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Abstract 

The integration of biology, computer science, and statistics has given rise to the inter‑
disciplinary field of bioinformatics, which aims to decode biological intricacies. It 
produces extensive and diverse features, presenting an enormous challenge in clas‑
sifying bioinformatic problems. Therefore, an intelligent bioinformatics classification 
system must select the most relevant features to enhance machine learning perfor‑
mance. This paper proposes a feature selection model based on the fractal concept 
to improve the performance of intelligent systems in classifying high‑dimensional 
biological problems. The proposed fractal feature selection (FFS) model divides features 
into blocks, measures the similarity between blocks using root mean square error 
(RMSE), and determines the importance of features based on low RMSE. The proposed 
FFS is tested and evaluated over ten high‑dimensional bioinformatics datasets. The 
experiment results showed that the model significantly improved machine learning 
accuracy. The average accuracy rate was 79% with full features in machine learning 
algorithms, while FFS delivered promising results with an accuracy rate of 94%.

Keywords: Bioinformatics, Feature selection, High‑dimensional datasets, Fractal, 
Machine learning

Introduction
Bioinformatics is an interdisciplinary field that combines biology, computer science, and 
statistics to analyze and interpret biological behaviour [1]. It identifies and diagnoses can-
cer by examining gene activity and cellular function. Gene expression profiling (GEP) is a 
helpful description used in bioinformatics to measure the activity of thousands of genes 
simultaneously, providing a comprehensive picture of cellular function in a particular bio-
logical sample [2]. However, this wealth of molecular information presents a unique chal-
lenge and opportunity for the field of artificial intelligence [3]. The confluence of big data 
and high-dimensional datasets poses a daunting challenge to the machine-learning com-
munity, highlighting the complexity of performance versus feature reduction or selection. 
When faced with unprocessed Big Data and high-dimensional datasets without feature 
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reduction or section, the performance of machine learning algorithms shows complicated 
implications [4]. The lack of a readout mechanism increases computational overhead as 
algorithms struggle with unwieldy data representations, which impacts efficiency [5, 6]. In 
addition, the unrefined data environment leads to increased susceptibility to overfitting, 
where models overfit the peculiarities of the training data, compromising their ability to 
generalize to unknown instances [7–10]. Without proper feature reduction or selection, 
models struggle with redundant, irrelevant, or noisy features, reducing their ability to find 
meaningful patterns in the data [11]. Figure 1 illustrates the proposed Scenario of applied 
AI for predicting the diagnosis based on analysis of the bioinformatics of the patient.

Two different feature selection techniques, the filter and wrapper models, are a hall-
mark of improving model efficiency and performance. With their respective strengths, 
these methods provide complementary approaches for selecting relevant attributes.

The domain of feature selection extensively employs statistical methodologies to distil 
relevant attributes from complex datasets [12]. These techniques leverage correlation, 
significance, and variability measures to uncover the pivotal dimensions that drive model 
performance. Using statistical models for feature selection has several advantages. These 
models can help identify the most essential features in a dataset, reduce the dimension-
ality of the data, and improve the performance of machine learning algorithms [13–15]. 
However, wrapper models for feature selection can have drawbacks, such as randomness 
and unstable results. Wrapper models rely on a specific learning algorithm to evaluate 
the importance of features, which can lead to biased results and overfitting [16]. The 
concept of fractals provides a mathematical framework for describing and revealing the 
relationships among patterns in the data [17]. A fractal is a geometric shape or design 

Fig. 1 Proposed scenario of intelligent model for diagnosis of patient state
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characterized by its complex self-similarity across different scales [18]. This unique 
property of fractals underpins the understanding of complex, self-replicating structures 
and offers insights into their behaviour in various scientific contexts. Building on this 
fundamental understanding, integrating the fractal concept into data analysis unlocks 
the potential to decipher intricate patterns and structures in complex datasets [19]. The 
strength of this approach lies in its ability to capture self-similarity and hierarchical rela-
tionships across different scales, allowing hidden relationships to be detected even in 
high-dimensional data. Considering the complexity of data in high-dimensional prob-
lems and the importance of selecting meaningful features, the FFS method is the best 
choice. Given the complexity of data in high-dimensional issues and the critical impor-
tance of choosing significant features, this paper introduces fractal feature selection 
(FFS). This innovative method is inspired by fractal behaviour and explicitly targets the 
challenges conventional feature selection methods face. When examining features of 
the dataset, a high correlation coefficient indicates a strong relationship between fea-
tures and the target in the dataset. By conceptualizing these attributes as blocks, where 
each block corresponds to a particular data category, the proposed model finds that 
blocks with common similarities are often associated with specific data categories. The 
true power of the proposed FFS lies in its ability to mitigate traditional models’ inher-
ent randomness and unpredictability. Rather than being constrained by a limited search 
parameter, FFS penetrates deeper into the data set. It broadens its analytical horizons 
and identifies hidden relationships and nuances with precision.

Motivation

Feature selection enables data modelling efficiency by eliminating redundant inputs, 
leading to faster execution and enhanced model performance.[20]. Feature selection 
uses a variety of models, including statistically based approaches, wrapper methods, 
and intrinsic methods. Feature selection refines the analysis process and leads to more 
efficient, accurate, and interpretable results. The main goal of modern feature selection 
models is to enhance system performance by strategically removing redundant attrib-
utes, thereby streamlining the analysis process.[21]. The current feature selection model, 
or wrapper or filter, has several limitations that can be summarized as follows.

1. Instability: While promising, these feature selection models grapple with intrinsic 
limitations that impact their efficacy. One notable concern pertains to the random-
ness introduced by the instability of system performance. This randomness intro-
duces an element of unpredictability, potentially undermining the reliability of the 
feature selection process [22].

2. Constrained search space: Another limitation arises from the limited search space in 
which these models operate. The search space, usually between 0 and 1, can lead to 
a stagnation scenario that hinders the comprehensive exploration of optimal feature 
subsets [23].

3. Integration of metaheuristics: A promising way to overcome these limitations is to inte-
grate metaheuristics into different aspects of the system [2, 24]. The strategic applica-
tion of metaheuristics has led to tangible improvements that address the challenges of 
unstable performance and expand the search space for more robust exploration.
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Contribution

The proposed fractal feature selection (FFS) model revolutionizes data analysis, offering 
a streamlined system for high-performance, accurate, and stable feature selection. The 
contributions in the proposed FFS are summarized as follows:

1. Accurate and stable feature selection: The proposed FFS model can perform feature 
selection with high accuracy and stability using fractal concepts. It selects highly rel-
evant features that improve predictive ability while reducing the risks associated with 
noisy or irrelevant features. Moreover, the proposed FFS model is stable regarding 
sets of features and the performance of outcome results.

2. Efficient prediction through low complexity: The proposed fractal feature selection 
(FFS) model is proof of harmonic convergence of a low-complexity system with 
remarkable performance. Through the sophisticated integration of fractal analysis, 
the FFS model can deftly navigate the intricacies of high-dimensional data while 
maintaining computational efficiency. The model achieves deep understanding with-
out succumbing to computational overhead by detecting underlying self-similarities 
and hierarchies within the data. This balance between simplicity and predictive accu-
racy makes the FFS model an innovative solution that redefines the data analytics 
landscape through seamless integration.

3. High-relevant features: The proposed model is unique in achieving efficient predic-
tion by selecting highly correlated features. The model can improve its predictive 
ability by identifying and selecting the most relevant features while reducing the risks 
associated with noisy or irrelevant features.

Evaluation strategies

Evaluation strategies use the analysis of confusion matrices and the extraction of essen-
tial parameters to evaluate the accuracy and usefulness of feature selection models. 
Precision, recall, F1 score, and specificity provide a detailed assessment of model per-
formance. The correlation coefficient metrics are used to test the validity of the features 
selected by the proposed FFS. Furthermore, comparing the proposed FFS model with 
current models highlights its uniqueness and confirms its potential to advance the field 
of feature selection.

Paper organization

The paper is divided into several sections. Section  “Related works” discusses related 
work in the field. Section “Feature selection” deals with the selection of features for the 
proposed model. Section “Problem formulation” defines the problem to be solved by the 
model, and Sect.  “Proposed technique” presents the model in detail. Section  “Experi-
ments and discussion” presents and discusses the results of the experiments conducted 
to evaluate the model. Finally, Sect. “Discussion” concludes the paper and suggests pos-
sible areas for future research.
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Related works
This section analyses previous research addressing feature selection, which is an essen-
tial component of data modelling and aims to reduce the number of input variables to 
enhance the model’s efficiency and effectiveness. Various feature selection approaches 
have been proposed, including statistically based wrappers and intrinsic methods. Each 
process has advantages and disadvantages, and ongoing research focuses on developing 
more accurate and robust feature selection models.

In Wei et  al. [12], a feature selection model was proposed based on the maximum 
mutual information and entropy of features to select appropriate features. The proposed 
model uses a hybrid method based on dynamic feature importance, which evaluates the 
relevance of each feature in the context of data analysis, thereby improving the accu-
racy and effectiveness of feature selection in the given research framework. However, a 
limitation of this method is that low redundancy is not a crisp parameter for deciding on 
features with high significance values.

Parvasideh et al. [25] used a dictionary-learning algorithm for feature selection. It uses 
a total least squares approach to rank and select features. The authors set the parameter 
(k) as the number of features to be selected when the k-features have minimum param-
eters. While it holds the potential to enhance feature selection accuracy, it comes at the 
cost of heightened computational complexity. This aspect warrants careful considera-
tion, particularly in contexts demanding efficient analyses, as the model’s intricate com-
putations may hinder real-time applicability. So, the research shows how hard it is to 
find a good balance between speed and accuracy when making feature selection strate-
gies for high-dimensional datasets.

In the study in Adorada et al. [26], the authors used Support Vector Machine-Recur-
sive Feature Elimination (SVM-RFE) for feature selection. This approach uses Support 
Vector Machines (SVMs) to eliminate less relevant features iteratively. The proposed 
model removed features that contribute less to the discrimination process based on 
recursive feature elimination (RFE), and SVM is an objective function of the proposed 
SVM-RFE model. The inherent randomness associated with the SVM-RFE process 
introduces system performance instability. This instability could potentially affect the 
consistency and reliability of the feature selection results.

Al-Shammary et al. [2] introduced the extended particle swarm optimization (EPSO) 
model, potentially improving the PSO search process for optimization problems. The 
model is applied to gene expression profiles, important molecular biology measure-
ment factors used in cancer diagnosis. A modified wrapper feature selection model is 
applied to address the gene classification challenge by replacing the random approach 
with EPSO. However, the reliance on controlled randomness could introduce a level of 
complexity that could reduce the reproducibility and reliability of the results of the pro-
posed model.

In Ibrahim et al. [27], the Harris-Hawks optimizer was modified for feature selec-
tion and the support vector machine as an object function. The authors propose a 
hybrid strategy based on the Harris-Hawk optimization (HHO) algorithm to optimize 
the parameters of the SVM model and find the optimal feature subset. The proposed 
model relies on random levels for operations, and this approach increases instability 
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and unpredictability. Therefore, the proposed model’s complexity and potential 
reduced the results’ reliability.

Gao et  al. [28] and [29] address the issue of feature redundancy in information-
theoretical-based feature selection methods, where larger values of the traditional 
feature redundancy term do not necessarily indicate worse candidate features. The 
authors propose a new feature redundancy term that considers the relevancy between 
a candidate feature and the class given each already-selected feature called min-
redundancy and max-dependency (MRMD). The proposed model relies on multiple 
algorithms for feature selection and classification. Additionally, it employs various 
machine learning algorithms for both tasks, which adds complexity to the system.

In their paper, Zhang et  al. [30] introduced a feature selection approach known 
as the Maximal Independent Classification Information and Minimal Redundancy 
(MICIMR) algorithm. The algorithm determines the relevance and redundancy 
terms of class-independent features using the symmetric uncertainty coefficient and 
the relevance and redundancy terms of class-dependent features based on the inde-
pendent classification information criterion. However, there are limitations to this 
model. Selecting features with high classification information may result in redun-
dancy where multiple features provide similar or overlapping data. On the other 
hand, reducing redundancy may result in leaving out individually powerful features 
in classification.

Wang et al. [31] introduced a method for dimensionality reduction that combines 
feature selection and feature extraction using fuzzy rough set theory. The Feature Set 
Partition-based approach to Fuzzy Rough Dimensionality Reduction (FSPFRdr) aims 
to fully consider the intrinsic information contained in features and differentiate the 
significance level between them. The original feature set is divided into three catego-
ries: nonsignificant, weakly significant, and significant features, based on the normal-
ized independent classification information (NICI). The nonsignificant features are 
removed before dimensionality reduction. In contrast, the weakly important features 
are processed using the proposed Fuzzy Similarity Relation-based Supervised Locally 
Linear Embedding (FRSLLE) to obtain an embedded feature set. However, the pro-
posed fuzzy rough model is unsuitable for dynamic and multi-label data, negatively 
impacting its effectiveness.

Thakkar et  al. [32] present an approach that integrates statistical significance to 
enhance feature selection in Deep Neural Networks (DNNs) for Intrusion Detection 
Systems (IDS). This method aims to optimize the performance of DNN-based IDS 
by selecting only the most relevant features. The limitation of this work is that the 
authors employ deep learning as their objective function, inadvertently increasing 
the model’s time complexity. Moreover, deep learning models typically require sub-
stantial features to function optimally, which could counteract the benefits of feature 
reduction.

The authors in [33] present SemiACO combine semi-supervised learning with ant 
colony optimization for feature selection. The model demonstrates the potential of 
using nature-inspired algorithms in feature selection, but a limitation arises from 
the inherent complexity of ant colony optimization. This can increase computational 
costs, especially when managing large and complicated datasets. Furthermore, while 
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ant colony optimization is adept at finding solutions, it does not always guarantee 
convergence to the global optimum, depending on the problem landscape and the 
algorithm’s parameters.

Table  1 summarizes the related works regarding datasets, proposed models, and 
achieved accuracy.

Feature selection
Feature selection is technically an essential step in data modelling that involves reduc-
ing the number of input variables to improve efficiency and effectiveness [21]. It acts as 
a strategic filter, sifting through the available features and filtering out those that con-
tain the most relevant and meaningful information. This process improves the computa-
tional efficiency of the model and contributes to its interpretability and generalizability 
[9]. It is imperative when dealing with datasets with many variables, where irrelevant or 
redundant features may introduce noise and complexity, affecting the model’s perfor-
mance. Several techniques are used for feature selection, which are classified based on 
the functionality of the wrapper and filter models. Filter methods work without relying 
on predictive models. These methods speed up the feature selection process and are par-
ticularly beneficial when faced with high-dimensional datasets [12].

In contrast, wrapper methods take a more dynamic approach, assessing the util-
ity of features based on their performance in the context of a particular classifier. 
In these methods, the feature selection process is essentially (wrapped) around the 
model itself, iteratively training and evaluating the model as various subsets of fea-
tures are examined [2]. This approach often produces better results because the mod-
el’s predictive power is used as the guiding criterion [15, 34, 35]. However, this comes 

Table 1 Summarizes the related works

Refs Name of proposed models Datasets Accuracy

[2] hybrid feature selection method
Dynamic Feature Importance (DFI)

Biological data
Face image data
Biological data
Other data

85.01 ± 0.12
98.33 ± 0.54
98.86 ± 0.87
87.32 ± 0.80

[12] A robust dictionary learning based on total least squares (ITLS‑
Robust)

SMK‑CAN‑187
TOX‑171
GLI‑85
CLL‑SUB‑111

65.8
65.6
87.5
62.3

[25] Support vector machine‑recursive feature elimination (SVM‑RFE) N/A N/A

[26] Extended particle swarm optimization Biomedical data 100

[27] Modified Harris Hawks optimizer for feature selection Real biomedical datasets 100

[28] a hybrid feature selection method named Minimal Redundancy‑
Maximal New Classification Information (MR‑MNCI)

Biomedical data 94.89

[29] min‑redundancy and max‑dependency (MRMD) N/A N/A

[30] Maximal independent classification information and minimal 
redundancy (MICIMR)

Biomedical data 100

[31] FSPFRdr and FRSLLE Biomedical data 95.88 ± 0.41

[32] fusion of statistical importance using Standard Deviation and 
Difference of Mean and Median

NSL‑KDD,
UNSW_NB‑15,
CIC‑IDS‑2017

99.84
89.03
99.80

[33] A semi‑supervised feature selection based on ant colony opti‑
mization

Biomedical data N/A
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at the cost of increased computational complexity, as the underlying model must be 
trained and evaluated at each iteration. Figure 2 shows summarizing the comparative 
essence of these techniques and shows their synergistic interplay in the feature selec-
tion process.

Problem formulation
Feature selection can be conceptualized mathematically, where the dataset com-
prises several features (x), each represented by a vector of instances (i). This can be 
expressed as:

Each instance class can be denoted as in Eq. (2)

where  n is the number of features, the mathematical representation of the objective 
function in feature selection is shown in Eq. (3).

where f  embodies a function mapping selected features to a scalar value signifying 
the efficacy of the chosen subset. The definition of f  pivots on the specific goals and 
evaluation metrics of the feature selection challenge, such as accuracy, precision, recall, 
F1-score, mutual information, etc.

(1)X = {x1, x2, x3, . . . . . . , xn}

(2)Ci = xi,1 ∪ xi,2 ∪ xi,3 . . . . . . . . . ∪ xi,n

(3)Objective Function = f Selected Features of (X)

Fig. 2 A Comparative Framework of Filter and Wrapper model
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Proposed technique
Figure 3 depicts the essential constituents of the fractal feature selection (FFS) model 
designed to optimize high-dimensional biological challenges. The initial three ele-
ments of the model are dedicated to preprocessing bioinformatics data, culminating 
in forming a numeric dataset. Subsequently, the succeeding three components revolve 
around the incorporation of fractal functions. This framework of the proposed FFS 
starts with the computation of fractal coefficients and culminates in the judicious 
selection of features from the numeric dataset objects. The basis for this selection is 
based on the histograms of fractal root mean square error metric (RMSE).

Preprocessing data

The first step of the proposed FFS is data preprocessing, which includes several essen-
tial tasks. These tasks involve normalizing the data, dividing it into training and test 
groups, and initializing the parameters. Normalization is a crucial part of this pro-
cess, and the min–max normalization method is used. It scales the data to a specific 
range, usually between [0 and 1], to ensure that all features in the model have the 
same importance. Equation  (4) illustrates the normalization phase of the proposed 
model.

where x represents the original set of data points within the feature, with min(X) , 
max(X) denoting the minimum and maximum values within that set, respectively. After 
normalization, the data is split into training and testing sets, and the model’s parameters 
are initialized to prepare for the next steps in the modelling process.

(4)xi′ =
xi −min(X)

max(X)−min(X)

Fig. 3 Main steps of the proposed fractal feature selection (FFS) model
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Rank features based on fractal RMSE

A fractal is a mathematical object that exhibits self-similarity at different scales [19]. 
In other words, the structure of the fractal appears similar when viewed at different 
magnification levels. The parameters of a fractal include range (R), domain (D), and 
offset (O). Equation (5) shows the relationship among fractal parameters:

The feature selection of the proposed model is based on finding features with high simi-
larity measures. Technically, a fractal represents the instances of the features as spaces, and 
the model has an objective function. A non-zero value means that the feature has high simi-
larity in its mapping. A low similarity of the feature instances logically implies that the data 
is scattered in the feature, which does not contribute to the representation of the individ-
ual classes. The features that have low similarity have low RMSE. Technically, the essence 
of RMSE in fractals emanates from analyzing the relationship between the range and the 
domain. Within the structure of the fractal, the ( D ) is fashioned from the ( R ) to constitute 
a smaller set that mirrors the characteristics of the ( R ). Therefore, if the intention is to con-
figure the ( R ) from the ( D ), it becomes imperative to interplay it with the scale and the ( O ). 
According to [36], the formulation of fractal parameters scale, domain, offset, and RMSE 
are used in the proposed FFS. Equation (6) elucidates the process of sculpting the domain 
( D ) from the data within the realm of feature selection for the proposed system.

The size ( D ) is found by calculating the K  in Eq. (8) and interval bounders [ m1,m2 ] of ( D ) 
in Eqs. (9) and (10), respectively

where n refers to the number of features, b is a block size

where j refers to the index of the block. The scale ( S ) parameter is crucial in exploring 
fractals, allowing for greater magnification and a better understanding of their complex 
structure. It determines the level of detail visible at any given magnification level, enabling 
users to zoom in or out to view intricate details or the overall shape of the fractal. Fractal 
explorers can navigate and comprehend these fascinating mathematical objects by control-
ling this parameter. Equation (11) calculates the ( S ) of the corresponding feature.

where d(pi) represents the value of the ith item within the numeric entity D, and r(pi) 
signifies the value within R.

(5)R = S × D + O

(6)
⇀

D
i
=

K−1
⋃

j=0

(

∑m2

m1
xi

b

)

(7)K = int
(n

b

)

+Mod(b, n)

(8)m1 = j × b+ 1

(9)m2 = m1 + b

(10)S =
n
∑n

i=1 d(pi)r(pi)−
∑n

i=1 d(pi)
∑n

i=1 r(pi)

n
∑n

i=1 d(pi)
2 −

(
∑n

i=1 d(pi)
)2
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The offset parameter ( O ) that is used to format the ( R ) in the fractal concept is calcu-
lated in Eq. (12).

The determination of all fractal parameters necessitates the calculation of RMSE 
through the utilization of Eq. (13).

RMSE =

√

√

√

√

1

n

[

n
∑

i=1

r(pi)
2 + S

(

S

n
∑

i=1

d(pi)
2 − 2

n
∑

i=1

d(pi)r(pi)+ 2O

n
∑

i=1

d(pi)

)

+ O

(

nO − 2

n
∑

i=1

r(pi)

)]

Algorithm I, referred to as RMSE, represents a key step in the feature evaluation pro-
cess within the proposed framework. This algorithm calculates RMSE for a given feature.

Algorithm I RMSE

The algorithm starts with inputs such as the feature vector ( x ) and the number of 
blocks n and aims to calculate the cumulative RMSE for each block of the feature. The 
algorithm is iterative and starts by dividing the feature x into blocks represented by (D). 
In each iteration, a down-sampling operation is performed for each block D(di) in the 
set of blocks (D), resulting in the derivation of down-sampling representations, denoted 
Rdi . Then, the RMSE for each block ( Di ) is calculated and stored in a list (E), which eval-
uates the accuracy of the sampled representation of the original data. Upon completing 
the loop, the algorithm culminates with summating all RMSE values stored in list (E). 
The cumulative result is assigned to the variable SE, encapsulating the overall RMSE for 
the feature.

In essence, Algorithm I: RMSE captures a crucial step in feature quality assessment by 
evaluating the accuracy of down-sampling representations using the RMSE metric. This 
metric serves as an indispensable criterion for selecting features with optimal performance 
characteristics and contributes to the improved predictive ability of the proposed system.

Feature selection approach in FFS

The feature selection in the proposed FFS is demonstrated in process 4, as shown in 
Fig. 3. Algorithm II illustrates the procedure for selecting optimal based on low RMSE. 

(11)O =
1

n

(

n
∑

i=1

r(pi)− S

n
∑

i=1

d(pi)

)

(12)
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It takes the SE value and considers a predetermined percentage ( p ) for feature selection. 
The proposed feature selection strategy sorts features in ascending order according to SE  
and selects the top p as optimal features.

Algorithm II Feature selection

Prepare train‑test and evaluate features

Preparing train testing and evaluating features step corresponding to processes 4 and 
5 in Fig. 3. Process 4 selects the optimal features from train and test data based on the 
features indicated in Algorithm II. It prepares the fundamental data to train and evalu-
ate machine learning. Process 5 tests and evaluates the pre-train machine learning algo-
rithms through various evaluation metrics, including accuracy, precision, recall, and F1 
score.

Experiments and discussion
This section includes details of benchmark datasets, experimental results to investigate 
the impact of the proposed FFS on machine learning performance, and a comparison 
with a fullset (without feature selection). Finally, the proposed model is compared with 
some feature selection studies.

Dataset

Table 2 provides a comprehensive overview of the dataset details employed in the test-
ing and evaluating of the proposed fractal feature selection (FFS) methodology. The 

Table 2 Dataset details and complexity metrics [37]

Dataset name Data details O

field Type Instance Features Class

ALLAML Biological Discrete 72 7129 2 99.014

COLON Biological Discrete 62 2000 2 64.516

Lung_discrete Biological Discrete 73 325 7 31.164

Lung Biological Continuous 203 3312 5 81.576

Lymphoma Biological Discrete 72 7070 2 196.389

TOX_171 Biological Continuous 171 5748 4 134.456

WarpPIE10P Image Continuous 210 2420 10 115.238

Orlraws10P Image Continuous 100 10,304 10 1030.4

CLL_SUB_111 Biological Continuous 111 11,340 3 306.487

GLI_85 Biological Continuous 85 22,283 2 524.306
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complexity of data depends on the number of features and classes increases; an inverse 
relationship exists with the number of instances, leading to heightened data complexity 
(O). Equation (12) calculates the complexity of the dataset [2].

where C is the number of classes, F is the number of features, and I is the count of 
instances.

Evaluation metrics

This section centers on key evaluation metrics integral to machine learning and data 
science: Accuracy, precision, recall, and F1 score.

1. Accuracy quantifies the proportion of accurately predicted observations relative to 
the total observations, reflecting the model’s predictive capacity. With true posi-
tives (TP), true negatives (TN), false positives (FP), and false negatives (FN) in focus, 
Eq. (14) computes accuracy using the formula:

2. Precision pertains to the ratio of TP instances to all positive outcomes, encompass-
ing incorrect identifications. Particularly valuable in cases where the ramifications 
of false positives hold significance, as seen in medical diagnoses, Eq. (15) computes 
precision.

3. Recall, also labelled sensitivity, signifies the ratio of TP instances to the total count 
of samples that should have been classified as positive. It gauges a model’s ability to 
detect all positive occurrences. Equation (16) calculates recall.

4. F1-score emerges as a pivotal measure, encapsulating the harmonic mean of preci-
sion and recall. This metric balances the two, proving especially beneficial for imbal-
anced datasets. Equation (17) computes the F1-Score.

5. Correlation coefficient (r): The correlation coefficient ( r ) quantifies the strength and 
direction of the linear relationship between two variables. It ranges from  − 1 (perfect 
negative correlation) to (perfect positive correlation), with 0 indicating no linear cor-
relation. The correlation coefficient measures the strength of the linear relationship 
between two variables. A high correlation coefficient indicates that the two variables 

(13)O =
C .F

I

(14)Acc =
TP + TN

TP + TN + FP + FN

(15)Pre =
TP

TP + FP

(16)Rec =
TP

TP+ FN

(17)F1 - S = 2 ∗
Pre * Rec

Pre + Rec
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are strongly related, while a low correlation coefficient indicates that the relationship 
is weak. Equation (18) computes the correlation coefficient.

where xi represents the value of the i th observation in the first variable, yi represents 
the value of the i th observation in the second variable, x is the mean of the first vari-
able’s values and y is the mean of the second variable’s values.

Experimental results

To evaluate the effectiveness of any feature selection model, we must assess its efficiency 
and performance using comprehensive metrics like accuracy. Additionally, comparing 
the results with prior works in the feature selection era confirms the validity of the pro-
posed model in overcoming challenges faced by previous models. Therefore, we divided 
the analysis into three subsections: Feature testing, system performance assessment 
using machine learning algorithms, and comparison with previous and current feature 
selection models.

Experimental evaluation and performance analysis

This section highlights the impact of the proposed FFS model on the performance of 
machine learning algorithms. The main parameters of the proposed FFS model include 
the number of blocks (n) and the proportion of figures selected from the model (p). 
These parameters are determined by experimenting with different values and select-
ing the optimal value. Table 3 shows the results of testing machine learning algorithms 
on the best optimal FFS parameters ( n, p ). The examined machine learning algorithms 
encompass Naive Bayes (NB), Decision Trees (DT), Random Forest (RF), and Support 
Vector Machine (SVM), all collectively referred to as (ML). Furthermore, it is notewor-
thy that the abbreviation ML corresponds to machine learning algorithms, whereas FFS’ 

(18)r =

∑

(xi − x)
(

yi − y
)

√

∑

(xi − x)2
∑

(

yi − y
)2

Table 3 Comparison of machine MLs with and without the proposed FFS model based on accuracy

Dataset FFS parameters Accuracy (%)

n p NB DT RF SVM KNN

ML FFS’ ML FFS’ ML FFS’ ML FFS’ ML FFS’

ALLAML 2 16 89.03 91.25 86.67 91.25 90.48 100 73.33 89.03 89.03 89.03

COLON 10 21 43.77 52.15 69.23 80.18 84.21 94.74 61.54 73.2 74.54 94.74

Lung_discrete 4 81 66.68 75.84 66.68 77.24 76.19 95.24 66.68 66.68 86.67 95.24

Lung 2 36 75.37 80.74 75.61 88.04 81.82 90.91 70.73 72.68 72.68 90.91

Lymphoma 10 16 45.39 55.1 60.18 70 70.28 90.00 55.82 67.28 65.00 80

TOX_171 2 86 74.29 86.25 57.14 66.43 75 96.15 34.29 44.89 74.29 96.15

WarpPIE10P 10 6 90.24 93.65 83.33 83.22 76.19 93.65 52.86 63.65 88.62 93.65

Orlraws10P 10 21 80.99 91.45 61.44 77.14 79.31 100 50 63.05 91.45 91.45

CLL_SUB_111 2 26 69.56 86.97 65.22 76.32 69.57 86.97 34.78 45.22 65.22 86.97

GLI_85 4 36 70.59 71.28 76.47 96.55 79.31 96.55 64.71 78.24 88.24 88.24
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signifies the amalgamation of the machine learning algorithm with the proposed feature 
selection model.

The proposed Feature Selection (FFS) technique, guided by optimal (n,p) criteria, has 
identified and selected the most relevant features from each dataset. Specifically, the 
selected feature counts are ALLAML-1141, COLON-420, lung_discrete-263, lung-1192, 
lymphoma-1131, TOX_171-4943, warpPIE10P-145, orlraws10P-2164, CLL_SUB_111-
2948, and GLI_85-8022. The SVM algorithm showed lower optimization results when 
applied as an objective function of the proposed traits test model because it could not 
cope with high dimensions, even though the proposed model reduced the dimensions 
by a significant percentage. However, in some cases, the algorithm did not achieve a 
significant improvement, such as at the beginning of TOX _171, where the percentage 
improvement was negligible (from 34.29 to 44.89), and also in the case of Lung_discrete, 
where the SVM saw no apparent progress. It is worth noting that in the first case, SVM 
accuracy was 86%, whereas in the second case, it was 81%. These results reflect the chal-
lenges of using the SVM algorithm in high-dimensional environments and show that 
some settings require more appropriate algorithms for large dimensions to achieve bet-
ter performance.

In the proposed model, the ML algorithm that achieves the highest accuracy is used 
as a predictive tool with the proposed FFS model. Table  3, the RF algorithm signifi-
cantly improved performance on most test data. Improved ratios were observed for RF, 
enhancing the ML algorithm when using the proposed FFS. Ratios were 12.27%, 15.47%, 
21.12%, 19.20%, and 15.36% for NB, DT, RF, SVM, and KNN algorithms. The proposed 
model development approach highlights the significant performance improvement of 
four AI learning algorithms (RF, KNN, NB, and DT) on specific attributes, as shown in 
Fig. 4.

Table 3 and Fig. 4 demonstrate that the RF algorithm’s performance has significantly 
improved, achieving the highest accuracy and an enhanced level of pristine data. Conse-
quently, a detailed analysis of its behaviour using evaluation metrics becomes essential. 

Fig. 4 Comparative average percentage improvement of NB, DT, RF, SVM, and KNN
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In this regard, Table 4 presents the experimental outcomes of the RF algorithm on the 
complete dataset and feature selection through FFS.

Table 4 presents a detailed assessment of the RF algorithm’s performance in feature 
selection. Accuracy values demonstrate the algorithm’s proficiency in classification 
tasks, with improvements achieved through the proposed feature selection strategy 
(FFS). FFS enhances precision, recall, and F1-score values across various datasets. The 
proposed model effectively selects correlated traits related to data objectives, char-
acterized by high correlation with the targeted class. The close correlation between 
proposed FFS outcomes enhance classification and prediction accuracy, especially in 
the case of RF.

Adding Receiver Operating Characteristic (ROC) analysis to evaluate RF algorithm 
performance offers insights into classification capabilities across different thresholds. 
Figures 5 and 6 illustrates the outcomes of ROC analysis conducted on a selection of 
experimental trials using the tested dataset.

Table 4 Comparison of RF with and without the proposed FFS model

Dataset FFS 
parameters

Accuracy

n p (%) Fullset FFS

Acc Prc Rec F1‑s Acc Prc Rec F1‑s

ALLAML 2 16 90.48 92.86 90.48 90.65 100 100 100 100

COLON 10 21 84.21 84.51 84.21 84.36 94.74 95.26 94.74 95

Lung_discrete 4 81 76.19 66.02 76.19 70.74 95.24 96.43 95.24 95.83

Lung 2 36 81.82 67.68 81.82 74.08 90.91 92.05 90.91 91.47

Lymphoma 10 16 70 57 70 60.75 90 86.81 90 78.16

TOX_171 2 86 75 84.03 75 79.26 96.15 96.44 96.15 96.30

WarpPIE10P 10 6 76.19 91.70 76.19 83.23 93.65 96.01 93.65 94.82

Orlraws10P 10 21 79.31 88.97 79.31 83.86 100 100 100 100

CLL_SUB_111 2 26 69.57 69.57 69.57 69.57 86.97 88.30 86.96 86.72

GLI_85 4 36 79.31 85.52 79.31 82.30 96.55 97.41 96.55 96.98

Fig. 5 ROC Results of COLON 



Page 17 of 23Alsaeedi et al. BMC Bioinformatics           (2024) 25:12  

Clearly, the proposed FFS have significantly improved the ability of RF to classify 
and discriminate between different datasets, even with varying complexity and imbal-
ance of classes. The receiver operating characteristic curves (ROC) show an overall 
improved performance in various experimental trials, highlighting the robustness and 
adaptability of the algorithms. These results highlight the practical utility and effec-
tiveness of the algorithms in optimizing classification results and contribute to more 
accurate and reliable prediction models in various scenarios.

Experimental features selection validity

This section compares the validity of the features of the proposed FFS model and the 
fullset according to the correlation coefficient. It calculates in three strategies: First, it 
shows the correlation coefficients between different characteristics (F-F), which provide 
information about their potential interdependencies or unique contributions; Second, 
the table shows the correlation coefficients between these features and the target label 
(F-L), illustrating their relevance for prediction; Finally, the average absolute correla-
tion coefficient between the features and features and the target label is presented (O-F). 
Table 3 compares the correlation coefficients between standard features and the features 
selected by the FFS model.

From Table 5, it is clear that the proposed FFS improve the correlation coefficient of 
output features. This improvement reflects the efficiency of the developed system in 
selecting features that relate to the target of the data. The increase in the correlation 
coefficients among features (F-F) and features-label (F-L) shows the increasing ability of 
the model to capture the high correlation features.

Figure 7 compares the average correlation coefficient between the fullset and the fea-
tures selected by the proposed FFS.

After examining Fig. 7, it is evident that the FFS strategy selects highly correlated fea-
tures, can handle complicated data structures, and extracts reliable features. The plotted 
data prove that the FFS consistently improves correlation values across various datasets.

Fig. 6 ROC results of TOX_171 
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Comper with other studies

This section provides a comprehensive overview of the current research landscape in 
feature selection. Table 6 compares the accuracy of the proposed FFS model with other 
studies on different datasets. The bold text in Table 6 indicates the highest value within 
each column, which represents the best result.

The proposed FFS model outperformed the model in [2] on one dataset due to its 
structured and systematic approach, which ensures higher reliability and credibility 
of the results. In contrast, the model in [2] relies on a randomization approach, which 
may lead to unstable results, potentially undermining its reliability. Comparing the per-
formance of the proposed model with the model in [12], it outperformed the common 
dataset by 88%. The proposed FFS model outperformed the models in references [28–
30] and [31] by 78% on shared datasets with the proposed FFS. Table 6 shows that the 
proposed FFS outperforms the comparative studies.

To sum up, the thorough analysis and discussion of the results show that the proposed 
FFS model is compelling performance and highly accurate. The results demonstrate 
that FFS significantly improves the accuracy of machine learning algorithms (KNN, RF, 

Table 5 Comparison of Correlation Coefficients between Standard Features and FFS‑Selected 
Features

C Fullset FFS

F‑F F‑L O‑F F‑F F‑L O‑F

ALLAML 0.399  − 0.163 0.281 0.681  − 0.598 0.6395

COLON 0.382  − 0.145 0.263 0.576  − 0.47 0.523

Lung_discrete 0.122 0.184 0.153 0.556 0.419 0.4875

Lung 0.36 0.167 0.263 0.494 0.324 0.409

Lymphoma 0.281  − 0.118 0.2 0.402 0.317 0.3595

TOX_171 0.119 0.143 0.131 0.612 0.547 0.5795

WarpPIE10P 0.236  − 0.148 0.192 0.454  − 0.273 0.3635

Orlraws10P 0.185 0.02 0.103 0.685 0.486 0.5855

CLL_SUB_111 0.381 0.259 0.32 0.412 0.383 0.3975

GLI_85 0.401 0.182 0.292 0.684 0.484 0.584

Fig. 7 Comper the correlation coefficient (O‑F) between fullSet and features selection by FFS
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NB, and DT) on diverse and complex datasets. Moreover, the FFS method has a clear 
advantage in selecting and testing features with high correlation with data objects, which 
makes it useful for real-world applications.

Discussion
High-dimensional problems present a significant challenge in machine learning. As 
dimensionality increases, it becomes increasingly difficult to distinguish between data 
categories, leading to issues with model interpretability and overfitting. High-dimen-
sional data is inherently intricate due to several factors:

1. Presence of irrelevant information or “Noise”: High-dimensional datasets often 
encompass extraneous or non-pertinent information, termed as "noise". Such unre-
lated data can mislead models, resulting in inaccurate outcomes.

2. Complex inter-feature relationships: Even among features that may be interrelated, 
the relationships can be nuanced and multifaceted. Identifying and analyzing these 
intricate relationships heighten the challenges of understanding and interpreting the 
data.

In fractals, a central tenet posits that patterns recur at differing scales. This princi-
ple suggests that when one examines a minuscule segment of a fractal and juxtaposes it 
with a more significant portion of the same fractal, the patterns observed will bear strik-
ing resemblance. According to Eq. (5), the R and D describe relationships between data 
across different scales that can be discerned. The proposed fractal feature selection (FFS) 
model offers a novel approach to this issue. It partitions features into blocks, measures 
similarity using the Root Mean Square Error (RMSE), and determines feature impor-
tance based on low RMSE values. This approach reduces the randomness and unpre-
dictability inherent in traditional models and uncovers hidden relationships and nuances 
within the data.

Integrating the proposed Feature Selection method (FFS), the Random Forest (RF) 
algorithm demonstrates enhanced performance over other algorithms, including SVM, 
NB, and KNN. By employing ensemble learning, RF notably increases the stability and 
accuracy of predictions. Moreover, its adeptness at managing extensive datasets pro-
vides a significant advantage. While versatile in handling quantitative and categorical 
variables, the RF algorithm doesn’t lean on specific assumptions. Its capacity to effi-
ciently manage a range of data types, coupled with the interpretative advantages of FFS, 
solidifies its prominence in numerous scientific contexts.

Conclusion
Bioinformatics combines biological data with analysis techniques for scientific research, 
including biomedicine. It depends on the analysis of the gene activity in the cell. Gene 
expression profiling (GEP) is a powerful tool that generates thousands of features, but 
not all are relevant to a particular cancer. Therefore, machine learning needs feature 
selection to improve cancer detection and classification. Proper feature selection is 
critical when working with big data and high dimensions to avoid overfitting and data 
noise and ensure AI’s effectiveness. The correlation coefficient calculates the degree of 
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relationship between different features and the information carried by those features, 
which helps improve the classification accuracy of machine learning algorithms. The 
higher the correlation coefficient, the higher the correlation between the attribute and 
the target of the data. When the model breaks down a feature into multiple blocks, each 
block is associated with one of the available data categories. The greater the similarity 
between these blocks, the more closely they are associated with a particular data target, 
provided the similarity values are not zero. Therefore, this work proposes using fractal 
concepts to optimize the features of the high-dimensional problems. The proposed frac-
tal feature selection (FFS) model divides features into blocks, measures the similarity 
between blocks using Root Mean Square Error (RMSE), and determines the importance 
of features based on low RMSE. It’s important to note that a limitation of the FFS model 
is that its performance may decrease as the number of classes decreases, which is asso-
ciated with an increase in RMSE values. To improve the proposed FFS model in future 
work, A primary direction we anticipate is the integration of FFS with advanced compu-
tational techniques. As data complexities grow, amalgamating FFS with state-of-the-art 
machine learning, such as deep learning architectures, can potentially amplify feature 
selection capabilities for neural networks. This amalgamation can be particularly advan-
tageous for handling the increasing size of datasets, focusing on enhancing the scalabil-
ity of FFS. It will be imperative to explore how FFS performs when faced with vast data 
realms and discern the modifications necessary to cater to them efficiently.
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