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A B S T R A C T   

The design of residential foundation slabs is commonly based on standards that emphasise the 
structural aspects and safety of the structure. Factors related to environmental and economic 
criteria are seldom given due consideration in the design phase. Considering the growing demand 
for sustainable approaches driven mainly by climate change concerns, this study developed a 
smart tool called Multi-OUtput Non-linear Design of Slabs (MOUNDS), which simultaneously 
predicts embodied energy, carbon emission, life cycle cost and deflection of waffle and stiffened 
rafts. MOUNDS considers the environmental, economic, and serviceability criteria of waffle and 
stiffened rafts on soils having varying reactivities. The standard deemed-to-comply design code 
for residential slabs and footings in Australia was investigated to determine the most advanta-
geous foundation type in terms of both sustainability attributes and serviceability performances. 
The developed MOUNDS algorithm has shown accurate predictions. The predicted values of the: 
embodied energy of the residential slabs, greenhouse gas emission of the residential slabs, life 
cycle cost of the residential slabs, and maximum deflection of the residential slabs of waffle rafts 
were found more sustainable and serviceable than stiffened rafts in slight to moderate reactive 
sites. When sites are highly reactive, the difference between the environmental and economic of 
waffle rafts and stiffened rafts was minimal and did not conform to the serviceability limits of the 
Australian design code. This novel study linked and predicted the multi-disciplinary relationship 
between the environmental, economic and structural design aspects of residential slabs through 
machine learning. This is valuable in decision-making throughout the design phase considering 
the multi-faceted aspects of residential footing systems on reactive soils.  

Nomenclature 

AEC Architecture, engineering and construction 
AI Artificial Intelligence 
Af area of residential slab 
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Adam Adaptive moment estimation 
AS Australian Standards 
BRAB Building Research Advisory Board 
Cfc fixed cost 
Cic indirect cost 
CNN Convolutional Neural Network 
D beam depth 
DL Deep Learning 
EPiC Environmental Performance in Construction 
EELCI Embodied energy of footing 
GHG Greenhouse gases 
GHGLCI Greenhouse gas emission of footing 
EEM, GHGM, EET, GHGT, EEC, GHGC, EED, GHGD Lifecycle phases for materials, transportation, construction, and demolition for 

the embodied energy and greenhouse gas emission of footing 
Hs active depth zone 
h thickness 
Ipt, Ips soil indices 
ISO International Organization for Standardization 
L footing span 
LCI Life Cycle Inventory 
LCC Life Cycle Cost 
LRFD Load and Resistance Factor Design 
L(y, ŷ) Loss function 
MOUNDS Multi-OUtput Non-linear Design of Slabs 
MSE Mean Squared Error 
N number of soil layers or entries 
nsb, nst number of the bottom and top steel reinforcements 
PTI Post Tensioning Institute 
p, q Area and concentrated loads applied to the footing 
ReLU Rectified Linear Units 
RMSprop Root Mean Square Propagation 
sizeDLL− 1 size of the previous layer 
tc construction duration 
Vdw, Vdb, Sdw, and Sdb weights and biases that are calculated in iteration or epoch 
W footing width 
WRI Wire Reinforcement Institute 
wi weight feature 
xmin minimum feature 
xmax maximum feature 
y true value 
ŷ predicted value 
ys surface characteristic movement 
z depth from the ground to the middle of the soil layer 
α lateral restraint factor 
β1 and β2 decay rates 
Δa allowable differential footing deflection based on AS 2870 (Design of residential slabs) 
Δmax maximum differential footing deflection (in this study considering x, y, and z directions) 
Δū averaged soil suction 
εms shrink-swell parameter 
λ hyperparameter for regularisation 
Øsb, Øst diameter of bottom and top steel reinforcements 
Øm diameter of mesh reinforcement  

1. Introduction 

1.1. Background of the study 

The architecture, engineering and construction (AEC) industries contribute to more than 40% of global energy consumption and 
more than 30% of the overall greenhouse gas (GHG) emissions [1]. The growing demand for new residential structures due to the 
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increase in population and immigration will necessitate these industries to build adequate and sustainable dwellings [2]. These 
challenges compel the AEC sectors to deliver efficient, long-term and cost-effective solutions with safe and sustainable considerations 
[3]. Quantitative data presented by the United Nations Environment Program [4] have shown that material extraction, manufacturing 
and transportation, construction, maintenance and demolition, known as the embodied phase, contribute 10%–20% of the environ-
mental impacts related to energy and GHG emission. This contribution increases to more than 50% for low-energy buildings like 
single-detached dwellings. The construction of residential foundation slabs is specifically a primary consideration due to the faster rate 
of GHG emission from activities such as earthmoving [5]. Note that residential foundation slabs are termed as residential slabs 
hereafter in the research. However, these environmental aspects are unfortunately overlooked in the design of residential slabs by 
many standards, for instance, the Australian Standard (AS) 2870 by Standards Australia [6] for residential slabs and footings. Thus, this 
study aims to investigate the link between the environmental, economic and structural design aspects of residential slabs and predict 
these sustainability aspects through deep learning (DL) algorithms. 

1.2. Residential footings and soil movement challenges 

Common residential slabs can be classified into four types; these are (1) basements (2) raft slabs, (3) strip footings, and (4) stumps 
[7]. Basements are internal and external perimeter walls on slabs [8]. Raft slabs are concrete flat substructures constructed on the 
ground with internal and edge beams [9]. Strip footings, on the other hand, are linear strips of concrete placed into a trench or 
formwork directly supporting load-bearing walls [6]. Stumps are residential slabs that support suspended floors [7]. 

In the design of the above residential slabs, considerations are given to the soil bearing capacity, structural load capacity, maximum 
settlement and differential ground movement [10]. Different design philosophies against the failure of residential slabs can be adopted; 
these include the overall factor of safety approach, the partial factor of safety approach, the limit state design or Load and Resistance 
Factor Design (LRFD) approach, and the probabilistic approach [11]. In most cases, the serviceability of footings related to settlement 
often controls the design, in particular for shallow foundations and foundations on clayey soils. 

The behaviour of clayey soils has been extensively studied in the literature primarily due to their problematic nature caused by the 
lower mechanical strength when wet [12,13] and the potential for significant volume change based on the water content, commonly 
known as reactivity [14,15]. Reactive soils are found in many countries around the world, including Argentina, Australia, Brazil, 
Canada, China, Egypt, Ethiopia, India, Iran, Malaysia, Mexico, South Africa, Spain, Turkey, the United Kingdom, and the United States 
of America, [16,17]. The reactive soils swell due to moisture content increase and shrink due to moisture content decrease [9,18]. The 
swelling and shrinking of the ground could damage structures, particularly lightweight structures such as pavements, underground 
pipes, and residential structures [19–21]. The cumulative repair expenditures due to such damage is more than twice the loss incurred 
from natural disasters like floods, hurricanes, tornadoes, and earthquakes in the United States [22]. 

Several residential slab design methods for construction on reactive soils have been developed [23]. The Building Research 
Advisory Board [24] proposed the BRAB method, which has a simple approach and yields a more conservative design [25]. Snowden 
[26] improved the BRAB method and developed the Wire Reinforcement Institute (WRI) method, an empirical technique that cal-
culates the required dimensions of residential footings more conservatively. Lytton [27] created a procedure that uses beam-on-mound 
equations and coupled springs. This method was then modified by Walsh and Walsh [28] and Mitchell [29] to propose improved 
methods. The Post Tensioning Institute (PTI) [30] developed an empirical design approach using water balance, soil diffusion, and soil 
particle size, known as the PTI Method. 

1.3. The Australian context 

The Australian Standard 2870 (AS 2870-2011) was developed by Standards Australia [6] to specify the required performance 
criteria and designs of residential slabs for sites with less reactive to highly reactive soils that are susceptible to substantial shrinking 
and swelling ground movements. This standard is primarily based on the methodologies of Walsh and Walsh [28] and Mitchell [29] 
and was created by performing parametric analyses [9]. 

Two approaches are presented in AS 2870-2011 to design residential slabs and footings, being deemed-to-comply design method, 
and maximum differential deflection method. The first approach follows the standard deemed-to-comply designs for stiffened rafts, 
waffle rafts, and strip footings depending on the site classification. The site classification can be determined by either identifying the 
soil borehole profile or estimating the characteristic surface movement (ys) of the subsurface soil using Equation (1), 

ys =
1

100
∑N

n=1

(
IptΔuh

)

n (1)  

where Δū is the averaged soil suction, h is the thickness of the considered layer, N is the number of soil layers, and Ipt is the instability 
index described as 

Ipt =αIps (2)  

where Ips is the shrinkage index and α is the lateral restraint factor with the value taken for the layers in the cracked zone as 1.0 or the 
layers in the uncracked zone calculated as 

α= 2 −
z
5

(3)  
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where z is the depth to the middle of the soil layer from the finished ground level. 
The sites are classified as A, S, M, H1, H2, E and P [6]. Sites with a design depth of soil suction change (Hs) equal to or greater than 3 

m are considered sites with deep-seated moisture changes that can be classified as M-D, H1-D, H2-D or E-D. These sites are commonly 
located in dry climates with corresponding Hs equal to or greater than 3 m in depth. Table 1 summarises the criteria for the above-
mentioned classification scheme. 

The standard-design procedure based on the site classification specified in AS 2870 -2011 only applies to Classes A, S, M, M-D, H1, 
H1-D, H2 and H2-D, depending on the type of residential slab being designed. In addition, these deemed-to-comply designs shall not 
have a footing length greater than 30 m and a structure height more than 8.5 m [6]. 

The second design method can be followed if the standard deemed-to-comply designs do not meet the criteria specified in AS 2870- 
2011. In this approach, the design should satisfy the maximum differential deflection of the residential slabs (Δmax) based on the form 
of construction specified in Table 2. In the absence of information, the serviceability limit shall be taken as the lesser of the two values 
between the maximum differential deflections as a function of span and the specified differential deflection limits in Table 2. 

A comparison of design methods for residential slabs was conducted by Abdelmalak [25] and Teodosio et al. [23] using the second 
design method of AS 2870-2011. The comparison revealed that maximum differential deflection method, together with the Walsh 
Method and Mitchell method, tend to calculate lower structural dimension requirements than the aforementioned design approaches 
such as the BRAB, WRI, and PTI Methods. This may be critical in areas with higher reactive soil movement, since more conservative 
design methods can accommodate higher values of ys [31]. Therefore, a re-evaluation of the design philosophy is imperative to achieve 
a more serviceable substructure. In addition, the integration of economic and environmental factors into the design process will lead to 
more practical and sustainable residential slabs compared to the current practice. 

1.4. Application of artificial intelligence in reactive soil 

The application of Artificial Intelligence (AI) in geotechnical has been observed since early 1980s. The applications were limited 
due to the restricted computing technologies, data availability, storage. This steadily increased in the late 2010s. The application of AI 
is specifically useful for soil analyses due to its anisotropic and arbitrary behaviour. Early application of AI techniques to geotechnical 
engineering used expert systems, fuzzy logic, and pattern recognition for assessing abutments, landslide, building foundation, and 
mines (Adams et al., 1989; Gupta and Bodechtel, 1982; Scoble et al., 1986; Wong et al., 1989). This was extended to the use of an 
artificial neural network (ANN), hybrid expert systems, and image analysis of soil parameters and geo-structures (Chan et al., 1995; 
Kayen et al., 1999; Maher and Williams, 1991; Oliphant, 1999). The progress in computing, data availability, and storage increased the 
application of AI to hazard mitigation, geo-structural health monitoring, and nanotechnology using Deep Learning (DL) and Con-
volutional Neural Network (CNN), clustering, hybrid genetic algorithms, and fuzzy logic (Abbas Abbaszadeh Shahri, 2016; Amezquita- 
Sanchez et al., 2016; Congress and Puppala, 2020; Kadivar et al., 2011). 

In geotechnical engineering, clay has observed noteworthy interest due to its lower mechanical strength compared to other types of 
soil. This is specifically true in wetter states causing larger volumetric variations due to changes in moisture content (Ural, 2018). 
Clayey soils can be found in many areas such as the United States of America, Canada, Mexico, Guatemala, Venezuela, Colombia, Peru, 
Bolivia, Venezuela, Brazil, Argentina, the United Kingdom, Spain, Egypt, Sudan, Ethiopia, Turkey, India, China, Malaysia, and 
Australia. Most clayey soils are reactive, which undergo significant volume changes due to variation in soil water content, leading to 
ground swelling when their water content increases and shrinking when their water content decreases [2]. Such swelling and shrinking 
behaviour induce damage to lightweight structures such as pavements, underground pipes, and residential structures (Johnson, 1969; 
[15,19]). Reactive soils induced distress to physical infrastructures have been reported globally, including Australia, China, Egypt, 
India, Israel, South Africa, the United Kingdom, and the United States of America, resulting in significant socio-economic impact (Li 
et al., 2014). Infrastructure rehabilitation and construction expenditures is more than twice the loss incurred from natural disasters 
such as floods, hurricanes, tornadoes, and earthquakes as a result of soil movements [22]. 

The challenges due to reactive soils require complex multi-physical non-linear analysis for a heterogeneous and anisotropic soil 
layers. The application of AI algorithms to reactive soils can allow the processing of big data to build non-linear models and predict 
more insightful outcomes (Theodoridis, 2020). The first recorded AI application to reactive soil was conducted by Hallaire (1993). This 

Table 1 
Site classification based on soil reactivity [6].  

Site 
Class 

Foundation Expected ys 

(mm) 

A Sand and rocks without ground movement 0 
S Slightly reactive foundation with low clay or silt portion 0 < ys ≤ 20 
M Moderately reactive foundation with clay or silt 20 < ys ≤ 40 
M-D Moderately reactive foundation with clay or silt and Hs ≥ 3 m 20 < ys ≤ 40 
H1 Highly reactive foundation 40 < ys ≤ 60 
H1-D Highly reactive foundation and Hs ≥ 3 m 40 < ys ≤ 60 
H2 Very highly reactive foundation 60 < ys ≤ 75 
H2-D Very highly reactive foundation and Hs ≥ 3 m 60 < ys ≤ 75 
E Extremely highly reactive foundation ys > 75 
E-D Extremely highly reactive foundation and Hs ≥ 3 m ys > 75 
P Soft or unstable foundations, soft clay, loose sands, landslip, mine subsidence, collapsing soils, erosion prone, reactive soil 

subjected to abnormal moisture conditions (soil suction variation >1.2 pF) 
–  
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is ten years after the first AI application in geotechnical engineering. Applications of AI in reactive soil research were related to soil 
characterisation and strength prediction, soil and structure performance, clay cracking and desiccation, and soil movement and sta-
bilisation (Gong et al., 2004; Huang et al., 2019; Mahfouz et al., 2007; Shengquan et al., 2015; Yin et al., 2018). These implemented AI 
techniques such as artificial neural networks (ANN), support vector machine (SVM), genetic algorithms (GA), fuzzy logic, and image 
analysis (Congress and Puppala, 2020; Das et al., 2010; Julina and Thyagaraj, 2019; Mozumder and Laskar, 2015; Samui et al., 2011). 
Despite these AI applications, AI’s potential is not fully utilised to study reactive soils. 

1.5. Objectives and framework 

The most common types of residential slabs in Australia are the waffle raft and the stiffened raft accounting for around 65% of the 
new and existing single-detached dwellings [32]. Slab structures, such as waffle rafts and stiffened rafts, have been commonly used as 
suitable residential slabs for lightweight structures on reactive soils due to the uniform distribution of applied loads from the su-
perstructure and the pressure from the swelling ground [33]. This could be the reason why AS 2870-2011 presents standard 
deemed-to-comply designs for both waffle rafts and stiffened rafts dependent on the site classification (Table 1) and form of con-
struction (Table 2). In recent years, a great demand for houses has been observed in Australia due to the increasing population and 
immigration. In 2016, the number of recorded new dwellings was around 71,000, which proliferated to approximately 134,000 in 
2021 [32]. Most of these new dwellings have residential slabs designed based on the standard deemed-to-comply design approach of 
AS 2870-2011. In this study, a Multi-OUtput Non-linear Design of Slabs (MOUNDS) algorithm is developed that predicts the embodied 
energy, carbon emission, life cycle cost and deflection of waffle rafts and stiffened rafts based on the provided deemed-to-comply 
designs in AS 2870. Thereby providing a multi-faceted approach for sustainable design of residential slabs on reactive soils. 
MOUNDS enables simultaneous consideration of the environmental, economic and serviceability aspects of residential slabs. These 
sustainability, economic, and serviceability attributes of waffle and stiffened rafts are compared to provide necessary insights for 
prospective homeowners and building professionals to choose the safer, more practical and more sustainable option of residential 
slabs. 

2. Methodology 

The multi-faceted smart estimator, MOUNDS, was developed using DL algorithms that incorporates sustainability aspects in res-
idential slabs design. MOUNDS simultaneously predicts four target outputs as listed below.  

• the embodied energy of the residential slabs, EELCI,  
• the greenhouse gas emission of the residential slabs, GHGLCI,  
• the life cycle cost of the residential slabs, LCC, and  
• the maximum deflection of the residential slabs, Δmax. 

The developed multi-output DL model can be used to compare the widely used waffle rafts and stiffened rafts based on the 
standards deemed-to-comply designs in AS 2870. The methodologies to calculate the target outputs are discussed in this section, along 
with the datasets and MOUNDS. 

Table 2 
Allowable differential footing deflection (Δa) for the design of footings and rafts [6].  

Form of construction Maximum differential deflections as a function of span (mm) Specified differential deflection limits (mm) 

Clad frame L/300 40 
Articulated masonry veneer L/400 30 
Masonry veneer L/600 20 
Articulated full masonry L/800 15 
Full masonry L/2000 10  

Fig. 1. Life-cycle analysis system boundary for waffle rafts and stiffened rafts (modified after Comité Européen De Normalisation [36]).  
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2.1. Life cycle inventory for the embodied energy and GHG emission 

Life-cycle inventory (LCI) was used to estimate the environmental impacts of the most commonly used residential slabs in Australia 
(i.e. waffle rafts and stiffened rafts) based on [34,35]. The LCI assists in investigating opportunities for improvements in product 
sustainability and addresses the estimation of environmental impacts throughout the life cycle of a product [35]. The functional units 
in the current study were the EELCI in GJ, and GHGLCI in ton, for the whole waffle rafts and stiffened rafts. The life cycle system 
boundary was investigated from cradle-to-grave, as shown in Fig. 1, which was adopted from EN 15978 by Comité Européen De 
Normalisation [36]. The life cycle stages of production (A1–A3), transport to the site (A4), construction (A5), and demolition (C) were 
taken into account, leaving out the operation and maintenance and reuse and recycling stages (B and D), which are out of the scope of 
this study. 

The estimation of EELCI and GHGLCI was based on the system boundary in Fig. 1 and calculated using Equations (4) and (5), 

EELCI =EEM + EET + EEC + EED (4)  

GHGLCI =GHGM + GHGT + GHGC + GHGD (5)  

where EEM and GHGM are the total embodied energy and greenhouse gas of materials and components, EET and GHGT are the total 
embodied energy and greenhouse gas emission due to transportation, EEC and GHGC are the total embodied energy and greenhouse gas 
emission of due to construction, EED and GHGD are the total embodied energy and greenhouse gas emission due to demolition. 

The main resources used for LCI calculations were the EPiC database by Crawford et al. [37], the Australian National LCI (AusLCI) 
database by Grant [38], and the study conducted by Teodosio et al. [3]. The distance from the concrete batching plant, steel 
manufacturing plant, and excavator to the construction site was taken as 50 km, a common assumed distance based on an interview 
with practicing professionals, to quantify the EET and GHGT. The concrete wastage was specified to be 15%, in accordance with the 
practice of builders and contractors [37]. 

The values of EELCI and GHGLCI were calculated using the energy and carbon emission factors listed in Table 3. Sample calculations 
are presented in Table A1 and Table A2 for waffle rafts and stiffened rafts in an H2 site, respectively. 

2.2. Life cycle cost analysis 

The values of LCC of waffle rafts and stiffened rafts were calculated using ISO [39], considering the construction cost. This study 
assumed that the operation, occupancy and disposal costs are negligible for lightweight structures such as single-detached dwellings. 
The LCC was calculated using Equation (6). 

LCC=Cfc +
∑

CdcAf +
∑

Cictc (6)  

where Cfc is the fixed cost, Cdc is the direct cost proportional to the area of the residential slab Af, Cic is the indirect cost proportional to 
the construction period, and tc is the duration of the construction. The primary resource used for the different material and labour costs 
was Rawlinsons [40]. Supplementary data from case studies, quotes and estimates were used when data were inaccessible in the cost 
guide of Rawlinsons [40]. Example calculations are presented in Table A3 for a waffle raft and Table A4 for a stiffened raft considering 
an H2 site. 

2.3. Serviceability analysis using a hydro-mechanical model 

Parametric simulations were performed using the hydro-mechanical Finite Element Model developed by Teodosio [2] using 
ABAQUS [41]. Simulations were conducted for both waffle rafts and stiffened rafts with varying soil, structural, and environmental 

Table 3 
Sample LCI for a waffle raft constructed on an H2 site with articulated masonry veneer (Af = 300 m2).  

Item Description Unit Qty Embodied Energy, EELCI Greenhouse Gas, GHGLCI 

Rate (GJ) Amount (GJ) Rate (tonCO2) Amount (tonCO2) 

A Materials 
A1 20 MPa concrete m3 36.37 0.1760 6.4014 0.3390 12.3299 
A2 Steel reinforcement t 1.35 48.7000 65.6415 0.0029 0.0039 
A3 Waffle pod EPS kg 35.61 0.0830 2.9554 0.0006 0.0217 
A4 Sand subgrade m3 30.00 0.2600 7.8000   
B Transportation 
B1 Concrete m3 36.37 0.1980 7.2016 0.0058 0.2096 
B2 Steel kg 1.35 0.0010 0.0013 0.0000 0.0000 
B3 Excavator in/out km 100.00 0.0180 1.8000 0.0013 0.1271 
B4 Waffle pod (EPS) delivery kg 35.61 0.0010 0.0356 0.0000 0.0010 
C On-site construction 
C1 Excavator (0.2 m3 bucket) h 8.82 0.1080 0.9529 0.0131 0.1158 
C2 Concrete pump h 0.79 0.5400 0.4270 0.0461 0.0365 
D End-of-life 
D1 Demolition t 77.49 0.0070 0.5424 0.0005 0.0418 
Total 93.76  12.89  
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parameters. These simulations were divided based on the shrinking and swelling movement of reactive soils; (1) waffle rafts on the 
shrinking ground, (2) waffle rafts on the swelling ground, (3) stiffened rafts on the shrinking ground, and (4) stiffened rafts on the 
swelling ground. The target output was Δmax, and the input features were based on the general principles outlined in AS 2870.4.6 by 
Standards Australia [6] as follows:  

• characteristic surface movement or the maximum ground movement, ys,  
• beam depths, D,  
• area of the residential slabs (Af) based on L and W,  
• number of the bottom and top steel reinforcements, nsb and nst,  
• bottom and top steel reinforcement, Øsb and Øst,  
• mesh reinforcement diameter, Øm,  
• area and loads applied to a stiffened raft or a waffle raft, p and q,  
• active depth zone, Hs, and  
• shrink-swell parameter, εms. 

2.4. Datasets for the multi-output DL algorithm 

The values of EELCI, GHGLCI, LCC and Δmax were calculated with varying values of the input features within a given range. The total 
number of data entries for waffle rafts and stiffened rafts were 3120 and 7020 for waffle rafts and stiffened rafts, respectively. This 
difference in number is because of the difference in specifications for waffle rafts and stiffened rafts in the deemed-to-comply design 
specified in AS 2870. Some specifications in waffle rafts are similar or overlapping with specifications in another site classification or 
form of construction. For instance, a construction with articulated masonry veneer on a Class S site has the same deemed-to-comply 
design as that of a Class M site with the same form of construction for waffle rafts. In the deemed-to-comply stiffened raft designs, such 
overlapping cases are minimal. 

The datasets for waffle rafts and stiffened rafts were split into training, validation and testing sets with a ratio of 60% training, 20% 
validation and 20% testing as recommended by data science practice [42]. The validation set was used during the training phase of the 
deep learning model to provide an unbiased evaluation of its performance and to fine-tune the model’s parameters. On the other hand, 
the test set was used after the model has been fully trained to assess the its performance on completely unseen data. The splitting of 
dataset resulted into training sets of 1872 for waffle rafts and 4212 for stiffened rafts. The final data entries for the validation and 
testing set were 624 for the waffle raft and 1404 for the stiffened raft. The range of values of each parameter is presented in Table 4. 

2.5. Development of the multi-output deep learning algorithm 

MOUNDS was used to obtain the acceptable weights for the prediction of EELCI, GHGLCI, LCC and Δmax. The DL algorithm had an 
input layer, five hidden layers with 256 units, and an output layer, as illustrated in Fig. 2. This deep learning architecture was 
determined by trial and error and was observed to produce acceptable results. The input layer contains the input vector extracted from 
AS 2870-2011 dependent on the deemed-to-comply design specifications, as shown in Table 4. 

The DL algorithm for waffle rafts had input features comprised of ys, D, Af, Øsb, Øm, p, q and Hs. As specified in AS 2870, depending 
on the site classification and the form of construction, the deemed-to-comply design of waffle rafts only requires the specification of the 
Øsb since the number of steel reinforcements is stipulated as one reinforcing bar for the internal beams and three reinforcing bars for the 
external beams. The mesh reinforcement diameter can be either a 7 or 8 mm bar on a grid of 200 mm spacing, known as SL72 or SL82. 
The design slab length, L, was limited to 20 m. 

The DL algorithm for stiffened rafts had input features comprised of ys, D, Af, nsb, Øsb, nst, Øst, p, q and Hs. The number of re-
inforcements nsb and nst are necessary to specify the deemed-to-comply designs depending on the site classification and the form of 
construction. The value of Øm is a constant 7 mm bar (SL72) for L less than 18 m, which is the case in the considered lengths in this 
study. 

The five hidden layers in Fig. 2 were observed to achieve acceptable computational efficiency and accurate results. The DL training 
and validation process had four stages, pre-processing, random initialisation, forward propagation, and backward propagation. The 

Table 4 
Input features of the multi-output DL algorithm for waffle and stiffened rafts.  

Input feature Waffle raft Multi-output DL algorithm Stiffened raft Multi-output DL algorithm 

Minimum value Maximum value Minimum value Maximum value 

ys 20 mm 75 mm 20 mm 75 mm 
D 0.26 m 0.61 m 0.3 m 1.1 m 
Af 50 m2 300 m2 50 m2 300 m2 

nsb – – 2 pcs 3 pcs 
Øsb 12 mm 16 mm 12 mm 16 mm 
nst – – 0 3 pcs 
Øst – – 0 16 mm 
Øm 7 mm 8 mm – – 
p 2500 N/m2 7500 N/m2 2500 N/m2 7500 N/m2 

q 6600 N/m 19500 N/m 6600 N/m 19500 N/m 
Hs 2 m 4 m 2 m 4 m  
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Min-max scaling was applied to the training and validation data, equal to 2496 and 5616 data entries for the waffle raft and stiffened 
raft DL model. Min-max scaling is described as 

Min − max scaling=
x − xmin

xmax − xmin
, (7)  

where x is the feature index, xmin is the minimum feature value in the dataset, and xmax is the maximum feature value in the dataset. 
The weights of the network were randomly initialised with values close to zero. This disturbs the symmetry of the weights to enable 

the neurons to prevent processing error and calculate different values that will lead to acceptable results. The random initialisation by 
He et al. [43] was used to specify initial weights by multiplying the factor 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2

sizeDLL− 1,

√

(8)  

where sizeDLL− 1 is the DL layer prior to the current being analysed. 
The mean squared error (MSE) was used as the loss function, L(y, ŷ), that is commonly used in regression models. The calculation of 

L(y, ŷ) involves the squaring of the mean differences between a true value (y) and a predicted value (ŷ) by the multi-output DL model. 
L2 regularisation is used to prevent overfitting described by a penalty function in the second term of Equation (6), 

L(y, ŷ)=
1
N

∑N

i=0
(yi − ŷi)

2
+ λ

∑N

i=0
wi

2, (9)  

where λ is the hyperparameter for regularisation, and wi is a feature weight. λ commonly has a value greater than zero, with caution on 
the usage of large values of λ that may lead to large weights and underfitting. The value of N denotes the total number of data entries. 

Fig. 2. Multi-output deep learning architecture.  

B. Teodosio et al.                                                                                                                                                                                                      



Journal of Building Engineering 80 (2023) 107983

9

The Rectified Linear Units (ReLU) proposed by Nair and Hinton [44] was used in the forward propagation as an activation function 
described as 

f (x)=max(0, xi)=

{
xi, if xi ≥ 0
0, if xi < 0 , (10)  

where xi is the input value. 
The adaptive moment estimation or “Adam” optimisation by Kingma and Ba [45] was performed for the backward propagation. 

The Adam stochastic optimisation is widely implemented due to its efficiency. Adam optimisation method combines the momentum 
gradient descent and the Root Mean Square Propagation (RMSprop). The Adam optimisation algorithm is described as, 

Vdw= β1Vdw + (1 − β1)dw, (11)  

Vdb= β1Vdb + (1 − β1)db, (12)  

Sdw= β2Sdw + (1 − β2)dw2, and (13)  

Sdb= β2Sdb + (1 − β2)db2, (14)  

where Vdw, Vdb, Sdw, and Sdb are the weights and biases that are calculated in iteration or epoch, t. The initial values of Vdwi, Vdbi, 
Sdwi, and Sdbi are assigned to zero and then will be backpropagated for each weight. The calculated values of Vdw, Vdb, Sdw, and Sdb 
are then corrected and updated using the power of the current epoch, t, described below 

w=w − α Vdw
corrected

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sdw

corrected + ϵ
√ = w − α

Vdw
1− β1

t
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sdw

1− β2
t + ϵ

√ , and (15)  

b= b − α Vdb
corrected

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Sdb

corrected + ϵ
√ = b − α

Vdb
1− β1

t
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Sdb
1− β2

t + ϵ
√ . (16) 

The values of the hyperparameters were specified as 5.0 × 10− 5 for the learning rate, 0.9, 0.999, 5.0 × 10− 6 for the decay rates β1 
and β2, and ϵ, and unity for the value of λ for all DL networks through fine-tuning. 

The forward and backward propagation were implemented in a loop until the user-specified epoch was achieved. The iteration of 
the optimisation loop comprised of forward propagation using ReLU, L(y, ŷ) calculation, backward propagation using Adam, and 
weights updating. The epoch of the final DL run was specified to be 1000. This resulted in an optimum and stable L(y, ŷ) curve with 
learning periods of 404 s for waffle rafts and 990 s for stiffened rafts. 

3. Results 

The results of the calculated EELCI, GHGLCI, LCC and Δmax using the developed multi-output DL model are discussed in this section. 
The validation of MOUNDS is first presented, followed by the comparison of the deemed-to-comply designs between waffle rafts and 
stiffened rafts. 

The calculated values of L(y,ŷ) for the training and validation sets using Equation (9) are shown in Fig. 3. The loss values of waffle 
rafts (Fig. 3a) and stiffened rafts (Fig. 3b) show typical learning curves, which are indicative algorithm tools that incrementally learn 
from training datasets. The ideal learning curve is characterised by loss values of training and validation lines that decreased to the 

Fig. 3. Calculated loss functions, L (y,ŷ), of training and testing sets for (a) waffle rafts and (b) stiffened rafts.  
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point of stability with a minimal gap. The learning curve of the multi-output model obtained overlapping training and validation lines 
corresponding to an algorithm that is neither under-fitting nor overfitting, as shown in Fig. 3. The training loss for the waffle raft DL 
model was 8.87 × 10− 04, whilst the calculated validation loss was 1.40 × 10− 03. On the other hand, the training loss for the stiffened 
raft DL model was 1.47 × 10− 04, whilst the validation loss was 1.31 × 10− 04. 

3.1. Training, validation and testing of waffle rafts 

The training, validation, and testing results for the waffle raft model verify the capacity of MOUNDS to reliably predict the values of 
EELCI, GHGLCI, LCC and Δmax. The R2 values for the training, validation and testing of the model ranged from 0.98 to 1.00, showing a 
near-perfect match between the predicted and actual values of the target outputs. Sample comparisons between the predicted and 
actual values of the target outputs are presented in Fig. 4. 

All values of RMSE were observed to be less than one. The normalised root mean squared errors, RMSEn, were calculated for each 
target output, following the equation below, 

RMSEn =
RMSE

xmax − xmin
=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(yi − ŷi )

2

N

√

xmax − xmin
. (17) 

The values of RMSEn were observed to be close to zero for predicting the values of EELCI and GHGLCI. In predicting the values of LCC, 
the estimated RMSEn were less than 1%. For the prediction of the values of Δmax, the values of RMSEn were calculated to be less than 
3%. This can be due to the non-linear relationship of the estimated value of Δmax with the input features, as opposed to that of the EELCI, 
GHGLCI, and LCC. The observed values of RMSEn corroborate the reliability of the multi-output DL model for waffle rafts. The highest 
values of RMSEn were calculated in the prediction of the values of Δmax (2.1–2.5%). This can be attributed to the extraction of the 
maximum values of Δmax in both shrinking and swelling scenarios to make the model simpler. 

3.2. Training, validation and testing of stiffened rafts 

The capability of the stiffened raft model of MOUNDS to predict the values of EELCI, GHGLCI, LCC and Δmax was verified by 
comparing the actual and predicted values of the training, validation, and testing sets. Comparable to the waffle raft multi-output DL 
model, The R2 values for the training, validation, and testing were 1.00, showing a close to perfect match between the predicted and 
actual values of the target outputs. Sample comparisons between the predicted and actual values of the target outputs are presented in 

Fig. 4. Predicted and actual values of (a) EELCI, (b) GHGLCI, (c) LCC and (d) Δmax for the testing of the waffle raft multi-output DL model.  
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Fig. 5. The values of RMSE for the stiffened raft DL model were observed to be less than one. The values of RMSEn were observed to be 
close to zero for predicting the values of EELCI and GHGLCI. In predicting the values of LCC, the estimated RMSEn was approximately 
0.5%. For the prediction of the values of Δmax, the values of RMSEn were calculated to be less than 2%. These values are comparably 
lower than the waffle raft DL model. This may be due to the difference in the total number of data entries used, 3120 for waffle rafts and 
7020 for stiffened rafts. It is a general rule in machine learning that the greater the size of the data set, the higher the accuracy of 
predictions. The observed values of RMSEn further validate the reliability of the multi-output DL model for stiffened rafts. 

3.3. Deep learning multi-output results using deemed-to-comply designs 

The developed multi-output DL model for waffle rafts and stiffened rafts were used to compare the deemed-to-comply design 
specifications in AS 2870. The considerations involved the comparison of designs based on two forms of construction, the articulated 
masonry veneer (Table 5) and the articulated full masonry (Table 6) for each site class. Tables 5 and 6 present a colour heat map for 
each target output, EELCI, GHGLCI, LCC and Δmax. 

The comparison of EELCI, GHGLCI, LCC between waffle rafts and stiffened rafts with an articulated masonry veneer construction 
shows that a stiffened raft on an H2-D site has the highest values. Contrarily, the lowest values of these target outputs were for a waffle 
raft on a class S site. The values of Δmax was mainly dependent on the site classification. From Tables 5 and it is evident that sites with Hs 
greater than or equal to 3 m (denoted by a suffix “D”) tend to have higher deformation than the sites of classifications with Hs less than 
3 m. 

The comparison of the target outputs between waffle rafts and stiffened rafts with an articulated full masonry had similarly 
revealed that a stiffened raft on H2-D site had the highest values of EELCI, GHGLCI, LCC and Δmax. The lowest values of these target 
outputs were for a waffle raft on a class S site. However, deemed-to-comply designs for waffle rafts are limited and cannot accom-
modate H1-D, H2 and H2-D sites for construction with articulated full masonry. 

4. Discussion 

The calculated values of EELCI, GHGLCI, LCC and Δmax based on the deemed-to-comply designs for an articulated masonry veneer had 
found that waffle rafts performed better than stiffened rafts in all aspects considered in this study, particularly in S, M and M-D sites. 
When the site becomes more reactive, the difference between the performance of waffle rafts and stiffened rafts becomes less 
significant. 

Fig. 5. Predicted and actual values of (a) EELCI, (b) GHGLCI, (c) LCC and (d) Δmax for the testing of the stiffened raft multi-output DL model.  
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Table 5 
Predicted values based on the deemed-to-comply designs specified in AS 2870 for waffle rafts and stiffened rafts with articulated masonry veneer construction (Af = 300 
m2 with L = W = 17.3 m).  

Site Class EELCI (GJ) GHGLCI (ton CO2-eq) LCC (x 1000 AUD) Δmax (mm) 

waffle stiffened waffle stiffened waffle stiffened waffle stiffened 

S 59.85 66.35 9.74 11.02 23.18 23.68 4.87 19.51 
M 59.7 73.77 9.78 11.75 23.21 26.02 8.87 22.76 
M-D 59.57 79.03 9.8 11.72 23.28 27.35 24.84 31.41 
H1 70.14 80.61 10.3 11.83 24.97 27.2 15.06 27.57 
H1-D 70.35 87.32 10.34 12.65 25.28 30.12 33.87 34.68 
H2 75.52 82.61 10.44 13.01 26 29.45 21.16 28.85 
H2-D 76.98 111.87 11.02 14.12 27.45 36.45 34.69 36.27  

Table 6 
Predicted values based on the deemed-to-comply designs specified in AS 2870 for waffle rafts and stiffened rafts with articulated full masonry (Af = 300 m2 with L = W 
= 17.3 m).  

Site Class EELCI (GJ) GHGLCI (ton CO2-eq) LCC (x 1000 AUD) Δmax (mm) 

waffle stiffened waffle stiffened waffle stiffened waffle stiffened 

S 65.88 87.07 10.43 12.37 25.27 29.72 6.09 18.66 
M 68.92 88.32 11.95 13.3 28.88 31.56 9.45 21.5 
M-D 69.39 103.81 12.07 13.23 29.25 33.67 18.06 32.65 
H1 78.8 114.28 11.93 14.26 29.6 37.33 15.11 25.28 
H1-D – 114.79 – 14.54 – 37.96 – 33.51 
H2 – 117.45 – 15.94 – 41.33 – 28.32 
H2-D – 117.09 – 15.86 – 41.03 – 30.91  

Fig. 6. Normalised calculated values of (a) EELCI (Energy), (b) GHGLCI (CO2 eq), (c) LCC (Cost) and (d) Δmax (Deflection) for waffle rafts and stiffened rafts with 
articulated masonry veneer based on Table 5. 
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A few calculated values of Δmax had exceeded the limit stipulated in AS 2870 (also shown in Table 2), which are between L/400 
(17,300 mm/400 = 43 mm) and 30 mm for an articulated masonry veneer construction. The waffle rafts and stiffened rafts constructed 
on H1-D and H2-D sites have exceeded the deflection limit (i.e., 30 mm) as expected. 

The values presented in Table 5 were normalised and are presented using radar charts in Fig. 6 for a better and more insightful 
comparison. The relative advantages and disadvantages of waffle rafts and stiffened rafts with respect to site classifications is 
demonstrated in Fig. 6. 

The comparison between waffle rafts and stiffened rafts with articulated masonry veneer construction shows that the relative 
values of EELCI, GHGLCI, LCC and Δmax increase as the site classification becomes more reactive. The effect of deeper Hs (≥3 m) also had 
a significant contribution to the increase in Δmax. Based on the stipulated designs in AS 2870, waffle rafts are a more sustainable, 
economical and safer option for single-detached dwellings with the lowest values of EELCI, GHGLCI, LCC and Δmax for all site 
classifications. 

The calculated values of EELCI, GHGLCI, LCC and Δmax based on the deemed-to-comply designs for an articulated full masonry show 
similar behaviours as for the articulated masonry veneer. It is important to note that stiffened rafts can accommodate highly reactive 
soils with deep-seated Hs layers, unlike waffle rafts. This is due to the limited deemed-to-comply designs for waffle rafts for H1-D, H2 
and H2-D sites for construction with articulated full masonry. 

Most calculated values of Δmax have exceeded the limit stipulated in AS 2870-2011 (also shown in Table 2), which are the lower 
values between L/800 (17,300 mm/800 = 22 mm) and 15 mm for an articulated masonry veneer construction. Only waffle rafts 
constructed on S and M sites have values below the deflection limit, which is 15 mm. 

The values presented in Table 6 were also normalised and presented using radar charts in Fig. 7. It can be observed that the relative 
values of EELCI, GHGLCI, LCC and Δmax increase as the site classification become more reactive. The findings also reflect that waffle rafts 
are a more sustainable, economical and safer option for single-detached dwellings with the lower values of EELCI, GHGLCI, LCC and Δmax 
than stiffened rafts for all site classifications. However, the deemed-to-comply designs for waffle rafts in AS 2870 for full masonry 
constructions are limited to S, M, M-D and H1 sites [6]. 

5. Conclusions 

Waffle rafts and stiffened rafts are the most common types of residential slabs in Australia, accounting for approximately 65% of the 
new and existing single-detached dwellings based on the Australian Housing Data by CSIRO. Due to the suitability of these residential 
slabs for residential structures on reactive soils, AS 2870-2011 had stipulated standard deemed-to-comply designs for both waffle rafts 
and stiffened rafts dependent on the site classification and form of construction. However, even though safe designs for residential 
slabs are important, a multi-faceted approach for a smarter and more sustainable design is imperative to alleviate the effect of changing 
climate. This study developed MOUNDS to predict the embodied energy, greenhouse gas emission, life cycle cost and deflection of 
waffle rafts and stiffened rafts. MOUNDS was also used to compare the provided deemed-to-comply designs in AS 2870 for waffle rafts 
and stiffened rafts to determine the optimum option. 

MOUNDS was observed to accurately predict results in the training, validation and testing stages; the values of R2 for all scenarios 
were approximately equal to one, and the values of RMSE were below one. Furthermore, the values of RMSEn were less than 3%. The 
comparison of the standard deemed-to-comply designs between waffle rafts and stiffened rafts observed that embodied energy, carbon 
emission, life cycle cost and deflection of residential slabs increased when the site classification was more reactive. The effect of deeper 
reactive soil layers also had a significant contribution to the increase in footing deflection. Based on the stipulated designs in AS 2870- 
2011, waffle rafts were a more sustainable, economical and safer option for single-detached dwellings with the lowest values of 
embodied energy, greenhouse emission, life cycle cost and deflection. However, standard deemed-to-comply designs for waffle rafts 
with a full masonry construction are limited to slightly and moderate reactive sites. 

Most calculated values of Δmax have exceeded the limit stipulated in AS 2870-2011 (also shown in Table 2), which are the lower 
values between L/800 (17,300 mm/800 = 22 mm) and 15 mm for an articulated masonry veneer construction. Only waffle rafts 
constructed on S and M sites have values below the deflection limit, which is 15 mm. 

Based on the findings of this study, there is a need for design improvement of the deemed-to-comply specifications to obtain de-
flections within serviceability limits. This study successfully linked and predicted the complex relationship between the environ-
mental, economic and structural design aspects of residential slabs through deep learning that is valuable in decision-making 
throughout the design phase. Future work related to this study includes consideration of the phases and circularity of residential slabs 
in their life cycle. 
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Appendix  

Table A1 
Sample LCI for a waffle raft constructed on an H2 site with articulated masonry veneer (Af = 300 m2).  

Item Description Unit Qty Embodied Energy, EELCI Greenhouse Gas, GHGLCI 

Rate (GJ) Amount (GJ) Rate (tonCO2) Amount (tonCO2) 

A Materials 
A1 20 MPa concrete m3 36.37 0.1760 6.4014 0.3390 12.3299 
A2 Steel reinforcement t 1.35 48.7000 65.6415 0.0029 0.0039 
A3 Waffle pod EPS kg 35.61 0.0830 2.9554 0.0006 0.0217 
A4 Sand subgrade m3 30.00 0.2600 7.8000   
B Transportation 
B1 Concrete m3 36.37 0.1980 7.2016 0.0058 0.2096 
B2 Steel kg 1.35 0.0010 0.0013 0.0000 0.0000 
B3 Excavator in/out km 100.00 0.0180 1.8000 0.0013 0.1271 
B4 Waffle pod (EPS) delivery kg 35.61 0.0010 0.0356 0.0000 0.0010 
C On-site construction 
C1 Excavator (0.2 m3 bucket) h 8.82 0.1080 0.9529 0.0131 0.1158 
C2 Concrete pump h 0.79 0.5400 0.4270 0.0461 0.0365 
D End-of-life 
D1 Demolition t 77.49 0.0070 0.5424 0.0005 0.0418 
Total 93.76  12.89   

Fig. 7. Normalised calculated values of (a) EELCI (Energy), (b) GHGLCI (CO2 eq), (c) LCC (Cost) and (d) Δmax (Deflection) for waffle rafts and stiffened rafts with 
articulated full masonry based on Table 6. 
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Table A2 
Sample LCI for a stiffened raft constructed on an H2 site with articulated masonry veneer (Af = 300 m2).  

Item Description Unit Qty Embodied Energy, EELCI Greenhouse Gas, GHGLCI 

Rate (GJ) Amount (GJ) Rate (tonCO2) Amount (tonCO2) 

A Materials 
A1 20 Mpa concrete m3 46.24 0.1760 8.1390 0.3390 15.6768 
A2 Steel reinforcement t 1.60 48.7000 78.1195 0.0029 0.0047 
A4 Sand subgrade m3 30.00 0.2600 7.8000   
B Transportation 
B1 Concrete m3 46.24 0.1980 9.1563 0.0058 0.2665 
B2 Steel kg 1.60 0.0010 0.0016 0.0000 0.0001 
B3 Excavator in/out km 100.00 0.0180 1.8000 0.0013 0.1271 
C On-site construction 
C1 Excavator (0.2 m3 bucket) h 8.82 0.1080 0.9529 0.0131 0.1158 
C2 Concrete pump h 1.01 0.5400 0.5429 0.0461 0.0464 
D End-of-life 
D1 Demolition t 98.52 0.0070 0.6896 0.0005 0.0532 
Total 107.20  16.29   

Table A3 
Sample LCC for a waffle raft constructed on an H2 site with articulated masonry veneer (Af = 300 m2).  

Description Qty Unit Rate (AUD) Amount (AUD) 

Site preparation and surface treatments 
Slab set-out 1 item 600.00 600.00 
Mobilisation & float costs 1 item 900.00 900.00 
Site levelling/vegetation removal 300 m2 2.14 642.00 
Site compaction 300 m2 1.85 555.00 
Installation (and removal) of fencing 69.3 linear m 42.00 2910 .00 
Formwork and reinforcement 
Steel reinforcement bars 1.0 t 2260.00 2321.00 
Steel reinforcement mesh 1.1 t 2260.00 2448.00 
Formwork 69.3 linear m 30.00 2078.00 
Waffle pods (EPS) 219 No. 10.00 2190.00 
Tradesman (placing/tie of reinforcement) 23.0 hours 63.00 1449.00 
Tradesman (assembling formwork) 20.1 hours 63.00 1265.78 
Labourer (assembling formwork) 7 hours 60.50 404.49 
Concrete pour 
Concrete truck to the site 51.3 m3 200.00 10,265.80 
Concrete pumping 51.3 m3 8.00 410.63 
Labourer (pour, vibration, finish) 56 hours 60.50 3375.44 
Total 31,816.48   

Table A4 
Sample LCC for a stiffened raft constructed on an H2 site with articulated masonry veneer (Af = 300 m2).  

Description Qty Unit Rate (AUD) Amount (AUD) 

Site preparation and surface treatments 
Slab set-out 1 item 600.00 600.00 
Mobilisation & float costs 1 item 900.00 900.00 
Site levelling/vegetation removal 300 m2 2.14 642.00 
Site compaction 300 m2 1.85 555.00 
Installation (and removal) of fencing 69.3 linear m 42.00 2910.00 
Formwork and reinforcement 
Steel reinforcement bars 2.2 t 2260.00 4922.00 
Steel reinforcement mesh 0.8 t 2260.00 1883.00 
Formwork 69.3 linear m 30.00 2078.00 
Tradesman (placing/tie of reinforcement) 240 hours 2.14 514.00 
Tradesman (assembling formwork) 32.3 hours 63.00 2068.00 
Concrete pour 
Concrete truck to the site 71.2 m3 200.00 14,234.66 
Concrete pumping 71.2 m3 8.00 569.39 
Labourer (pour, vibration, finish) 77 hours 60.50 4680.42 
Total 39,088.13  
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