VICTORIA UNIVERSITY
 MELBOURNE AUSTRALIA

Operator Convexity of an Integral Transform with Applications

This is the Published version of the following publication

Dragomir, Sever S (2023) Operator Convexity of an Integral Transform with Applications. Mathematica Pannonica, 29_NS3 (1). pp. 17-28. ISSN 08652090

The publisher's official version can be found at https://akjournals.com/view/journals/314/29_NS3/1/article-p17.xml Note that access to this version may require subscription.

OPERATOR CONVEXITY OF AN INTEGRAL TRANSFORM WITH APPLICATIONS

Silvestru Sever Dragomir ${ }^{1,2, *}$
${ }^{1}$ Mathematics, College of Engineering \& Science, Victoria University, PO Box 14428, Melbourne City, MC 8001, Australia
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical, and Statistical Sciences, School of Computer Science \& Applied Mathematics, University of the Witwatersrand, Johannesburg, South Africa
Communicated by László Tóth
Original Research Paper
Received: Jul 5, 2022 • Accepted: Sep 23, 2022
First published online: Oct 17, 2022
© 2022 The Author(s)

ABSTRACT

For a continuous and positive function $w(\lambda), \lambda>0$ and μ a positive measure on $(0, \infty)$ we consider the following integral transform

$$
\mathcal{D}(w, \mu)(t):=\int_{0}^{\infty} w(\lambda)(\lambda+t)^{-1} d \mu(\lambda)
$$

where the integral is assumed to exist for $t>0$.
We show among others that $\mathcal{D}(w, \mu)$ is operator convex on $(0, \infty)$. From this we derive that, if $f:[0, \infty) \rightarrow \mathbb{R}$ is an operator monotone function on $[0, \infty)$, then the function $[f(0)-f(t)] t^{-1}$ is operator convex on $(0, \infty)$. Also, if $f:[0, \infty) \rightarrow \mathbb{R}$ is an operator convex function on $[0, \infty)$, then the function $\left[f(0)+f_{+}^{\prime}(0) t-f(t)\right] t^{-2}$ is operator convex on $(0, \infty)$. Some lower and upper bounds for the Jensen's difference

$$
\frac{\mathcal{D}(w, \mu)(A)+\mathcal{D}(w, \mu)(B)}{2}-\mathcal{D}(w, \mu)\left(\frac{A+B}{2}\right)
$$

under some natural assumptions for the positive operators A and B are given. Examples for power, exponential and logarithmic functions are also provided.

KEYWORDS

Operator monotone functions, operator convex functions, operator inequalities, Löwner-Heinz inequality, logarithmic operator inequalities

MATHEMATICS SUBJECT CLASSIFICATION (2020)

Primary 47A63; Secondary 47A60

1. INTRODUCTION

Consider a complex Hilbert space $(H,\langle\cdot, \cdot\rangle)$. An operator T is said to be positive (denoted by $T \geq 0$) if $\langle T x, x\rangle \geq 0$ for all $x \in H$ and also an operator T is said to be strictly positive (denoted by $T>0$) if T is positive and invertible. A real valued continuous function f on $(0, \infty)$ is said to be operator

[^0]monotone if $f(A) \geq f(B)$ holds for any $A \geq B>0$. We have the following representation of operator monotone functions [8], see for instance [1, p. 144-145]:
THEOREM 1.1. A function $f:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone in $[0, \infty)$ if and only if it has the representation
\[

$$
\begin{equation*}
f(t)=f(0)+b t+\int_{0}^{\infty} \frac{t \lambda}{t+\lambda} d \mu(\lambda) \tag{1.1}
\end{equation*}
$$

\]

where $b \geq 0$ and a positive measure μ on $[0, \infty)$ such that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\lambda}{1+\lambda} d \mu(\lambda)<\infty \tag{1.2}
\end{equation*}
$$

A real valued continuous function f on an interval I is said to be operator convex (operator concave) on I if

$$
\begin{equation*}
f((1-\lambda) A+\lambda B) \leq(\geq)(1-\lambda) f(A)+\lambda f(B) \tag{OC}
\end{equation*}
$$

in the operator order, for all $\lambda \in[0,1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if $-f$ is operator convex.

We have the following representation of operator convex functions [1, p. 147]:
THEOREM 1.2. A function $f:[0, \infty) \rightarrow \mathbb{R}$ is operator convex in $[0, \infty)$ with $f_{+}^{\prime}(0) \in \mathbb{R}$ if and only if it has the representation

$$
\begin{equation*}
f(t)=f(0)+f_{+}^{\prime}(0) t+c t^{2}+\int_{0}^{\infty} \frac{t^{2} \lambda}{t+\lambda} d \mu(\lambda) \tag{1.3}
\end{equation*}
$$

where $c \geq 0$ and a positive measure μ on $[0, \infty)$ such that (1.2) holds.
We have the following integral representation for the power function when $t>0, r \in(0,1]$, see for instance [1, p. 145]

$$
t^{r-1}=\frac{\sin (r \pi)}{\pi} \int_{0}^{\infty} \frac{\lambda^{r-1}}{\lambda+t} d \lambda .
$$

Observe that for $t>0, t \neq 1$, we have

$$
\int_{0}^{u} \frac{d \lambda}{(\lambda+t)(\lambda+1)}=\frac{\ln t}{t-1}+\frac{1}{1-t} \ln \left(\frac{u+t}{u+1}\right)
$$

for all $u>0$.
By taking the limit over $u \rightarrow \infty$ in this equality, we derive

$$
\frac{\ln t}{t-1}=\int_{0}^{\infty} \frac{d \lambda}{(\lambda+t)(\lambda+1)},
$$

which gives the representation for the logarithm

$$
\ln t=(t-1) \int_{0}^{\infty} \frac{d \lambda}{(\lambda+1)(\lambda+t)}
$$

for all $t>0$.
Motivated by these representations, we introduce, for a continuous and positive function $w(\lambda)$, $\lambda>0$, the following integral transform

$$
\begin{equation*}
\mathcal{D}(w, \mu)(t):=\int_{0}^{\infty} \frac{w(\lambda)}{\lambda+t} d \mu(\lambda), \quad t>0 \tag{1.4}
\end{equation*}
$$

where μ is a positive measure on $(0, \infty)$ and the integral (1.4) exists for all $t>0$.
For μ the Lebesgue usual measure, we put

$$
\begin{equation*}
\mathcal{D}(w)(t):=\int_{0}^{\infty} \frac{w(\lambda)}{\lambda+t} d \lambda, \quad t>0 \tag{1.5}
\end{equation*}
$$

If we take μ to be the usual Lebesgue measure and the kernel $w_{r}(\lambda)=\lambda^{r-1}, r \in(0,1]$, then

$$
\begin{equation*}
t^{r-1}=\frac{\sin (r \pi)}{\pi} \mathcal{D}\left(w_{r}\right)(t), \quad t>0 \tag{1.6}
\end{equation*}
$$

For the same measure, if we take the kernel $\omega_{\ln }(\lambda)=(\lambda+1)^{-1}, t>0$, we have the representation

$$
\begin{equation*}
\ln t=(t-1) \mathcal{D}\left(w_{\ln }\right)(t), \quad t>0 \tag{1.7}
\end{equation*}
$$

Assume that $T>0$, then by the continuous functional calculus for selfadjoint operators, we can define the positive operator

$$
\mathcal{D}(w, \mu)(T):=\int_{0}^{\infty} w(\lambda)(\lambda+T)^{-1} d \mu(\lambda),
$$

where w and μ are as above. Also, when μ is the usual Lebesgue measure, then

$$
\begin{equation*}
\mathcal{D}(w)(T):=\int_{0}^{\infty} w(\lambda)(\lambda+T)^{-1} d \lambda \tag{1.8}
\end{equation*}
$$

for $T>0$.
From (1.6) we have the representation

$$
\begin{equation*}
T^{r-1}=\frac{\sin (r \pi)}{\pi} \mathcal{D}\left(w_{r}\right)(T) \tag{1.9}
\end{equation*}
$$

where $T>0$ and from (1.7)

$$
\begin{equation*}
(T-1)^{-1} \ln T=\mathcal{D}\left(w_{\ln }\right)(T) \tag{1.10}
\end{equation*}
$$

provided $T>0$ and $T-1$ is invertible.
In this paper, we show among others that $\mathcal{D}(w, \mu)$ is operator convex on $(0, \infty)$. From this we derive that, if $f:[0, \infty) \rightarrow \mathbb{R}$ is an operator monotone function on $[0, \infty)$, then the function $[f(0)-f(t)] t^{-1}$ is operator convex on $(0, \infty)$. Also, if $f:[0, \infty) \rightarrow \mathbb{R}$ is an operator convex function on $[0, \infty)$, then the function $\left[f(0)+f_{+}^{\prime}(0) t-f(t)\right] t^{-2}$ is operator convex on $(0, \infty)$. Some lower and upper bounds for the Jensen's difference

$$
\frac{\mathcal{D}(w, \mu)(A)+\mathcal{D}(w, \mu)(B)}{2}-\mathcal{D}(w, \mu)\left(\frac{A+B}{2}\right)
$$

under some natural assumptions for the positive operators A and B are given. Examples for power, exponential and logarithmic functions are also provided.

2. PRELIMINARY RESULTS

We start with the following elementary identity that give a simple proof for the fact that the function $f(t)=t^{-1}$ is operator convex on $(0, \infty)$, see for instance [6, p. 8]:
LEMMA 2.1. For any $A, B>0$ we have

$$
\begin{equation*}
\frac{A^{-1}+B^{-1}}{2}-\left(\frac{A+B}{2}\right)^{-1}=\frac{\left(A^{-1}-B^{-1}\right)\left(A^{-1}+B^{-1}\right)^{-1}\left(A^{-1}-B^{-1}\right)}{2} \geq 0 \tag{2.1}
\end{equation*}
$$

If more assumptions are made for the operators A and B, then one can obtain the following lower and upper bounds:
COROLLARY 2.2. Assume that $0<\alpha \leq A \leq \beta$ and $0<\gamma \leq B \leq \delta$ for some constants $\alpha, \beta, \gamma, \delta$. Then

$$
\begin{align*}
\frac{1}{2}\left(\alpha^{-1}+\gamma^{-1}\right)^{-1}\left(A^{-1}-B^{-1}\right)^{2} & \leq \frac{A^{-1}+B^{-1}}{2}-\left(\frac{A+B}{2}\right)^{-1} \tag{2.2}\\
& \leq \frac{1}{2}\left(\beta^{-1}+\delta^{-1}\right)^{-1}\left(A^{-1}-B^{-1}\right)^{2}
\end{align*}
$$

Proof. We have $\beta^{-1} \leq A^{-1} \leq \alpha^{-1}$ and $\delta^{-1} \leq B^{-1} \leq \gamma^{-1}$, which gives

$$
\beta^{-1}+\delta^{-1} \leq A^{-1}+B^{-1} \leq \alpha^{-1}+\gamma^{-1}
$$

namely

$$
\left(\alpha^{-1}+\gamma^{-1}\right)^{-1} \leq\left(A^{-1}+B^{-1}\right)^{-1} \leq\left(\beta^{-1}+\delta^{-1}\right)^{-1}
$$

By multiplying both sides by $\left(A^{-1}-B^{-1}\right)$ and dividing by 2 , we get

$$
\begin{align*}
\frac{1}{2}\left(\alpha^{-1}+\gamma^{-1}\right)^{-1}\left(A^{-1}-B^{-1}\right)^{2} & \leq \frac{\left(A^{-1}-B^{-1}\right)\left(A^{-1}+B^{-1}\right)^{-1}\left(A^{-1}-B^{-1}\right)}{2} \\
& \leq \frac{1}{2}\left(\beta^{-1}+\delta^{-1}\right)^{-1}\left(A^{-1}-B^{-1}\right)^{2}
\end{align*}
$$

We know that for $T>0$, we have the operator inequalities

$$
\begin{equation*}
0<\left\|T^{-1}\right\|^{-1} \leq T \leq\|T\| \tag{2.3}
\end{equation*}
$$

Indeed, it is well known that, if $P \geq 0$, then

$$
|\langle P x, y\rangle|^{2} \leq\langle P x, x\rangle\langle P y, y\rangle
$$

for all $x, y \in H$.
Therefore, if $T>0$, then

$$
\begin{aligned}
0 & \leq\langle x, x\rangle^{2}=\left\langle T^{-1} T x, x\right\rangle^{2}=\left\langle T x, T^{-1} x\right\rangle^{2} \\
& \leq\langle T x, x\rangle\left\langle T T^{-1} x, T^{-1} x\right\rangle=\langle T x, x\rangle\left\langle x, T^{-1} x\right\rangle
\end{aligned}
$$

for all $x \in H$.

$$
\begin{aligned}
& \text { If } x \in H,\|x\|=1 \text {, then } \\
& \qquad 1 \leq\langle T x, x\rangle\left\langle x, T^{-1} x\right\rangle \leq\langle T x, x\rangle \sup _{\|x\|=1}\left\langle x, T^{-1} x\right\rangle=\langle T x, x\rangle\left\|T^{-1}\right\|
\end{aligned}
$$

which implies the following operator inequality

$$
\left\|T^{-1}\right\|^{-1} \leq T
$$

The second inequality in (2.3) is obvious.
REMARK 2.3. If $A, B>0$ and $B-A>0$, then by taking $\alpha=\left\|A^{-1}\right\|^{-1}, \beta=\|A\|, \gamma=\left\|B^{-1}\right\|^{-1}$ and $\delta=\|B\|$ in (2.2), we get

$$
\begin{align*}
\frac{1}{2}\left(\left\|A^{-1}\right\|+\left\|B^{-1}\right\|\right)^{-1}\left(A^{-1}-B^{-1}\right)^{2} & \leq \frac{A^{-1}+B^{-1}}{2}-\left(\frac{A+B}{2}\right)^{-1} \tag{2.4}\\
& \leq \frac{1}{2}\left(\|A\|^{-1}+\|B\|^{-1}\right)^{-1}\left(A^{-1}-B^{-1}\right)^{2}
\end{align*}
$$

A continuous function $g: S \mathcal{A}_{I}(H) \rightarrow \mathcal{B}(H)$ is said to be Gâteaux differentiable in $A \in S \mathcal{A}_{I}(H)$, the class of selfadjoint operators on I, along the direction $B \in \mathcal{B}(H)$ if the following limit exists in the strong topology of $\mathcal{B}(H)$

$$
\begin{equation*}
\nabla g_{A}(B):=\lim _{s \rightarrow 0} \frac{g(A+s B)-g(A)}{s} \in \mathcal{B}(H) . \tag{2.5}
\end{equation*}
$$

If the limit (2.5) exists for all $B \in \mathcal{B}(H)$, then we say that g is Gâteaux differentiable in A and we can write $g \in \mathcal{C}(A)$. If this is true for any A in an open set S from $S \mathcal{A}_{I}(H)$ we write that $g \in \mathcal{C}(S)$.

If g is a continuous function on I, by utilising the continuous functional calculus the corresponding function of operators will be denoted in the same way.

For two distinct operators $A, B \in S \mathcal{A}_{I}(H)$ we consider the segment of selfadjoint operators

$$
[A, B]:=\{(1-t) A+t B \mid t \in[0,1]\}
$$

We observe that $A, B \in[A, B]$ and $[A, B] \subset \mathcal{S} \mathcal{A}_{I}(H)$.
We have the following gradient inequalities, see for instance:
LEMMA 2.4. Let f be an operator convex function on I and $A, B \in \mathcal{S} \mathcal{A}_{I}(H)$, with $A \neq B$. If $f \in$ $\mathcal{G}([A, B])$, then

$$
\begin{equation*}
\nabla_{B} f(B-A) \geq f(B)-f(A) \geq \nabla_{A} f(B-A) \tag{2.6}
\end{equation*}
$$

Let $T, S>0$. The function $f(t)=t^{-1}$ is operator Gâteaux differentiable and the Gâteaux derivative is given by

$$
\begin{equation*}
\nabla f_{T}(S):=\lim _{t \rightarrow 0}\left[\frac{f(T+t S)-f(T)}{t}\right]=-T^{-1} S T^{-1} \tag{2.7}
\end{equation*}
$$

for $T, S>0$.
Using (2.7) for the operator convex function $f(t)=t^{-1}$, we get

$$
-D^{-1}(D-C) D^{-1} \geq D^{-1}-C^{-1} \geq-C^{-1}(D-C) C^{-1}
$$

that is equivalent to

$$
\begin{equation*}
D^{-1}(D-C) D^{-1} \leq C^{-1}-D^{-1} \leq C^{-1}(D-C) C^{-1} \tag{2.8}
\end{equation*}
$$

for all $C, D>0$.
If

$$
m \leq D-C \leq M
$$

for some constants m, M, then

$$
m D^{-2} \leq D^{-1}(D-C) D^{-1}
$$

and

$$
C^{-1}(D-C) C^{-1} \leq M C^{-2}
$$

and by (2.8) we derive

$$
\begin{equation*}
m D^{-2} \leq C^{-1}-D^{-1} \leq M C^{-2} \tag{2.9}
\end{equation*}
$$

Moreover, if $C \geq \alpha>0$ and $D \leq \delta$, then we get

$$
C^{-2} \leq \alpha^{-2} \text { and } D^{-2} \geq \delta^{-2}
$$

which implies that

$$
\begin{equation*}
\frac{m}{\delta^{2}} \leq C^{-1}-D^{-1} \leq \frac{M}{\alpha^{2}} \tag{2.10}
\end{equation*}
$$

COROLLARY 2.5. Assume that $0<\alpha \leq A \leq \beta, 0<\gamma \leq B \leq \delta$ and $0<m \leq B-A \leq M$ for some constants $\alpha, \beta, \gamma, \delta, m, M$. Then

$$
\begin{align*}
0 & <\frac{1}{2}\left(\alpha^{-1}+\gamma^{-1}\right)^{-1} \frac{m^{2}}{\delta^{4}} \\
& \leq \frac{1}{2}\left(\alpha^{-1}+\gamma^{-1}\right)^{-1}\left(A^{-1}-B^{-1}\right)^{2} \leq \frac{A^{-1}+B^{-1}}{2}-\left(\frac{A+B}{2}\right)^{-1} \tag{2.11}\\
& \leq \frac{1}{2}\left(\beta^{-1}+\delta^{-1}\right)^{-1}\left(A^{-1}-B^{-1}\right)^{2} \leq \frac{1}{2}\left(\beta^{-1}+\delta^{-1}\right)^{-1} \frac{M^{2}}{\alpha^{4}} .
\end{align*}
$$

Proof. From (2.10) we have

$$
0<\frac{m}{\delta^{2}} \leq A^{-1}-B^{-1} \leq \frac{M}{\alpha^{2}}
$$

which implies that

$$
0<\frac{m^{2}}{\delta^{4}} \leq\left(A^{-1}-B^{-1}\right)^{2} \leq \frac{M^{2}}{\alpha^{4}}
$$

and by (2.2) we get (2.11).
REMARK 2.6. If the positive operators A, B are separated, namely $0<\alpha \leq A \leq \beta<\gamma \leq B \leq \delta$ for some constants $\alpha, \beta, \gamma, \delta$, then obviously $0<\gamma-\beta \leq B-A \leq \delta-\alpha$ and by (2.11) for $m=\gamma-\beta$ and $M=\delta-\alpha$, we get

$$
\begin{align*}
0 & <\frac{1}{2}\left(\alpha^{-1}+\gamma^{-1}\right)^{-1} \frac{(\gamma-\beta)^{2}}{\delta^{4}} \leq \frac{1}{2}\left(\alpha^{-1}+\gamma^{-1}\right)^{-1}\left(A^{-1}-B^{-1}\right)^{2} \\
& \leq \frac{A^{-1}+B^{-1}}{2}-\left(\frac{A+B}{2}\right)^{-1} \tag{2.12}\\
& \leq \frac{1}{2}\left(\beta^{-1}+\delta^{-1}\right)^{-1}\left(A^{-1}-B^{-1}\right)^{2} \leq \frac{1}{2}\left(\beta^{-1}+\delta^{-1}\right)^{-1} \frac{(\delta-\alpha)^{2}}{\alpha^{4}} .
\end{align*}
$$

If $0<\|A\|\left\|B^{-1}\right\|<1$, then

$$
0<\left\|A^{-1}\right\|^{-1} \leq A \leq\|A\|<\left\|B^{-1}\right\|^{-1} \leq B \leq\|B\|
$$

and by (2.12) we get

$$
\begin{align*}
0 & <\frac{1}{2}\left(\left\|A^{-1}\right\|+\left\|B^{-1}\right\|\right)^{-1} \frac{\left(\left\|B^{-1}\right\|^{-1}-\|A\|\right)^{2}}{\|B\|^{4}} \\
& \leq \frac{1}{2}\left(\left\|A^{-1}\right\|+\left\|B^{-1}\right\|\right)^{-1}\left(A^{-1}-B^{-1}\right)^{2} \\
& \leq \frac{A^{-1}+B^{-1}}{2}-\left(\frac{A+B}{2}\right)^{-1} \tag{2.13}\\
& \leq \frac{1}{2}\left(\|A\|^{-1}+\|B\|^{-1}\right)^{-1}\left(A^{-1}-B^{-1}\right)^{2} \\
& \leq \frac{1}{2}\left(\beta^{-1}+\delta^{-1}\right)^{-1}\left(\|B\|-\left\|A^{-1}\right\|^{-1}\right)^{2}\left\|A^{-1}\right\|^{4}
\end{align*}
$$

We can present now our main results.

3. MAIN RESULTS

We have
THEOREM 3.1. For all $A, B>0$ we have

$$
\begin{align*}
& \frac{\mathcal{D}(w, \mu)(A)+\mathcal{D}(w, \mu)(B)}{2}-\mathcal{D}(w, \mu)\left(\frac{A+B}{2}\right) \\
& =\frac{1}{2} \int_{0}^{\infty}\left((\lambda+A)^{-1}-(\lambda+B)^{-1}\right)\left((\lambda+A)^{-1}+(\lambda+B)^{-1}\right)^{-1} \times\left((\lambda+A)^{-1}-(\lambda+B)^{-1}\right) w(\lambda) d \mu(\lambda) \tag{3.1}\\
& \geq 0 .
\end{align*}
$$

The function $\mathcal{D}(w, \mu)$ is an operator convex function on $(0, \infty)$
Proof. We have for all $A, B>0$

$$
\begin{align*}
& \frac{\mathcal{D}(w, \mu)(A)+\mathcal{D}(w, \mu)(B)}{2}-\mathcal{D}(w, \mu)\left(\frac{A+B}{2}\right) \\
& =\int_{0}^{\infty} w(\lambda)\left[\frac{(\lambda+A)^{-1}+(\lambda+B)^{-1}}{2}-\left(\lambda+\frac{A+B}{2}\right)^{-1}\right] d \mu(\lambda) \tag{3.2}
\end{align*}
$$

Since, by (2.1)

$$
\begin{aligned}
& \frac{(\lambda+A)^{-1}+(\lambda+B)^{-1}}{2}-\left(\lambda+\frac{A+B}{2}\right)^{-1} \\
& =\frac{1}{2}\left((\lambda+A)^{-1}-(\lambda+B)^{-1}\right)\left((\lambda+A)^{-1}+(\lambda+B)^{-1}\right)^{-1} \times\left((\lambda+A)^{-1}-(\lambda+B)^{-1}\right) \\
& \geq 0
\end{aligned}
$$

for all $\lambda \geq 0$, then by (3.2) we obtain the representation (3.1).
Since $\mathcal{D}(w, \mu)$ is continuous in $\mathcal{B}(H)$ and satisfies Jensen's inequality (3.1), it follows that $\mathcal{D}(w, \mu)$ is an operator convex function on $(0, \infty)$.

The case of operator monotone functions is as follows:
COROLLARY 3.2. Assume that $f:[0, \infty) \rightarrow \mathbb{R}$ is an operator monotone function on $[0, \infty)$. Then the function $[f(t)-f(0)] t^{-1}$ is operator convex on $(0, \infty)$. For all $A, B>0$ we have

$$
\begin{equation*}
\frac{f(A) A^{-1}+f(B) B^{-1}}{2}-f\left(\frac{A+B}{2}\right)\left(\frac{A+B}{2}\right)^{-1} \geq f(0)\left[\frac{\left(A^{-1}-B^{-1}\right)\left(A^{-1}+B^{-1}\right)^{-1}\left(A^{-1}-B^{-1}\right)}{2}\right] \tag{3.3}
\end{equation*}
$$

If $f(0)=0$, then $f(t) t^{-1}$ is operator convex on $(0, \infty)$ and

$$
\frac{f(A) A^{-1}+f(B) B^{-1}}{2} \geq f\left(\frac{A+B}{2}\right)\left(\frac{A+B}{2}\right)^{-1}
$$

for all $A, B>0$.
Proof. From (1.1) we have

$$
\begin{equation*}
\frac{f(t)-f(0)}{t}-b=\mathcal{D}(\ell, \mu)(t) \tag{3.4}
\end{equation*}
$$

for some μ, a positive measure on $(0, \infty)$, where $\ell(\lambda)=\lambda, \lambda \geq 0$. By utilising Theorem 3.1 and Lemma 2.1 we deduce the desired results.

COROLLARY 3.3. Assume that $f:[0, \infty) \rightarrow \mathbb{R}$ is an operator convex function on $[0, \infty)$. Then the function $\left[f(t)-f(0)-f_{+}^{\prime}(0) t\right] t^{-2}$ is operator convex on $(0, \infty)$. For all $A, B>0$ we have

$$
\begin{gather*}
\frac{f(A) A^{-2}+f(B) B^{-2}}{2}-f\left(\frac{A+B}{2}\right)\left(\frac{A+B}{2}\right)^{-2} \\
\geq f(0)\left[\frac{A^{-2}+B^{-2}}{2}-\left(\frac{A+B}{2}\right)^{-2}\right]+f_{+}^{\prime}(0)\left[\frac{\left(A^{-1}-B^{-1}\right)\left(A^{-1}+B^{-1}\right)^{-1}\left(A^{-1}-B^{-1}\right)}{2}\right] . \tag{3.5}
\end{gather*}
$$

If $f(0)=0$, then $\left[f(t)-f_{+}^{\prime}(0) t\right] t^{-2}$ is operator convex on $(0, \infty)$ and

$$
\begin{equation*}
\frac{f(A) A^{-2}+f(B) B^{-2}}{2}-f\left(\frac{A+B}{2}\right)\left(\frac{A+B}{2}\right)^{-2} \geq f_{+}^{\prime}(0)\left[\frac{\left(A^{-1}-B^{-1}\right)\left(A^{-1}+B^{-1}\right)^{-1}\left(A^{-1}-B^{-1}\right)}{2}\right] \tag{3.6}
\end{equation*}
$$

for all $A, B>0$.
Proof. From (1.3) we have

$$
\left[f(t)-f(0)-f_{+}^{\prime}(0) t\right] t^{-2}-c=\mathcal{D}(\ell, \mu)(t)
$$

for some μ, a positive measure on $(0, \infty)$, where $\ell(\lambda)=\lambda, \lambda \geq 0$. By utilising Theorem 3.1 and Lemma 2.1 we deduce the desired results.

When more assumptions are imposed on the operators A and B, then the following improvement and refinement of Jensen's inequality hold:
THEOREM 3.4. Assume that $0<\alpha \leq A \leq \beta, 0<\gamma \leq B \leq \delta$ and $0<m \leq B-A \leq M$ for some constants $\alpha, \beta, \gamma, \delta, m, M$. Then

$$
\begin{align*}
0 & <-\frac{m^{2} \gamma \alpha}{12(\alpha+\gamma)} \mathcal{D}^{\prime \prime \prime}(w, \mu)(\delta) \\
& \leq \frac{\mathcal{D}(w, \mu)(A)+\mathcal{D}(w, \mu)(B)}{2}-\mathcal{D}(w, \mu)\left(\frac{A+B}{2}\right) \tag{3.7}\\
& \leq \frac{M^{2}}{2(\beta+\delta)}\left[-\mathcal{D}^{\prime}(w, \mu)(\alpha)+\left(\frac{\delta+\beta}{2}-\alpha\right) \mathcal{D}^{\prime \prime}(w, \mu)(\alpha)-\frac{1}{6}(\beta-\alpha)(\delta-\alpha) \mathcal{D}^{\prime \prime \prime}(w, \mu)(\alpha)\right]
\end{align*}
$$

Proof. We have $0<\alpha+\lambda \leq A+\lambda \leq \beta+\lambda, 0<\gamma+\lambda \leq B+\lambda \leq \delta+\lambda$ and $0<m \leq B+\lambda-A-\lambda=$ $B-A \leq M$ for all $\lambda \geq 0$. By (2.11) we get

$$
\begin{align*}
0 & <\frac{1}{2}\left(\frac{1}{\alpha+\lambda}+\frac{1}{\gamma+\lambda}\right)^{-1} \frac{m^{2}}{(\delta+\lambda)^{4}} \\
& \leq \frac{(A+\lambda)^{-1}+(B+\lambda)^{-1}}{2}-\left(\lambda+\frac{A+B}{2}\right)^{-1} \tag{3.8}\\
& \leq \frac{1}{2}\left(\frac{1}{\beta+\lambda}+\frac{1}{\delta+\lambda}\right)^{-1} \frac{M^{2}}{(\alpha+\lambda)^{4}} .
\end{align*}
$$

We have that

$$
\begin{equation*}
\left(\frac{1}{\beta+\lambda}+\frac{1}{\delta+\lambda}\right)^{-1}=\frac{(\beta+\lambda)(\delta+\lambda)}{\beta+\delta+2 \lambda} \leq \frac{(\beta+\lambda)(\delta+\lambda)}{\beta+\delta} \tag{3.9}
\end{equation*}
$$

and

$$
\left(\frac{1}{\alpha+\lambda}+\frac{1}{\gamma+\lambda}\right)^{-1}=\frac{(\gamma+\lambda)(\alpha+\lambda)}{\alpha+\gamma+2 \lambda}=g(\lambda)
$$

We have

$$
g^{\prime}(\lambda)=\frac{(\alpha+\gamma+2 \lambda)^{2}-2(\gamma+\lambda)(\alpha+\lambda)}{(\alpha+\gamma+2 \lambda)^{2}}=\frac{(\alpha+\lambda)^{2}+(\gamma+\lambda)^{2}}{(\alpha+\gamma+2 \lambda)^{2}}>0,
$$

which shows that g is increasing on $[0, \infty)$.
Therefore

$$
\begin{equation*}
g(\lambda) \geq g(0)=\frac{\gamma \alpha}{\alpha+\gamma} \text { for all } \lambda \geq 0 \tag{3.10}
\end{equation*}
$$

By (3.8)-(3.10) we derive that

$$
\begin{aligned}
0 & <\frac{1}{2} \frac{\gamma \alpha}{\alpha+\gamma} \frac{m^{2}}{(\delta+\lambda)^{4}} \\
& \leq \frac{(A+\lambda)^{-1}+(B+\lambda)^{-1}}{2}-\left(\lambda+\frac{A+B}{2}\right)^{-1} \\
& \leq \frac{1}{2} \frac{(\beta+\lambda)(\delta+\lambda)}{\beta+\delta} \frac{M^{2}}{(\alpha+\lambda)^{4}},
\end{aligned}
$$

which implies that

$$
\begin{align*}
0 & <\frac{1}{2} m^{2} \frac{\gamma \alpha}{\alpha+\gamma} \int_{0}^{\infty} \frac{w(\lambda)}{(\delta+\lambda)^{4}} d \mu(\lambda) \\
& \leq \int_{0}^{\infty}\left[\frac{(A+\lambda)^{-1}+(B+\lambda)^{-1}}{2}-\left(\lambda+\frac{A+B}{2}\right)^{-1}\right] w(\lambda) d \mu(\lambda) \tag{3.11}\\
& \leq \frac{1}{2} \frac{M^{2}}{\beta+\delta} \int_{0}^{\infty} \frac{(\beta+\lambda)(\delta+\lambda)}{(\alpha+\lambda)^{4}} w(\lambda) d \mu(\lambda) .
\end{align*}
$$

We observe that, by the definition of $\mathcal{D}(w, \mu)(t)$, and the properties of the derivatives of integrals with a parameter, we have

$$
\begin{aligned}
\mathcal{D}^{\prime}(w, \mu)(t) & :=-\int_{0}^{\infty} \frac{w(\lambda)}{(\lambda+t)^{2}} d \mu(\lambda), \\
\mathcal{D}^{\prime \prime}(w, \mu)(t) & :=2 \int_{0}^{\infty} \frac{w(\lambda)}{(\lambda+t)^{3}} d \mu(\lambda),
\end{aligned}
$$

and

$$
\mathcal{D}^{\prime \prime \prime}(w, \mu)(t):=-6 \int_{0}^{\infty} \frac{w(\lambda)}{(\lambda+t)^{4}} d \mu(\lambda),
$$

which gives that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{w(\lambda)}{(\lambda+\delta)^{4}} d \mu(\lambda)=-\frac{1}{6} \mathcal{D}^{\prime \prime \prime}(w, \mu)(\delta) . \tag{3.12}
\end{equation*}
$$

Also, we observe that

$$
\begin{aligned}
\frac{(\beta+\lambda)(\delta+\lambda)}{(\alpha+\lambda)^{4}} & =\frac{(\beta-\alpha+\lambda+\alpha)(\delta-\alpha+\lambda+\alpha)}{(\alpha+\lambda)^{4}} \\
& =(\beta-\alpha)(\delta-\alpha) \frac{1}{(\alpha+\lambda)^{4}}+(\delta+\beta-2 \alpha) \frac{1}{(\alpha+\lambda)^{3}}+\frac{1}{(\alpha+\lambda)^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& \int_{0}^{\infty} \frac{(\beta+\lambda)(\delta+\lambda)}{(\alpha+\lambda)^{4}} w(\lambda) d \mu(\lambda) \\
& =\int_{0}^{\infty} \frac{w(\lambda) d \mu(\lambda)}{(\alpha+\lambda)^{2}}+(\delta+\beta-2 \alpha) \int_{0}^{\infty} \frac{w(\lambda) d \mu(\lambda)}{(\alpha+\lambda)^{3}}+(\beta-\alpha)(\delta-\alpha) \int_{0}^{\infty} \frac{w(\lambda) d \mu(\lambda)}{(\alpha+\lambda)^{4}} \tag{3.13}\\
& =-\mathcal{D}^{\prime}(w, \mu)(\alpha)+\left(\frac{\delta+\beta}{2}-\alpha\right) \mathcal{D}^{\prime \prime}(w, \mu)(\alpha)-\frac{1}{6}(\beta-\alpha)(\delta-\alpha) \mathcal{D}^{\prime \prime \prime}(w, \mu)(\alpha) .
\end{align*}
$$

By making use of (3.11)-(3.13), we deduce (3.7).
COROLLARY 3.5. If the positive operators A, B are separated, namely $0<\alpha \leq A \leq \beta<\gamma \leq B \leq \delta$ for some constants $\alpha, \beta, \gamma, \delta$, then

$$
\begin{align*}
0 & <-\frac{(\gamma-\beta)^{2} \gamma \alpha}{12(\alpha+\gamma)} \mathcal{D}^{\prime \prime \prime}(w, \mu)(\delta) \\
& \leq \frac{\mathcal{D}(w, \mu)(A)+\mathcal{D}(w, \mu)(B)}{2}-\mathcal{D}(w, \mu)\left(\frac{A+B}{2}\right) \\
& \leq \frac{(\delta-\alpha)^{2}}{2(\beta+\delta)}\left[-\mathcal{D}^{\prime}(w, \mu)(\alpha)+\left(\frac{\delta+\beta}{2}-\alpha\right) \mathcal{D}^{\prime \prime}(w, \mu)(\alpha)-\frac{1}{6}(\beta-\alpha)(\delta-\alpha) \mathcal{D}^{\prime \prime \prime}(w, \mu)(\alpha)\right] . \tag{3.14}
\end{align*}
$$

We have:
COROLLARY 3.6. Assume that $f:[0, \infty) \rightarrow \mathbb{R}$ is an operator monotone function on $[0, \infty)$ with $f(0)=0,0<\alpha \leq A, 0<\gamma \leq B \leq \delta$ and $0<m \leq B-A$ for some constants $\alpha, \gamma, \delta, m$. Then we have the refinement of Jensen's inequality

$$
\begin{align*}
0 & <-\frac{m^{2} \gamma \alpha}{12(\alpha+\gamma)}\left[\frac{f^{\prime \prime \prime}(\delta) \delta^{3}-3 f^{\prime \prime}(\delta) \delta^{2}+6 f^{\prime}(\delta) \delta-6 f(\delta)}{\delta^{4}}\right] \\
& \leq \frac{\mathcal{D}(w, \mu)(A)+\mathcal{D}(w, \mu)(B)}{2}-\mathcal{D}(w, \mu)\left(\frac{A+B}{2}\right) \tag{3.15}
\end{align*}
$$

Proof. From (3.4) for $f(0)=0$ we have

$$
\begin{gathered}
\mathcal{D}^{\prime}(\ell, \mu)(t)=\frac{f^{\prime}(t) t-f(t)}{t^{2}}, \\
\mathcal{D}^{\prime \prime}(\ell, \mu)(t)=\frac{f^{\prime \prime}(t) t^{2}-2 f^{\prime}(t) t+2 f(t)}{t^{3}}
\end{gathered}
$$

and

$$
\mathcal{D}^{\prime \prime \prime}(\ell, \mu)(t)=\frac{f^{\prime \prime \prime}(t) t^{3}-3 f^{\prime \prime}(t) t^{2}+6 f^{\prime}(t) t-6 f(t)}{t^{4}}
$$

Employing the first part of (3.14) we derive (3.15).

4. SOME EXAMPLES

By employing the first inequality in Theorem 3.4, we derive (3.15). If $g(t)=t^{r-1}$ for $t>0, r \in(0,1)$, then

$$
g^{\prime}(t)=(r-1) t^{r-2}, \quad g^{\prime \prime}(t)=(r-1)(r-2) t^{r-3}
$$

and

$$
g^{\prime \prime \prime}(t)=(r-1)(r-2)(r-3) t^{r-4}
$$

From (1.6) we get

$$
\mathcal{D}\left(w_{r}\right)(t)=\frac{\pi}{\sin (r \pi)} t^{r-1}, \quad t>0
$$

Then by (3.7) we get

$$
\begin{align*}
0 & <\frac{(1-r)(2-r)(3-r) m^{2} \gamma \alpha}{12(\alpha+\gamma) \delta^{4-r}} \\
& \leq \frac{A^{r-1}+B^{r-1}}{2}-\left(\frac{A+B}{2}\right)^{r-1} \tag{4.1}\\
& \leq \frac{M^{2}}{2(\beta+\delta) \alpha^{4-r}}\left[(1-r) \alpha^{2}+\left(\frac{\delta+\beta}{2}-\alpha\right) \alpha(1-r)(2-r)+\frac{1}{6}(\beta-\alpha)(\delta-\alpha)(1-r)(2-r)(3-r)\right]
\end{align*}
$$

provided that $0<\alpha \leq A \leq \beta, 0<\gamma \leq B \leq \delta$ and $0<m \leq B-A \leq M$ for some constants α, β, γ, δ, m, M.

If we take $r \rightarrow 0+$ in (4.1), then we get

$$
\begin{equation*}
0<\frac{m^{2} \gamma \alpha}{2(\alpha+\gamma) \delta^{4}} \leq \frac{A^{-1}+B^{-1}}{2}-\left(\frac{A+B}{2}\right)^{-1} \leq \frac{M^{2} \delta \beta}{2(\beta+\delta) \alpha^{4}} \tag{4.2}
\end{equation*}
$$

which is the same as (2.11).
If $0<\alpha \leq A \leq \beta<\gamma \leq B \leq \delta$ for some constants $\alpha, \beta, \gamma, \delta$, then

$$
\begin{align*}
0 & <\frac{(1-r)(2-r)(3-r)(\gamma-\beta)^{2} \gamma \alpha}{12(\alpha+\gamma) \delta^{4-r}} \\
& \leq \frac{A^{r-1}+B^{r-1}}{2}-\left(\frac{A+B}{2}\right)^{r-1} \tag{4.3}\\
& \leq \frac{(\delta-\alpha)^{2}}{2(\beta+\delta) \alpha^{4-r}}\left[(1-r) \alpha^{2}+\left(\frac{\delta+\beta}{2}-\alpha\right) \alpha(1-r)(2-r)+\frac{1}{6}(\beta-\alpha)(\delta-\alpha)(1-r)(2-r)(3-r)\right],
\end{align*}
$$

where $r \in(0,1)$.
If we take $r \rightarrow 0+$ in (4.3), then we get, see also (2.12),

$$
\begin{equation*}
0<\frac{(\gamma-\beta)^{2} \gamma \alpha}{2(\alpha+\gamma) \delta^{4}} \leq \frac{A^{-1}+B^{-1}}{2}-\left(\frac{A+B}{2}\right)^{-1} \leq \frac{(\delta-\alpha)^{2} \delta \beta}{2(\beta+\delta) \alpha^{4}} \tag{4.4}
\end{equation*}
$$

We define the upper incomplete Gamma function as [12]

$$
\Gamma(a, z):=\int_{z}^{\infty} t^{a-1} e^{-t} d t
$$

which for $z=0$ gives Gamma function

$$
\Gamma(a):=\int_{0}^{\infty} t^{a-1} e^{-t} d t \text { for } \operatorname{Re} a>0 .
$$

We have the integral representation [13]

$$
\begin{equation*}
\Gamma(a, z)=\frac{z^{a} e^{-z}}{\Gamma(1-a)} \int_{0}^{\infty} \frac{t^{-a} e^{-t}}{z+t} d t \tag{4.5}
\end{equation*}
$$

for Re $a<1$ and $|\operatorname{ph} z|<\pi$.
Now, we consider the weight $w_{-a^{--}}(\lambda):=\lambda^{-a} e^{-\lambda}$ for $\lambda>0$. Then by (4.5) we have

$$
\begin{equation*}
\mathcal{D}\left(w_{--a} e^{--}\right)(t)=\int_{0}^{\infty} \frac{\lambda^{-a} e^{-\lambda}}{t+\lambda} d \lambda=\Gamma(1-a) t^{-a} e^{t} \Gamma(a, t) \tag{4.6}
\end{equation*}
$$

for $a<1$ and $t>0$.
For $a=0$ in (4.6) we get

$$
\begin{equation*}
\mathcal{D}\left(w_{e^{-}}\right)(t)=\int_{0}^{\infty} \frac{e^{-\lambda}}{t+\lambda} d \lambda=\Gamma(1) e^{t} \Gamma(0, t)=e^{t} E_{1}(t) \tag{4.7}
\end{equation*}
$$

for $t>0$, where

$$
\begin{equation*}
E_{1}(t):=\int_{t}^{\infty} \frac{e^{-u}}{u} d u . \tag{4.8}
\end{equation*}
$$

Let $a=1-n$, with n a natural number with $n \geq 0$, then by (4.6) we have

$$
\begin{align*}
\mathcal{D}\left(w_{. n^{n-1} e^{--}}\right)(t) & =\int_{0}^{\infty} \frac{\lambda^{n-1} e^{-\lambda}}{t+\lambda} d \lambda=\Gamma(n) t^{n-1} e^{t} \Gamma(1-n, t) \tag{4.9}\\
& =(n-1)!t^{n-1} e^{t} \Gamma(1-n, t) .
\end{align*}
$$

If we define the generalized exponential integral [14] by

$$
E_{p}(z):=z^{p-1} \Gamma(1-p, z)=z^{p-1} \int_{z}^{\infty} \frac{e^{-t}}{t^{p}} d t
$$

then

$$
t^{n-1} \Gamma(1-n, t)=E_{n}(t)
$$

for $n \geq 1$ and $t>0$.
Using the identity [14, Eq 8.19.7], for $n \geq 2$

$$
E_{n}(z)=\frac{(-z)^{n-1}}{(n-1)!} E_{1}(z)+\frac{e^{-z}}{(n-1)!} \sum_{k=0}^{n-2}(n-k-2)!(-z)^{k}
$$

we get

$$
\begin{align*}
\mathcal{D}\left(w_{n-n-1} e^{-}\right)(t) & =(n-1)!e^{t} E_{n}(t) \\
& =(n-1)!e^{t}\left[\frac{(-t)^{n-1}}{(n-1)!} E_{1}(t)+\frac{e^{-t}}{(n-1)!} \sum_{k=0}^{n-2}(n-k-2)!(-t)^{k}\right] \tag{4.10}\\
& =\sum_{k=0}^{n-2}(-1)^{k}(n-k-2)!t^{k}+(-1)^{n-1} t^{n-1} e^{t} E_{1}(t)
\end{align*}
$$

for $n \geq 2$ and $t>0$.
For $n=2$, we also get

$$
\begin{equation*}
\mathcal{D}\left(w_{\cdot e^{-}}\right)(t)=\int_{0}^{\infty} \lambda e^{-\lambda}(t+\lambda)^{-1} d \lambda=1-t \exp (t) E_{1}(t) \tag{4.11}
\end{equation*}
$$

for $t>0$.
PROPOSITION 4.1. For all $a<1$, the function $t^{-a} e^{t} \Gamma(a, t)$ is operator convex on $(0, \infty)$. In particular, $e^{t} E_{n}(t)$ is operator convex on $(0, \infty)$. As a consequence $e^{t} E_{1}(t)$ is operator convex and $t e^{t} E_{1}(t)$ is operator concave on $(0, \infty)$.

We can also consider the weight $w_{\left(\cdot 2+a^{2}\right)^{-1}}(\lambda):=\frac{1}{\lambda^{2}+a^{2}}$ for $\lambda>0$ and $a>0$. Then, by simple calculations, we get

$$
\begin{aligned}
\mathcal{D}\left(w_{\left(\cdot 2+a^{2}\right)^{-1}}\right)(t) & :=\int_{0}^{\infty} \frac{1}{(\lambda+t)\left(\lambda^{2}+a^{2}\right)} d \lambda \\
& =\frac{1}{\left(t^{2}+a^{2}\right)}\left(\frac{\pi t}{2 a}-\ln t+\ln a\right)
\end{aligned}
$$

for $t>0$ and $a>0$.
For $a=1$ we also have

$$
\begin{aligned}
\mathcal{D}\left(w_{(\cdot 2+1)^{-1}}\right)(t) & :=\int_{0}^{\infty} \frac{1}{(\lambda+t)\left(\lambda^{2}+1\right)} d \lambda \\
& =\frac{1}{t^{2}+1}\left(\frac{\pi}{2} t-\ln t\right)
\end{aligned}
$$

for $t>0$.
PROPOSITION 4.2. For all $a>0$, the functions

$$
\frac{1}{\left(t^{2}+a^{2}\right)}\left(\frac{\pi t}{2 a}-\ln t+\ln a\right)
$$

are operator convex on $(0, \infty)$. In particular,

$$
\frac{1}{t^{2}+1}\left(\frac{\pi}{2} t-\ln t\right)
$$

is operator convex on $(0, \infty)$.
The interested reader may state other similar results by employing the examples of monotone operator functions provided in [3], [4], [5], [10] and [11].

REFERENCES

[1] Bhatia, R. Matrix Analysis. Graduate Texts in Mathematics, 169. Springer-Verlag, New York, 1997. xii+347 pp. ISBN: 0-387-94846-5.
[2] Choi, M. D. Positive linear maps on C^{*}-algebras. Canad. 7. Math., 24 (1972), 520-529.
[3] Fujil, J. I. and Seo, Y. On parametrized operator means dominated by power ones. Sci. Math., 1 (1998) 301-306.
[4] Furuta, T. Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation. Linear Algebra Appl., 429 (2008) 972-980.
[5] Furuta, T. Precise lower bound of $f(A)-f(B)$ for $A>B>0$ and non-constant operator monotone function f on $[0, \infty)$. \mathcal{F}. Math. Inequal., 9,1 (2015), 47-52.
[6] Furuta, T., Ноt, T. M., Pečarić J. and Seo, Y. Mond-Pečarić Method in Operator Inequalities. Inequalities for Bounded Selfadjoint Operators on a Hilbert Space. Element, Zagreb, 2005.
[7] Heinz, E. Beiträge zur Störungsteorie der Spektralzerlegung. Math. Ann., 123 (1951) 415-438.
[8] Löwner, K. Über monotone MatrixFunktionen. Math. Z., 38 (1934) 177-216.
[9] Moslehian, M. S. and Najafi, H. Around operator monotone functions. Integr. Equ. Oper. Theory, 71 (2011), 575-582.
[10] Moslehian, M. S. and Najafi, H. An extension of the Löwner-Heinz inequality. Linear Algebra Appl., 437 (2012), 2359-2365.
[11] Zuo, H., Duan, G. Some inequalities of operator monotone functions. 7. Math. Inequal., 8, 4 (2014), 777-781.
[12] Incomplete Gamma and Related Functions, Definitions. Digital Library of Mathematical Functions. NIST. https://dlmf.nist.gov/8.2
[13] Incomplete Gamma and Related Functions, Integral Representations. Digital Library of Mathematical Functions. NIST. https://dlmf.nist.gov/8.6
[14] Generalized Exponential Integral. Digital Library of Mathematical Functions. NIST. https://dlmf. nist.gov/8.19\#E1

[^1]
[^0]: * Corresponding author. E-mail: sever.dragomir@vu.edu.au

[^1]: Open Access statement. This is an open-access article distributed under the terms of the Creative Commons AttributionNonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium for non-commercial purposes, provided the original author and source are credited, a link to the CC License is provided, and changes - if any - are indicated.

