TLEF: Two-Layer Evolutionary Framework for t-Closeness Anonymization
Download
Full text for this resource is not available from the Research Repository.
Export
You, Mingshan ORCID: 0000-0003-0958-528X, Ge, Yong-Feng ORCID: 0000-0002-5955-6295, Wang, Kate ORCID: 0000-0001-5208-1090, Wang, Hua ORCID: 0000-0002-8465-0996, Cao, Jinli ORCID: 0000-0002-0221-6361 and Kambourakis, Georgios (2023) TLEF: Two-Layer Evolutionary Framework for t-Closeness Anonymization. In: Web Information Systems Engineering – WISE 2023; 24th International Conference, 25-27 Oct 2023, Melbourne, Australia.
Dimensions Badge
Altmetric Badge
Item type | Conference or Workshop Item (Paper) |
URI | https://vuir.vu.edu.au/id/eprint/47437 |
DOI | 10.1007/978-981-99-7254-8_18 |
Official URL | https://link.springer.com/chapter/10.1007/978-981-... |
ISBN | 9789819972531 |
Subjects | Current > FOR (2020) Classification > 4602 Artificial intelligence Current > FOR (2020) Classification > 4605 Data management and data science Current > Division/Research > Institute for Sustainable Industries and Liveable Cities |
Keywords | data anonymization; practical privacy-preserving data publication; genetic algorithms; evolutionary algorithms; two-layer evolutionary framework |
Download/View statistics | View download statistics for this item |
CORE (COnnecting REpositories)