
Privacy-enhancing data aggregation and data 
analytics in wireless networks for a large class of 
distributed queries

This is the Published version of the following publication

Yang, Xuechao, Kelarev, Andrei and Yi, Xun (2022) Privacy-enhancing data 
aggregation and data analytics in wireless networks for a large class of 
distributed queries. Wireless Networks. ISSN 1022-0038  

The publisher’s official version can be found at 
https://link.springer.com/article/10.1007/s11276-022-03108-4
Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/47864/ 



Privacy-enhancing data aggregation and data analytics in wireless
networks for a large class of distributed queries

Xuechao Yang1 • Andrei Kelarev1 • Xun Yi1

Accepted: 18 August 2022
� The Author(s) 2022

Abstract
Privacy-enhancing techniques and protocols for data aggregation and analytics in wireless networks require the devel-

opment of novel methods for efficient and privacy-preserving computation of distributed queries with the protection of

outcomes from active attackers. Previous approaches to secure privacy-preserving computation of distributed queries incur

significant communication overhead and cannot be applied to big data. This paper proposes two solutions to the problem of

efficient and privacy-preserving computation of distributed queries with the protection of outcomes from active outsider

attackers for a new large class of distributed statistical or numerical queries. This class contains many useful statistics and

is larger than other classes considered in the literature previously. We propose two protocols for the Protection of data from

Active Attackers (PAA) in the case of distributed privacy-preserving computation: PAA applying Shamir’s Secret Sharing

(PAA-SSS) and PAA applying homomorphic encryption (PAA-HE). The PAA-HE protocol combines the use of ElGamal

and Paillier encryption schemes in one system. Theoretical analysis and experimental results show that both protocols

outperform alternative approaches. PAA-HE provides stronger protection and is more efficient than PAA-SSS.

Keywords Privacy-enhancing data aggregation � Data analytics � Distributed queries � Homomorphic encryption

1 Introduction

Privacy-enhancing techniques and protocols for data

aggregation and analytics in wireless networks require

novel methods for efficient and privacy-preserving com-

putation of distributed queries with the protection of out-

comes from active attackers. Research on this topic belongs

to the general area of distributed privacy-preserving data

mining.

Previously, efficient specialised algorithms for dis-

tributed data mining and machine learning have been

developed, for example, in [1–4]. On the other hand, the

protection of privacy is also crucial for successful

applications of novel cyber technologies [5–7]. For

example, privacy-preserving techniques have been inves-

tigated for data publishing [8], service selection [9], and

trend surface analysis [10].

In this context, the present paper investigates the general

situation where it is necessary to ensure privacy and at the

same time provide answers to statistical or numerical

aggregate queries over a large distributed dataset, which is

a union of several separate subsets such that the managers

of the subsets are not allowed to disclose the content of

their data or transfer their data to other entities or com-

peting organisations operating in the same wireless

network.

Denote by D the whole distributed dataset, which is a

union of the subsets D1; . . .;DM supervised by different

managers M1; . . .;MM , where M is the number of the

subsets. We assume that the dataset is horizontally dis-

tributed, i.e., each record belongs to one of the subsets

D1; . . .;DM . For a positive integer n, we denote by [1 : n]

the set f1; 2; . . .; ng.
A client submits a query to the system being organised

by the managers. The managers process the query

& Xuechao Yang

xuechao.yang@rmit.edu.au

Andrei Kelarev

andrei.kelarev@rmit.edu.au

Xun Yi

xun.yi@rmit.edu.au

1 School of Computing Technology, RMIT University, 124 La

Trobe St, Melbourne, VIC 3000, Australia

123

Wireless Networks
https://doi.org/10.1007/s11276-022-03108-4(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-5621-767X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11276-022-03108-4&amp;domain=pdf
https://doi.org/10.1007/s11276-022-03108-4


following the protocol and return the final outcome to the

client. The client does not have access to the records of the

dataset, because they contain confidential information. For

m 2 ½1 : M�, each manager Mm has access only to the

records of the corresponding dataset Dm, but has no right

to access the datasets of the other managers.

The dataset managers processing distributed queries

represent official established entities that own their parts of

the data contained in the distributed dataset. As a typical

important example, the managers may official representa-

tives of different organisation participating in the wireless

network. Therefore, it is natural to assume that the indi-

vidual dataset managers are honest. Nevertheless, they

cannot share confidential information information of indi-

vidual entries in their part of the dataset with the repre-

sentatives of other competing organisations.

An efficient noise addition framework for privacy pre-

serving data mining was proposed in [11–14]. An algo-

rithm for the private processing of distributed queries was

proposed in [15]. The present paper considers a larger class

of queries. The algorithm proposed in [15] was the first and

only algorithm applicable in the situation considered in the

present paper. However, the procedure proposed in [15]

does not provide protection against active attackers and the

previous algorithm cannot solve the problem considered in

the present paper. The readers are referred to [15] for

additional examples of other previous related publications.

We propose solutions to this problem by developing

new protocols, which employ methods different from those

used in [15]. Besides, the present paper handles a larger

class of numerical queries in comparison with [15]. In

particular, vector functions considered in this paper are

more general than the scalar functions used in [15], and our

new class of functions treated by our protocols in the

present paper is larger than the one considered in [15].

In our model, the managers use separate servers for

secure computation. It is likely that every participant would

prefer to be equally involved in the process of secure

computation. There are no reasons to introduce a single

trusted authority handling one server for all secure com-

putations. Instead, we assume that each manager introduces

an individual server, where all managers have to commu-

nicate intermediate values in order to organize the process.

Accordingly, we assume that the managers D1; . . .;DM

introduce the servers S1; . . .; SM , where the server Sm
belongs to Mm, for m 2 ½1 : M�.

However, the problem of protecting the outcomes of

distributed queries from active attackers has not been

considered in this setting. This problem is important

because the servers are likely to be targeted by active

outsider attackers as they are new and each of them is

involved in communication with the managers of all sub-

sets and contains a lot of confidential information con-

tributed by all the individual managers. This is why the

problem of protecting the outcomes of distributed queries

from active outsider attackers is paramount. This problem

has not been considered before.

When the active attackers compromise several of the

servers S1; . . .; SM , this leads to occurrences of Byzantine

faults in the compromised servers. Let k be a positive

integer, k\M, equal to the largest number of the servers

S1; . . .; SM which can be compromised by active outsider

attackers. This integer is an input parameter to our

protocols.

The aim of this paper is to propose solutions to the

problem of protecting the outcomes of distributed queries

from active outsider attackers. We define a new large class

of distributed queries to be handled by our protocols. A

formal definition of this class is given in Sect. 3. This class

contains many statistical queries of practical value. We

propose solutions to the problem of protecting all queries

from this class against active outsider attackers. We

introduce two recursive protocols for the Protection against

Active Attackers (PAA). The two variants of our recursive

PAA protocols are the PAA, applying Shamir’s Secret

Sharing (PAA-SSS), and PAA, applying homomorphic

encryption (PAA-HE). The latter combines the ElGamal

and Paillier encryption schemes in order to handle certain

steps of the whole system. Theoretical analysis and the

results of our experiments show that (i) both protocols

significantly outperform different more straightforward

approaches, and (ii) PAA-HE provides stronger protection

to the query outcomes, but is slower than PAA-SSS.

The paper comprises the following sections. Section 3

explains the PAA-SSS and PAA-HE protocols. It intro-

duces the class C of queries handled by the protocols,

explains iterations and steps of the PAA-SSS and PAA-HE

protocols, and shows that the class C contains many

important statistical queries. The experiments comparing

PAA-SSS and PAA-HE with other algorithms are pre-

sented in Sect. 4. Section 5 concludes the paper.

2 Preliminaries

2.1 ElGamal encryption scheme for M1; . . .,MM

Following [16, Sect. 2.3], here we define succinct notation

for the ElGamal encryption scheme introduced in [17].

Each manager M‘, ‘ 2 ½1 : M�, chooses a secret key sk‘

Wireless Networks

123



and a public key pk‘, as explained in [16, Sect. 2.3]. Let us

denote by c ¼ EEGðt; pkÞ the ElGamal encryption of a

plaintext t. We denote by t ¼ DEGðc; sk‘ÞÞ the ElGamal

decryption of c.

For any plaintexts t1; . . .; tM , the ElGamal cryptosystem

satisfies the following homomorphic property:

YM

m¼1

EEGðtm; pk‘Þ ¼ EEG

YM

m¼1

tm; pk‘

 !
: ð1Þ

For more explanations and examples, the readers are

referred to [16, Sect. 2.3].

2.2 Paillier encryption scheme for M1; . . .,MM

Following [16, Sect. 2.4], we introduce concise notation

for the Paillier encryption scheme introduced in [18].

Each manager M‘, ‘ 2 ½1 : M�, chooses a secret key sk0‘
and a public key pk0‘, as explained in [16, Sect. 2.4]. We

denote by c ¼ EPðt; pk0‘Þ the Paillier encryption of the

plaintext t. Let us denote by DPðc; sk0‘Þ the Paillier

decryption of c.

For any plaintexts t1; . . .; tM , the Paillier encryption

scheme satisfies the following homomorphic property:

YM

m¼1

EPðtm; pk0‘Þ ¼ EP

YM

m¼1

tm; pk
0
‘

 !
: ð2Þ

For more details and examples, the readers are referred to

[16, Sect. 2.4].

2.3 Shamir’s secret sharing for M1; . . .,MM

To apply Shamir’s secret sharing [19] as explained in [20],

the managers choose a finite field F with kFk[M and

with a primitive M-th root of unity, a 2 F, aM ¼ 1. All

values of the data are represented as elements of F. They

compute n1 ¼ a0, n2 ¼ a1; . . .; nM ¼ aM�1 in F.

Suppose that each manager Mm, m 2 ½1 : M], has a

secret value ym. To introduce it to the process, Shamir’s

secret sharing [19] is used as follows. Recall that the

smallest integer that is greater than or equal to x is denoted

by dxe. Putting k ¼ dM=2e � 1, the Mm selects k random

elements um;1; . . .; um;k 2 F, defines the polynomial

gmðxÞ ¼ ym þ um;1xþ � � � þ um;kx
k, and for all m0 2 ½1 : M�

sends each value Xm0 ðymÞ ¼ gmðnm0 Þ as a secret share to

Mm0 . The secret value ym has been split into secret shares

X1ðymÞ ¼ gmðn1Þ; . . .;XMðymÞ ¼ gmðnMÞ: ð3Þ

These shares encode ym, because Lagrange’s interpolation

formula

gmðxÞ ¼
Xk

m0¼1

Xm0 ðymÞ
Q

m002½1:k�;m00 6¼m0 x� nm00
Q

m002½1:k�;m00 6¼m0 nm0 � nm00

 !
ð4Þ

restores the polynomial gmðxÞ from (3) and recovers

ym ¼ gmð0Þ.
It is explained in [20] how each manager Mm,

m 2 ½1 : M], can privately compute two new values

Hmðy1; . . .; yMÞ and Dmðy1; . . .; yMÞ, which encode the sumPM
m0¼1 ym0 and the product

QM
m0¼1 ym0 as their corresponding

secret shares, respectively. In order to refer to these values,

we denote them by

Hmðy1; . . .; yMÞ ¼ Xm

XM

m0¼1

ym0

 !
; ð5Þ

Dmðy1; . . .; yMÞ ¼ Xm

YM

m0¼1

ym0

 !
: ð6Þ

3 The PAA protocols

We consider the general case in which the client com-

municates to the managers of the distributed dataset D a

query of the form ðu;BÞ, where B is a finite set of

Boolean expressions indicated by the client for choosing

vectors to be included in the query, and u is a vector

function selected by the client for computing the query

outcome. The main notations used in our protocols are

listed in Table 1.

The queries handled by the PAA-SSS and PAA-HE

protocols incorporate Boolean expressions B. They are

Table 1 Main notation used in this paper

Number of independent managers M

Individual managers M1, M2; . . .;MM

Their separate datasets D1;D2; . . .;DM

Combined dataset D ¼ D1 [ � � � [DM

Dimension of vectors in dataset C

A vector in D vr ¼ ðvr;1; vr;2; . . .; vr;CÞ
Number of vectors in T and Tm jT j ¼ R, jTmj ¼ Rm

Number of vectors in [m�1
m0¼1Dm0 cm ¼

Pm�1
m0¼1 Rm0

Query ðu;BÞ defined by (7)

Query function u defined by (7)

Class of numerical queries C

Servers S1; S2; . . .; SM

Number of compromised servers k
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indicated by the client and used to select subsets of records

or vectors inD. Each of these expressions can be applied to

any vector v in D and produces TRUE or FALSE for each

vector.

Denote by B the class of all Boolean expressions con-

sidered in this paper. The class B is defined recursively as

follows. First, B contains all Boolean basic expressions of

the form wðvÞ ¼ uðvÞ, wðvÞ\uðvÞ, wðvÞ�uðvÞ,
wðvÞ[uðvÞ, wðvÞ�uðvÞ, where w and u are any

numerical functions defined for any vector v in D. Second,

if B1;B2 2 B, then the following expressions also belong

to B: :B1, B1 ^ B2, B1 _ B2, B1 j B2, B1 ! B2, B1 $ B2

where : (NOT), ^ (AND), _ (OR), j (XOR), ! (impli-

cation), and $ (equivalence) are the well-known Boolean

operators. These two rules recursively define all Boolean

expressions in the class B.

Given a finite set B � B specified by the client, let us

denote by T ¼ BðDÞ the set of records or vectors selected

in the dataset D by the set B of Boolean expressions. The

set T consists of all vectors v 2 D such that BðvÞ ¼
TRUE for all B 2 B.

It is easy for the managers to apply the Boolean

expressions in the finite set B to their separate datasets,

because it follows from the recursive definition given

above that every Boolean expression applies to each vector

of the dataset considered individually in isolation from

other vectors. Therefore, every manager Mm, m 2 ½1 : M�,
can select all vectors of the corresponding subset Dm

locally without consulting any other manager. For

m 2 ½1 : M�, denote by Tm ¼ BðDmÞ the subset consisting

of all vectors in Dm satisfying all Boolean expressions in

the finite set B. The set Tm consists of all vectors v 2 Dm

such that B1ðvÞ ¼ TRUE for all B1 2 B. Let R ¼ jT j be
the cardinality of the set T, and let Rm ¼ jTmj be the

number of vectors in Tm. Then R ¼
PM

m¼1 Rm and T ¼
T1 _[T2 _[. . . _[TM is a disjoint union of the sets

T1; T2; . . .; TM .
Denote all vectors in the set T ¼ BðDÞ by v1; . . .; vR. Let

C be the number of components or coordinates in every

vector v of the whole dataset D. Denote the components of

the vector v 2 D by v1, v2; . . .; vC. This means that

v ¼ ðv1; v2; . . .; vCÞ 2 D. For r 2 ½1 : R� and vr 2 T , denote

the components of the vector vr by vr;1; . . .; vr;C. Then we

have vr ¼ ðvr;1; vr;2; . . .; vr;CÞ 2 T .

Intuitively, the class C of queries handled by our

protocols consists of all pairs ðu;BÞ, where B is a finite

set of Boolean expressions, and where u is any vector

function, which applies to the set T ¼ BðDÞ and which

can be defined by using some vector functions of

individual vectors in T, the symbols of sum
PR

r¼1 and

product
QR

r¼1, as well as a compound vector function

combining them.

More formally, the class C is defined as the set of all

pairs ðu;BÞ, where B is a Boolean expression and u is a

vector function defined as follows. Take any positive

integers L and d. For ‘ 2 ½1 : L�, let d‘, e‘ be positive

integers. Let u1 be a vector function from RC to Rd1 . Let

w1 be a vector function from RC to Re1 . Finally, let w be a

function from RdLþeL to Rd. The function u is defined

recursively by the following equalities

uðTÞ ¼ w
XR

r¼1

u‘;
YR

r¼1

w‘

 !
; ð7Þ

u‘ ¼ u‘ vr;
XR

r¼1

u‘�1;
YR

r¼1

w‘�1

 !
; ð8Þ

w‘ ¼ w‘ vr;
XR

r¼1

u‘�1;
YR

r¼1

w‘�1

 !
; ð9Þ

where, for ‘ 2 ½2; L�, u‘ is a function from RCþd‘�1þe‘�1 to

Rd‘ , and w‘ is a function from RCþd‘�1þe‘�1 to Re‘ .

The class C contains many useful and well-known

numerical queries. Indeed, the following smaller class K

was defined in [15]. It consists of all functions uðTÞ given
by

uðTÞ ¼ g
XR

r¼1

g1ðvrÞ; . . .;
XR

r¼1

gd1ðvrÞ
 !

; ð10Þ

where g is a function with d1 arguments and g1; . . .; gd1 are

scalar functions with C arguments each. If we put

L ¼ 1,w ¼ g and w1ðvrÞ ¼ ðg1ðvrÞ; . . .; gd1ðvrÞÞ, then we

get uðTÞ ¼ w
�PR

r¼1 w1ðvrÞ
�
, which is a special case of

(7). Therefore K � C. It was explained in [15] that K

contains the mean, variance, standard deviation, the coef-

ficient of variation, the sample covariance, and the Pearson

product-moment correlation coefficient (cf. [21]). It fol-

lows that all these functions also belong to C.

Another example of a query in C is given by any pair

ðu1;BÞ, where u1 is the geometric mean defined by

GMðv1;1; . . .; vR;1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
YR

r¼1

vr;1
R

vuut : ð11Þ

It belongs to C, since it is determined by (7) with ‘ ¼ 1,

u1ðvrÞ ¼ 1, w1ðvrÞ ¼ vr;1, wðx; yÞ ¼
ffiffiffi
yx

p
. It is obvious, that
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GMðv1;1; . . .; vR;1Þ does not belong to K. Therefore, K is

strictly included in C.

3.1 The PAA-SSS protocol

All steps of the PAA-SSS protocol are formally described

in Algorithm 1. Let us introduce concise auxiliary notation

used in Algorithm 1.

For m 2 ½1 : M þ 1�, put cm ¼
Pm�1

m0¼1 Rm0 . In particular,

c1 ¼ 0. Without loss of generality, we may assume that all

vectors of T are indexed so that the vectors of T1 are

indexed first and occur in succession one after another, then

the vectors of T2 follow, and so on. It follows that we can

denote all vectors of Tm by vcmþ1; . . .; vcmþRm
. Then we get

Tm ¼fvcmþ1; vcmþ2; . . .; vcmþRm
g: ð12Þ

To be able to treat u1, w1 in the same way as the other

functions in the iterations of Algorithms 1 and 2, let us

define u1ðvr; 0; 0Þ ¼ u1ðvrÞ and w1ðvr; 0; 0Þ ¼ w1ðvrÞ. In
the beginning of Algorithm 1, the managers set up

Shamir’s Secret Sharing scheme as indicated in line 1

and as explained in Sect. 2.3. Line 2 of Algorithm 1 sets

up initial values required to start iterations of the loop in

lines 3 to 10. Each iteration of the loop assumes that, for

‘ 2 ½1 : L�, the values w‘�1 and w0
‘�1 have already been

determined in the previous iteration or in line 2. Each

manager locally computes the auxiliary subsum ym in

line 4 and uses Shamir’s Secret Sharing to send its pri-

vate share zm;m0 to the server Sm0 , for all m0 2 ½1 : M�. In
line 5 of Algorithm 1, the t‘;1; . . .; t‘;M encode w‘ ¼

PR
r¼1 u‘ðvr;w‘�1;w

0
‘�1Þ in (7), as explained in Sect. 2.3.

As indicated in line 6, each manager Mm can determine

the sum w‘, which is a part of (7). In line 7, each

manager locally computes the subproduct y0m and sends

its private shares z0m;m0 to the servers Sm0 , for all

m0 2 ½1 : M�. In line 8 of Algorithm 1, the t0‘;1; . . .; t
0
‘;M

encode w0
‘ ¼

QR
r¼1 u‘ðvr;w‘�1;w

0
‘�1Þ in (7), as explained

in Sect. 2.3. In line 6, each manager Mm recovers the

product w0
‘, which is a part of (7), as indicated in line 9.

It follows from (7) that wðwL;w
0
LÞ ¼ uðBðDÞÞ. The

managers compute wðwL;w
0
LÞ locally and send it to the

client in line 11 of Algorithms 1.

Algorithm 1 Description of the PAA-SSS protocol.
Input: The client submits (ϕ, B) to M1, . . . ,MM , where ϕ ∈ C is defined by (7).
Output: M1, . . . ,MM return ϕ(B(D)) to the client.
1: The managers choose a finite field F with cardinality > M , a primitive M -th

root of unity α ∈ F , and compute ξ1 = α0, ξ2 = α1, . . . , ξM = αM−1 and
A = B−1PB.

2: Set w0 = w′
0 = 0.

3: for all � = 1, . . . , L do
4: For m ∈ [1 : M ], Mm computes ym =

∑γm+1
r=γm+1 ϕ�(vr, w�−1, w

′
�−1), chooses

random um,1, . . . , um,k ∈ F , defines gm(x) = ym + um,1x + · · · + um,kxk,
and for all m′ ∈ [1 : M ] sends zm,m′ = gm(ξm′) to Sm′ .

5: As in Section 2.3, the servers compute t�,m = Θm(z1,m, . . . , zM,m), for
m ∈ [1 : M ], and send t�,m to all Mm′ , for m′ ∈ [1 : M ].

6: For m ∈ [1 : M ], each Mm uses (4) to recover w� =
∑R

r=1 ϕ�(vr, w�−1, w
′
�−1)

from t�,1, . . . , t�,M .
7: For m ∈ [1 : M ], Mm computes y′

m =
∏γm+1

r=γm+1 ψ�(vr, w�−1, w
′
�−1), chooses

random u′
m,1, . . . , u

′
m,k ∈ F , defines g′

m(x) = y′
m + u′

m,1x + · · · + u′
m,kxk,

and for all m′ ∈ [1 : M ] sends z′
m,m′ = g′

m(ξm′) to Sm′ .
8: As in Section 2.3, the servers compute t′�,m = Δm(z′

1,m, . . . , z′
M,m), for

m ∈ [1 : M ], and send t′�,m to all Mm′ , for m′ ∈ [1 : M ].
9: For m ∈ [1 : M ], each Mm uses (4) to recover w′

� =
∏R

r=1 ψ�(vr, w�−1, w
′
�−1)

from t′�,1, . . . , t
′
�,M .

10: end for
11: Every manager computes ψ(wL, w′

L) = ϕ(B(D)) and sends it to the client.

Wireless Networks

123



3.2 The PAA-HE protocol

The PAA-HE protocol is described in Algorithm 2. It

combines the ElGamal and Paillier encryption schemes in

one system. The managers set up their ElGamal and

Paillier encryption schemes in line 1 of Algorithm 2.

Each manager Mm sends public Paillier key pkm and

public ElGamal key pk0m to all other managers.

Line 3 of Algorithm 2 initializes the values

w0 ¼ w0 ¼ 0, required for iterations of the loop in lines 4

to 13. Each iteration of the loop assumes that, for

‘ 2 ½1 : L�, the values w‘�1 and w0
‘�1 have already been

determined in the previous iteration or in line 3. Each

manager locally computes the subsum ym in line 5 and uses

the Paillier encryption to encrypt it and to send the

encryption em;m0 to the corresponding server Sm0 , for all

m0 2 ½1 : M�, line 6. The server computes the product pm ¼
QM

m0¼1 em0;m and sends it to Mm in line 7. It follows from

the homomorphic property (2) that pm is an encryption of

the sum w‘ ¼
PR

r¼1 u‘ðvr;w‘�1;w
0
‘�1Þ in (7). Every man-

ager Mm uses the Paillier scheme to decrypt w‘ in line 8.

Each manager locally computes the subproduct y0m in line 9

of Algorithm 2. The manager uses the ElGamal encryption

scheme to encrypt y0m using all public keys pk0m0 and to send

the encryption e0m;m0 to the corresponding server Sm0 , for all

m0 2 ½1 : M�, line 10. The server computes the product

p0m ¼
QM

m0¼1 e
0
m0;m and sends it to Mm in line 11. It follows

from the homomorphic property (1) that p0m is an

encryption of the sum w0
‘ ¼

QR
r¼1 w‘ðvr;w‘�1;w

0
‘�1Þ in (7).

Each manager Mm uses the ElGamal scheme to decrypt w0
‘

in line 12. It follows from (7) that wðwL;w
0
LÞ ¼ uðBðDÞÞ.

Each manager computes wðwL;w
0
LÞ locally and sends it to

the client in line 14 of Algorithms 2.

3.3 Theoretical analysis

For comparison, we include a direct application of the

ElGamal and Paillier cryptosystems denoted by EGP. It

transfers the required fields of all data vectors to the new

servers in encrypted form and uses the homomorphic

properties to perform the addition and multiplication of

encrypted values without revealing their contents. The

computation and communication complexities of PAA-

SSS, PAA-HE, and EGP are presented in Table 2.

The security model considered in the present article

assumes that all the managers M1; . . .;MM are honest, but

Table 2 Computation and communication complexities of the

protocols

Complexity

Protocol Computation Communication

PAA-SSS OðM2Þ OðM2Þ
PAA-HE O(M) O(M)

EGP O(R) O(RM)

Algorithm 2 Description of the PAA-HE protocol.
Input: The client submits (ϕ, B) to M1, . . . ,MM , where ϕ ∈ C is defined by (7).
Output: M1, . . . ,MM return ϕ(B(D)) to the client.
1: Each manager sets up their own ElGamal and Paillier encryption schemes as

in Sections 2.1, 2.2.
2: For m ∈ [1 : M ], Mm sends public Paillier key pkm and public ElGamal key

pk′
m to all other managers.

3: Set w0 = w′
0 = 0.

4: for all � = 1, . . . , L do
5: For m ∈ [1 : M ], Mm computes ym =

∑γm+1
r=γm+1 ϕ�(vr, w�−1, w

′
�−1).

6: For m, m′ ∈ [1 : M ], each Mm computes em,m′ = EP (ym, pkm′) and sends it
to the server Sm′ .

7: For m ∈ [1 : M ], the server Sm computes pm =
∏M

m′=1 em′,m and sends it
to Mm.

8: For m ∈ [1 : M ], Mm decrypts w� = DP (pm, skm).
9: For m ∈ [1 : M ], Mm computes y′

m =
∏γm+1

r=γm+1 ψ�(vr, w�−1, w
′
�−1).

10: For m, m′ ∈ [1 : M ], each Mm computes e′
m,m′ = EEG(y′

m, pk′
m′) and sends

it to the server Sm′ .
11: For m ∈ [1 : M ], the server Sm computes p′

m =
∏M

m′=1 e′
m′,m and sends it

to Mm.
12: For m ∈ [1 : M ], Mm decrypts w′

� = DEG(p′
m, sk′

m).
13: end for
11: Every manager computes ψ(wL, w′

L) = ϕ(B(D)) and sends it to the client.
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may be curious. This is a natural assumption, because the

managers represent official organisations, which are not

anonymous.

The servers S1; . . .; SM are new and are intended to

process a lot of confidential information. They are likely to

be targeted by the active outsider attackers. This is why our

security model includes active outsider attackers capable of

compromising some of the servers S1; . . .; SM . This means

that Byzantine faults may take place in the operation of the

servers S1; . . .;PM , when the faulty servers are trying to

hide the fact that they have been compromised, but may

output incorrect results of their calculations.

To concentrate on solving the new problem addressed in

this paper, we assume that the communication between all

participants is secure.

Theorem 1 The PAA-SSS protocol produces correct

answers to distributed queries of the class C if the active

outsider attackers have compromised at most dM=3e � 1 of

the servers S1; . . .; SM. The PAA-HE protocol produces

correct answers to distributed queries of the class C if the

active outsider attackers have compromised at most

dM=2e � 1 of the servers S1; . . .; SM. Moreover, in both of

these cases, the active outsider attackers cannot derive

confidential information of individual managers by com-

bining the data received from the compromised servers

during the execution of each protocol.

Proof First, suppose that the active outsider attackers have

compromised at most dM=3e � 1 of the servers S1; . . .; SM .

We are going to prove that the PAA-SSS protocol produces

correct answers to distributed queries from the class C, and

that the active outsider attackers cannot derive confidential

information of individual managers by combining the data

available to them from the corresponding compromised

servers.

Denote the number of the compromised servers

S1; . . .; SM by k�dM=3e � 1. It suffices to complete the

proof in the most difficult case, where k is the largest

integer with k�dM=3e � 1. To simplify notation, we

assume that M ¼ 3k þ 1.

It follows that in the set of M private shares

t‘;m ¼ Hmðz1;m; . . .; zM;mÞ, for m 2 ½1 : M�, calculated in

line 5 of Algorithm 1, at most k of these private shares may

be compromised.

In line 5 of Algorithm 1, the manager Mm uses (4) to

recover w‘ from

t‘;1; . . .; t‘;M : ð13Þ

At most k of (13) may be incorrect. Since

t‘;m ¼ Hmðz1;m; . . .; zM;mÞ, it follows from (5) that the secret

shares encoding w‘ coincide with (13), which are equal to

the values

f ða0Þ; f ða1Þ; . . .; f ðaM�1Þ; ð14Þ

of the polynomial f ðxÞ ¼ w‘ þ a1xþ � � � þ akx
k encoding

w‘, as explained in Sect. 2.3.

Defining akþ1 ¼ akþ2 ¼ � � � ¼ aM�1 ¼ 0, we get the

sequence

a0; a1; . . .; aM�1: ð15Þ

Equation (5.182) in [22, Sect. 5.8.9] shows that (14) is a

Discrete Fourier Transform of (15). The formula for the

Reverse Fourier Transform (Equation (5.184) in [22,

Sect. 5.8.9]) implies that ai ¼ 1
M
bf ða�iÞ, for all

i 2 ½0 : M � 1�, where
bf ¼ X1ðw‘Þ þ X2ðw‘Þxþ � � � þ XMðw‘ÞxM�1: ð16Þ

Therefore,

bf ða�iÞ ¼ 0; for i 2 ½k þ 1 : M � 1�: ð17Þ

Since aM ¼ 1, we get a�i ¼ aM�i for i 2 ½0 : M � 1�. If we
substitute (16) into (17), then we get

XM�1

i¼0

ar�i � Xiðw‘Þ ¼ 0 for r 2 ½1 : 2k�: ð18Þ

It follows that

a; a2; . . .; a2k ð19Þ

are the roots of the polynomial (16). Since aM ¼ 1 and

M ¼ 3k þ 1, the set (19) is equal to the set

akþ1; akþ2; . . .; aM�1: ð20Þ

Denote by MaiðxÞ the minimal polynomial of ai. The above
conditions prove that the polynomial

gðxÞ ¼ lcm fMakþ1ðxÞ; . . .;MaM�1ðxÞg ð21Þ

divides (16). It follows that (13) is a codeword in the cyclic

code of length M generated by f(x). This means that this

code is the BCH code of designed distance 2k þ 1 (see

(5.105) in [22, Sect. 5.8.2]). As explained in [22,

Sect. 5.8.4], it has an error-correcting algorithm, which

corrects k errors. The manager can apply it and recover w‘

in line 6 of Algorithm 1.

Likewise, in line 9 of Algorithm 1, the manager Mm

can use the BCH error-correction algorithm to correct all

possible errors and recover w0
‘.

After all iterations of the loop in line 3 of Algorithm 1,

the managers recover wL and w0
L. Then every manager can

locally compute the correct value wðwL;w
0
LÞ ¼ uðBðDÞÞ.

Next, we prove that during steps of Algorithm 1 the

active outsider attackers cannot derive confidential infor-

mation concerning the data of separate managers by

combining the values available to them from the
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corresponding compromised servers. It was proved in [19]

that, for k�dM=3e � 1, if a secret value is considered as a

uniformly distributed random variable over F, then the

values (3) are k-wise independent random variables that are

uniformly distributed over F, and therefore a set of

k shares gained by the active outsider attackers from the

k compromised servers cannot help to discover any

confidential information.

In Algorithm 1, formula (3) is applied in lines 3 and 7

to communicate three secret values as sets of secret shares

sent to the servers.

Therefore, it is impossible for the active outsider

attackers to derive any confidential information from the

values available to them as private shares from at most

k compromised servers.

In line 4, each server Sm0 receives zm;m0 , which is

calculated using (3). It follows that the values received by

the compromised servers are k-wise independent random

variables uniformly distributed over F. Hence the active

outsider attackers cannot use these values to derive

confidential information.

In line 7, each server Sm0 receives z0m;m0 , which is

calculated using (3). Therefore, the values received by the

compromised servers are k-wise independent random

variables uniformly distributed over F. Thus, it is

impossible for the active outsider attackers to deduce

confidential information using these values.

Finally, in line 8 Algorithm 1 the servers use the

procedure described in Sect. 2.3 for computing

t0‘;m ¼ Dmðz01;m; . . .; z0M;mÞ, for m 2 ½1 : M�. This procedure

involves communicating data between the servers. The

compromised servers receive new intermediate values as

secret shares. However, the procedure uses randomization

polynomials as explained in Sect. 2.3. It follows that the

intermediate secret shares transferred to the compromised

servers during this procedure also are k-wise independent

random variables uniformly distributed overF. Again, it is

impossible for the active outsider attackers to deduce

confidential information from the intermediate secret

shares transferred to the compromised servers during the

computation of the t0‘;m.

This proves that in Algorithm 1 the active outsider

attackers cannot derive confidential information from the

values they get from the compromised servers.

Second, suppose that the active outsider attackers

compromised k�dM=2e � 1 of the servers S1; . . .; SM . It

remains to prove that PAA-HE protocol produces correct

answers to distributed queries from the class C, and that the

active outsider attackers cannot derive confidential infor-

mation of individual managers by combining the data

available to them from the compromised servers.

In Algorithm 2, the servers S1; . . .; SM perform identical

computations. Evidently, dM=2e � 1 is the largest integer

that is strictly less than M/2. Since k�dM=2e � 1, we get

k\M=2. It follows that only the minority of the servers

S1; . . .; SM are compromised, and so the managers can

obtain correct results by using the majority of correct

results received from uncompromised secure servers.

The servers S1; . . .; SM receive only encrypted values in

Algorithm 2. They perform all calculations in encrypted

form using the ElGamal and Paillier homomorphic prop-

erties. Since it is well known that the ElGamal and Paillier

cryptosystems are secure, it follows that the active outsider

attackers cannot derive any confidential information from

the encrypted values available to them from the compro-

mised servers. This completes the proof. h

4 Experimental set up and outcomes

This section is devoted to experiments using real datasets

from the UCI Machine Learning Repository [23], the

parameters of which are summarized in Table 3. To

investigate the performance of our protocols for larger

collections of data, we generated synthetic sets with the

numbers of vectors ranging up to 109.

Our experiments investigate the effectiveness of the

PAA-SSS and PAA-HE protocols comparing them with

EGP protocol.

The PAA-SSS and PAA-HE protocols are the first pri-

vacy-preserving protocols for computing of distributed

numerical queries over large distributed collections of data

providing protection against active outsider attackers and

minimizing the communication and computation costs for

big data. Other protocols considered in the literature pre-

viously, cannot protect against active outsider attackers in

the situation considered in the present paper, and so they

cannot be included in our experiments.

Table 3 Datasets from the UCI Machine Learning Repository used in

our experiments

Dataset Number of instances

Liver disorders [24] 345

Thoracic surgery [25] 470

Cervical cancer [26] 858

Diabetic Retinopathy [27] 1151

Thyroid disease [28] 1600

Cardiotocography [29] 2126

Diabetes US hospitals [30] 3000
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The experiments dealt with computing the geometric

mean, it belongs to the difference of the two important

classes C nK, as explained in Sect. 3, and since it is an

interesting statistic never considered in experimental

studies in this research direction previously.

In our experiments, we included two values of the

number M of the dataset managers: M ¼ 5 and M ¼ 10.

Accordingly, every dataset was divided into M ¼ 5 and

M ¼ 10 separate subsets of approximately equal size. A

synthetic dataset with the number of vectors up to 109 and

with normally distributed random values of confidential

features was generated.

The communication time is proportional to the size of

data transferred during the execution of the protocol divi-

ded by the speed of Internet transfer of data. This is why

for comparing the communication costs of the protocols,

our diagrams include the total size of data transferred in the

experiments.

In this paper, our diagrams with the total communication

costs contain only the volume of data communicated

between the separate managers. The process of obtaining

their original vectors from the corresponding local datasets

is not a part of communication.

Since the communication time is determined by the size

of data that has to be transferred in steps of the protocols

and the bandwidth or speed of transfer of data over the

Internet, we compare only the combined amount of data to

be transferred to and from the servers S1; . . .; SM .
The comparison of the performance of the algorithms

are presented in Figs. 1, 2, 3, and 4. These outcomes show

that both PAA-SSS and PAA-HE are much more efficient

than the EGP protocol, and that PAA-HE outperforms all

other protocols.

5 Conclusion

The development of privacy-enhancing techniques and

protocols for data aggregation and analytics in wireless

networks requires novel methods for efficient and privacy-
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preserving computation of distributed queries with the

protection of outcomes from active attackers.

In this paper, we propose two protocols for the protec-

tion of confidential data from active outsider attackers in

this situation: PAA-SSS and PAA-HE. The analysis and

experimental outcomes demonstrate that PAA-SSS and

PAA-HE are more efficient than alternative options.
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