Different pedagogical approaches to motor imagery both demonstrate individualized movement patterns to achieve improved performance outcomes when learning a complex motor skill

[thumbnail of journal.pone.0282647.pdf]
Preview
journal.pone.0282647.pdf - Published Version (1MB) | Preview
Available under license: Creative Commons Attribution

Lindsay, Riki, Komar, John, Chow, Jia Yi, Larkin, Paul ORCID: 0000-0002-0493-4148 and Spittle, Michael ORCID: 0000-0002-6094-5087 (2023) Different pedagogical approaches to motor imagery both demonstrate individualized movement patterns to achieve improved performance outcomes when learning a complex motor skill. PLOS ONE, 18 (11). ISSN 1932-6203

Abstract

Cognitive training techniques such as motor imagery (MI)–cognitive simulation of movement, has been found to successfully facilitate skill acquisition. The MI literature emphasizes the need to accurately imitate key elements of motor execution to facilitate improved performance outcomes. However, there is a scarcity of MI research investigating how contemporary approaches to motor learning, such as nonlinear pedagogy (NLP), can be integrated into MI practice. Grounded in an ecological dynamics approach to human movement, NLP proposes that skilled action is an emergent process that results from continuous interactions between perceptual information of the environment and movement. This emergent process can be facilitated by the manipulation of key task constraints that aim to encourage learners to explore movement solutions that satisfy individual constraints (e.g., height and weight) and achieve successful performance outcomes. The aim of the present study was to explore the application of a NLP approach to MI approach for skill acquisition. Fourteen weightlifting beginners (two female and 12 male) participated in a 4-week intervention involving either NLP (i.e. analogy-based instructions and manipulation of task constraints) or a linear pedagogy (LP; prescriptive instructions of optimal technique, repetition of same movement form) to learn a complex weightlifting derivative. Performance accuracy, movement criterion (barbell trajectory type), kinematic data, and quantity of exploration/exploitation were measured pre-mid-post intervention. No significant differences (p = .438) were observed in the amount of exploration between LP (EER = 0.41) and NLP (EER = 0.26) conditions. Equivalent changes in rearward displacement (R×D) were observed with no significant differences between conditions for technique assessments 1, 2, or 3 (p = .13 - .67). Both NLP and LP conditions were found to primarily demonstrate ‘sub-optimal’ type 3 barbell trajectories (NLP = 72%; LP = 54%). These results suggest that MI instructions prescribing a specific movement form (i.e., LP condition) are ineffective in restricting available movements to a prescribed technique but rather the inherent task constraints appear to ‘force’ learners to explore alternative movement solutions to achieve successful performance outcomes. Although MI instructions prescribing specific techniques have previously supported improved skill development, the current findings indicate that learners may self-organise their movements regardless of MI instructions to satisfy individual and task constraints while achieving improved performance. Therefore, it may be beneficial to consider scripts that are more outcome focused and incorporate task constraints to facilitate learners’ inherent exploration of individual task solutions.

Dimensions Badge

Altmetric Badge

Item type Article
URI https://vuir.vu.edu.au/id/eprint/47477
DOI 10.1371/journal.pone.0282647
Official URL https://journals.plos.org/plosone/article?id=10.13...
Subjects Current > FOR (2020) Classification > 4207 Sports science and exercise
Current > Division/Research > Institute for Health and Sport
Keywords motor imagery; nonlinear pedagogy; skill acquisition; weightlifting
Download/View statistics View download statistics for this item

Search Google Scholar

Repository staff login