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Abstract
The thermal performance of ventilated beds of hygroscopic porous media depends strongly 
on the sorption properties of the solid phase. Furthermore, the published literature shows 
that the predicted performance of ventilated beds of hygroscopic porous media is extremely 
sensitive to the form and accuracy of the sorption isotherm. This is particularly apparent 
under idealized conditions when thermodynamic equilibrium is deemed to exist between 
the solid and fluid phases. When Tóth’s isotherm is invoked in an equilibrium model used 
to analyse the performance of a bed of initially warm and dry silica gel ventilated with 
cool, humid air, it is predicted that a shock wave develops downstream of air entering the 
bed. In contrast, it is shown that non-equilibrium solutions result in a transfer wave, the 
width of which decreases as the velocity of the interstitial air decreases. The Tóth isotherm 
gives rise to erroneous values of the integral heat of wetting of silica gel. Previously pub-
lished studies of simultaneous heat and mass transfer in beds of hygroscopic materials refer 
to conceptual difficulties in interpreting the results, and some published mathematical anal-
yses are somewhat terse. A secondary aim of this work is to assuage these difficulties by 
detailing the analyses in Supplementary Information.

Article Highlights

• The behaviour of ventilated beds of hygroscopic porous media is extremely sensitive to 
the form of isotherm.

• Shock fronts form in beds of hygroscopic porous media when Tóth’s isotherm is 
invoked by equilibrium models.

• Corresponding non-equilibrium models result in the propagation of steep transfer 
waves.
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1 Introduction

Ventilated packed beds of hygroscopic porous media constitute a central component of sev-
eral industrial processes. For example, they are used to dry compressed air (Daghooghi-
Mobarakeh et al. 2022). Because they can be regenerated using low-grade heat, they form 
components of environmentally sustainable systems. De Antonellis et al. (2021) have pro-
posed that beds of desiccant be used in cold climates to humidify air before it is introduced 
into buildings, and Strong et al. (2022) suggest that ventilated beds of desiccant be used 
to store thermal energy. A solar thermal, open-cycle desiccant bed cooling system for pre-
serving stored food grains has been developed by Thorpe and Chen (2002). Stored grains 
are themselves hygroscopic porous media. A sound appreciation of the heat and mass 
transfer processes that occur within them is essential if they are to be protected from the 
depredations of insects, fungi and other biota (Panigrahi et al. 2020).

Figure 1 illustrates the temperature profile along a bed of RD silica gel. The physical 
properties and the parameters in and the form of Tóth’s isotherm are given by Chua et al. 
(2002). The thermodynamic states of the silica gel and that of the air used to ventilate the 
bed have been chosen to ensure that two heat and mass transfer waves propagate through 
the bed. Initially, the temperature and moisture content of the silica gel are 50  °C and 
0.121 kg water/kg dry silica gel, respectively, and the bed is ventilated with air that has a 
temperature and specific humidity of 25 °C and 0.0094 kg water kg/dry air. The Darcian or 
superficial velocity of the air is 80 mm/s and the system has been operating for 3600 s. It is 
observed that there are three distinct zones, A, P and B, which are separated by two waves 
that lengthen over time. The silica gel in Zone A is in thermodynamic equilibrium with the 
incoming air, whilst that in zone C is at its initial state. Zone P is at the so-called plateau, 
or dwell state that has a temperature of about 34.7 °C. The distance scale is logarithmic, 
and it is seen that the trailing edge of the moisture wave has travelled a mere 5 mm from 
the inlet of the bed, whereas the leading edge of the temperature wave has penetrated the 
bed to a depth of almost 1.5 m.

The behaviour portrayed in Figs. 1 and 2 represents a special case. In general, the loci 
of points along the moisture wave in the temperature-humidity, T-w, plane approach two 
extremes. If the solid phase is non-hygroscopic then no mass transfer occurs, and loci of 
points along the transfer wave, AP, are parallel to the temperature axis, i.e. �w∕�T = 0 . 
The other extreme occurs when all of the heat liberated by adsorption of water raises the 

Fig. 1  The temperature profile 
along a bed of ventilated silica 
gel with psychometric properties 
described by Tóth’s isotherm. 
The silica gel in Zone A is in 
thermodynamic equilibrium with 
the air entering the ventilated 
bed, and that in Zone B is at its 
state before ventilation com-
menced. Zone P is the plateau 
state. The transfer wave between 
states A and P is designated the 
moisture wave, and that between 
states P and B is the temperature 
wave. Note that the distance scale 
is logarithmic
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temperature of the air as it flows through the interstices of the bed of silica gel. In this 
limiting case, the line AP is coincident with that of a constant adiabatic wet bulb tempera-
ture. Hygroscopic materials lie between these two extremes. Figure 2 shows that the loci of 
points on the moisture wave, AP, follow a similar trajectory to those on a line of constant 
adiabatic wet bulb temperature. This suggests that an exchange of latent heat between the 
air and silica gel dominates the exchange of sensible heat. In this work, it is shown that 
when beds of hygroscopic porous media are ventilated with air that has a relative humidity 
approaching unity, and Tóth’s isotherm is invoked, the predicted behaviour of beds of silica 
gel is quite different from that portrayed in Figs. 1 and 2.

If systems that comprise beds of ventilated hygroscopic porous media are to be opti-
mised, we require detailed mathematical models of the heat and mass transfer processes 
that occur within them. The governing mass and energy conservation equations can be 
readily solved using numerical methods. However, numerical solutions do not provide 
explicit mathematical relationships between the rate and degree of heating and cooling of 
ventilated beds of hygroscopic porous media and other physical properties. In contrast, the 
method of characteristics enables these phenomena to be described explicitly in terms of 
physical variables. As a result, deep insights into the performance of such systems can 
reveal anomalous behaviour that is not evidenced by numerical solutions.

The predicted performance of ventilated beds of hygroscopic porous media is extremely 
sensitive to the mathematical form of the isotherm that represents experimental data on the 
sorption of water vapour by the solid phase. For example, Hunter (1988) observed that the 
mathematical form of the sorption isotherm has a profound effect on the predicted veloci-
ties of transfer waves that propagate through ventilated, or aerated, beds of wheat, a hygro-
scopic material. In particular, he compared the predicted performance of ventilated beds 
of wheat when two different forms of isotherms are invoked, namely those proposed by 
Sutherland et al. (1971) and Hunter (1987).

Anomalous results can ensue when isotherms that accurately fit experimental data are 
employed to model heat and mass transfer in beds of porous media. For example, Close and 
Banks (1972) studied heat and mass transfer in ventilated beds of silica gel. To capture fine 
details of measured sorption properties of silica gel, they initially described the isotherm 
by means of a series of polynomials with 27 free parameters. Their resulting model of heat 
and mass transfer produced discontinuities in the predicted velocities of the transfer waves. 

Fig. 2  The ventilation process in 
the temperature-humidity. T-w, 
plane. The air entering the bed 
of silica gel is at state A, and 
the initial state of the bed is at 
state B. The loci of points on the 
moisture and temperature waves 
lie on AP and BP, respectively, 
where P is the plateau state. 
The dotted line traces the loci 
of constant adiabatic wet bulb 
temperatures
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Furthermore, the predicted velocities are highly irregular in that they do not vary monoton-
ically with the humidity of the interstitial air as expected. However, when Close and Banks 
(1972) reduced the number of free parameters to 14, some smoothing of the experimen-
tal sorption data occurred, and the predicted velocities of the transfer waves became more 
regular, although some discontinuities remained. The underlying problem arose because of 
inaccuracies and inconsistencies in the sorption data modelled by Close and Banks (1972). 
Driscoll’s (1985) results on the rate of drying of paddy rice, a hygroscopic material, also 
displayed irregular behaviour, although he left this phenomenon unremarked.

Close and Banks (1972) demonstrate that their sorption isotherm for silica gel results 
in two widening cooling waves propagating through the bed, as indicated in Fig. 1. How-
ever, in this work, it is demonstrated that when Tóth’s isotherm is invoked, the moisture 
wave between states A and P collapses into a shock front. The widening temperature wave 
between zones P and B persists. When the restriction of thermodynamic equilibrium is 
relaxed, it is shown that the shock front is replaced by a transfer wave that does not increase 
in wavelength as it propagates through the bed a silica gel.

Ventilated beds of desiccant are used typically to produce dry air. Under these condi-
tions air used to generate Fig. 1 leaving a 1-m long bed of ventilated silica gel would be 
at the plateau state, P, for about 100 h. Air at the plateau state is required for technological 
purposes because its relative humidity is low, and in the case shown it is cooler than that 
of its initial state, B. A slow moving moisture wave propagates through a ventilated bed. It 
widens as it propagates because, ceteris paribus, a reduction of the relative humidity of the 
interstitial air along a moisture wave is accompanied by a reduction in the sorptivity of the 
solid phase. As a result, the relative humidity of the interstitial air decreases as a moisture 
wave exits a bed of hygroscopic porous media. If the technological objective is to dry air, 
this slow decline in performance is undesirable. In this work, it is shown that desiccants 
with isotherms of the form of Tóth’s generate slow moving, but steep moisture fronts.

Close (1983) declared that the abstract nature of the solution of the governing heat and 
mass conservation equations by the method of characteristics “causes difficulties in com-
prehension”. This sentiment is echoed by Ingram (1979). When discussing an analysis of 
heat and mass transfer in beds of stored food grains he opined of characteristics, “it is diffi-
cult to interpret their physical significance”. In a similar vein, Hunter (1988) expressed the 
view that “The analysis of heat and mass transfer in porous hygroscopic media is necessar-
ily complicated”. A secondary objective of this work is to assuage some of these perceived 
difficulties by presenting a comprehensive and detailed account of the analysis in Supple-
mentary Information.

2  Mathematical Background

Dispersive effects may obscure the underlying mechanisms of heat and mass transfer in 
beds of porous media: dispersive phenomena are essentially aleatory. In this work, it is 
initially assumed that the interstitial air and solid phase are in thermodynamic equilibrium 
throughout the bed, and there are no dispersive effects. Although these assumptions appear 
to be limiting, they nonetheless bring to the fore, and make explicit, the effects of physical 
properties on the performance of ventilated beds of hygroscopic porous media. Sutherland 
et  al. (1983) demonstrate that the assumption of equilibrium accurately displays the key 
features of heat and mass transfer phenomena in beds of ventilated stored grains. Along 
with Ingram (1979), they demonstrate that the effects of dispersive phenomena may be 
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superimposed on the results developed here. Close and Banks (1972) also report that the 
equilibrium model of heat and mass transfer in ventilated beds of silica gel provides reason-
able agreement with experimental results. The assumption of thermodynamic equilibrium 
between the solid and fluid phases will be subsequently relaxed, and its effects quantified.

The equation that governs the conservation of water in a bed of ventilated hygroscopic 
porous medium at a distance x downstream of the air inlet at time t presented by Banks 
(1972) may be stated as

in which w represents the specific humidity of the interstitial fluid, and W is the moisture 
content of the solid phase expressed on a dry basis, and v is the mean velocity of air within 
the interstices of a packed bed of porous media. The volume-weighted density, � , is given 
by

The corresponding equation for the conservation of enthalpy is

where h and H are, respectively, the specific enthalpies of moist air and solids expressed 
on a dry basis. The hygroscopic nature of the solid phase results in W = W(w,T) where 
T  is temperature. The specific enthalpy, H , of moist silica gel is a function of its moisture 
content and temperature; hence, it follows that H = H(w,T). Under a condition of constant 
pressure the specific enthalpy, h , can be expressed as h = h(w, T) and by employing the 
chain rule of partial differentiation, Eqs. 2.1 and 2.3 become

and

3  The Velocities of Moisture and Temperature Waves

Thorpe (2022) provides a detailed demonstration of the solution of Eqs.  2.4 and 2.5 by 
means of a classical application of the method of characteristics presented by Rhee et al. 
(2013). This provides a simple expression for estimating the velocities Vi of temperature 
and moisture waves that travel through the bed, namely

in which i = 1, 2 refer to the moisture and temperature waves, respectively, and Ai are 
velocity ratios that depend on the local thermodynamic state within the bed. They are given 
by
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Thorpe (2022) demonstrates that

in which hw(T ,W) is the isothermal differential heat of wetting of the solid phase. ca , cs , 
cv and cW are, respectively, the specific heats of dry air, dry solid, water vapour and liquid 
water, and hv||T is the latent heat of vapourisation of free water at the temperature T .�i is the 
ratio of the derivatives with respect to temperature of the specific enthalpies of the solid 
and fluid phases, and it is expressed by

�i is analogous to the ratio,� , of the specific heats of the solid and fluid phases in beds 
of non-hygroscopic solids, but the numerator and denominator in Eq.  3.4 incorporate 
terms that account for the hygroscopic nature of silica gel. The subscript j indicates that 
the differentials are evaluated as tangents to the line in the T-w domain other than that 
designated by i, as indicated in Eq. 3.3. The ratio, (�H∕�h)j , provides an indicator of the 
importance of the hygroscopy of the solid phase. For example, along AP indicated in 
Fig. 1.(𝜕H∕𝜕h)1 > 𝜎 , and the high ratio of the effective specific heat of the solids to air 
is associated with the low velocity of the moisture wave. Conversely, (𝜕H∕𝜕h)2 < 𝜎 cor-
responds to the temperature wave propagating with a relatively high velocity through beds 
of hygroscopic porous media, and this occurs along the more rapidly travelling temperature 
wave, PB. Along moisture and temperature waves Thorpe (2022) shows that

Equation 3.3 has a simple form that provides insights into the behaviour of ventilated 
beds of hygroscopic porous media. However, it is necessary to evaluate (�w∕�T)j and 
(�W∕�T)j . which lie along the lines AP and BP in Fig. 2.

4  Characteristic potentials

The transport equation that governs the nondispersive flow of a scalar, F , may be written as

where a  and b  are constants, or functions of F, x and t . Importantly, the velocity, V , with 
which the scalar is transported is the ratio b ∕a  . Consider a system in which the solid and 
fluid phases are in thermodynamic equilibrium. In this case, the temperature, T, the humid-
ity, w, and the moisture content, W, of the solids at a point on a transfer wave remain con-
stant as the point transits the bed, that is the three quantities travel with the same speed. 
Hence, the key to solving Eqs. 2.4 and 2.5 is to recognise that the ratio of the coefficients 
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of �T∕�t and �T∕�x are the same as those of �w∕�t and �w∕�x . It is shown in Supplemen-
tary Information that this leads to an expression of the form

Banks (1972) introduced the concept of characteristic potentials that drive heat and 
mass transfer in beds of porous hygroscopic media, such as silica gel. Since there are 
two waves, we replace F in Eq. 4.1 with Fi which are termed characteristic potentials 
and which constitute a potential driving force that captures the effects of both heat and 
mass transfer. This is achieved by defining �i in Eq. 4.2 as

which implies that values of Fi are constant along lines in the w-T plane that result from the 
integration Eq. 4.3. By inserting Eqs. 4.3 into 4.2, it is shown in Supplementary Informa-
tion that implementation of the rules partial differentiation yields the desired result, namely

Numerical values of Fi are generally considered arbitrary, although Close (1983) 
attempted to assign values to them. The nature of characteristic potentials is discussed 
in further detail in Supplementary Information.

We make use of the method of characteristic potentials to evaluate (�w∕�T)j and 
(�W∕�T)j in Eq. 3.3. Banks’ (1972) analysis is somewhat terse; hence, it is elucidated in 
some detail in Supplementary Information, where it is shown that

where (�w∕�T)i = −1∕�i , and variables such as � , � , � defined by Banks (1972) are given 
in Supplementary Information. In practice, we know the initial conditions required to inte-
grate Eq. 4.5. They are those that correspond to those in equilibrium with the air entering 
the silica gel bed, A, and the initial condition of the silica gel, B. Integration enables the 
loci of points along AP and BP to be determined.

5  Discontinuities

A discontinuity forms when the trailing edge of a transfer wave has a higher velocity 
than its leading edge. This typically occurs when a bed of hygroscopic porous medium 
with a high moisture content is dried with air that has a low relative humidity. How-
ever, we shall observe that Toth’s isotherm predicts the formation of a discontinuity in 
the moisture wave. Thorpe (2022) demonstrates that the thermodynamic states on either 
side of a discontinuity in a ventilated bed of hygroscopic porous media are governed by 
the following relationship
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in which Δ represents the difference in the quantities across a discontinuity. We can express 
the difference in the enthalpies of the air between the plateau state and the air entering the 
system, by designating their subscripts p and in, respectively, thus

and the difference in the enthalpy of the solid phase across the discontinuity is given by

To ensure that Eq. 5.1 is satisfied we define a function

and search for values of Tp and wp such that abs
(
�
(
Tp,wp

))
 approaches zero to within a 

pre-defined tolerance.
The values of Tp and wp are constrained to lie on a line of constant F2 that passes through 

the initial state of the bed of porous media. A fourth order Runge–Kutta method is used to 
integrate the first-order differential equation

The Nelder–Mead method is used to determine wp such that |||�
(
Tp,wp

)|||
≤  10–4 given 

that the integration of Eq. (5.5) provides values of Tp and wp at the plateau state.
Equations 3.2 and 3.5 indicate that the velocity ratio, Ai , at points along the transfer 

waves is closely related to the ratio (�W∕�w)j which is evaluated along a line of constant 
Fi , i.e. along a transfer wave. It convenient to designate this quantity the characteristic sorb-
ability, �c,i , of hygroscopic materials defined by

6  Physical Properties

The principal aim of this work is to investigate the effect of the form of Tóth’s isotherm on 
the performance of ventilated beds of hygroscopic porous media. This study makes use of 
the physical properties of RD silica gel reported by Chua et al. (2002) who give the follow-
ing form of Tóth’s isotherm

where
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in which K0 and Qst are, respectively, an empirical constant and the differential heat of 
sorption. Rv is the gas constant specific to water vapour, Tabs is the absolute temperature, 
and Wm is the saturated moisture content of the solid that occurs when the relative humid-
ity of the surrounding air is unity, and t is the Tóth constant. Tabs is the absolute tempera-
ture, K. Chua et al (2002) provide the following values for the empirical constants for RD 
silica gel: K0 = 7.3 × 10−13 kg.kg−1.Pa−1, Qst = 2.693 × 106 J.kg−1, t = 12, Wm = 0.45 and 
Rv = 461.5 J.kg−1.K−1.

Thorpe (2001) points out that the differential heat of sorption is functionally related 
to the temperature, T  , and the fractional relative humidity, r, of the interstitial air, and 
the moisture content, W  , of the solids through

in which ps is the saturation vapour pressure of water, Pa. It is shown in Supplementary 
Information that in the case of Tóth’s isotherm

Equation 6.4 is somewhat tautological because hs and Qst represent the same quantity, 
namely the differential heat of sorption. According to Tóth’s isotherm, hs∕hv is inde-
pendent of the moisture content of silica gel, and this is reflected by Eq.  6.4. When 
Eq. 6.3 is evaluated, it is found that hs also varies little with temperature. For example, 
hs is 2.691 ×  106 when the temperature is 5  °C and 2.683 ×  106 when the temperature 
is 50  °C. These values are consistent with the value of Qst given Chua et  al. (2002), 
namely 2.693 ×  106 J/kg.

The isothermal differential heat of wetting, hw , is liberated when water is adsorbed by 
the solid substrate of the silica gel. In keeping with the convention of thermodynamics 
it is deemed to be a negative quantity. The latent heat of sorption, hs , is the total quan-
tity of energy required to liberate adsorbed moisture, and it comprises the latent heat of 
vapourisation of free water, hv , and the negative of differential heat of wetting, and it is 
defined thus

The integral heat of wetting is defined as

Which when combined with Eq. (6.3) becomes
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If we accept the assumption implicit in Tóth’s isotherm that Qst is indeed constant we 
have

If dhv∕�T is taken to be -2376.2 J/(kg °C) the above formulation suggests that �HW∕�T = 
O(102), and it is a negative quantity. This is inconsistent with values implied by the work of 
Close and Banks (1972) who demonstrate that the differential heat of sorption, hs , is expressed 
as

where �(W) is an empirical function of the moisture content, W, of silica gel, and it has a 
value of about 1.1. When Qst is replaced by hs defined by Eq. 6.9 in Eq. 6.6 we have

i.e., according to this formulation �HW∕�T  is of an order of magnitude of  101 in a typi-
cal working range. Furthermore, that value of �HW∕�T  given by Eq.  6.10 is posi-
tive. The numerator in Eq.  3.3 contains a term cs +WcW + �

�T ∫
W
0 hw(T ,W)dW , and since 

𝜕

𝜕T
∫ W

0
hw(T ,W)dW ≪ cs +WcW we neglect the differential of the integral heat of wetting 

with respect to temperature. This approximation makes no material difference to the argu-
ments presented in this work, and in practice �HW∕�T  is subsumed into the specific heat 
of the solid phase. Chakraborty et al. (2009) demonstrate how the sorption properties influ-
ence the apparent specific heat of silica gel (Type 125). When considering heat and mass 
transfer in stored food grains Thorpe (2022) noted that subsuming �HW∕�T  into the spe-
cific heat of the solid phase is necessary when sorption data are incomplete, or internally 
inconsistent.

7  Solution of the Governing Heat and Mass Conservation Equations

Given the initial conditions the loci of points along the F1 and F2 characteristics in the T-w 
plane are calculated by implementing a fourth order Runge–Kutta algorithm (Shampine and 
Reichelt 1997) to integrate the following equation.

in which the subscripts i = 1, 2 refer to the loci of points along the moisture and tempera-
ture waves, respectively, and k = 1, 2 refers to the thermodynamic states at the inlet to the 
bed, state A, and the initial conditions, state B, respectively. A value of the humidity, wp , 
is sought at the point of intersection of the lines of constant F1 andF2 , which corresponds 
to the plateau, or dwell state. The intersection is deemed to occur when ||T2 − T1

|| < 10−4 , 
which is determined by the Nelder-Mead simplex method (Lagarias, et al. 1998).

(6.8)
�HW

�T
=

d

dT

W

∫
0

(
hv − Qst

)
dW ≈ W

dhv

dT

(6.9)hs = hv�(W)

(6.10)
�HW

�T
=

d

dT

W

∫
0

(
hv − hv�(W)

)
dW ≈ −0.1W

dhv

dT

(7.1)Ti = −

wp

�
Tk,i,wk,i

�idw i = 1, 2; k = 1, 2, i ≠ k
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8  Results

Consider an element of a bed of hygroscopic porous medium, as shown in Fig. 3. The ele-
ment travels through the bed with the same velocity as that of a point on a transfer wave 
such that its thermodynamic state remains constant. In this case, each  point, Fi , located 
along a transfer wave along which Fj is constant has a different velocity Vi . The velocity, 
v , of the interstitial air is several orders of magnitude greater than that of transfer waves, 
and its velocity relative to the moving element is v − Vi . Because the element travels with 
a velocity Vi , the solid phase effectively enters the element at its downwind face and leaves 
from its upwind face. During this process, the solid exchanges mass and energy with the air 
stream, and the net result is that it loses enthalpy to the interstitial air. Since the process is 
isenthalpic, the enthalpy gained by the air stream is extracted from the hygroscopic porous 
medium. The situation is discussed in more detail in Supplementary Information.

The performance of a ventilated bed of RD silica gel is investigated under the operating 
conditions given in Table 1.

8.1  The Moisture Wave

When the relative humidity of the interstitial air is high, and Tóth’s isotherm is invoked 
it can be seen in Fig.  4 that the behaviour of silica gel exhibits characteristics that 
approach those of a non-hygroscopic material, i.e. (�w∕�T)F1

→ 0 . We shall observe 

Fig. 3  Air with a velocity v 
enters an element of a bed of 
hygroscopic porous medium that 
has a velocity V

i
 , at a point on the 

transfer wave, j. Cool air enters 
the element from upstream and 
exchanges energy and moisture 
with silica gel that enters the 
moving element through its 
downstream face. No energy or 
mass accumulates in the element

Table 1  The operating conditions of a ventilated bed of silica gel. A shock front forms between the inlet 
and plateau states, AP

Inlet State, A Plateau, P Initial state, B

Temperature, °C 25 34.86 50
Humidity, kg water/kg dry air 0.019 0.01535 0.040
Moisture content, kg water/kg dry solid 0.44979 0.3007 0.3105



148 G. Thorpe 

1 3

that as the sorptivity increases, the speed of the moisture wave, V1 , decreases, and since 
the trailing edge cannot overtake the leading edge a shock wave forms, indicated by the 
dotted line in Fig. 4. We shall now quantify the factors that lead to these phenomena.

8.1.1  Conditions at Point A

The terms in Eqs. 3.2 and 3.4 that govern the rate at which a moisture wave traverses a 
ventilated bed of silica gel are shown in Table 2. Under the conditions at point A where 

Fig. 4  Air at state A enters a bed of silica gel. When Eq.  4.5 is integrated, the resulting moisture wave 
intersects the temperature wave at P´. In the vicinity of A, the gradient (�w∕�T)

F1
 calculated using Tóth’s 

isotherm is low which indicates that the silica gel adsorbs little moisture, hence the velocity of the moisture 
wave is high. The reverse is true in the vicinity of P´, so the velocity of trailing edge of the moisture wave 
notionally has a higher velocity than the leading edge. Hence, a shock wave forms, depicted by the dotted 
line AP

Table 2  Terms in Eq. 3.3, that with Eq. 3.2, govern the rate at which transfer waves propagate through beds 
of silica gel, the psychrometric properties of which is described by Tóth’s isotherm

Moisture wave, i = 1 Temperature wave, i = 2

Inlet: A Plateau: P Plateau: P Initial: B

(�W∕�T)Fi
−1.7151 ×  10–4 −0.02541 5.858 ×  10–4 7.125 ×  10–4

cs +WcW 2804.18 2177.32 2177.32 2221.24
cWT(�W∕�T)± −17.95 −3709.31 85.51 149.16`
hw(T ,W)(�W∕�T)Fi

42.35 6821.69 −157.26 −214.09
(�H∕�T)Fi

2828.58 5289.70 2105.57 2156.31
(�w∕�T)Fi

−5.4685 ×  10–5 −3.725 ×  10–4 9.981 ×  10–4 2.478 ×  10–3

ca + wcv 1039.20 1032.58 1032.58 1077.22
cWT(�w∕�T)Fi

−5.71 −54.37 145.7 518.70
hv
|
|T (�w∕�T)Fi

−133.27 −900.65 2413.5 5902.28
(�h∕�T)Fi

900.22 77.57 3591.78 7498.20
(�H∕�T)Fj

∕(�h∕�T)Fi
3.14 68.2 0.586 0.287

AFi
2.141 ×  10–4 9.88 ×  10–6 1.145 ×  10–3 2.335 ×  10–3
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the silica gel is in thermodynamic equilibrium with air entering the bed (�W∕�T)F1
 and 

(�w∕�T)F1
 are -1.7151 ×  10–4  J·(kg·°C)−1 and -5.4685 ×  10–5  J·(kg·°C)−1 respectively. 

Hence, according to Eq. 5.6 the characteristic sorptivity, �c,1 , is 3.14, which is relatively 
low, and it demonstrates that only a small quantity of water vapour is adsorbed by the silica 
gel. The velocity ratio, A2 , at point A is 2.141 ×  10–4.

The heat and mass transfer processes are intertwined. Moist air at point A gains 
1039.20 J·(kg·°C)−1 of sensible heat as it cools the silica gel. During this process, moisture 
condenses on the internal and external surfaces of the solid phase, and 133.3 J·(kg·°C)−1 of 
latent heat of condensation of water is liberated. This reduces the capacity of the air to cool 
the silica gel, which results in the velocity of the transfer wave being lower than if the solid 
phase was not hygroscopic. Because the humidity of the air falls as it traverses the moisture 
wave, it loses 5.71 J·(kg·°C)−1 of sensible heat associated with the reduction of humidity.

The silica gel cools as it traverses the moving element, and it can be seen in Table 2 that 
it loses 2804.18 J·(kg·°C)−1 of sensible heat. As the silica gel passes through the moving 
element, its moisture content increases which increases its enthalpy by 17.95 J·(kg·°C)−1. 
The increase in moisture content of the silica gel results in its losing 42.35 J·(kg·°C)−1 aris-
ing from its heat of wetting.

The net result of the heat and mass transfer processes is that the Tóth isotherm predicts 
that at point A moist air with a cooling capacity of 900.2 J·(kg·°C)−1 has the duty of cool-
ing silica gel that has an effective specific heat of 2826.58 J·(kg·°C)−1, hence (�H∕�h)F1

 is 
3.14. As anticipated from Eq. 3.5, this is identical to the characteristic sorptivity,�c,1 . Sig-
nificantly, about 87% of the cooling capacity of the moist air arises from an increase in its 
sensible heat, and the transfer of latent heat is relatively small.

8.1.2  Conditions at the Plateau State, P

At the plateau state, P, it is shown in Table 2 that along a line of constant F1 the moisture 
characteristic sorptivity, �c,1 , of silica gel is 68.2. As a result, a large volume of air must 
flow to increase the moisture content of silica gel, and the velocity ratio, A2 , at this point is 
9.88 ×  10–6, i.e. it is slower by a factor of 21.7 than at point A. Hence, a shock front forms.

On passing through a moving element of solid at point P the silica gel would lose 
2177.32 J·(kg·°C)−1 which is somewhat less than that at point A because its moisture con-
tent is lower. However, the higher characteristic sorptivity increases its rate of adsorption 
of moisture, hence it gains 3709.31 J·(kg·°C)−1 as a result of its moisture content increas-
ing. However, the silica gel loses 6821.69 J·(kg·°C)−1 because heat of wetting is liberated. 
The net change in the enthalpy of silica gel at the plateau state as it traverses the moving 
element shown in Fig. 3 is a loss of 2828.58 J·(kg·°C)−1.

We observe that the air extracts 1032.6  J·(kg·°C)−1 of sensible heat from the silica 
gel. The humidity of the air falls as it traverses the bed because water vapour in the 
interstitial air condenses on the external and internal surfaces of the silica gel. Hence, 
the air loses 900.61 J·(kg·°C)−1 of latent energy. The latent energy is liberated as heat of 
condensation, and most of this energy is used to heat the air stream as it flows through 
the bed of silica gel: this reduces the cooling capacity of the air. We observe from 
Table 2 that the air is capable of extracting only 77.57 J·(kg·°C)−1 of energy from the 
silica gel, whereas the energy of the silica gel is reduced by 5285.5  J·(kg·°C)−1. As a 
result (�H∕�h)F1

 is 68.2, so the velocity ratio is 9.88 ×  10–6, as anticipated by the analy-
sis of mass transfer.
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Contours of equal velocity ratios, A2 , along the moisture waves predicted by Tóth’s 
isotherms are shown in Fig. 5. It is striking that Tóth’s isotherm predicts that A2 exhibits 
minimum values. This follows from the above discussion, which indicates that the iso-
therm implies that little sorption takes place when the relative humidity of the intersti-
tial air is high at point, A; hence, the velocity ratio is high. The characteristic sorptivity 
subsequently increases, liberating heat of sorption which lowers the rate of cooling of 
the silica gel. However, the sorptivity of water along a line of constant F1 subsequently 
decreases as the system approaches the plateau state, P. Hence, less heat of sorption is 
liberated and the speed of the moisture wave increases.

At the plateau state, the loci of points along the cooling wave are closely aligned with 
an adiabatic wet bulb line, as most of the heat of adsorption raises the temperature of 
the air as it flows through the bed, and there is little capacity for the air to cool the silica 
gel.

The distance, x, travelled by points on the moisture and temperature waves is given 
by the product of the interstitial velocity of the air, v, elapsed time, t, and the veloc-
ity ratio, Ai . The variation of the velocity ratio against temperature along the fictional 
moisture wave and the temperature wave is shown in Fig.  6. It can be seen that the 
situation is absurd because the displacement of a given temperature along the moisture 
wave would have two values simultaneously. The situation is resolved by recognising 
that Eqs.  2.4 and 2.5 that govern heat and mass transfer demand the formation of a 
shock front.

8.2  The Temperature Wave

There is a striking difference between the moisture and temperature waves. In the former 
case, water is adsorbed by the silica gel, which reduces its rate of cooling, whereas some 

Fig. 5  Contours of velocity ratios, A2 , along the moisture wave ( F1 is constant) that exhibit minimum val-
ues indicated by the dashed line. This arises because at a given temperature when the relative humidity of 
the interstitial air is high, the sorptivity of silica gel is low; and as the sorptivity increases the velocity ratio, 
A2 , decreases to a minimum. A further reduction in the relative humidity results in A2 increasing. The ther-
modynamic states across the moisture shock front are indicated by points A and B. Key: Values of A2 are 
a = 8, b = 10, c = 14, d = 60e, e = 200 (all values to be multiplied by  10–6)
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drying of the silica gel occurs with the passage of the temperature wave. Although the 
amount of drying is relatively small, the latent heat of vapourisation of water supplements 
the transfer of sensible heat from the silica gel to the interstitial air. Table 2 shows that at 
the plateau state, P, Tóth’s isotherm predicts that at the trailing edge of the temperature 
wave the air gains 2413.5  J·(kg·°C)−1 of energy associated with the latent heat of water 
vapour in the interstitial air. In addition, 1032.6  J·(kg·°C)−1 of sensible heat is extracted 
from the silica gel. A further 145.7 J·(kg·°C)−1 of sensible heat is required to increase the 
temperature of the water vapour added to the air by evaporation.

The net result of the above processes is that at the trailing edge of the temperature wave 
the enthalpy of the air increases by 3591 J·(kg·°C)−1: this energy is extracted from the sil-
ica gel as it cools. It can be seen from Table 2 that 2177  J·(kg·°C)−1 of sensible heat is 
removed from the silica gel, and a further 85.5 J·(kg·°C)−1 is required to cool the moisture 
adsorbed by the gel. However, the energy required to cool the silica gel is offset somewhat 
by the heat of adsorption, 157.26 J·(kg·°C)−1 liberated by the formation of weak chemico-
physical between the water and the solid substrate of the silica gel (Fig. 7).

Fig. 6  Air enters a bed of silica 
gel at thermodynamic state A, 
given in Table 1. When Eq. 4.5 is 
integrated, the loci of the transfer 
waves in the A

i
-T  plane are 

obtained. However, Tóth’s iso-
therm demands that the velocity 
of the trailing edge exceeds that 
of the leading edge, hence a ficti-
tious moisture wave is predicted. 
In this case, the plateau state is 
designated by P´. The situation 
is resolved by the formation of 
a shock front, in which case a 
corrected plateau state exists, 
designated by P. The initial state 
of the silica gel is denoted by B

Fig. 7  Contours of velocity 
ratios, A1 , along the temperature 
wave calculated using Tóth’s 
isotherm. It is observed that A1 
increases monotonically along 
the temperature wave from the 
plateau state, P, to that at the 
initial conditions. B. Hence, the 
leading edge of the wave has a 
higher velocity that the trailing 
edge. The values of the contours 
are multiplied by  10–3 to obtain 
the velocity ratios
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The vapour pressure of water adsorbed by silica gel increases rapidly with tempera-
ture. Again considering the Tóth isotherm we observe in Table 2 that (�w∕�T)F2

 at the 
leading edge of the temperature wave, point B in Fig. 8, is 2.48 times higher than at the 
trailing edge. At the leading edge of the wave the rapid increase in the moisture content 
of the air requires that 7498 J·(kg·°C)−1 of latent heat be extracted from the silica gel. In 
addition, 1077  J·(kg·°C)−1 of sensible heat must be extracted from the moist silica gel 
along with 518.7 J·(kg·°C)−1 required to heat the additional water vapour in the intersti-
tial air.

The velocity ratio of the leading edge of the temperature wave is 2.334 ×  10–3, which is 
over twice, that at the plateau state. As a result, the temperature wave widens as it traverses 
the bed of silica gel. Figure 8 indicates that the silica gel dries as the temperature wave 
traverses the bed of silica gel.

9  Non‑Equilibrium Conditions

We have noted that Tóth’s isotherm results in the formation of a shock front when warm 
dry silica gel is ventilated with cool air that has a high relative humidity, which has not 
been reported previously. The trailing edge of the moisture wave is calculated to have a 
higher velocity than the leading edge. In practice, dispersive effects such as finite resist-
ances to heat and mass transfer between the air and the silica gel, thermal conduction 
between beads of silica gel, and the dispersion of water vapour and heat within the inter-
stices formed by the solid phase. Thorpe and Whitaker (1992a, b) demonstrated that ther-
mal equilibrium between the solid and fluid (air) phases may be assumed, but mass equi-
librium is not necessarily attained. This is to be expected because the response of beads of 
silica gel to changes in temperature is on the order of 10 s, which is several orders of mag-
nitude less than the rate at which temperature changes occur along the length of the bed. 
The rate of mass transfer between RD silica gel and its surrounding atmosphere is taken as 
being driven by the mean moisture content, W , within beads of silica gel and the moisture 
content, We , in thermodynamic equilibrium with the interstitial atmosphere, i.e.

Fig. 8  Constant moisture con-
tents, W, of silica gel are shown 
as dashed lines in the T-w plane. 
The silica gel dries with the 
passage of a temperature wave, 
which is consistent with the air at 
the leading edge of the wave, at 
point B, having a higher humid-
ity than that at the trailing edge, 
point P
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where k is a rate constant. The expression for �W∕�t given by Eq. 9.1 is substituted into 
the conservation equations, Eqs. 2.4 and 2.5 which yield values of the temperature, T, and 
interstitial humidity, w, along ventilated beds of silica gel

The silica gel is assumed to be in the form of spherical beads with a radius of Rp which 
enables the rate constant to be calculated by means of the equation proffered by Moham-
med (2018), namely

in which the surface diffusivity,Ds , is given by

where Ea is an activation energy, R is the universal gas constant, and Tabs is absolute tem-
perature. Dispersive effects are included in Eqs. 2.4 and 2.5 which are solved numerically, 
as outlined in Supplementary Information. There is a gratifyingly high degree of consil-
ience between the analytical and numerical solutions of the heat and mass conservation 
equations, although the techniques used to obtain them are quite different.

The temperature wave is rapidly expelled from the bed, and the time it taken for the 
moisture wave to break out from the bed is generally technologically important. Figure 9 
contrasts the shock front predicted by the equilibrium model, and temperature waves pre-
dicted to occur when dispersive effects are included. It is notable that the numerical and the 
method of characteristic potentials provide the same average speed of the moisture front 
and wave. Figure  9 shows that the plateau conditions predicted by the equilibrium and 
numerical models are in very close agreement.

(9.1)
�W

�t
= −k

(
W −We

)

(9.2)k =
15Ds

R2
p

(9.3)Ds = 2.65 × 10−4exp

(

−
Ea

RTabs

)

Fig. 9  The effects of the intersti-
tial velocity on the form of the 
moisture wave. The velocities 
are 0.1 a and 0.2 m/s b and the 
time of operation is 150000 s 
and 300000 s, respectively. It 
can be observed that the wave 
is narrower when the velocity is 
lower because the beads of silica 
gel have a longer time to attain 
equilibrium with their local 
environment
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10  Conclusions

Previous authors suggest that the predicted behaviour of ventilated beds of hygroscopic 
porous media is highly sensitive to the form of isotherm adopted in their analyses. This 
also applies when isotherms with different mathematical forms are fitted to the same 
data.

In this work, it is shown that Tóth’s isotherm implies that silica gel has a low sorp-
tivity in regions of ventilated beds of silica gel in which the relative humidity is high. 
As a result, little water is adsorbed by the solid phase and an exchange of sensible heat 
between the interstitial air and the silica gel plays a dominant role in the rate of cooling. 
It is shown that as the relative humidity of the interstitial air decreases the sorptivity of 
silica gel increases and the ratio of the velocities of the interstitial air and that of a mois-
ture wave decreases to a minimum. After attaining a minimum value, the velocity ratio 
increases as the relative humidity of the interstitial air falls further.

Because the velocity ratio is high when the relative humidity of the interstitial is 
high, but it subsequently decreases a shock front is predicted to form. This occurs when 
thermodynamic equilibrium is assumed to exist between the silica gel and the interstitial 
air. However, when the restriction of equilibrium is relaxed, it is observed that under the 
conditions studied in this work that a moisture transfer wave forms, the wavelength of 
which decreases as the interstitial velocity of the air decreases.

An explicit relationship is presented that enables the velocities at which transfer 
waves propagate along beds of ventilated hygroscopic porous media. The equation con-
tains a term for the derivative of the integral heat of wetting with respect to tempera-
ture. The magnitude of this term is typically two orders of magnitude less than other 
terms in the equation, and its effect may be subsumed in the specific heat of the moist 
solid phase. However, it has been shown in previous work that if this term is incorrectly 
formulated it can give rise to significant errors in calculating the velocities of trans-
fer waves. This appears to be the case when calculating the derivative, �HW∕�T  , When 
Tóth’s isotherm is used to evaluate �HW∕�T  it appears that the result is an order of mag-
nitude higher than results presented by previous authors.

In this work, the two simultaneous equations that govern heat and mass transfer in 
ventilated beds of hygroscopic porous media have been solved by the method of charac-
teristic potentials. This enables the equations to be reduced to an equation that assumes 
the form of the nondispersive transport equation. The method is elaborated in Supple-
mentary Information.

Supplementary Information The online version contains supplementary material available at https:// doi. 
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