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Abstract: This paper provides a unified framework for the admissibility of a class of singular
fractional-order systems with a given fractional order in the interval (0, 2). These necessary and
sufficient conditions are derived in terms of linear matrix inequalities (LMIs). The considered
fractional orders range from 0 to 2 without separating the ranges into (0, 1) and [1, 2) to discuss
the admissibility. Moreover, the uncertain system with the fractional order in the interval (0, 2)
is norm-bounded. The quadratic admissibility and general quadratic stability of the system are
analyzed, and the equivalence between the two is proved. All the above can be expressed in terms of
strict LMIs to avoid any singularity problem in the solution. Finally, the effectiveness of the method
is illustrated by three numerical examples.

Keywords: singular fractional-order systems; admissibility; linear matrix inequality; unified criterion

1. Introduction

Fractional-order systems (FOSs) have received extensive attention in the field of natural
science and applied engineering [1,2] in recent years and have gradually become a research
hot spot because of their many practical backgrounds and engineering requirements. In
order to conform to the actual research situation, the current research expands results from
classical calculus [3,4] to fractional calculus [5,6]. Indeed, FOSs are used to represent the
nonclassical phenomena of various types of physical systems; FOSs have gradually become
the main research object in the control field.

For all systems, stability is a prerequisite for the proper functioning of control systems
in practical applications, let alone in FOSs. However, the stability analysis of FOSs [7,8]
cannot be derived directly from integer-order systems (IOSs) [9,10] due to the complexity
of their operators, and thus the stability of FOSs has become a hot topic of discussion in
recent years. Li and Yu [11,12] proposed the definition of the Mittag–Leffler stability and
introduced the fractional Lyapunov direct method to study the stability of fractional-order
nonlinear dynamical systems. Lu and Chen [13] discussed the system matrix with interval
uncertainties and analyzed the problem of the robust asymptotic stability of systems,
where the order α is in the interval (0, 1). In [14], Semary confirmed the relationship
between the stability of FOSs and the number of poles and investigated the stability of
these systems by discussing the time-domain response based on the Mittag–Leffler function.
Alagoz [15] analyzed the stability of FOSs by studying the root trajectories of expanded
degree integer-order polynomials in the main Riemann table and using the properties of
power maps. Kharade and Wang [16,17] studied the generalized Mittag–Leffler–Hyers–
Ulam stability, which is crucial for the analysis of quadratic fractional integral equations.
Abu-Shady and Kaabar [18,19] studied a generalized fractional derivative formulation
called Abu-Shady–Kaabar fractional derivative, which could obtain the same results as
from a Caputo fractional operator in a very simple way without modification or complex
numerical techniques. Ibrir and Farges [20,21] proposed different forms of linear matrix
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inequalities (LMIs) to solve the stability and stabilization problems of FOSs. In [22], Zhang
and Lin provided a unified form of discrimination method for the stability and stabilization
of FOSs with a fractional order in the interval (0, 2).

Singular FOSs are a special class of FOSs for which it is necessary to ensure not only
that they are stable, but also that they are regular and impulse-free, i.e., admissible [23–25].
In [26], Yu and Jiao discussed the admissibility of singular fractional order regular systems
when the fractional order α was 0 < α < 1. However, there were restrictions on the
regularity of the system. The output feedback control problem of singular FOSs, including
standardization and stabilization, was studied in [27]. Zhang and Marir [28,29] discussed
the admissibility criteria of singular FOSs with order (0, 1) and [1, 2), respectively, based
on LMIs. Based on a Kronecker equivalent standard form, the properties of time-domain
solutions of singular FOSs were analyzed, and the admissible criteria of singular FOSs were
given [30–32]. The quadratic admissibility problem for a class of singular fractional-order
linear time-invariant systems with fractional order 1 < α ≤ 2 was investigated, and then
a static output feedback controller was designed for uncertain closed-loop systems [33].
Li and Zhang [34,35] ensured the admissibility of T-S fuzzy singular FOSs with fractional
order 0 < α < 1 by designing sliding-mode observers and proportional–differential
dynamic compensators. Li et al. [36–38] designed suitable filters or controllers based on
the bounded real Lemma of singular FOSs to ensure the admissibility of systems. In [39],
Wei and Wang studied an LMI in the case of output feedback, but it needed to know
the information of state variables, which may be troublesome in practical operation. The
sliding-mode control problem for a class of singular FOSs with state matrix and derivative
matrix uncertainties was studied by using radial basis function neural networks [40].
However, for singular FOSs, few works have dealt with the admissibility analysis with
uncertainties, and the methods of studying uncertain systems are still being explored and
studied [41,42]. In [43,44], based on the backstepping method, the fault-tolerant tracking
control problem for a class of strict feedback nonlinear systems was studied. In practice, many
uncertainties are bounded, but the literature on norm-bounded uncertainties is relatively
scarce. Therefore, papers analyze singular FOSs with norm-bounded uncertainties and give
quadratic admissibility criteria for such systems. For singular systems, many papers derive
the admissibility criteria based on nonstrict LMIs, which lead to huge errors in numerical
simulation due to equality constraints. However, the results given in this paper addresses
the above problems through a strict LMI form which can quickly find feasible solutions.

Based on the above observations, the admissibility and quadratic admissibility of
a class of linear time-invariant (LTI) singular FOSs are studied. Different from existing
methods, the main contributions of this paper are as follows:

(i) This unified LMI framework is applicable to singular FOSs with an order in (0, 2),
instead of separating the order, as in the existing literature, into (0, 1) or [1, 2) to discuss
them separately.

(ii) In this paper, the admissibility criterion of an LMI is given; the criterion includes
a nonstrict form and strict form, which can ensure that the singularity problem does
not occur.

(iii) For singular FOSs with a bounded norm, it is proved that the generalized quadratic
stability and quadratic admissibility can be deduced from each other, and the conclusions
in this paper can be extended to variable-order singular FOSs of order in (0, 2).

The rest of this paper is organized as follows. Section 2 presents some existing results and
preliminaries. Subsequently, the admissibility criteria for orders 0 < α < 2 are obtained, and
the main results are drawn in Section 3. Three numerical examples are given in Section 4
to illustrate the effectiveness of the results, and Section 5 describes the conclusions on the
obtained results.

Within this work, we use the following notations: dαe (bαc) represents the smallest
(greatest, respectively) integer greater (less) than or equal to α. The notation NT represents
the transpose of the matrix N, sym(N) stands for 1

2 (N + NT), asym(N) denotes the ex-
pression 1

2 (N − NT). ⊗ indicates the Kronecker product of two matrices A and B, which is
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defined as A⊗ B = [aijB]. ∗ denotes the matrix symmetric part. arg(z) is the argument of
a complex number z, and spec(E, A) is the spectrum of the pair (E, A).

2. Problem Formulation and Preliminaries

Consider the singular FOS described as:

EDαx(t) = Ax(t) + Bu(t), (1)

where x(t) ∈ Rn is the pseudostate, u(t) ∈ Rp is the control input, E ∈ Rn×n is singular
with rank(E) = r < n, A ∈ Rn×n and B ∈ Rn×p are constant matrices. The symbol Dα

is the fractional differentiation operator of order α of x(t), which has the following three
definitions. The Grünwald–Letnikov derivative:

Dαx(t) = lim
h→0

h−α
[ t−α

h ]

∑
j=0

ω
(α)
j f (t− jh),

where

ω
(α)
j =

(−1)jΓ(α + 1)
Γ(j + 1)Γ(α− j + 1)

,

the Riemann–Liouville derivative:

Dαx(t) =
1

Γ(m− α)

dm

dtm

∫ t

0
(t− τ)m−α−1 f (τ)dτ,

and the Caputo derivative:

Dαx(t) =
1

Γ(dαe − α)

∫ t

0
(t− τ)dαe−α−1x(dαe)(τ)dτ,

where Γ(·) is Euler’s gamma function:

Γ(z) =
∫ ∞

0
tz−1e−tdt.

The Caputo derivative is widely used in the engineering field because its initial value
conditions of differential equations are consistent with those of integral calculus. In this
paper, the Caputo derivative is used to handle initial value conditions conveniently. In the
rest of the text, Dα solely represents the Caputo derivative.

Next, for the unforced singular FOS:

EDαx(t) = Ax(t); (2)

when matrix E is nonsingular, especially when E is an identity matrix, system (2) is
simplified to a normal FOS and is rewritten into the following form:

Dαx(t) = Ax(t). (3)

Let us recall some known facts on the unforced (u(t) ≡ 0) system (2).

Definition 1 ([23]). System (2) is said to be admissible if system (2) meets the following three
conditions at the same time:

(i) System (2) is regular, that is, det(sαE− A) 6≡ 0;
(ii) System (2) is impulse-free, that is, deg(det(sE− A)) = rank(E);
(iii) System (2) is stable, that is, |arg(spec(E, A))| > α π

2 .
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Lemma 1 ([22]). System (3) with a given fractional order α in the interval (0, 2) is stable iff there
exists a matrix X ∈ Rn×n such that the following inequalities hold:[

sym(X) asym(X)
bα− 1casym(X) sym(X)

]
> 0, (4)

sym{Θα ⊗ (AXα)} < 0, (5)

where Θ =

[
αs −αc
αc αs

]
, αs = sin( απ

2 ), αc = cos( απ
2 ), Θα = Θ(dαe), Θ(1) = 1, Θ(2) = Θ.

Xα = α
−bα−1c
s · sym(X) + αcbα− 1c · asym(X).

Lemma 2 ([26]). For a given system (2), there exist two invertible matrices L, R ∈ Rn×n such that

LER =

[
Im 0
0 0

]
, LAR =

[
A11 A12
A21 A22

]
, (6)

where m = rank(E).
If system (2) is regular, then system (2) is impulse-free iff A22 is invertible.

Lemma 3 ([28]). System (2) with order α in (0, 1) is admissible iff there exist two matrices
X, Y ∈ Rn×n such that the following inequalities hold:[

LERX LERY
−LERY LERX

]
=

[
XT(LER)T −YT(LER)T

YT(LER)T XT(LER)T

]
≥ 0, (7)

sym{LAR(αsX− αcY)} < 0, (8)

where L, R ∈ Rn×n are given by Lemma 2.

Lemma 4 ([29]). System (2) with order α in [1, 2) is admissible iff there exists matrix X ∈ Rn×n

such that the following inequalities hold:

LERX = XT(LER)T ≥ 0, (9)

sym{Θ⊗ (LARX)} < 0, (10)

where L, R ∈ Rn×n are given by Lemma 2.

Lemma 5 ([28]). System (2) with order α in (0, 1) is admissible iff there exist four matrices
X1, X4 ∈ Rm×m, X2 ∈ R(n−m)×m and X3 ∈ R(n−m)×(n−m) such that the following inequalities
hold: [

X1 X4
−X4 X1

]
> 0, (11)

sym{αsLARX− αcLARY} < 0, (12)

where L, R ∈ Rn×n are given by Lemma 2, and

X =

[
X1 0
X2 X3

]
, Y =

[
X4 0
0 0

]
. (13)

3. Main Results

In this section, uniform admissibility criteria for the singular FOSs are obtained,
and quadratic admissibility criteria are given for the singular FOSs with norm-bounded
uncertainties.
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3.1. Admissibility of Unforced Linear Singular FOS with Order 0 < α < 2

The following results extend the order of the system to 0 < α < 2 without any separation.

Theorem 1. System (2) is admissible iff there are X1 ∈ Rm×m, X2 ∈ R(n−m)×m and X3 ∈
R(n−m)×(n−m) satisfying the following inequalities:[

sym(ERXL−T) asym(ERYL−T)
bα− 1casym(ERYL−T) sym(ERXL−T)

]
≥ 0, (14)

sym{Θα ⊗ (A(α
−bα−1c
s RXL−T + αcbα− 1cRYL−T))} < 0, (15)

where X =

[
sym(X1) 0

X2 X3

]
, Y =

[
asym(X1) 0

0 0

]
.

Proof. Pre- and postmultiplying (14) by diag(L, L) and diag(LT , LT), respectively, we have[
LERX LERY

bα− 1cLERY LERX

]
≥ 0, (16)

and pre- and postmultiplying (15) by Ωα ⊗ L and Ωα ⊗ LT , respectively, we have

sym{Θα ⊗ (LAR(α−bα−1c
s X + αcbα− 1cY))} < 0, (17)

where Ωα = Ω(dαe), Ω(2) =
[

1 0
0 1

]
and Ω(1) = 1.

Obviously, by Lemmas 3 and 4, when 0 < α < 1, Equations (16) and (17) are equivalent
to Equations (7) and (8), respectively, and when 1 ≤ α < 2, Equations (16) and (17) are
equivalent to Equations (9) and (10), respectively, so Lemmas 3 and 4 are special cases of
Theorem 1.

Corollary 1. System (2) is admissible iff there are X1 ∈ Rm×m, X2 ∈ R(n−m)×m and X3 ∈
R(n−m)×(n−m) satisfying the following inequalities:[

sym(ERXL−T) asym(ERXL−T)
bα− 1casym(ERXL−T) sym(ERXL−T)

]
≥ 0, (18)

sym{Θα ⊗ (A(α
−bα−1c
s R(X + Y)L−T + αcbα− 1cR(X−Y)L−T))} < 0, (19)

where X =

[
X1 0
X2 X3

]
, Y =

[
XT

1 0
X2 X3

]
.

Proof. The proof’s method is similar to that of Theorem 1, so we omitted it.

However, as mentioned in the introduction, the equality constraints in Theorem 1 do
not fit; due to the rounding error in the actual calculation, the constraint equation cannot be
fully satisfied. Therefore, to improve the accuracy of the calculations, it is better to adopt
strict LMI conditions, as shown in Corollary 2.

Corollary 2. System (2) is admissible iff there are X ∈ Rn×n and Q ∈ R(n−m)×n satisfying (4)
and

sym{Θα ⊗ (A(XαET + E0Q))} < 0, (20)

where E0 ∈ Rn×(n−m) is an arbitrary column full-rank matrix and satisfies EE0 = 0.
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Proof. (Sufficiency) Suppose that there are two matrices X ∈ Rn×n and Q ∈ R(n−m)×n that
satisfy Equations (4) and (20). Set

RX̃L−T = sym(X)ET + (1− αcbα− 1c)αbα−1c
s E0Q, RỸL−T = asym(X)ET + E0Q.

It turns out that X̃ and Ỹ satisfy Equations (14) and (15). Therefore, from Theorem 1,
system (2) is admissible.

(Necessity) Suppose system (2) is admissible. Then, from Lemma 2, there exist two
invertible matrices L and R that satisfy Equation (6). As system (2) is regular and impulse-
free, then A22 is invertible. According to the property of a block matrix, there are two
invertible matrices L1 and R1, such that

L1ER1 =

[
Im 0
0 0

]
, L1 AR1 =

[
Ā11 0
0 In−m

]
.

Therefore, system (2) is rewritten as follows

Dαy1(t) = Ā11y1(t),

0 = y2(t),

where y1(t) ∈ Rm, R−1
1 x(t) =

[
yT

1 (t) yT
2 (t)

]T . According to Lemma 1, there is a matrix
X̄ ∈ Rm×m that satisfies (4) and

sym{Θα ⊗ (Ā11(α
−bα−1c
s · sym(X̄) + αcbα− 1c · asym(X̄)))} < 0.

Choose E0 as

E0 = R1

[
0

In−m

]
N,

where N is an arbitrary invertible matrix, and set

X = R1

[
Ā11 0
0 In−m

]
RT

1 , Q = N−1[0 −In−m
]
L−T

1 .

Then matrices X and Q satisfy Equations (4) and (20).

Although Corollary 2 is theoretically a necessary and sufficient condition to judge that
system (2) is admissible, unfortunately, Corollary 2 has the disadvantage of dealing with
more solved variables, which gives rise to more complex calculations. To overcome this,
the following result comes with fewer limitations.

Theorem 2. System (2) is admissible iff there are X1 ∈ Rm×m, X2 ∈ R(n−m)×m and X3 ∈
R(n−m)×(n−m) satisfying the following inequalities:[

sym(X1) asym(X1)
bα− 1casym(X1) sym(X1)

]
> 0, (21)

sym{Θα ⊗ (LAR(α−bα−1c
s X + αcbα− 1cY))} < 0, (22)

where

X =

[
sym(X1) 0

X2 X3

]
, Y =

[
asym(X1) 0

0 0

]
, (23)

and L, R ∈ Rn×n are given in Lemma 2.
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Proof. When 0 < α < 1, considering Equations (21) and (22), we easily see that[
sym(X1) asym(X1)
−asym(X1) sym(X1)

]
> 0,

and
sym{LAR(αsX− αcY)} < 0.

These two inequalities have the same form as (11) and (12). We easily conclude that Lemma 5
is equivalent to Theorem 2.

When 1 < α < 2, similar to Lemma 5, we easily generalize that system (2) with order
α in (1, 2) is admissible iff there exist three matrices X1 ∈ Rm×m, X2 ∈ R(n−m)×m and
X3 ∈ R(n−m)×(n−m) such that the following inequalities hold:

X1 > 0, (24)

sym{Θ⊗ (LARX)} < 0, (25)

where X is given by Lemma 5.
Equations (21) and (22) are rewritten as follows[

X1 0
0 X1

]
> 0,

and
sym{Θ⊗ (LARX)} < 0.

From the above two inequalities, it is obvious that the forms of (21) and (22) are the
same as those of (24) and (25).

When α = 1, from Equations (21) and (22), we have[
X1 0
0 X1

]
> 0,

and
sym{LARX} < 0.

Then, it follows that Equations (21) and (22) are equivalent to the Lyapunov stability
theorem of singular IOSs.

Remark 1. The conditions of Corollary 2 and Theorem 2 are strict LMI formulations, which are
easier to deal with in the simulation process than those of Theorem 1. More specifically, compared
with [29], Theorem 2 does not need to introduce E0 which satisfies EE0 = 0 and can avoid the
singularity problem caused by variable Q.

3.2. Stabilization of Singular FOS with Order 0 < α < 2

For the closed-loop system in (27), designing a controller to ensure its admissibility is
significant. For further research, we designed the following state feedback controller for
system (1):

u(t) = Kx(t), K ∈ Rp×n, (26)

such that the corresponding closed-loop system:

EDαx(t) = (A + BK)x(t). (27)

is admissible via the designed controller K.
Let Z = K(XαET + E0Q), the following result provides the controller gain for the

closed-loop system (27) to be admissible.
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Theorem 3. System (2) is admissible iff there are X ∈ Rn×n, Q ∈ R(n−m)×n and Z satisfying (4),
and

sym{Θα ⊗ (A(XαET + E0Q) + BZ)} < 0, (28)

where E0 is defined in Corollary 2. It can be seen from (28) that XαET + E0Q is nonsingular. The
gain K of the state feedback controller is given by the following formula:

K = Z(XαET + E0Q)−1. (29)

Example 1. Consider system (1) with fractional order α = 1
2 , and

E =

2 3 0
0 4 0
0 3 0

, A =

 1 2 0
−2 1 0
0 0 3

, B =

1
0
1

.

From Definition 1, we easily find that system (1) is not admissible because it does not meet the
third property in Definition 1. However, we solve Equations (4) and (28) through Theorem 3, and
obtain the following feasible solutions:

X =

23.9331 6.4789 0
10.7982 15.2945 0

0 0 23.9331

,

Q =
[
28.2510 19.5101 −5.0950

]
,

Z =
[
−163.9005 −45.1619 −8.6482

]
,

K =
[
−3.9571 2.3264 −1.2786

]
.

Remark 2. The method proposed in [30,31] cannot deal with the admissibility problem of a class
of singular FOSs when the system matrix A contains eigenvalues on the positive real part, while
the method proposed in this paper does not need to consider the range of eigenvalues of the system
matrix A (as shown in Example 1) and is applicable to a wider range.

When the formulations in Theorem 3 are simulated, the singularity of matrix XαET +
E0Q may occur; Theorem 3 cannot be used to judge the admissibility of system (27), so the
following theorem is proposed to solve the above problem.

Applying Theorem 2 to the closed-loop linear singular FOS (27), we obtain the follow-
ing result easily.

Theorem 4. System (2) is admissible iff there are X1 ∈ Rm×m, X2 ∈ R(n−m)×m, X3 ∈
R(n−m)×(n−m) and Z satisfying (21), and

sym{Θα ⊗ (LAR(α−bα−1c
s X + αcbα− 1cY) + LBZ)} < 0, (30)

where the meaning of L and R is the same as that of Theorem 2. The state feedback controller gain K
is given by

K = Z(α−bα−1c
s X + αcbα− 1cY)−1R−1. (31)

3.3. Quadratic Admissibility of Uncertain Linear Singular FOS with Order 0 < α < 2

Consider the norm-bounded uncertain linear singular FOS, which is described as

EDαx(t) = (A + ∆A)x(t) + (B + ∆B)u(t), (32)

where both ∆A and ∆B are real matrices with appropriate dimensions to represent the
uncertainties of system, and these two matrices are time-independent. According to many
existing documents, we reduce these two matrices to the following form



Fractal Fract. 2023, 7, 1 9 of 20

[∆A ∆B] = PF(σ)[Q1 Q2],

where P, Q1 and Q2 are known real constant matrices. σ ∈ Ξ, Ξ is a compact set in R, and
F(σ) is a family of matrices satisfying

FT(σ)F(σ) ≤ I.

We set A∆ = A + ∆A and B∆ = B + ∆B. System (32) described above is simplified as
an unforced uncertain singular FOS, which is written in the following form:

EDαx(t) = A∆x(t). (33)

To study the properties of uncertain singular FOSs, we introduce two definitions.

Definition 2 ([24]). For all allowable time-invariant uncertainty ∆A, we say that system (33) is
quadratically admissible if there exist X, Y ∈ Rn×n satisfying (14) and

sym{Θα ⊗ (A∆(α
−bα−1c
s RXL−T + αcbα− 1cRYL−T))} < 0. (34)

Definition 3 ([25]). For all allowable time-invariant uncertainty ∆A, we say that system (33) is
generalized quadratically stable if there are X ∈ Rn×n, Q ∈ R(n−m)×n satisfying (4) and

sym{Θα ⊗ (A∆(XαET + E0Q))} < 0. (35)

Now, we are ready to discuss the necessary and sufficient criteria for the quadratic
admissibility and generalized quadratic stability of system (33). According to Theorems 1
and 2, respectively, we immediately get the following Theorems.

Theorem 5. System (33) is quadratically admissible iff there exist a positive scalar ε and three
matrices X1, X2 and X3 with appropriate dimensions satisfying (14) and[

Π1 ∗
Ωα ⊗ (Q1(α

−bα−1c
s RXL−T + αcbα− 1cRYL−T)) −εΩα ⊗ I3

]
< 0, (36)

where Π1 = 2sym{Θα ⊗ (A(α
−bα−1c
s RXL−T + αcbα− 1cRYL−T))}+ εΩα ⊗ (PPT), Ωα =

Ω(dαe), Ω(2) =
[

1 0
0 1

]
, Ω(1) = 1.

Proof. Replacing A in Theorem 1 with A∆, Equation (15) becomes

sym{Θα ⊗ ((A + PF(σ)Q1)(α
−bα−1c
s RXL−T + αcbα− 1cRYL−T))} < 0.

Therefore, it follows that

sym{Θα ⊗ (AR(α−bα−1c
s X + αcbα− 1cY)L−T)}+

sym{(Θα ⊗ P)(Ωα ⊗ F(σ))(Ωα ⊗ (Q1R(α−bα−1c
s X + αcbα− 1cY)L−T))} < 0.

According to Fact (A.1) in [9], we see that

Π1 + ε−1(Ωα ⊗ (Q1R(α−bα−1c
s X + αcbα− 1cY)L−T))T×

(Ωα ⊗Q1R(α−bα−1c
s X + αcbα− 1cY)L−T) < 0.

Applying Schur’s complement, it follows that (36) holds.
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As for the equality constraint problem discussed above, the data of Theorem 5 may
have serious deviations in a simulation, so we give the result with the strict LMI form next.

Corollary 3. System (33) is quadratically admissible iff there exist a positive scalar ε and three
matrices X1, X2 and X3 with appropriate dimensions that satisfy (21), (23) and[

Π2 ∗
Ωα ⊗ (Q1R(α−bα−1c

s X + αcbα− 1cY)) −εΩα ⊗ I3

]
< 0, (37)

where Π2 = 2sym{Θα ⊗ (LAR(α−bα−1c
s X + αcbα− 1cY))}+ εΩα ⊗ (LPPT LT).

Next, according to Definition 3, we easily obtain the following necessary and sufficient
condition for the generalized quadratic stability.

Theorem 6. System (33) is generalized quadratically stable iff there exist a positive scalar ε and
two matrices X and Q with appropriate dimensions that satisfy (4) and[

Π3 ∗
Ωα ⊗ (Q1(XαET + E0Q)) −εΩα ⊗ I3

]
< 0, (38)

where Π3 = 2sym{Θα ⊗ (A(XαET + E0Q))}+ εΩα ⊗ (PPT), E0 is the same as in Corollary 2.

Now we give the equivalence relationship between quadratic admissibility and gener-
alized quadratic stability.

Theorem 7. These two statements are equivalent:
(i) System (33) is generalized quadratically stable.
(ii) System (33) is quadratically admissible.

Proof. First, assume that condition (i) is satisfied; we set

X̃ = R−1{sym(X)ET + (1− αcbα− 1c)αbα−1c
s E0Q}LT ,

Ỹ = R−1{asym(X)ET + E0Q}LT .

From (4) and (38) in Theorem 6, it is easy to prove that X̃ and Ỹ satisfy (14) and (36),
that is, they satisfy Theorem 5, so it means that (ii) is derived from (i).

Now, assume that condition (ii) is satisfied. Thanks to Theorem 5, we find that X̂,
Ŷ ∈ Rn×n and ε > 0 satisfy (14) and (36). By Lemma 2, there exist two invertible matrices L
and R, such that the following equation holds.

Ê = LER =

[
Im 0
0 0

]
.

Denote

X̂ =

[
X̂1 X̂2
X̂3 X̂4

]
,

Ŷ =

[
X̂5 X̂6
X̂7 X̂8

]
,

and let
Â = LAR, P̂ = LP, Q̂1 = LQ1R, Î = LLT .

Pre- and postmultiplying (14) by diag(L, L) and diag(LT , LT), respectively, it is easy
to get
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[
ÊX̂ ÊŶ

bα− 1cÊX̂ ÊX̂

]
≥ 0,

which shows that [
X̂1 X̂5

bα− 1cX̂5 X̂1

]
> 0.

Pre- and postmultiplying (36) by diag(Ωα ⊗ L, Ωα ⊗ L) and diag(Ωα ⊗ LT , Ωα ⊗ LT),
respectively, we have[

Π4 ∗
Ωα ⊗ (Q̂1(α

−bα−1c
s X̂ + αcbα− 1cŶ)) −εΩα ⊗ Î

]
< 0,

where Π4 = 2sym{Θα ⊗ (Â(α
−bα−1c
s X̂ + αcbα− 1cŶ))}+ εΩα ⊗ (P̂P̂T). Set

Ê0 =

[
0

In−m

]
, sym(Λ) =

[
X̂1 0
0 In−m

]
, asym(Λ) =

[
X̂5 0
0 0

]
,

Q̂ =
[
α
−bα−1c
s X̂3 + αcbα− 1cX̂7 α

−bα−1c
s X̂4 + αcbα− 1cX̂8

]
.

Therefore, the last inequality becomes[
Π5 ∗

Ωα ⊗ (Q̂1((α
−bα−1c
s · sym(Λ) + αcbα− 1c · asym(Λ))ÊT + Ê0Q̂)) −εΩα ⊗ Î

]
< 0,

where Π5 = 2sym{Θα ⊗ (Â((α
−bα−1c
s · sym(Λ) + αcbα− 1c · asym(Λ))ÊT + Ê0Q̂))} +

εΩα ⊗ (P̂P̂T), Λα = α
−bα−1c
s sym(Λ) + αcbα− 1casym(Λ).

Let E0 = RÊ0U, and U is obviously a nonsingular matrix of order n−m. Denoting

sym(X) = Rsym(Λ)RT , asym(X) = Rasym(Λ)RT , Q = U−1Q̂L−T ,

and substituting

Q̂1 = LQR, Q̂ = UQLT , Ê0 = R−1E0U−1, P̂ = LP, Î = LLT

into the last inequality, gives

H
[

Π3 ∗
Ωα ⊗ (Q1(XαET + E0Q)) −εΩα ⊗ I3

]
HT < 0,

where H =

[
Ωα ⊗ L 0

0 Ωα ⊗ L

]
and Π3 = 2sym{Θα ⊗ (A(XαET + E0Q))}+ εΩα ⊗ (PPT).

Therefore, (4) and (38) hold, so it is proved that (i) is indeed deduced from (ii).

When we apply the controller in (26) to system (32), the following closed-loop singular
system is easily obtained:

EDαx(t) = (A∆ + B∆K)x(t). (39)

For uncertain closed-loop singular system (39), let F = KR(α−bα−1c
s X + αcbα− 1cY),

the quadratic admissibility is discussed with the help of Corollary 3.

Theorem 8. System (39) is quadratically admissible iff there exist a positive scalar ε and four
matrices X1, X2, X3 and F with appropriate dimensions that satisfy (21), (23) and[

Π6 ∗
Ωα ⊗ (Q1R(α−bα−1c

s X + αcbα− 1cY) + Q2F) −εΩα ⊗ I3

]
< 0, (40)
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where Π6 = 2sym{Θα⊗ (LAR(α−bα−1c
s X + αcbα− 1cY)+ LBF)}+ εΩα⊗ (LPPT LT). Then,

we design a controller gain K similar to (31) for system:

K = F(α−bα−1c
s X + αcbα− 1cY)−1R−1. (41)

Since the equivalence between quadratic admissibility and generalized quadratic
stability has been proved above, letting G = K(XαET + E0Q), the quadratic admissibility
of uncertain closed-loop singular system (39) is obtained directly by using Theorem 6.

Theorem 9. System (39) is quadratically admissible iff there exist a positive scalar ε and two
matrices X and G with appropriate dimensions that satisfy (4) and[

Π7 ∗
Ωα ⊗ (Q1(XαET + E0Q) + Q2G) −εΩα ⊗ I3

]
< 0, (42)

where Π7 = 2sym{Θα ⊗ (A(XαET + E0Q) + BG)}+ εΩα ⊗ (PPT). Then, we design a con-
troller gain K similar to (29) for the system:

K = G(XαET + E0Q)−1. (43)

4. Numerical Examples

Example 2. Consider system (2) with fractional order α = 1
3 , 1 and 4

3 , respectively, and

E =

1 2 0
1 2 0
0 0 1

, A =

−2 3 0
−1 −2 1
0 0 −1

.

By Definition 1, it is easy to verify that when α = 1
3 , 1 and 4

3 , respectively, system (2) is not
only regular and impulse-free, but also stable, which shows that system (2) is admissible.

From Theorem 2, we easily use the following commands in MATLAB to find the matrices L
and R.

>> n=3; op=rref([E,eye(n)]); L=op(:,n+1:2*n);
y=op(:,1:n)’;z=rref([y,eye(n)]); R=z(:,n+1:2*n)’;

After using the above commands, the output results of L and R are:

L =

0 1 0
0 0 1
1 −1 0

, R =

 0 0 1
0.5 0 −0.5
0 1 0

.

By substituting these known data into Equations (21) and (22), we find the following feasi-
ble solutions:

Case α =
1
3

,

X =

0.9620 0.0092 0
0.0092 0.9151 0
0.6946 −0.2298 0.4962

,

Y =

 0 −0.0203 0
0.0203 0 0

0 0 0

;
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Case α = 1,

X =

49.2197 6.3283 0
6.3283 42.1883 0

33.3489 −7.5336 13.4601

,

Y = 0;

Case α =
4
3

,

X =

31.6679 4.2297 0
4.2297 24.6306 0
21.4115 −4.0161 9.2372

,

Y = 0.

Example 3. Consider system (1) with fractional order α = 1
2 , 1 and 3

2 , respectively, and

E =

 1 3 7
−1 4 4
1 10 18

, A =

8 9 3
9 6 5
2 1 9

, B =

1
1
1

.

From Definition 1, we easily find that system (1) is not admissible because it does not meet the
third property in Definition 1, i.e., system (1) is not stable. Therefore, we solve Equations (4) and
(28) through Theorem 3 (Appendix A), and obtain the following feasible solutions:

Case α =
1
2

,

X =

 30.7676 3.3166 −6.2782
2.0300 35.6899 4.4758
−8.2999 7.4166 28.4777

,

Q =
[
155.8078 122.1702 154.7036

]
,

Z = 103[−2.9445 −1.9258 −3.6030
]
,

K =
[
−17.3195 −4.5623 −2.2578

]
;

Case α = 1,

X =

 23.8844 2.7622 −7.5314
2.7622 28.9704 6.1439
−7.5314 6.1439 21.5184

,

Q =
[
874.8722 837.5150 870.8511

]
,

Z = 104[−1.0277 −0.8163 −0.3391
]
,

K =
[
−42.2955 26.7804 −11.0840

]
;

Case α =
3
2

,

X =

 17.2252 6.3095 −4.1940
6.3095 16.9514 4.2915
−4.1940 4.2915 20.5553

,

Q =
[
13.2372 4.4887 39.2971

]
,

Z = 103[−1.4609 −0.9882 −3.9365
]
,

K =
[
−4.6030 −3.7138 −6.9714

]
.
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Using the method of obtaining L and R in Example 2, we have

L =

0 −0.7143 0.2857
0 0.0714 0.0714
1 0.5 −0.5

, R =

 0 0 1
−0.6875 1 0.6875
0.4375 0 −0.4375

.

Through Theorem 4, we solve Equations (21) and (30) to obtain feasible solutions with fewer
solving variables:

Case α =
1
2

,

X =

 75.3195 −3.5341 0
−3.5341 68.8120 0
112.5947 −3.9036 −86.8202

,

Y =

 0 −0.8505 0
0.8505 0 0

0 0 0

,

Z = 103[−1.0893 −0.6363 1.0997
]
,

K =
[
−12.3951 −13.8790 −9.1984

]
;

Case α = 1,

X =

167.8076 −4.7882 0
−4.7882 158.9910 0
177.4157 −16.0286 −24.2666

,

Y = 0,

Z = 103[−2.1074 −1.5873 0.3052
]
,

K =
[
−12.1590 −11.2386 −16.7072

]
;

Case α =
3
2

,

X =

27.5391 1.0105 0
1.0105 17.7305 0

15.5955 7.7775 −1.8926

,

Y = 0,

Z =
[
−98.2770 −338.3287 7.4578

]
,

K =
[
−4.6423 −17.3133 −28.8108

]
.

According to the data provided by the above simulation, we describe the state response when
α takes different values through Figures 1–3. Obviously, although the original open-loop systems
are not admissible, the corresponding closed-loop systems are admissible under the influence of the
control law (26) and reach stability in 50 s, 5 s, and 14 s, respectively.



Fractal Fract. 2023, 7, 1 15 of 20

0 5 10 15 20 25 30 35 40 45 50

Time(Sec.)

-1

-0.5

0

0.5

1

1.5

2

S
ta

te

x1

x2

x3

Figure 1. Time response of the closed-loop singular FOS with order α = 1
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Figure 2. Time response of the closed-loop singular FOS with order α = 1.
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Figure 3. Time response of the closed-loop singular FOS with order α = 3
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Example 4. Consider system (39) with fractional order α = 1
2 , 1 and 7

6 , respectively, and

F(σ) = diag( sin(0.1rand(1)), e−0.5rand(1), cos(0.5rand(1)),

sin(0.2rand(1)) cos(0.2rand(1)),

E =


2 1 1 1
2 4 3 5
0 −8 2 3
−2 −1 −1 −1

, A =


8 9 6 12
−9 −12 −5 −7
16 15 3 8
−6 −8 −5 −3

, B =


9 6
7 −2
8 0
0 −1

,

P =


1 1 0 0
0 1 0 0
0 0 1 0
1 0 0 2

, Q1 =


1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

, Q2 =


0 1
1 0
0 −1
1 0

.

Using the method of obtaining L and R in Example 2, we have

L =


0 −0.2273 −0.0227 −0.7273
0 0.0909 −0.0909 0.0909
0 0.3636 0.1364 0.3636
1 0 0 1

, R =


0 0 0 1

0.1905 1 0 −0.1905
3.9048 0 1 −3.9048
−2.0952 0 0 2.0952

.

We easily prove that although system (39) is regular and impulse-free, it is unstable. That is,
system (39) is not admissible. Thanks to Theorem 8, we solve Equations (21), (23) and (40), and
obtain the following feasible solutions:

Case α =
1
2

,

X =


0.3583 −0.0676 −0.1416 0
−0.0676 0.4546 −0.1221 0
−0.1416 −0.1221 0.5384 0
0.7851 0.1576 0.0418 −0.1441

,

Y =


0 −0.0295 0.0305 0

0.0295 0 0.0062 0
−0.0305 −0.0062 0 0

0 0 0 0

,

Z =

[
−0.0482 −0.0641 −0.3330 −0.3320
−0.4203 −0.4691 −0.0364 0.0256

]
,

K =

[
−6.5903 −3.4565 −5.1008 −5.1201
−2.2067 −1.8261 −1.1364 −1.3507

]
,

ε = 0.8441;

Case α = 1,

X =


0.3672 −0.0746 −0.1970 0
−0.0746 0.4489 −0.1387 0
−0.1970 −0.1387 0.5868 0
0.7136 0.0868 0.0091 −0.1360

,

Y = 0,

Z =

[
−0.0415 −0.0597 −0.4203 −0.3937
−0.5122 −0.5527 −0.0669 0.0723

]
,

K =

[
−6.0548 −3.6073 −4.6181 −4.6627
−1.6815 −1.5876 −0.8672 −1.2115

]
,

ε = 1.0091;
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Case α =
7
6

,

X =


16.2108 −3.7606 −14.2136 0
−3.7606 27.0042 −12.5891 0
−14.2136 −12.5891 43.1088 0
33.1445 8.8254 −6.9612 −12.5588

,

Y = 0,

Z =

[
−3.9891 −7.8174 −21.1116 −15.6831
−19.6255 −31.9141 4.4908 8.0433

]
,

K =

[
−5.2087 −3.1530 −3.3380 −3.4254
−1.4651 −1.4050 −0.6814 −1.0041

]
,

ε = 50.3232.

It is seen from Figures 4 and 5 that when α is 1
2 and 7

6 , respectively, the eigenvalues of the
closed-loop systems are in the stability region. That is, although the original open-loop systems are
not admissible, their corresponding closed-loop systems are admissible under the influence of the
control law (41).
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Figure 5. Eigenvalue perturbation region of system with order α = 7
6 .
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5. Conclusions

In this paper, the different necessary and sufficient conditions for the admissibility and
quadratic admissibility of a class of singular FOSs with fractional order α in the interval
(0, 2) were investigated. In order to analyze the admissibility of singular systems, we
proposed the methods of LMIs. The state feedback controller was given to solve the
problem of quadratic admissibility of norm-bounded uncertain systems with fractional
order α in the range 0 < α < 2 without any separation. When E = I and α = 1, singular
FOSs were simplified into normal FOSs and singular IOSs, respectively. Therefore, these
results extended the Lyapunov stability and quadratic admissibility theorem from normal
IOSs to singular FOSs with fractional order of 0 < α < 2. In the future, we will further
study the H∞ control for singular FOSs with order 0 < α < 2 and the adaptive-sliding
mode fault-tolerant control for interval type-2 fuzzy singular FOSs.
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Appendix A

The partial LMI algorithm for solving matrices X, Q and Z with Theorem 3 is given below.
Figure A1 shows a singular FOS model. The module mainly contains the m-function,

the fractional-order operator, and the integer-order integrator, the latter two combined
into a fractional-order integrator. We adjusted the data in the m-function and integrator
according to the simulation needs to get the required relevant data for the singular FOS.

Algorithm A1: The partial LMI algorithm for solving matrices X, Q and Z with
Theorem 3
1 if alpha>0 and alpha<=1 then
2 theta=1

3 else
4 theta=(alphas − alphac; alphac − alphas)

5 mtheta=size(theta,2);
6 Ie=eye(mtheta);
7 if mtheta==1 then
8 [X, ,sX]=lmivar(2,[n n]);
9 [Q, ,sQ]=lmivar(2,[n-m,n]);

10 [Z, ,sZ]=lmivar(2,[n-m,n]);
11 bigX=lmivar(3,[sX]);
12 bigQ=lmivar(3,[sQ]);
13 bigZ=lmivar(3,[sZ]);

14 else if mtheta==2 then
15 [X, ,sX]=lmivar(2,[n n]);
16 [Q, ,sQ]=lmivar(2,[n-m,n]);
17 [Z, ,sZ]=lmivar(2,[n-m,n]);
18 bigX=lmivar(3,[sX zeros(n,n);zeros(n,n) sX]);
19 bigQ=lmivar(3,[sQ zeros(n-m,n);zeros(n-m,n) sQ]);
20 bigZ=lmivar(3,[sZ zeros(n-m,n);zeros(n-m,n) sZ]);
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Figure A1. Singular FOS model.
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