VICTORIA UNIVERSITY MELBOURNE AUSTRALIA

Several inequalities for an integral transform of positive operators in Hilbert spaces with applications

This is the Published version of the following publication

Dragomir, Sever S (2023) Several inequalities for an integral transform of positive operators in Hilbert spaces with applications. Cubo, 25 (2). pp. 195209. ISSN 0719-0646

The publisher's official version can be found at https://cubo.ufro.cl/ojs/index.php/cubo/article/view/3420
Note that access to this version may require subscription.

Cubo
A Mathematical Journal

Several inequalities for an integral transform of positive operators in Hilbert spaces with applications

S. S. Dragomir ${ }^{1,2 \boxtimes \text { (id }}$

${ }^{1}$ Mathematics, College of Engineering 8 Science, Melbourne City, Australia.
sever.dragomir@vu.edu.au
${ }^{2}$ DST-NRF Centre of Excellence in the Mathematical and Statistical Sciences, School of Computer Science \& Applied

Mathematics, University of the Witwatersrand, Johannesburg, South Africa.

ABSTRACT

For a continuous and positive function $w(\lambda), \lambda>0$ and μ a positive measure on $(0, \infty)$ we consider the following integral transform

$$
\mathcal{D}(w, \mu)(T):=\int_{0}^{\infty} w(\lambda)(\lambda+T)^{-1} d \mu(\lambda),
$$

where the integral is assumed to exist for T a postive operator on a complex Hilbert space H.
We show among others that, if $\beta \geq A \geq \alpha>0, B>0$ with $M \geq B-A \geq m>0$ for some constants α, β, m, M, then

$$
\begin{aligned}
0 & \leq \frac{m^{2}}{M^{2}}[\mathcal{D}(w, \mu)(\beta)-\mathcal{D}(w, \mu)(M+\beta)] \\
& \leq \frac{m^{2}}{M}[\mathcal{D}(w, \mu)(\beta)-\mathcal{D}(w, \mu)(M+\beta)](B-A)^{-1} \\
& \leq \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \\
& \leq \frac{M^{2}}{m}[\mathcal{D}(w, \mu)(\alpha)-\mathcal{D}(w, \mu)(m+\alpha)](B-A)^{-1} \\
& \leq \frac{M^{2}}{m^{2}}[\mathcal{D}(w, \mu)(\alpha)-\mathcal{D}(w, \mu)(m+\alpha)] .
\end{aligned}
$$

Some examples for operator monotone and operator convex functions as well as for integral transforms $\mathcal{D}(\cdot, \cdot)$ related to the exponential and logarithmic functions are also provided.

RESUMEN

Para una función contínua y positiva $w(\lambda), \lambda>0$ y μ una medida positiva sobre $(0, \infty)$ consideramos la siguiente transformada integral

$$
\mathcal{D}(w, \mu)(T):=\int_{0}^{\infty} w(\lambda)(\lambda+T)^{-1} d \mu(\lambda)
$$

donde se asume que la integral existe para un operador positivo T, sobre el espacio complejo de Hilbert H.
Mostramos, entre otras cosas, que si $\beta \geq A \geq \alpha>0, B>0$ con $M \geq B-A \geq m>0$ para algunas constantes α, β, m, M, entonces

$$
\begin{aligned}
0 & \leq \frac{m^{2}}{M^{2}}[\mathcal{D}(w, \mu)(\beta)-\mathcal{D}(w, \mu)(M+\beta)] \\
& \leq \frac{m^{2}}{M}[\mathcal{D}(w, \mu)(\beta)-\mathcal{D}(w, \mu)(M+\beta)](B-A)^{-1} \\
& \leq \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \\
& \leq \frac{M^{2}}{m}[\mathcal{D}(w, \mu)(\alpha)-\mathcal{D}(w, \mu)(m+\alpha)](B-A)^{-1} \\
& \leq \frac{M^{2}}{m^{2}}[\mathcal{D}(w, \mu)(\alpha)-\mathcal{D}(w, \mu)(m+\alpha)]
\end{aligned}
$$

También se proporcionan algunos ejemplos para las funciones operador monótono y operador convexo, así como de transformadas integrales $\mathcal{D}(\cdot, \cdot)$ relacionadas con las funciones exponencial y logarítmica.

Keywords and Phrases: Operator monotone functions, Operator convex functions, Operator inequalities, LöwnerHeinz inequality, Logarithmic operator inequalities.

1 Introduction

Consider a complex Hilbert space $(H,\langle\cdot, \cdot\rangle)$. An operator T is said to be positive (denoted by $T \geq 0$) if $\langle T x, x\rangle \geq 0$ for all $x \in H$ and also an operator T is said to be strictly positive (denoted by $T>0)$ if T is positive and invertible. A real valued continuous function f on $(0, \infty)$ is said to be operator monotone if $f(A) \geq f(B)$ holds for any $A \geq B>0$.
We have the following representation of operator monotone functions [6], see for instance $[1, \mathrm{p}$. 144-145]:

Theorem 1.1. A function $f:[0, \infty) \rightarrow \mathbb{R}$ is operator monotone in $[0, \infty)$ if and only if it has the representation

$$
\begin{equation*}
f(t)=f(0)+b t+\int_{0}^{\infty} \frac{t \lambda}{t+\lambda} d \mu(\lambda) \tag{1.1}
\end{equation*}
$$

where $b \geq 0$ and a positive measure μ on $[0, \infty)$ such that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\lambda}{1+\lambda} d \mu(\lambda)<\infty \tag{1.2}
\end{equation*}
$$

A real valued continuous function f on an interval I is said to be operator convex (operator concave) on I if

$$
\begin{equation*}
f((1-\lambda) A+\lambda B) \leq(\geq)(1-\lambda) f(A)+\lambda f(B) \tag{OC}
\end{equation*}
$$

in the operator order, for all $\lambda \in[0,1]$ and for every selfadjoint operator A and B on a Hilbert space H whose spectra are contained in I. Notice that a function f is operator concave if $-f$ is operator convex. We have the following representation of operator convex functions [1, p. 147]:

Theorem 1.2. A function $f:[0, \infty) \rightarrow \mathbb{R}$ is operator convex in $[0, \infty)$ with $f_{+}^{\prime}(0) \in \mathbb{R}$ if and only if it has the representation

$$
\begin{equation*}
f(t)=f(0)+f_{+}^{\prime}(0) t+c t^{2}+\int_{0}^{\infty} \frac{t^{2} \lambda}{t+\lambda} d \mu(\lambda) \tag{1.3}
\end{equation*}
$$

where $c \geq 0$ and a positive measure μ on $[0, \infty)$ such that (1.2) holds.

We have the following integral representation for the power function when $t>0, r \in(0,1]$, see for instance [1, p. 145]

$$
\begin{equation*}
t^{r-1}=\frac{\sin (r \pi)}{\pi} \int_{0}^{\infty} \frac{\lambda^{r-1}}{\lambda+t} d \lambda \tag{1.4}
\end{equation*}
$$

Observe that for $t>0, t \neq 1$, we have

$$
\int_{0}^{u} \frac{d \lambda}{(\lambda+t)(\lambda+1)}=\frac{\ln t}{t-1}+\frac{1}{1-t} \ln \left(\frac{u+t}{u+1}\right), \quad \text { for all } u>0
$$

By taking the limit over $u \rightarrow \infty$ in this equality, we derive

$$
\frac{\ln t}{t-1}=\int_{0}^{\infty} \frac{d \lambda}{(\lambda+t)(\lambda+1)}
$$

which gives the representation for the logarithm

$$
\begin{equation*}
\ln t=(t-1) \int_{0}^{\infty} \frac{d \lambda}{(\lambda+1)(\lambda+t)}, \quad \text { for all } t>0 \tag{1.5}
\end{equation*}
$$

Motivated by these representations, we introduce, for a continuous and positive function $w(\lambda)$, $\lambda>0$, the following integral transform

$$
\begin{equation*}
\mathcal{D}(w, \mu)(t):=\int_{0}^{\infty} \frac{w(\lambda)}{\lambda+t} d \mu(\lambda), \quad t>0 \tag{1.6}
\end{equation*}
$$

where μ is a positive measure on $(0, \infty)$ and the integral (1.6) exists for all $t>0$. For μ the Lebesgue usual measure, we put

$$
\begin{equation*}
\mathcal{D}(w)(t):=\int_{0}^{\infty} \frac{w(\lambda)}{\lambda+t} d \lambda, \quad t>0 \tag{1.7}
\end{equation*}
$$

If we take μ to be the usual Lebesgue measure and the kernel $w_{r}(\lambda)=\lambda^{r-1}, r \in(0,1]$, then

$$
\begin{equation*}
t^{r-1}=\frac{\sin (r \pi)}{\pi} \mathcal{D}\left(w_{r}\right)(t), \quad t>0 \tag{1.8}
\end{equation*}
$$

For the same measure, if we take the kernel $w_{\ln }(\lambda)=(\lambda+1)^{-1}, t>0$, we have the representation

$$
\begin{equation*}
\ln t=(t-1) \mathcal{D}\left(w_{\ln }\right)(t), \quad t>0 \tag{1.9}
\end{equation*}
$$

Assume that $T>0$, then by the continuous functional calculus for selfadjoint operators, we can define the positive operator

$$
\begin{equation*}
\mathcal{D}(w, \mu)(T):=\int_{0}^{\infty} w(\lambda)(\lambda+T)^{-1} d \mu(\lambda) \tag{1.10}
\end{equation*}
$$

where w and μ are as above. Also, when μ is the usual Lebesgue measure, then

$$
\begin{equation*}
\mathcal{D}(w)(T):=\int_{0}^{\infty} w(\lambda)(\lambda+T)^{-1} d \lambda, \quad \text { for } T>0 \tag{1.11}
\end{equation*}
$$

From (1.8) we have the representation

$$
\begin{equation*}
T^{r-1}=\frac{\sin (r \pi)}{\pi} \mathcal{D}\left(w_{r}\right)(T) \tag{1.12}
\end{equation*}
$$

where $T>0$ and from (1.9)

$$
\begin{equation*}
(T-1)^{-1} \ln T=\mathcal{D}\left(w_{\ln }\right)(T) \tag{1.13}
\end{equation*}
$$

provided $T>0$ and $T-1$ is invertible.
In what follows, if A is an operator and a is a real number, then by $A \geq a$ we understand $A \geq a I$, where I is the identity operator.

In this paper we show among others that, if $\beta \geq A \geq \alpha>0, B>0$ with $M \geq B-A \geq m>0$ for some constants α, β, m, M, then

$$
\begin{aligned}
0 & \leq \frac{m^{2}}{M^{2}}[\mathcal{D}(w, \mu)(\beta)-\mathcal{D}(w, \mu)(M+\beta)] \\
& \leq \frac{m^{2}}{M}[\mathcal{D}(w, \mu)(\beta)-\mathcal{D}(w, \mu)(M+\beta)](B-A)^{-1} \\
& \leq \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \\
& \leq \frac{M^{2}}{m}[\mathcal{D}(w, \mu)(\alpha)-\mathcal{D}(w, \mu)(m+\alpha)](B-A)^{-1} \\
& \leq \frac{M^{2}}{m^{2}}[\mathcal{D}(w, \mu)(\alpha)-\mathcal{D}(w, \mu)(m+\alpha)]
\end{aligned}
$$

Some examples for operator monotone and operator convex functions as well as for integral transforms $\mathcal{D}(\cdot, \cdot)$ related to the exponential and logarithmic functions are also provided.

2 Main results

In the following, whenever we write $\mathcal{D}(w, \mu)$ we mean that the integral from (1.6) exists and is finite for all $t>0$.

Theorem 2.1. For all $A, B>0$ with $B-A \geq 0$ we have the representation

$$
\begin{align*}
0 & \leq(B-A)^{1 / 2}[\mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B)](B-A)^{1 / 2} \tag{2.1}\\
& =\int_{0}^{\infty}\left(\int_{0}^{1}\left[(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2}\right]^{2} d s\right) \times w(\lambda) d \mu(\lambda)
\end{align*}
$$

Proof. Observe that, for all $A, B>0$

$$
\begin{equation*}
\mathcal{D}(w, \mu)(B)-\mathcal{D}(w, \mu)(A)=\int_{0}^{\infty} w(\lambda)\left[(\lambda+B)^{-1}-(\lambda+A)^{-1}\right] d \mu(\lambda) \tag{2.2}
\end{equation*}
$$

Let $T, S>0$. The function $f(t)=-t^{-1}$ is operator monotone on $(0, \infty)$, operator Gâteaux differentiable and the Gâteaux derivative is given by

$$
\begin{equation*}
\nabla f_{T}(S):=\lim _{t \rightarrow 0}\left[\frac{f(T+t S)-f(T)}{t}\right]=T^{-1} S T^{-1}, \quad \text { for } T, S>0 \tag{2.3}
\end{equation*}
$$

Consider the continuous function f defined on an interval I for which the corresponding operator function is Gâteaux differentiable on the segment $[C, D]:\{(1-t) C+t D, t \in[0,1]\}$ for C, D selfadjoint operators with spectra in I. We consider the auxiliary function defined on $[0,1]$ by

$$
f_{C, D}(t):=f((1-t) C+t D), t \in[0,1]
$$

Then we have, by the properties of the Bochner integral, that

$$
\begin{equation*}
f(D)-f(C)=\int_{0}^{1} \frac{d}{d t}\left(f_{C, D}(t)\right) d t=\int_{0}^{1} \nabla f_{(1-t) C+t D}(D-C) d t \tag{2.4}
\end{equation*}
$$

If we write this equality for the function $f(t)=-t^{-1}$ and $C, D>0$, then we get the representation

$$
\begin{equation*}
C^{-1}-D^{-1}=\int_{0}^{1}((1-t) C+t D)^{-1}(D-C)((1-t) C+t D)^{-1} d t \tag{2.5}
\end{equation*}
$$

Now, if we take in (2.5) $C=\lambda+B, D=\lambda+A$, then

$$
\begin{align*}
& (\lambda+B)^{-1}-(\lambda+A)^{-1} \\
& =\int_{0}^{1}((1-t)(\lambda+B)+t(\lambda+A))^{-1}(A-B) \times((1-t)(\lambda+B)+t(\lambda+A))^{-1} d t \tag{2.6}\\
& =\int_{0}^{1}(\lambda+(1-t) B+t A)^{-1}(A-B)(\lambda+(1-t) B+t A)^{-1} d t
\end{align*}
$$

and by (2.2) we derive

$$
\begin{align*}
& \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \\
& =\int_{0}^{\infty} w(\lambda)\left(\int_{0}^{1}(\lambda+(1-t) B+t A)^{-1}(B-A) \times(\lambda+(1-t) B+t A)^{-1} d t\right) d \mu(\lambda) \tag{2.7}\\
& =\int_{0}^{\infty} w(\lambda)\left(\int_{0}^{1}(\lambda+s B+(1-s) A)^{-1}(B-A) \times(\lambda+s B+(1-s) A)^{-1} d s\right) d \mu(\lambda)
\end{align*}
$$

for all $A, B>0$, where for the last equality we used the change of variable $s=1-t, t \in[0,1]$. Now, since $B-A \geq 0$, hence by multiplying both sides with $(B-A)^{1 / 2}$ we get

$$
\begin{align*}
& (B-A)^{1 / 2}[\mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B)](B-A)^{1 / 2} \\
& =\int_{0}^{\infty} w(\lambda)\left(\int_{0}^{1}(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)\right. \\
& \left.\times(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2} d s\right) d \mu(\lambda) \\
& =\int_{0}^{\infty} w(\lambda)\left(\int_{0}^{1}(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2}\right. \tag{2.8}\\
& \left.\times(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2} d s\right) d \mu(\lambda) \\
& =\int_{0}^{\infty} w(\lambda) \times\left(\int_{0}^{1}\left[(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2}\right]^{2} d s\right) d \mu(\lambda)
\end{align*}
$$

which proves the identity in (2.1). Since

$$
\left[(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2}\right]^{2} \geq 0
$$

then by integrating over s on $[0,1]$, multiplying by $w(\lambda) \geq 0$ and integrating over $d \mu(\lambda)$, we deduce the inequality in (2.1).

The case of operator monotone functions is as follows:

Corollary 2.2. Assume that f is operator monotone on $[0, \infty)$, then all $A, B>0$ with $B-A \geq 0$ we have the equality

$$
\begin{align*}
& 0 \leq(B-A)^{1 / 2}\left[f(A) A^{-1}-f(B) B^{-1}\right](B-A)^{1 / 2} \\
& -f(0)(B-A)^{1 / 2}\left(A^{-1}-B^{-1}\right)(B-A)^{1 / 2} \tag{2.9}\\
& =\int_{0}^{\infty}\left(\int_{0}^{1}\left[(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2}\right]^{2} d s\right) \lambda d \mu(\lambda)
\end{align*}
$$

for some positive measure $\mu(\lambda)$. If $f(0)=0$, then

$$
\begin{align*}
0 & \leq(B-A)^{1 / 2}\left[f(A) A^{-1}-f(B) B^{-1}\right](B-A)^{1 / 2} \\
& =\int_{0}^{\infty}\left(\int_{0}^{1}\left[(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2}\right]^{2} d s\right) \times \lambda d \mu(\lambda) \tag{2.10}
\end{align*}
$$

Proof. From (1.1) we have the representation

$$
\begin{equation*}
\frac{f(t)-f(0)}{t}-b=\mathcal{D}(\ell, \mu)(t) \tag{2.11}
\end{equation*}
$$

with $\ell(\lambda)=\lambda$, for some positive measure $\mu(\lambda)$ and nonnegative number b. Since

$$
\begin{aligned}
\mathcal{D}(\ell, \mu)(A)-\mathcal{D}(\ell, \mu)(B) & =[f(A)-f(0)] A^{-1}-[f(B)-f(0)] B^{-1} \\
& =f(A) A^{-1}-f(B) B^{-1}-f(0)\left(A^{-1}-B^{-1}\right),
\end{aligned}
$$

hence by (2.1) we get (2.9).

The case of operator convex functions is as follows:
Corollary 2.3. Assume that f is operator convex on $[0, \infty)$, then all $A, B>0$ with $B-A \geq 0$ we have that

$$
\begin{align*}
0 & \leq(B-A)^{1 / 2}\left[f(A) A^{-2}-f(B) B^{-2}\right](B-A)^{1 / 2} \\
& -f_{+}^{\prime}(0)(B-A)^{1 / 2}\left(A^{-1}-B^{-1}\right)(B-A)^{1 / 2} \\
& -f(0)(B-A)^{1 / 2}\left(A^{-2}-B^{-2}\right)(B-A)^{1 / 2} \tag{2.12}\\
& =\int_{0}^{\infty}\left(\int_{0}^{1}\left[(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2}\right]^{2} d s\right) \times \lambda d \mu(\lambda)
\end{align*}
$$

for some positive measure $\mu(\lambda)$. If $f(0)=0$, then

$$
\begin{align*}
0 & \leq(B-A)^{1 / 2}\left[f(A) A^{-2}-f(B) B^{-2}\right](B-A)^{1 / 2} \\
& -f_{+}^{\prime}(0)(B-A)^{1 / 2}\left(A^{-1}-B^{-1}\right)(B-A)^{1 / 2} \tag{2.13}\\
& =\int_{0}^{\infty}\left(\int_{0}^{1}\left[(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2}\right]^{2} d s\right) \times \lambda d \mu(\lambda)
\end{align*}
$$

Proof. From (1.3) we have that

$$
\frac{f(t)-f(0)-f_{+}^{\prime}(0) t}{t^{2}}-c=\mathcal{D}(\ell, \mu)(t)
$$

for $t>0$. Then for $A, B>0$,

$$
\begin{aligned}
\mathcal{D}(\ell, \mu)(A)-\mathcal{D}(\ell, \mu)(B) & =f(A) A^{-2}-f_{+}^{\prime}(0) A^{-1}-f(0) A^{-2}-f(A) B^{-2}+f_{+}^{\prime}(0) B^{-1}+f(0) B^{-2} \\
& =f(A) A^{-2}-f(B) B^{-2}-f_{+}^{\prime}(0)\left(A^{-1}-B^{-1}\right)-f(0)\left(A^{-2}-B^{-2}\right)
\end{aligned}
$$

and by (2.1) we derive (2.13).

When more conditions are imposed on the operators A and B we have the following refinements and reverses of the inequality

$$
0 \leq \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B)
$$

that hold for $B-A \geq 0$.
Theorem 2.4. If $\beta \geq A \geq \alpha>0, B>0$ with $M \geq B-A \geq m>0$ for some constants α, β, m, M, then

$$
\begin{align*}
0 & \leq \frac{m^{2}}{M^{2}}[\mathcal{D}(w, \mu)(\beta)-\mathcal{D}(w, \mu)(M+\beta)] \\
& \leq \frac{m^{2}}{M}[\mathcal{D}(w, \mu)(\beta)-\mathcal{D}(w, \mu)(M+\beta)](B-A)^{-1} \\
& \leq \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \tag{2.14}\\
& \leq \frac{M^{2}}{m}[\mathcal{D}(w, \mu)(\alpha)-\mathcal{D}(w, \mu)(m+\alpha)](B-A)^{-1} \\
& \leq \frac{M^{2}}{m^{2}}[\mathcal{D}(w, \mu)(\alpha)-\mathcal{D}(w, \mu)(m+\alpha)]
\end{align*}
$$

Proof. For $s \in[0,1]$ we have

$$
\lambda+s B+(1-s) A=\lambda+s(B-A)+A
$$

We have

$$
\lambda+s(B-A)+A \geq \lambda+s m+A \geq \lambda+s m+\alpha=\lambda+(1-s) \alpha+s(m+\alpha)
$$

$s \in[0,1]$ and $\lambda \geq 0$, which implies that

$$
(\lambda+s B+(1-s) A)^{-1} \leq[\lambda+(1-s) \alpha+s(m+\alpha)]^{-1}
$$

and, by multiplying both sides by $(B-A)^{1 / 2} \geq 0$,

$$
\begin{aligned}
(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2} & \leq[\lambda+(1-s) \alpha+s(m+\alpha)]^{-1}(B-A) \\
& \leq M[\lambda+(1-s) \alpha+s(m+\alpha)]^{-1}
\end{aligned}
$$

Furthermore,

$$
\left[(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2}\right]^{2} \leq M^{2}[\lambda+(1-s) \alpha+s(m+\alpha)]^{-2}
$$

for $s \in[0,1]$ and $\lambda \geq 0$, which implies by integration that

$$
\begin{aligned}
& \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{1}\left[(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2}\right]^{2} d s\right) d \mu(\lambda) \\
& \leq M^{2} \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{1}[\lambda+(1-s) \alpha+s(m+\alpha)]^{-2} d s\right) d \mu(\lambda) \\
& =\frac{M^{2}}{m} \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{1}[\lambda+(1-s) \alpha+s(m+\alpha)]^{-1}(m+\alpha-\alpha)\right. \\
& \left.\left.\times[\lambda+(1-s) \alpha+s(m+\alpha)]^{-1} d s\right) d \mu(\lambda) \quad \text { (and by }(2.7)\right) \\
& =\frac{M^{2}}{m}[\mathcal{D}(w, \mu)(\alpha)-\mathcal{D}(w, \mu)(m+\alpha)]
\end{aligned}
$$

Using (2.8) we get

$$
(B-A)^{1 / 2}[\mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B)](B-A)^{1 / 2} \leq \frac{M^{2}}{m}[\mathcal{D}(w, \mu)(\alpha)-\mathcal{D}(w, \mu)(m+\alpha)]
$$

Multiplying both sides with $(B-A)^{-1 / 2}$ we deduce the fourth inequality in (2.14). We also have

$$
\lambda+s(B-A)+A \leq \lambda+s M+A \leq \lambda+s M+\beta=\lambda+(1-s) \beta+s(M+\beta)
$$

which implies that

$$
(\lambda+s B+(1-s) A)^{-1} \geq[\lambda+(1-s) \beta+s(M+\beta)]^{-1}
$$

and, by multiplying both sides by $(B-A)^{1 / 2} \geq 0$,

$$
\begin{aligned}
(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2} & \geq[\lambda+(1-s) \beta+s(M+\beta)]^{-1}(B-A) \\
& \geq m[\lambda+(1-s) \beta+s(M+\beta)]^{-1}
\end{aligned}
$$

for $s \in[0,1]$ and $\lambda \geq 0$. By taking the square, we get

$$
\left[(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2}\right]^{2} \geq m^{2}[\lambda+(1-s) \beta+s(M+\beta)]^{-2}
$$

for $s \in[0,1]$ and $\lambda \geq 0$. By taking the integrals in this inequality we obtain

$$
\begin{aligned}
& \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{1}\left[(B-A)^{1 / 2}(\lambda+s B+(1-s) A)^{-1}(B-A)^{1 / 2}\right]^{2} d s\right) d \mu(\lambda) \\
& \geq m^{2} \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{1}[\lambda+(1-s) \beta+s(M+\beta)]^{-2} d s\right) d \mu(\lambda) \\
& =\frac{m^{2}}{M} \int_{0}^{\infty} w(\lambda)\left(\int_{0}^{1}[\lambda+(1-s) \beta+s(M+\beta)]^{-1}(M+\beta-\beta)\right. \\
& \left.\times[\lambda+(1-s) \beta+s(M+\beta)]^{-1} d s\right) d \mu(\lambda) \quad(\text { and by }(2.7)) \\
& =\frac{m^{2}}{M}[\mathcal{D}(w, \mu)(\beta)-\mathcal{D}(w, \mu)(M+\beta)]
\end{aligned}
$$

Using (2.8) we get

$$
(B-A)^{1 / 2}[\mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B)](B-A)^{1 / 2} \geq \frac{m^{2}}{M}[\mathcal{D}(w, \mu)(\beta)-\mathcal{D}(w, \mu)(M+\beta)]
$$

Multiplying both sides with $(B-A)^{-1 / 2}$ we deduce the second inequality in (2.14). The rest of the inequalities are obvious.

It is well known that, if $P \geq 0$, then

$$
|\langle P x, y\rangle|^{2} \leq\langle P x, x\rangle\langle P y, y\rangle
$$

for all $x, y \in H$. Therefore, if $T>0$, then

$$
0 \leq\langle x, x\rangle^{2}=\left\langle T^{-1} T x, x\right\rangle^{2}=\left\langle T x, T^{-1} x\right\rangle^{2} \leq\langle T x, x\rangle\left\langle T T^{-1} x, T^{-1} x\right\rangle=\langle T x, x\rangle\left\langle x, T^{-1} x\right\rangle
$$

for all $x \in H$. If $x \in H,\|x\|=1$, then

$$
1 \leq\langle T x, x\rangle\left\langle x, T^{-1} x\right\rangle \leq\langle T x, x\rangle \sup _{\|x\|=1}\left\langle x, T^{-1} x\right\rangle=\langle T x, x\rangle\left\|T^{-1}\right\|
$$

which implies the following operator inequality

$$
\begin{equation*}
\left\|T^{-1}\right\|^{-1} \leq T \tag{2.15}
\end{equation*}
$$

Remark 2.5. If $A>0$ and $B-A>0$, then obviously $\|A\| \geq A \geq\left\|A^{-1}\right\|^{-1}$ and $\|B-A\| \geq$ $B-A \geq\left\|(B-A)^{-1}\right\|^{-1}$. So, if we take $\beta=\|A\|, \alpha=\left\|A^{-1}\right\|^{-1}, M=\|B-A\|$ and $m=$ $\left\|(B-A)^{-1}\right\|^{-1}$ in (2.14), then we get

$$
\begin{align*}
0 & \leq \frac{\mathcal{D}(w, \mu)(\|A\|)-\mathcal{D}(w, \mu)(\|B-A\|+\|A\|)}{\|B-A\|^{2}\left\|(B-A)^{-1}\right\|^{2}} \\
& \leq \frac{\mathcal{D}(w, \mu)(\|A\|)-\mathcal{D}(w, \mu)(\|B-A\|+\|A\|)}{\|B-A\|\left\|(B-A)^{-1}\right\|^{2}}(B-A)^{-1} \\
& \leq \mathcal{D}(w, \mu)(A)-\mathcal{D}(w, \mu)(B) \\
& \leq\|B-A\|^{2}\left\|(B-A)^{-1}\right\| \tag{2.16}\\
& \leq\left[\mathcal{D}(w, \mu)\left(\left\|A^{-1}\right\|^{-1}\right)-\mathcal{D}(w, \mu)\left(\left\|(B-A)^{-1}\right\|^{-1}+\left\|A^{-1}\right\|^{-1}\right)\right] \times(B-A)^{-1} \\
& \leq\|B-A\|^{2}\left\|(B-A)^{-1}\right\|^{2} \\
& \times\left[\mathcal{D}(w, \mu)\left(\left\|A^{-1}\right\|^{-1}\right)-\mathcal{D}(w, \mu)\left(\left\|(B-A)^{-1}\right\|^{-1}+\left\|A^{-1}\right\|^{-1}\right)\right]
\end{align*}
$$

Corollary 2.6. Assume that f is operator monotone on $[0, \infty)$. If $\beta \geq A \geq \alpha>0, B>0$ with $M \geq B-A \geq m>0$ for some constants α, β, m, M, then

$$
\begin{align*}
0 & \leq \frac{m^{2}}{M^{2}}\left[\frac{f(\beta)}{\beta}-\frac{f(M+\beta)}{M+\beta}-\frac{M}{\beta(M+\beta)} f(0)\right] \\
& \leq \frac{m^{2}}{M}\left[\frac{f(\beta)}{\beta}-\frac{f(M+\beta)}{M+\beta}-\frac{M}{\beta(M+\beta)} f(0)\right](B-A)^{-1} \\
& \leq f(A) A^{-1}-f(B) B^{-1}-f(0)\left(A^{-1}-B^{-1}\right) \tag{2.17}\\
& \leq \frac{M^{2}}{m}\left[\frac{f(\alpha)}{\alpha}-\frac{f(m+\alpha)}{m+\alpha}-\frac{m}{\alpha(m+\alpha)} f(0)\right](B-A)^{-1} \\
& \leq \frac{M^{2}}{m^{2}}\left[\frac{f(\alpha)}{\alpha}-\frac{f(m+\alpha)}{m+\alpha}-\frac{m}{\alpha(m+\alpha)} f(0)\right]
\end{align*}
$$

If $f(0)=0$, then

$$
\begin{align*}
0 & \leq \frac{m^{2}}{M^{2}}\left[\frac{f(\beta)}{\beta}-\frac{f(M+\beta)}{M+\beta}\right] \leq \frac{m^{2}}{M}\left[\frac{f(\beta)}{\beta}-\frac{f(M+\beta)}{M+\beta}\right](B-A)^{-1} \\
& \leq f(A) A^{-1}-f(B) B^{-1} \leq \frac{M^{2}}{m}\left[\frac{f(\alpha)}{\alpha}-\frac{f(m+\alpha)}{m+\alpha}\right](B-A)^{-1} \tag{2.18}\\
& \leq \frac{M^{2}}{m^{2}}\left[\frac{f(\alpha)}{\alpha}-\frac{f(m+\alpha)}{m+\alpha}\right]
\end{align*}
$$

The proof follows by (2.14) and the representation (2.11).

Remark 2.7. If $A>0$ and $B-A>0$, then for f an operator monotone function on $[0, \infty)$ with $f(0)=0$, we obtain from (2.18) some similar inequalities to the ones in Remark 2.5. We omit the details.

The case of operator convex functions is as follows:

Corollary 2.8. Assume that f is operator convex on $[0, \infty)$. If $\beta \geq A \geq \alpha>0, B>0$ with $M \geq B-A \geq m>0$ for some constants α, β, m, M, then

$$
\begin{align*}
0 & \leq \frac{m^{2}}{M^{2}}\left[\frac{f(\beta)}{\beta^{2}}-\frac{f(M+\beta)}{(M+\beta)^{2}}-f_{+}^{\prime}(0) \frac{M}{\beta(M+\beta)}-f(0) \frac{M(M+2 \beta)}{\beta^{2}(M+\beta)^{2}}\right] \\
& \leq \frac{m^{2}}{M}\left[\frac{f(\beta)}{\beta^{2}}-\frac{f(M+\beta)}{(M+\beta)^{2}}-f_{+}^{\prime}(0) \frac{M}{\beta(M+\beta)}-f(0) \frac{M(M+2 \beta)}{\beta^{2}(M+\beta)^{2}}\right] \times(B-A)^{-1} \\
& \leq f(A) A^{-2}-f(B) B^{-2}-f_{+}^{\prime}(0)\left(A^{-1}-B^{-1}\right)-f(0)\left(A^{-2}-B^{-2}\right) \tag{2.19}\\
& \leq \frac{M^{2}}{m}\left[\frac{f(\alpha)}{\alpha^{2}}-\frac{f(m+\alpha)}{(m+\alpha)^{2}}-f_{+}^{\prime}(0) \frac{m}{\alpha(m+\alpha)}-f(0) \frac{m(m+2 \alpha)}{\alpha^{2}(m+\alpha)^{2}}\right] \times(B-A)^{-1} \\
& \leq \frac{M^{2}}{m^{2}}\left[\frac{f(\alpha)}{\alpha^{2}}-\frac{f(m+\alpha)}{(m+\alpha)^{2}}-f_{+}^{\prime}(0) \frac{m}{\alpha(m+\alpha)}-f(0) \frac{m(m+2 \alpha)}{\alpha^{2}(m+\alpha)^{2}}\right]
\end{align*}
$$

If $f(0)=0$, then

$$
\begin{align*}
0 & \leq \frac{m^{2}}{M^{2}}\left[\frac{f(\beta)}{\beta^{2}}-\frac{f(M+\beta)}{(M+\beta)^{2}}-f_{+}^{\prime}(0) \frac{M}{\beta(M+\beta)}\right] \\
& \leq \frac{m^{2}}{M}\left[\frac{f(\beta)}{\beta^{2}}-\frac{f(M+\beta)}{(M+\beta)^{2}}-f_{+}^{\prime}(0) \frac{M}{\beta(M+\beta)}\right](B-A)^{-1} \\
& \leq f(A) A^{-2}-f(B) B^{-2}-f_{+}^{\prime}(0)\left(A^{-1}-B^{-1}\right) \tag{2.20}\\
& \leq \frac{M^{2}}{m}\left[\frac{f(\alpha)}{\alpha^{2}}-\frac{f(m+\alpha)}{(m+\alpha)^{2}}-f_{+}^{\prime}(0) \frac{m}{\alpha(m+\alpha)}\right](B-A)^{-1} \\
& \leq \frac{M^{2}}{m^{2}}\left[\frac{f(\alpha)}{\alpha^{2}}-\frac{f(m+\alpha)}{(m+\alpha)^{2}}-f_{+}^{\prime}(0) \frac{m}{\alpha(m+\alpha)}\right] .
\end{align*}
$$

Remark 2.9. If $A>0$ and $B-A>0$, then for f an operator convex function on $[0, \infty)$ with $f(0)=0$, we obtain from (2.20) some similar inequalities to the ones in Remark 2.5. We omit the details.

3 Some examples

The function $f(t)=t^{r}, r \in(0,1]$ is operator monotone on $[0, \infty)$ and by (2.18) we obtain the power inequalities

$$
\begin{align*}
0 & \leq \frac{m^{2}}{M^{2}}\left[\beta^{r-1}-(M+\beta)^{r-1}\right] \leq \frac{m^{2}}{M}\left[\beta^{r-1}-(M+\beta)^{r-1}\right](B-A)^{-1} \\
& \leq A^{r-1}-B^{r-1} \leq \frac{M^{2}}{m}\left[\alpha^{r-1}-(m+\alpha)^{r-1}\right](B-A)^{-1} \tag{3.1}\\
& \leq \frac{M^{2}}{m^{2}}\left[\alpha^{r-1}-(m+\alpha)^{r-1}\right]
\end{align*}
$$

provided that $\beta \geq A \geq \alpha>0, B>0$ with $M \geq B-A \geq m>0$ for some constants α, β, m, M. The function $f(t)=\ln (t+1)$ is operator monotone on $[0, \infty)$ and by (2.18) we get

$$
\begin{align*}
0 & \leq \frac{m^{2}}{M^{2}}\left[\frac{\ln (\beta+1)}{\beta}-\frac{\ln (M+\beta+1)}{M+\beta}\right] \leq \frac{m^{2}}{M}\left[\frac{\ln (\beta+1)}{\beta}-\frac{\ln (M+\beta+1)}{M+\beta}\right](B-A)^{-1} \\
& \leq A^{-1} \ln (A+1)-B^{-1} \ln (B+1) \leq \frac{M^{2}}{m}\left[\frac{\ln (\alpha+1)}{\alpha}-\frac{\ln (m+\alpha+1)}{m+\alpha}\right](B-A)^{-1} \tag{3.2}\\
& \leq \frac{M^{2}}{m^{2}}\left[\frac{\ln (\alpha+1)}{\alpha}-\frac{\ln (m+\alpha+1)}{m+\alpha}\right]
\end{align*}
$$

provided that $\beta \geq A \geq \alpha>0, B>0$ with $M \geq B-A \geq m>0$ for some constants α, β, m, M.

The function $f(t)=-\ln (t+1)$ is operator convex, and by (2.20) we obtain

$$
\begin{align*}
0 & \leq \frac{m^{2}}{M^{2}}\left[\frac{\ln (M+\beta+1)}{(M+\beta)^{2}}-\frac{\ln (\beta+1)}{\beta^{2}}+\frac{M}{\beta(M+\beta)}\right] \\
& \leq \frac{m^{2}}{M}\left[\frac{\ln (M+\beta+1)}{(M+\beta)^{2}}-\frac{\ln (\beta+1)}{\beta^{2}}+\frac{M}{\beta(M+\beta)}\right](B-A)^{-1} \\
& \leq B^{-2} \ln (B+1)-A^{-2} \ln (A+1)+A^{-1}-B^{-1} \tag{3.3}\\
& \leq \frac{M^{2}}{m}\left[\frac{\ln (m+\alpha+1)}{(m+\alpha)^{2}}-\frac{\ln (\alpha+1)}{\alpha^{2}}+\frac{m}{\alpha(m+\alpha)}\right](B-A)^{-1} \\
& \leq \frac{M^{2}}{m^{2}}\left[\frac{\ln (m+\alpha+1)}{(m+\alpha)^{2}}-\frac{\ln (\alpha+1)}{\alpha^{2}}+\frac{m}{\alpha(m+\alpha)}\right]
\end{align*}
$$

provided that $\beta \geq A \geq \alpha>0, B>0$ with $M \geq B-A \geq m>0$ for some constants α, β, m, M. Consider the kernel $e_{-a}(\lambda):=\exp (-a \lambda), \lambda \geq 0$ and $a>0$. Then

$$
D\left(e_{-a}\right)(t):=\int_{0}^{\infty} \frac{\exp (-a \lambda)}{t+\lambda} d \lambda=E_{1}(a t) \exp (a t), \quad t \geq 0
$$

where

$$
\begin{equation*}
E_{1}(t):=\int_{t}^{\infty} \frac{e^{-u}}{u} d u, \quad t \geq 0 \tag{3.4}
\end{equation*}
$$

For $a=1$ we have

$$
D\left(e_{-1}\right)(t):=\int_{0}^{\infty} \frac{\exp (-\lambda)}{t+\lambda} d \lambda=E_{1}(t) \exp (t), \quad t \geq 0
$$

Let $\beta \geq A \geq \alpha>0, B>0$ with $M \geq B-A \geq m>0$ for some constants α, β, m, M. Then by (2.14) we have

$$
\begin{align*}
0 & \leq \frac{m^{2}}{M^{2}}\left[E_{1}(a \beta) \exp (a \beta)-E_{1}(a(M+\beta)) \exp (a(M+\beta))\right] \\
& \leq \frac{m^{2}}{M}\left[E_{1}(a \beta) \exp (a \beta)-E_{1}(a(M+\beta)) \exp (a(M+\beta))\right](B-A)^{-1} \\
& \leq E_{1}(a A) \exp (a A)-E_{1}(a B) \exp (a B) \tag{3.5}\\
& \leq \frac{M^{2}}{m}\left[E_{1}(a \alpha) \exp (a \alpha)-E_{1}(a(m+\alpha)) \exp (a(m+\alpha))\right](B-A)^{-1} \\
& \leq \frac{M^{2}}{m^{2}}\left[E_{1}(a \alpha) \exp (a \alpha)-E_{1}(a(m+\alpha)) \exp (a(m+\alpha))\right]
\end{align*}
$$

for $a>0$. For $a=1$ we have

$$
\begin{align*}
0 & \leq \frac{m^{2}}{M^{2}}\left[E_{1}(\beta) \exp (\beta)-E_{1}(M+\beta) \exp (M+\beta)\right] \\
& \leq \frac{m^{2}}{M}\left[E_{1}(\beta) \exp (\beta)-E_{1}(M+\beta) \exp (M+\beta)\right](B-A)^{-1} \\
& \leq E_{1}(A) \exp (A)-E_{1}(B) \exp (B) \tag{3.6}\\
& \leq \frac{M^{2}}{m}\left[E_{1}(\alpha) \exp (\alpha)-E_{1}(m+\alpha) \exp (m+\alpha)\right](B-A)^{-1} \\
& \leq \frac{M^{2}}{m^{2}}\left[E_{1}(\alpha) \exp (\alpha)-E_{1}(m+\alpha) \exp (m+\alpha)\right]
\end{align*}
$$

More examples of such transforms are

$$
D\left(w_{1 /\left(\ell^{2}+a^{2}\right)}\right)(t):=\int_{0}^{\infty} \frac{1}{(t+\lambda)\left(\lambda^{2}+a^{2}\right)} d \lambda=\frac{\pi t-2 a \ln (t / a)}{2 a\left(t^{2}+a^{2}\right)}, \quad t \geq 0
$$

and

$$
D\left(w_{\ell /\left(\ell^{2}+a^{2}\right)}\right)(t):=\int_{0}^{\infty} \frac{\lambda}{(t+\lambda)\left(\lambda^{2}+a^{2}\right)} d \lambda=\frac{\pi a+2 t \ln (t / a)}{2 a\left(t^{2}+a^{2}\right)}, \quad t \geq 0
$$

for $a>0$. The interested reader may state other similar results by employing the examples of monotone operator functions provided in $[2,3,4,7]$ and [8].

Acknowledgements

The author would like to thank the anonymous referees for valuable suggestions that have been implemented in the final version of the manuscript.

References

[1] R. Bhatia, Matrix analysis. New York, NY, USA: Springer-Verlag, 1997.
[2] J. I. Fujii and Y. Seo, "On parametrized operator means dominated by power ones", Sci. Math., vol. 1, no. 3, pp. 301-306, 1998.
[3] T. Furuta, "Concrete examples of operator monotone functions obtained by an elementary method without appealing to Löwner integral representation", Linear Algebra Appl., vol. 429, no. 5-6, pp. 972-980, 2008.
[4] T. Furuta, "Precise lower bound of $f(A)-f(B)$ for $A>B>0$ and non-constant operator monotone function f on $[0, \infty) ", J$. Math. Inequal., vol. 9, no. 1, pp. 47-52, 2015.
[5] E. Heinz, "Beiträge zur Störungstheorie der Spektralzerlegun", Math. Ann., vol. 123, pp. 415-438, 1951.
[6] K. Löwner, "Über monotone Matrixfunktionen", Math. Z., vol. 38, no. 1, pp. 177-216, 1931.
[7] M. S. Moslehian and H. Najafi, "An extension of the Löwner-Heinz inequality", Linear Algebra Appl., vol. 437, no. 9, pp. 2359-2365, 2012.
[8] H. Zuo and G. Duan, "Some inequalities of operator monotone functions", J. Math. Inequal., vol. 8, no. 4, pp. 777-781, 2014.

