and sensitive response (pull-in), a stable and
controlled response, and a deamplified response. c The sphere
amplitude for a finely swept τ2f (at 0.35 s of the time response after
transients have settled). The maximum is near a delay of zero, and the
profile is strongly nonlinear.
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The time response of the controlled system (τ2f=
750 µs) is dynamically characterized over an elapsed time
of 2 s for zero gradient magnetic field input (Fig. 6a) and
for a slowly varying sine wave oscillation of a gradient
magnetic field (Fig. 6b). The resonant frequency of the
coupled system in these two conditions, f0C, is tracked in
both configurations (Fig. 6c). The coupled system with no
input field reaches a steady state after approximately
200ms, after which point the signal is stable. A dynamic
gradient field input of a 1 Hz sine wave, 4 pT/cm peak-to-
peak, is chosen to demonstrate the response of the system
to a slowly varying magnetic field. For a gradiometer27

sensitivity of 1 μV/(fT/cm) and a magnet spring constant
of 25 mN/m (40 times softer than the experimental

platform in ref. 27), this gradient field yields a 1 nm peak-
to-peak oscillation of the magnet. The system responds
with a 1 Hz oscillation of an approximately 4 Hz peak-to-
peak shift in f0C. For very small gradients, the response is
nearly linear, and for larger gradient fields, the response is
a nonlinear, asymmetric sine wave. However, the change
in the coupled resonant frequency directly maps to a
change in the gradient, so the true gradient signal can be
easily calculated by ratiometric conversion.
The sensitivity Sfreq is tunable with respect to separation

(Fig. 7). System parameters of τ2f= 750 µs and A2f= 1 nm
are selected. For changing separation xSM, the change in
f0C is recorded on the first y-axis (right). Sensitivity, on the
second y-axis (left), is calculated using Eq. 11. The
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Fig. 6 Response to slowly varying gradient magnetic field. The controlled configuration at τ2f= 750 μs is tracked for 2 s following an imposed
initial condition. a Shows the sphere amplitude response to no magnetic field input, where the two resonators are set to interact and reach a steady-
state after approximately 200 ms. b Shows the sphere amplitude response when the magnet is modulated by a 1 Hz, 4 pT/cm peak-to-peak gradient
magnetic field. c Tracks the shift in the coupled resonance frequency f0C in both conditions (a) and (b). A 1 Hz oscillation is observed in both (b) and
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the response is nearly linear, but larger deflections will result in an asymmetric sine wave.
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gradient field used to calculate sensitivity is the equivalent
field that deflects the magnet, altering xSM. An inverse
power function profile is observed as a result. Such a
profile is expected, as the Casimir force follows an inverse
cubic function with respect to separation (Eq. 7). This
design is not static, however, and the parametric pumping
(Eq. 8) modifies the dynamics. As introduced earlier, an
analytical work12 with an equivalent time delay of 0 s
proposed detection proportional to the 5th power of the
separation. We find the region with zero delays to lead to
pull-in (Fig. 5b) and utilize the controlled response found
at τ2f= 750 µs. To compare to the previously proposed
detection scheme at maximum amplification, we use an
inverse exponential fit y = a/(x− b)c + d, where a, b, c,
and d are constants and c describes the power relation-
ship. Fitting the data in Fig. 7 yields c= 2.6 for our pro-
posed frequency detection scheme. While this is
significantly less sensitive than the 5th power relationship
(c= 5), the Casimir coupling is amplified and resilient to
pull-in.
The best-case resolution of the system is discussed for

frequency shift detection of the high-quality peak. For
laboratory-based frequency detection systems, such as
Agilent’s 53132A frequency counter, a resolution of 10
parts per million using a 1 s gate time is relatively stan-
dard. A maximum sensitivity Sfreq of 6 Hz/(pT/cm) is
observed (Fig. 7). Therefore, the frequency detection
scheme has a best-case resolution of 1.6 aT/cm at 1 Hz.
While we anticipate thermomechanical noise to experi-
mentally limit the technique at much larger gradient

magnetic fields, this constitutes a four orders of magni-
tude improved resolution (10,000-fold) for the best-case
scenario of the presently designed MEMS single-point
gradiometer27.
While this work focuses on employing a Casimir-driven

parametric amplifier for MEMS sensing, there are other
configurations that may be useful to consider. The elec-
trostatic force acts at larger separations (>100 nm), which
may be more resilient to pull-in. Electrostatic forces may
also be parametrically amplified30,31 and are also non-
linear (albeit less sensitive than the Casimir force). Fur-
thermore, it has been discussed that sensitivity varies with
separation and therefore with gradient magnetic field
input. Although complicated for a highly dynamic system,
we suggest the investigation of a null-sensing technique
that may enable the device to sit at a single sensitivity.
Using an additional feedback mechanism may control the
center positions of both oscillators (keeping them con-
stant) and may afford control of a constant high sensi-
tivity, such as the 6 Hz/(pT/cm) reported here.
Resonant MEMS devices such as this design are often

limited by several types of noise. The characteristic 1/f
noise from mechanical and electrical sources will largely
not affect the resonator coupling near 1 kHz, but the low-
frequency changes in separation that are sought to be
measured here will likely be affected. We suggest that
techniques such as chopper stabilization and lock-in
amplification be employed to reduce this effect. Low-
frequency magnetic noise, such as from power lines in an
urban area or the Earth’s magnetic field, will interfere with
sensitive magnetic measurements. As was experimentally
analyzed previously27, this interference presents itself as a
torque on the magnet equal to the cross product of the
magnetic moment and interference field (in-plane or out-
of-plane). Standard gradiometer designs23,24 reduce this
noise from distant sources by subtracting the signals from
two closely spaced magnetic sensors. This spacing is
typically on the order of 1 cm, and so by design, our
system improves this reduction with a spatial element
0.25 mm in length along the sensitive axis. Furthermore,
our technique presents a subtractionless measurement,
offering a reduction in associated error for gradiometric
measurements. Although a central goal of our technique
is to develop a sensor for unshielded biomagnetic mea-
surements, shielding may still be employed to further
reduce the interference of low-frequency magnetic fields.
Our design is intended for an ambient temperature and

pressure environment, so we anticipate thermo-
mechanical noise to be a dominant influence on our
measurements. Thermal damping on each of the reso-
nators is mitigated in part by sine-wave feedback pump-
ing. Our simulations did not investigate noise directly, but
the design and experimental implementation may be
directly compared to the previous work27. Squeeze film
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Fig. 7 Tunable sensitivity to separation. The separation xSM is varied
in a 3 nm range, resulting in an inverse exponential profile in a
frequency shift of the coupled resonance f0C. The sensitivity Sfreq is
calculated using a gradient magnetic field that would cause an
equivalent deflection in xSM. The maximum sensitivity reported is 6 Hz/
(pT/cm). Standard frequency detection with 10 ppm and a 1 s gate
time yields a best-case resolution of 1.6 aT/cm. While we anticipate
limitations due to thermomechanical noise, this exceeds a 10,000-fold
improvement on the previous design27 of the MEMS single-point
gradiometer. While a zero delay configuration may provide maximum
amplification, we report a highly sensitive design using a τ2f = 750 μs
delay, which is resilient to Casimir pull-in.
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damping has been shown36 to be common on MEMS
devices with gaps smaller than 5 μm, such as those
designed in this work. Although we intend for this design
to be used in ambient environments, vacuum packaging
or cryogenic environments would further reduce the
effects of damping. Finally, it was theoretically shown37

that another source of damping for a dynamic Casimir
oscillator may arise from the nonuniform relative accel-
eration of the sphere and plate, which encloses the non-
linear properties of vacuum. It may be interesting to
combine our sensitive platform design with cryogenic and
magnetic shielding environments to investigate this effect
experimentally. We are confident that the design strate-
gies presented in this work, in addition to those that
reduce the effects of noise, will profoundly enhance the
performance of single-point MEMS gradiometers.

Conclusion
We have investigated the quantum-derived coupling of

two resonant microstructures to achieve extremely high
sensitivity to changes in a gradient magnetic field. The
resonators are coupled by a nonlinear Casimir force,
which arises from the electromagnetic interaction
between closely spaced dielectrics (near 100 nm) in a
sphere-plate geometry. A customized parametric ampli-
fication technique is developed, where one resonator is
synchronized at double the frequency of the other, and
the time delay is tuned to find a steady-state solution. The
frequency shift of a high-quality, coupled resonance peak
is detected to infer a measured gradient magnetic field. A
slowly varying field at 1 Hz is imposed, where the best-
case resolution is calculated to be 1.6 aT/cm at a sensi-
tivity of 6 Hz/pT/cm. This is a 10,000-fold improvement
on the best-case resolution of the previously designed
MEMS single-point gradiometer. Many applications,
especially the measurement of biomagnetic fields, already
rely on complex quantum metrology. The MEMS
quantum-enhanced gradiometer presented in this work
paves the way toward unshielded, ambient temperature
measurements of extremely weak gradient magnetic
fields.
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