
Towards a Universal Privacy Model for Electronic 
Health Record Systems: An Ontology and Machine 
Learning Approach

This is the Published version of the following publication

Nowrozy, Raza, Ahmed, Khandakar, Wang, Hua and Mcintosh, Timothy (2023)
Towards a Universal Privacy Model for Electronic Health Record Systems: An 
Ontology and Machine Learning Approach. Informatics, 10 (3). ISSN 2227-
9709  

The publisher’s official version can be found at 
https://www.mdpi.com/2227-9709/10/3/60
Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/47933/ 



Citation: Nowrozy, R.; Ahmed, K.;

Wang, H.; Mcintosh, T. Towards a

Universal Privacy Model for

Electronic Health Record Systems:

An Ontology and Machine Learning

Approach. Informatics 2023, 10, 60.

https://doi.org/10.3390/

informatics10030060

Academic Editor: Jiang Bian

Received: 28 May 2023

Revised: 27 June 2023

Accepted: 5 July 2023

Published: 11 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

  informatics

Article

Towards a Universal Privacy Model for Electronic Health
Record Systems: An Ontology and Machine Learning Approach
Raza Nowrozy 1,* , Khandakar Ahmed 1 , Hua Wang 1 and Timothy Mcintosh 2

1 College of Engineering and Science, Victoria University, Melbourne 3000, Australia;
khandakar.ahmed@vu.edu.au (K.A.); hua.wang@vu.edu.au (H.W.)

2 Department of Computer Science and Information Technology, La Trobe University, Bundoora 3086, Australia;
t.mcintosh@latrobe.edu.au

* Correspondence: raza.nowrozy@live.vu.edu.au

Abstract: This paper proposed a novel privacy model for Electronic Health Records (EHR) systems
utilizing a conceptual privacy ontology and Machine Learning (ML) methodologies. It underscores
the challenges currently faced by EHR systems such as balancing privacy and accessibility, user-
friendliness, and legal compliance. To address these challenges, the study developed a universal
privacy model designed to efficiently manage and share patients’ personal and sensitive data across
different platforms, such as MHR and NHS systems. The research employed various BERT techniques
to differentiate between legitimate and illegitimate privacy policies. Among them, Distil BERT
emerged as the most accurate, demonstrating the potential of our ML-based approach to effectively
identify inadequate privacy policies. This paper outlines future research directions, emphasizing the
need for comprehensive evaluations, testing in real-world case studies, the investigation of adaptive
frameworks, ethical implications, and fostering stakeholder collaboration. This research offers a
pioneering approach towards enhancing healthcare information privacy, providing an innovative
foundation for future work in this field.

Keywords: privacy; privacy policy; ontology; health information privacy; machine learning;
natural language processing

1. Introduction

The growing adoption of Electronic Health Records (EHRs) has led to a significant
increase in privacy and security concerns [1–5]. Despite the implementation of numerous
privacy and security measures, patients’ privacy continues to be compromised, often due
to unreliable information-sharing methods and inadequate privacy policies [1,6–10]. High-
profile data breaches in systems such as Australia’s My Health Record (MHR) and the UK’s
National Health Service (NHS) have exposed millions of records, resulting in substantial
financial losses for the healthcare industry [11]. Additionally, the expanding use of Machine
Learning in healthcare for diagnostics, drug discovery, and precision medicine intensifies
these concerns [12,13]. To achieve high accuracy, ML models often need to rely on analyzing
vast amounts of patient data, including sensitive genetic and clinical information [14,15].
The prevalent application of ML in healthcare underscores the need to address the ethical,
legal, and privacy challenges associated with implementing artificially intelligent systems
(AIS) such as ML, deep learning, and Natural Language Processing (NLP) algorithms.

Context-sensitive privacy policies play a vital role in ensuring that privacy settings and
access controls are meticulously adapted to the specific circumstances surrounding data [16–18].
For example, sensitive health information may necessitate more stringent privacy controls
compared to less critical data [19]. Numerous privacy policies, such as the Health Insurance
Portability and Accountability Act (HIPAA), General Data Protection Regulation (GDPR), and
other privacy acts, regulations, and principles [20,21], have been established to address both
local and global contexts. However, despite these local and international privacy policies,
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existing EHR systems have experienced privacy breaches, diminishing trust in health-related IT
systems [18]. Many users have opted out of systems such as Australia’s MHR system. These
privacy standards tend to be generic, highlighting the need for a novel privacy model that better
protects patients’ privacy in EHR settings.

Current strategies to safeguard EHRs involve systems that emphasize confidentiality,
authentication, integrity, trust, verification, and authorization [22,23]. Intrusion Detection
Systems (IDS) have been suggested to detect and categorize suspicious activities and
security breaches [22,23]. However, these systems might still be vulnerable due to outdated
repositories and potential alterations in patient data caused by malware or unauthorized
access [24]. Privacy-preserving ML frameworks have been proposed as potential solutions,
using techniques such as homomorphic encryption, secure multiparty computation, and
differential privacy to protect sensitive patient information while preserving analytical
accuracy [25,26]. Despite these advancements, there remains a need for more robust and
comprehensive solutions to safeguard health information. As a result, additional research
is necessary to address this gap, focusing on a secure and privacy-preserving health data-
sharing framework within the EHR sector that considers all relevant stakeholders and
ensures patients’ privacy.

To address this gap, we conducted an analysis of electronic health record (EHR)
policies, integrating ontologies and machine learning to enhance privacy and security
controls over health data. Our focus is specifically on privacy policies with special attention
to Personally Identifiable Information (PII). We introduce a machine learning model that
not only classifies privacy policies as legitimate or illegitimate but also takes on the crucial
role of identifying PII within these policies. This process flags potential privacy risks
embedded within an organization’s privacy policies. The identification of PII is of critical
importance in the context of EHRs, where sensitive data are often intermixed within larger
data sets. By pinpointing PII within these data sets, we can apply more precise and targeted
privacy measures to the data most vulnerable to breaches. Through the prioritization of PII
identification within privacy policies, we propose an additional layer of privacy protection
to the existing frameworks. Our research methodology aims to provide an exhaustive
exploration of this challenge, striving to contribute significantly to the enhancement of
privacy and security measures in health informatics. The major contributions of this
study include:

1. We presented a privacy ontology and analyzed EHR use cases to establish a standard-
ized framework for data management, access control, and sensitive health information
categorization, promoting interoperability and efficiency for healthcare stakeholders.

2. We proposed an ML-based model to identify PII from privacy policies, integrated it
with the ontology for a robust medical records protection framework, and demon-
strated its effectiveness in distinguishing valid and illegitimate EHR privacy policies,
enhancing patient care and privacy.

3. For future research directions, we recommended conducting thorough assessments,
concentrating on adaptive frameworks, ethical considerations, and implementation
strategies to create a widely embraced solution for healthcare information privacy.

Our research makes significant strides in addressing the privacy issues in EHRs by
innovating at the intersection of privacy ontology, machine learning, and electronic health
records. The technical proposition of this paper lies in our unique approach of integrating
a privacy ontology model with machine learning techniques to enhance the security and
privacy of health information. This integration is manifested in the development of a new
machine learning-based model that leverages the systematic organization provided by the
privacy ontology to categorize sensitive health data automatically. The model was designed
to efficiently identify and categorize PII from privacy policies, distinguishing between valid
and illegitimate ones, thereby enhancing the privacy and security of EHRs. This fusion
of machine learning with privacy ontology offers a modern strategy that extends beyond
traditional privacy protection measures by providing a targeted and effective solution to
the privacy concerns in EHRs.
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The rest of the article is organized as follows. In Section 2, we discuss related studies
and how our study addresses some of the issues that have not addressed by those related
studies. In Section 3, we briefly present several application scenarios along with the research
challenges. In Section 4, we propose a conceptual privacy model for EHR platforms. In
realising the privacy model, we introduce a privacy ontology and its associated core and
domain specific concepts in Section 4. An ML-based model is proposed in Section 5 to
categorize valid versus illegitimate privacy policies. The related research is discussed in
Section 6. Finally, Section 7 concludes the paper and identifies future research issues.

2. Related Work

This section discusses the associated privacy related research issues. The existing
literature can be grouped into three areas: personally-controlled EHR systems, blockchain-
based EHR systems, and context-sensitive privacy policies.

2.1. Personally-Controlled EHR Systems

Personal Electronic Health Record (PCEHR) systems enable individuals to manage
their health information and control access. However, this also requires individuals to
safeguard their data. Privacy is a crucial factor in sensitive sectors such as healthcare,
and non-compliance can lead to substantial penalties. Regrettably, many large health
information systems still display privacy issues and identification risks for users due to
inadequate implementation of legal requirements [27,28]. Various proposals (e.g., [29,30])
have been presented to address privacy concerns in personal health records, but they
frequently lack empirical evidence and real-world testing, and failed to address potential
ethical and legal concerns of implementing such systems [31]. Likewise, a proposed privacy-
preserving personal health record (P3HR) system lacked a comprehensive evaluation of
security and performance [32], while a proposed Hippocratic database approach did not
furnish empirical evidence or case studies to support its efficacy [33]. One essential aspect to
consider when developing personally controlled EHR systems is striking a balance between
privacy and accessibility [34]. It is critical to safeguard patients’ health information privacy
while ensuring that authorized healthcare providers can access the information they need to
deliver effective care. Another important factor when developing personally controlled EHR
systems is ensuring they are user-friendly and accessible to all patients [35,36], regardless of
age, education, or technological literacy. This is challenging due to the complex nature of
health information and the variety of devices and platforms used to access EHR systems.
Mamum et al. [37] proposed a homomorphic encryption approach to encrypt patients’
information. The decryption key will be used by the patient, ensuring no other person can
access their information without prior authorization. To enhance reliability and privacy, a
cryptographic verification technique is introduced to ensure that only the authorized person
has access to corresponding records [38].

Privacy is a vital factor in sectors such as healthcare, banking, and defense, where con-
fidential and sensitive data must be protected from unauthorized parties [39]. Numerous
legislative rules and regulations have been introduced in European countries to ensure
citizens’ privacy [39,40]. Global data protection standards have been established, which
outline specific data protection requirements and non-compliance penalties. According to
Baker [27], patient care involves providing relevant care for individual patients based on
their preferences, needs, and values, and ensuring good clinical decisions are made. This
patient care includes involving, informing, and listening to patients. Due to recent digital
transformations in healthcare sectors and associated data and privacy breaches, rebuilding
trust in health-related IT systems has become an urgent challenge.

While personally controlled EHR systems have the potential to enhance privacy and
patient empowerment in healthcare, several challenges must be addressed to ensure their
effectiveness and acceptability. These challenges include balancing privacy and accessibility,
making EHR systems more user-friendly and accessible, and acknowledging the cultural
and social context of EHR system development and implementation. Overcoming these
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challenges will require further research, collaboration, and innovation among healthcare
providers, researchers, and technology developers.

2.2. Ensuring Privacy through Smart Contract—Healthcare Blockchain Systems

Blockchain-based EHR systems are increasingly gaining recognition for their potential
to enhance security and privacy in managing health data. By leveraging distributed ledger
technology, these systems can effectively prevent unauthorized access and data breaches.
However, challenges still need to be addressed when implementing blockchain systems in
healthcare, particularly when sharing patient information with multiple stakeholders.

Recent studies have explored the use of blockchain technology to improve security and
privacy in healthcare IT systems. In [41], the authors proposed a consortium blockchain
for secure and privacy-preserving data sharing in e-health systems. Although their study
provided an in-depth description of the proposed architecture and its benefits, it lacked
empirical evidence and real-world evaluations, and did not discuss potential limitations or
challenges associated with implementing such a system. In [42], the study examined the
applications of blockchain distributed ledger technologies in biomedical and healthcare
settings [42]. While the authors thoroughly reviewed existing literature and proposed
various use cases, the study was published in 2017, and blockchain technology has evolved
significantly since then. Moreover, the authors did not address potential drawbacks or
limitations of using blockchain in healthcare settings. In [43], the authors focused on the
potential of blockchain technology for improving security and privacy of healthcare data
stored in the cloud. The authors provided a comprehensive overview of the challenges
and explained how blockchain could address them. However, the article did not critically
evaluate the technology’s limitations and challenges, such as scalability and interoperability
issues. In [44], the authors proposed a blockchain-based incentive mechanism for privacy-
preserving crowd-sensing applications. Despite presenting an interesting idea, the paper
lacked sufficient detail on technical implementation and evaluation and did not compare
the proposed mechanism to existing solutions or discuss limitations or future work. In [45],
the authors introduced a blockchain-based solution called Medblock for efficient and
secure sharing of medical data. The authors claimed that their system could overcome
traditional centralized data storage limitations but they did not provide a comprehensive
evaluation of the proposed system’s scalability and efficiency or detailed information about
its implementation. Finally, in [46], the authors proposed a healthcare blockchain system
using smart contracts for secure automated remote patient monitoring. While the authors
presented a detailed description of the proposed system and a theoretical analysis of its
security and privacy features, they lacked empirical evidence to support the system’s
feasibility and effectiveness and did not address potential challenges in implementing the
system in a real-world healthcare setting.

While blockchain-based EHR systems can offer significant benefits in terms of security
and privacy, there are still challenges and limitations to be addressed, especially when
sharing patient data with multiple stakeholders. Further research, validation, and critical
analysis are needed to ensure the practicality, scalability, and effectiveness of these systems
in real-world healthcare scenarios.

2.3. Context-Sensitive Privacy Policies

In recent years, there has been a growing interest in context-sensitive approaches
within the EHR domain. In [47], the paper presented a context-aware access control model
for cloud-based data resources, incorporating imprecise context information. The authors
utilized fuzzy logic to model the uncertainty in context information and developed a
context-aware access control framework. However, the paper did not comprehensively
evaluate of the proposed model, including comparative analysis with other state-of-the-art
approaches, scalability, and performance testing. Additionally, there was no mention of
any practical implementation of the proposed framework in real-world settings. While the
proposed approach seemed promising, the lack of evaluation and practical implementation
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made it difficult to assess its effectiveness and feasibility. In [48], the article introduced a
policy model and framework for context-aware access control to information resources.
Their model integrated contextual factors such as user identity, location, and time to
determine access privileges. However, it lacked empirical validation of the proposed
framework, leaving its effectiveness in real-world scenarios uncertain. Moreover, the article
did not address potential ethical implications of context-aware access control, such as
privacy and discrimination concerns. Further research and analysis are required to address
these issues. In [49], the article proposed a fog-based context-aware access control (CAC)
system to achieve security scalability and flexibility. The authors argued that their system
could enhance security in fog computing environments by providing dynamic and context-
aware access control. The article offered a comprehensive overview of the proposed CAC
system and discussed its implementation details. However, the article lacked empirical
evaluation of the proposed system’s performance and scalability. Additionally, it did not
address the potential challenges and limitations of implementing such a system in real-
world scenarios. Overall, the proposed system appeared promising, but further research
is necessary to validate its effectiveness and practicality. In [50], the paper suggested an
ontology-based approach for dynamic contextual role-based access control in pervasive
computing environments. The authors described the architecture of the proposed system
and evaluated its effectiveness through simulations. Nevertheless, the evaluation of the
system was limited to simulations, and a real-world implementation and evaluation of
the approach would be advantageous. Additionally, the paper could benefit from a more
in-depth discussion of related work in the field of contextual role-based access control.

To summarize, while these context-sensitive approaches have made strides in propos-
ing enhanced protection for EHRs, they have proven insufficient for accurately modeling
relevant stakeholders and health information.

2.4. Homomorphic Encryption in EHR Systems

The role of homomorphic encryption in preserving the privacy of EHRs has been ex-
plored in various studies, which have claimed that the approach offers computation on
encrypted data without necessitating decryption, effectively facilitating secure data sharing
and collaboration. Paul et al. [51] constructed a privacy-preserving framework, leveraging ho-
momorphic encryption for protecting EHRs during collaborative machine learning processes.
Although the proposed framework held potential, the study did not sufficiently address
the framework’s limitations, including potential vulnerabilities of the encryption scheme,
scalability, and maintaining confidentiality during collective learning. Ikuomola et al. [52]
addressed privacy concerns in e-health clouds using homomorphic encryption and access
control. However, the research was marked by the absence of a detailed analysis of the
solution’s effectiveness. Furthermore, potential vulnerabilities or attacks that could under-
mine the security of the proposed system, and scalability issues related to large-scale e-health
cloud environments were not adequately addressed. Vengadapurvaja et al. [53] developed
an efficient homomorphic medical image encryption algorithm for secure medical image
storage in the cloud. Despite its focus on medical images, the approach did not extend to
the encryption of other types of EHR data. This narrow scope limited its comprehensive
application to broader EHR privacy concerns. Alzubi et al. [54] integrated homomorphic
encryption with deep neural networks to secure the transmission and diagnosis of medical
data. However, unspecified inadequacies were identified in preserving the privacy of EHR. A
thorough examination of the study would provide a better understanding of these limitations.
Subramaniyaswamy et al. [55] implemented a somewhat homomorphic encryption scheme
for IoT sensor signal-based edge devices. However, without detailed insights from the paper,
it is difficult to identify specific inadequacies in preserving EHR privacy. Potential challenges
could include scalability, performance, or vulnerability of the implemented scheme when
applied to real-world EHR systems. Finally, Vamsi et al. [56] investigated various homo-
morphic encryption schemes for securing EHR in the cloud environment. Despite potential
benefits, several inadequacies were noted in the application of homomorphic encryption for
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preserving EHR privacy. Challenges, such as the performance overhead of homomorphic
encryption, integration difficulties with existing healthcare systems, and the need for efficient
key management strategies, were some identified concerns.

While various studies have explored the role of homomorphic encryption in preserv-
ing the privacy of EHR, each presents certain inadequacies. Key among these are the
vulnerability of the encryption schemes employed, limitations in scalability, difficulties
in maintaining the confidentiality of sensitive data, and the substantial computational
overhead that their encryption techniques have introduced. Furthermore, a narrow fo-
cus on specific data types, such as medical images, excludes comprehensive coverage
of EHR privacy concerns. Challenges in integrating homomorphic encryption schemes
into existing healthcare systems, including issues of interoperability, data access control,
and key management strategies, further compound the problem. This study aimed to
address these shortcomings by proposing a novel privacy-preserving approach for EHRs,
leveraging the benefits of homomorphic encryption while addressing its limitations. We
sought to develop a robust, scalable, and versatile homomorphic encryption scheme that
can safeguard various types of EHR data. Our methodology focused on ensuring efficient
performance, facilitating secure data sharing, and improving integration with existing
healthcare systems. Furthermore, we will offer solutions for effective key management,
ensuring a holistic and comprehensive approach to preserving EHR privacy.

2.5. Comparison with Our Study

Our study acknowledged that several attempts have been made to tackle privacy
and security issues within the realm of EHRs. These efforts, while crucial, often exhibit
certain shortcomings. For instance, they frequently fail to consider concerns raised by
previous research and lack comprehensive and robust evaluations of their effectiveness,
scalability, and process efficiency. Additionally, these studies sometimes focus too narrowly
on specific solutions such as homomorphic encryption or context-sensitive privacy policies,
overlooking the need for more holistic and comprehensive strategies that can navigate
the complexities of modern healthcare systems. Furthermore, the scalability of these
solutions—especially when implemented in larger and more diverse healthcare systems—
often remains inadequately explored. Another under-addressed concern pertains to the
process efficiency of these proposed solutions. In the high-stakes, fast-paced environment
of healthcare, solutions that are computationally demanding or overly complex may not
be feasible, despite their theoretical advantages. Our added perspective does not devalue
the existing body of work. Instead, it illuminates the multifaceted nature of privacy and
security in healthcare data management. Our research aspired to address these challenges
through an approach that balances privacy protection, process efficiency, scalability, and
real-world applicability. We aimed to build on these prior efforts, incorporating their
strengths while also striving to rectify their shortcomings.

In aiming to apply an ontology and ML-based approach to protect health informa-
tion, our study sought to explore new solutions to the challenges in this domain. The
distinguishing aspects of our research are:

X An Attempt at Comprehensive Privacy Protection: Our approach endeavored to create
a privacy protection solution that is more robust and specific to healthcare information
systems by combining ontology and ML. While we believe it can offer improved
protection, further studies and real-world testing are necessary to validate this claim.

X Consideration of Legal Requirements: We made an effort to incorporate the breadth
of GDPR and other privacy regulations into our proposed solution, aiming to ensure
compliance with the necessary legal requirements. However, adapting to evolving
legal landscapes will require continuous updates and adjustments.

X Exploration of Balancing Privacy and Accessibility: Our proposed solution attempts
to balance the preservation of patients’ health information privacy with the necessity
of access for authorized healthcare providers. Future studies should focus on how
well we have achieved this balance in various real-world scenarios.
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X Aim for User-friendly and Accessible Systems: We acknowledged the complex na-
ture of health information and the diverse range of devices and platforms used to
access EHR systems. Our study aimed for a more inclusive approach to healthcare
information management, although the user-friendliness of our solution remains to be
evaluated in diverse patient groups.

X Emphasis on Real-world Implementation and Evaluation: We strove to provide solu-
tions that can be implemented and evaluated in real-world healthcare settings. Our
approach takes a practical perspective, though extensive empirical evidence to support
its effectiveness is yet to be collected.

X Acknowledgment of Cultural and Social Context: We considered the cultural and
social context of EHR system development and implementation in our study, aiming
for a solution that can cater to diverse needs. However, further research is required to
confirm the adaptability of our solution to different cultural and social contexts.

Our study offers an exploration into combining ontology and ML for safeguarding
privacy in healthcare information systems. By acknowledging the importance of factors
such as legal compliance, balancing privacy and accessibility, creating user-friendly systems,
real-world implementation, and considering cultural and societal aspects, we strove to
extend the knowledge in the field. However, it is important to note that our proposed
solution is a preliminary attempt and further validation through future research is needed.
The potential impact of our study is in providing new perspectives and suggesting areas of
focus for ongoing exploration in the field of healthcare information management.

3. Research Motivation

In this section, we delve into a variety of application scenarios, examine them, and
highlight research challenges that remain unaddressed in the current EHR privacy litera-
ture. Today, privacy is a vital concern in cybersecurity, and safeguarding patient data is
essential by implementing robust EHR privacy and security policies on both national and
international levels [57].

To further strengthen our motivation for this research, we reflected upon real-world
examples that underline the privacy and security challenges currently plaguing the realm
of health information sharing. For instance, the considerable data breach at Anthem Inc.
in 2015, where hackers gained unauthorized access to the personal information of nearly
78.8 million individuals [58], showcases the vulnerabilities of large-scale health data sys-
tems. Despite the robust security measures in place, the attackers were able to exploit weak
points in Anthem’s system, leading to a catastrophic loss of privacy for millions of people.
Such breaches elucidate the crucial need for improved privacy protection mechanisms,
specifically those that are capable of safeguarding Personally Identifiable Information (PII)
against increasingly sophisticated forms of cyberattacks.

Moreover, real-life examples can also provide insight into the efficacy of existing
privacy regulations in the face of evolving technological landscapes. For example, con-
sider the case of the UK’s National Health Service (NHS) in 2018, when it was discovered
that third-party organizations were purchasing anonymized patient data for market re-
search [59]. Despite adhering to existing privacy regulations, the anonymization techniques
employed failed to prevent the re-identification of individual patients from the purchased
data, leading to serious privacy concerns. These incidents not only demonstrate the im-
portance of our research but also highlight the urgent need for an integrative approach
that combines machine learning with ontologies to secure EHRs effectively. Our proposal
aimed to identify and protect PII within privacy policies, adding an extra layer of security
to existing frameworks. Such a solution can potentially prevent future privacy violations,
particularly those related to the re-identification of anonymized data, thereby ensuring the
integrity of patient information in digital health platforms.

An appropriate privacy model is needed to allow patients control over their own data,
and it could also facilitate the tracking of who has accessed their health information and the
parties to whom it has been sent [60]. As mandated by the Australian Privacy Principles
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(APP) 1988 (https://www.oaic.gov.au/privacy/australian-privacy-principles (accessed on
6 July 2023)), patients should be informed about the data being collected and the manner in
which their personal health information is being utilized. While visiting hospitals or clinics,
patients also need to be notified about the reasons behind collecting and using their data,
the duration of data retention, and the parties with whom it will be shared. According to
NHS England, centralizing health information at a national level is crucial. When a General
Practitioner updates a patient’s registration information in their clinical system, the Primary
Care Support England (PCSE) system leverages this information to update the National
Health Application and Infrastructure Services (NHAIS), responsible for maintaining the
National Patient Register. The Royal Australian College of General Practitioners (RACGP)
has also introduced a sample registration form for new patients [61]. To comply with
federal and state privacy laws, this form aligns with the RACGP Standards for general
practices. If patients harbor privacy concerns, they can discuss them with their GP and opt
to leave the form blank. However, it is not considered best practice to let patients leave the
form blank, as the information may be crucial at any stage of their treatment, and a lack of
data could result in improper treatments.

Various individuals or groups, including health-related and non-health stakeholders,
may engage with EHR systems. Stakeholders can be categorized and arranged differently
based on their roles in managing EHR records (Table 1). In the subsequent paragraphs, we
will explore several such scenarios.

Table 1. List of role-based stakeholders and privacy rules.

Stakeholders’ Category Stakeholders’ Example Role-Based
(Senior/Junior) Privacy Roles

Support Professionals Receptionist, Pharmacist Junior Policy 1: Support professionals can only
deal with personal health information

Nursing Professionals Nurse Manager, Nurse Junior
Policy 2: Nursing professionals can deal

with both personal and private
health information

Medical Practitioners General Practitioner,
Specialist Senior

Policy 3: Medical practitioners can deal
with personal, private, sensitive, and

historical health information

Diagnosis Professionals Radiologist,
Medical Technician Senior

Policy 4: Diagnosis professionals can deal
with personal and historical

health information

Medical Scientists Researcher,
Junior Researcher Junior

Policy 5: Medical scientists can deal all
types of health information with the

approval of relevant stakeholders

3.1. Use Case Scenarios

In order to establish a comprehensive privacy ontology, the current scenarios must
be enhanced and diversified, taking into account the multifaceted reality of healthcare
organizations. The following use case scenarios span a range of situations, each with
differing stakeholders, types of health information, and privacy concerns. These cases,
while varied, represent a snapshot of the highly complex landscape of privacy preservation
in the context of EHRs.

3.1.1. Scenario 1: Primary Care Physician

An elderly woman, living with her eldest son, is struggling with her mental health
after witnessing the sudden death of her youngest grandson. As she displays signs of
distress and paranoia, her son seeks the help of a primary care physician (PCP). After
an examination, the PCP suggests consultation with a mental health professional. In this

https://www.oaic.gov.au/privacy/australian-privacy-principles
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scenario, the privacy concerns pertain to the sensitive nature of the woman’s mental health
status and her medical history.

• Stakeholders: PCP, patient, patient’s son, and mental health professional.
• Health Information: Private (address, location), Personal (demographic details), Sensi-

tive (medical and psychological history), Historical (previous health assessments).

3.1.2. Scenario 2: Emergency Care

Following a serious car accident, an unconscious patient is rushed to the Emergency
Department (ED) where a nurse assesses him. The patient’s Medicare details are used to
gain access to his medical history to determine the best course of urgent care. The privacy
concern here relates to the patient’s inability to provide consent for access to his medical
records due to his unconscious state.

• Stakeholders: Nurse, patient, medical team, and Medicare.
• Health Information: Private (address, location), Personal (demographic details, Medi-

care details), Sensitive (medical history, accident details).

3.1.3. Scenario 3: Clinical Research

A breast cancer patient undergoing radiotherapy expresses concerns to her GP about
her family history, particularly since her mother died of a brain haemorrhage. Her GP
consults with a research team to access clinical trials data and explore the prevalence of
similar cases. The patient’s personal information, medical history, and family history need
to be handled discreetly due to the sensitive nature of her condition and personal fears.

• Stakeholders: Researcher, GP, patient, clinical trials team.
• Health Information: Private (address, location), Personal (demographic details), Sensi-

tive (medical history, family history), Historical (previous treatment records).

3.1.4. Scenario 4: Multi-Disciplinary Consultation

A patient with a rare genetic disorder requires consultation with a multi-disciplinary
team, involving primary care physicians, specialists, therapists, and social workers. The
complexity of the case necessitates sharing extensive patient data across the team while
ensuring the patient’s privacy.

• Stakeholders: Primary care physicians, specialists, therapists, social workers, patient.
• Health Information: Private (address, location), Personal (demographic details), Sensi-

tive (medical and genetic history), Historical (treatment and therapy records).

3.1.5. Scenario 5: Telehealth

A remote patient is receiving care via a telehealth platform. The patient’s electronic
health records need to be accessed and updated by healthcare providers during virtual
consultations. The privacy concerns here arise due to the potential vulnerabilities associated
with the transfer of sensitive health data over digital channels.

• Stakeholders: Patient, healthcare providers, telehealth platform provider.
• Health Information: Private (address, location), Personal (demographic details), Sensi-

tive (medical history), Historical (previous consultation records).

3.1.6. Scenario 6: Data Breach

A healthcare organization experiences a data breach and the EHRs of multiple patients
are potentially compromised. This scenario raises significant privacy concerns related to
the unauthorized access and potential misuse of health data.

• Stakeholders: Patients, healthcare organization, IT department, potentially unautho-
rized third parties.

• Health Information: Private (address, location), Personal (demographic details), Sensi-
tive (medical history), Historical (previous treatment records).
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These enhanced scenarios provide a broader understanding of the intricate landscape
of privacy preservation in EHRs and should provide a strong foundation for the develop-
ment of a comprehensive privacy ontology. The complexity and diversity of these scenarios
reflect the dynamic nature of healthcare delivery and the myriad of privacy concerns that
arise in real-world healthcare environments.

3.2. Research Challenges

In the context of the GP and researcher scenarios previously discussed, we have
recognized several challenges that must be tackled when developing a universal privacy
ontology for various EHR platforms, such as MHR and NHS systems. Addressing these
challenges is crucial to ensure the privacy and security of sensitive patient information
while enabling seamless data exchange across different EHR platforms:

1. Sharing personal information with relevant stakeholders: According to APP 6 [21],
personal information should only be shared with pertinent stakeholders for a spec-
ified purpose, such as treatment or daily care with GPS or nurses. Personal health
information may also be shared for secondary purposes under certain conditions.
However, discerning these secondary purposes within the existing EHR literature
proves to be a substantial research challenge. This difficulty extends to sensitive
health information as well. While the APP principles are generic and can be applied
to any domain, implementing these principles within the health information domain
is particularly challenging. As a result, the development of a privacy ontology for
EHR systems is necessary.

2. Identifying relevant stakeholders: One of the detailed challenges involved in building
the privacy ontology includes identifying the relevant stakeholders associated with
different EHR systems. These stakeholders can range from healthcare providers,
insurance companies, and government agencies to patients themselves. A privacy
ontology should be able to accommodate these various stakeholder groups and their
respective access levels, ensuring that sensitive patient information is only accessible
to those with appropriate authorization.

3. Categorizing different levels of health-related patient information: Another challenge
is to categorize different levels of health-related patient information, which may range
from general health indicators to highly sensitive data, such as genetic test results or
mental health records. Creating a privacy ontology that can effectively classify this
information is essential for implementing appropriate access controls and maintaining
patient confidentiality.

4. Defining privacy rules and policies: The privacy ontology should also define privacy
rules and policies for relevant health-related stakeholders, allowing them to share
patient health records across different EHR platforms securely. These rules and
policies should be robust, flexible, and adaptable to accommodate the diverse and
evolving needs of different healthcare systems and their stakeholders.

By addressing these challenges, a universal privacy ontology for EHR platforms can
be developed, providing a framework for ensuring the privacy and security of patient infor-
mation while facilitating interoperability and collaboration among healthcare stakeholders.
Such an ontology will ultimately enhance the efficiency and effectiveness of healthcare
delivery, benefiting both patients and providers.

4. A Privacy Model for EHR Systems

This section introduces a privacy model for EHR systems to address the research
challenges identified in Section 2.

4.1. Leveraging Ontology and ML for Enhanced e-Healthcare Privacy

Recent years have witnessed a growing emphasis on the connection between pri-
vacy ontology and ML in the context of e-Healthcare systems. These approaches have
been employed to improve various aspects of healthcare systems, such as intrusion detec-
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tion, confidentiality, and privacy of EHR. In this section, we will discuss the key themes
surrounding ontology and ML in e-Healthcare systems.

4.1.1. Intrusion Detection and Prevention

Sreejith and Senthil’s research [62] proposed a model for detecting intrusion attacks
based on a NoSQL database and semantic features. This model highlights the role of ML in
detecting and preventing real-time intrusion attacks in healthcare systems.

4.1.2. Confidentiality and Privacy of EHR

In [63], their research focused on an ontological framework designed to enhance
the confidentiality and privacy of EHR . Their framework aimed to detect anomalies in
abnormal patterns of healthcare record access, predict vulnerable healthcare records for
prioritized security efforts, and analyze stakeholders’ behavior to detect suspicious activity.

4.1.3. Improved Indexing and Retrieval Performance

ML and ontology-based techniques have been shown to enhance the effectiveness
of indexing processes and retrieval performance in various studies [64,65]. For instance,
a framework for smart e-healthcare systems employs IoT technology while maintaining
privacy and authentication through a combination of encryption, secure authentication
protocols, and Blockchain technology.

4.1.4. Secure Data Access and Privacy Preservation

Sun et al. [66] explored a bilateral fine-grained access control mechanism in cloud-
enabled industrial IoT for healthcare, using Blockchain-based frameworks for granular
access control, secure data access, and privacy preservation.

4.1.5. Privacy Disclosure Measurement

Research on ontology-based approaches for protecting personal information in online
privacy policies suggests that these models offer a standardized and objective way to measure
privacy disclosure [67]. Privacy-preserving ontology is analyzed through various stages,
including data collection, data publication, and output regarding modeling and training.

4.1.6. Efficiency and Accuracy in Clinical Information Extraction

Studies such as Yehia et al.’s [68] have demonstrated increased efficiency and accuracy
in extracting clinical information from free-text notes written by physicians using ML-based
approaches.

4.1.7. Structured Approach to Organizing Clinical Data

Bosco et al. [69] illustrated that ontologies can provide a structured and standardized
approach to organizing clinical data, supporting interoperability between EHR systems
and ultimately improving patient care and facilitating clinical research.

To summarize, incorporating ontology-driven strategies alongside machine learning in
EHRs yields considerable benefits in terms of privacy, security, and efficacy. The utilization
of ontology-focused techniques allows for the creation of a standardized and structured
framework to organize and handle health data, leading to enhanced interoperability, in-
formation exchange, and decision-making. Our research distinguishes itself by tackling
various obstacles such as intrusion detection, EHR confidentiality, optimized indexing and
retrieval performance, secure data accessibility, privacy conservation, and clinical data
extraction. This all-encompassing approach guarantees the protection of sensitive health
data and empowers healthcare practitioners to deliver superior patient care.

By persistently examining and refining these methodologies, we can further progress
electronic healthcare systems and contribute to the creation of more secure, privacy-focused,
and effective solutions for managing delicate health information. Consequently, our
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ontology-centered method, in conjunction with machine learning tactics, possesses im-
mense potential in securing health data and boosting overall patient care results.

4.2. Conceptual Privacy Models

We identified the concepts behind the privacy model for different EHR systems. A
brief description of the concepts is presented in Figure 1, which can be titled the identifi-
cation layer. It shows the different types of stakeholders (e.g., GP, nurse, policy maker),
technologies (e.g., the digital platforms to interact with relevant stakeholders) and health
information (e.g., personal, sensitive) involved in the EHR scenarios.

• Identify stakeholders: the relevant stakeholders need to be identified from the application scenarios.
• Identify technologies: the relevant health technologies and platforms need to be

identified to gather health related information.
• Identify health information: the health information and records need to be identified

and labelled in different categories, such as private record, sensitive record, and so on.

4.3. Identifying Stakeholders

We analyzed various EHR scenarios, including those for receptionists, nurses, policy
makers, and media personnel, as well as those outlined in Section 4.2. Based on our
findings, we have identified several stakeholders associated with EHR platforms, which
we have listed in Table 1.

To simplify the privacy model and utilize the inheritance concept of context-aware
role-based access control systems (as described in [49,70]), we classified EHR stakeholders
into two categories: primary and secondary stakeholders. Primary stakeholders, such as
GPS and nurses, are directly involved with EHR platforms and have access to patients’
health information. Secondary stakeholders, such as media personnel, use health informa-
tion without being directly involved with EHR systems. We also defined two types of roles
for different stakeholders to create a privacy model applicable across different stakeholder
types. These roles include senior roles and junior roles. Table 1 shows the role inheritance
relationship among stakeholders, where top-level stakeholders, such as medical practition-
ers and medical scientists, are classified as senior roles, while bottom-level stakeholders,
such as GPs and researchers, are classified as junior roles. This approach helps ensure
that access to sensitive patient information is appropriately controlled and that privacy is
maintained for all stakeholders involved with EHR systems.

4.4. Redefining Health Information and Privacy Rules

In response to valuable feedback and mindful of evolving privacy legislation such
as the GDPR and several national laws, we revisited our initial classification of health
information and redefined them as follows:

• Identifiable Health Information: This includes any data that can be used to identify an
individual, such as name, address, and location. This is akin to what was previously
described as ’private health information’ and ’personal information’. Under the GDPR
and similar laws, all health information is considered sensitive, hence our shift towards
a unified category.

• Health Record Information: This encompasses the clinical details of a patient’s health
condition and medical history. It includes past diagnoses, treatment records, and
other medical reports. This category is more compatible with current legislation and
consolidates what we previously classified as ’sensitive information’ and ’historical
information’. The important distinction here is that this information is sensitive by its
very nature and is treated as such under GDPR and similar laws.
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Identification Layer

Identify Stakeholder Identify Technologies Different Levels of Healthcare Information

Resources: Internet, Networking, Meetings & Trainings
All Stake: Define list of all possible stakeholders
Priority: Define list of priority stakeholders
Key Groups: Identify key groups of stakeholders (Financial 
Stakeholders, Medical Leaders, End-Users: Clinicians, 
Patients, Vendors, Billing and Audit Functions, Government 
bodies and Authorities)
Engagement: Define stakeholders’ engagement
Grouping: Group internal and external stakeholders
Influence: Assess stakeholder influence
Relationship: Assess stakeholder relationship

Step 1: 
Gather Information: Statistics, Resources, Journals

Step 2:
All Stake: Resources, Relationship, Engagement and Priority

Step 3:
Making Preliminary studies: Scanning and monitoring, 
Technology Intelligence, Technology Road mapping, All 
Stake, Resources,  Key Groups , Validation and verification 

Step 4:
Service Requirement: Resources, All Stake, Priority, Key 
Groups, Engagement, Grouping, influence, Relationship. 

Health Data category and subcategories: 
Private Health, Personal Health, Sensitive Health, and Other 
Types

Level of Data category and subcategories: 
Geographical (National, State, etc.), Distribution (Distributed, 
Centralized), Patient Specific (Clinical, etc.), Aggregate Data 
(Clinical, etc.), Healthcare Statistics, and External Data 
(Comparative, Expert, etc.)

Figure 1. The relevant concepts to build the privacy model.
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With this redefinition, we present an updated privacy ontology and its associated
concepts, including a role ontology, health information ontology, and privacy policy ontol-
ogy. These concepts, which are grounded in the revised privacy model introduced earlier,
can be viewed in Figures 2–5. These modifications ensure that our ontology aligns with
current legislation, making it more applicable to the complex healthcare and health-related
information landscapes.

Our ontology and knowledge bases were defined using the widely used Web Ontol-
ogy Language (OWL) [71], specifically Prot’eg’e OWL 5.5 (https://protege.stanford.edu
(accessed on 6 July 2023)). We employed an object-oriented approach to model diverse
stakeholders, health information, and privacy rules. It includes classes, subclasses, datatype,
and object type properties. The health-related stakeholders were defined as classes and
subclasses (i.e., primary and secondary stakeholders) and their relevant properties were
defined using class-to-class object type and datatype properties.

Table 2 provides a technical description of our updated privacy ontology. It com-
prises three core concepts: role ontology, health information ontology, and privacy policy
ontology. This revised framework reflects a more accurate portrayal of the current health-
care landscape and the information contained within EHRs, making it more suitable for
privacy preservation.

Table 2. The modeling criteria of the ontology.

Basic Modeling Criteria Privacy Ontology Elements

Classes All primary stakeholders are represented as senior roles.
Sub classes All secondary stakeholders are represented as junior roles.

Object-type Properties The relationships between classes to classes are represented as object type properties.
Datatype Properties The relationships between classes to their features are represented as datatype properties.

Our updated ontology provides a better foundation for dealing with the intricate
healthcare and health-related information environments. The identifiable health informa-
tion and health record information better adhere to the GDPR and other national laws,
providing a robust framework for data protection. With this new approach, the ontology
can better reflect the complex and diverse processes and results found in healthcare systems,
ensuring that EHRs remain secure and patients’ privacy is respected.

Is_a
Owl:Thing Privacy_Ontology

Health 
Information

Ontology
has

Primary
Stakeholders

Sensitives Health 
Information

Is_a

Is_a

Role
Ontology

Privacy
Policy

Ontology

has

Ps_ID

Ss_ID

has

Figure 2. The core concepts of privacy ontology.

https://protege.stanford.edu


Informatics 2023, 10, 60 15 of 28

Primary
Stakeholders

Support
Professionals

Receptionist

Nursing
Professionals

Medical
Professionals

Is_a

Diagonosis
Professionals

Medical
Scientists

…

Is_a

Chemist

Nurse Manager

NurseGeneral
Practitionor

Specilaist

Resercher

Senior
Researcher 

Junior Researcher

Is_a

Is_a

Radiologist

Medical
Technician

Is_a

Is_a

Figure 3. Role ontology.
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Figure 4. Health information ontology.
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has
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Contains

Figure 5. Privacy policy ontology.

4.5. Role Ontology

In this section, we will introduce a snapshot of the role ontology, which is based on
the different stakeholders associated with EHR environments. Figure 2 shows the core
concepts of the privacy ontology, which consists of three parts: Role Ontology, Health
Information Ontology, and Privacy Policy Ontology. The classes Primary Stakeholders and
Secondary Stakeholders are both subclasses of the Role Ontology class. The “Is _a” property
indicates the relationship between the Role Ontology class and its subclasses. Each class



Informatics 2023, 10, 60 16 of 28

and subclass is defined by its datatype properties, such as the Primary Stakeholders class
having a datatype property “Ps_ID”.

Primary stakeholders, such as healthcare professionals, can directly access patients’
health information through EHR systems, whereas secondary stakeholders, such as media
professionals, can use some health information without being directly involved with EHR
systems. Figure 3 provides a snapshot of the primary stakeholders. For the purpose of this
study, the Role Ontology (see Figure 3) includes five key domain-specific classes: Support
Professionals, Nursing Professionals, Medical Practitioners, Diagnosis Professionals, and
Medical Scientists. Each class has its own set of subclasses; for example, the Nursing
Professionals class has Nurse Manager and Nurse subclasses. The proposed privacy
ontology can be expanded to include new classes and subclasses.

Understanding the integral role of ontology in enhancing data privacy in EHRs is
paramount. In our proposed Role Ontology, classes such as ‘Primary Stakeholders’ and
‘Secondary Stakeholders’ elucidate who has authorized access to the EHRs and the extent
of that access. In scenarios where a healthcare professional (primary stakeholder) accesses
patient data directly from EHRs, or a media professional (secondary stakeholder) utilizes
some health information without direct EHR involvement, it is the defined datatype
properties such as ‘Ps_ID’ that regulate this access. Such a structured hierarchy of data
access, based on well-defined classes and subclasses, ensures only authorized access to
sensitive patient data, thereby enhancing data privacy. Additionally, our ontology model
provides flexibility in expanding to include new classes and subclasses as required, ensuring
the model’s scalability and adaptability to growing and diversifying healthcare data needs.
Through our role ontology, we aimed to build a robust privacy-preserving framework
where the right to access and the extent of that access is pre-defined based on the role of the
stakeholder. This approach considerably mitigates unauthorized access, reduces privacy
breaches, and promotes data confidentiality in EHR environments.

4.6. Health Information Ontology

In this section, we present an overview of the health information ontology, which is
based on various medical information types that are found in EHR systems. Our privacy
ontology proposal includes classes and subclasses of relevant health information. The core
concept of the Health Information Ontology consists of domain-specific concepts such as
Personal Health Information, Private Health Information, Sensitive Health Information, and
Historical Health Information. The different types of health information are represented as
sub-classes, and are linked to the core concept of the Health Information Ontology using an
“Is_a” relationship, which is an object type property. You can see a snapshot of the health
information ontology in Figure 4.

4.7. Privacy Policy Ontology

In this section, we take a look at the privacy policy ontology, which is based on
the privacy rules we identified in the previous section. Figure 5 presents a snapshot
of the privacy policy ontology, which also includes domain-specific concepts from EHR
environments. To illustrate, based on Policy 1, Policy 2, and Policy 3 (as shown in Table 1),
all medical practitioners are authorized to access patients’ health information. Another
example is that Policy 1 allows support professionals to access patients’ personal health
information but not their entire medical records.

4.8. Disclosing Emergency Health Information for Patients in Car Accident Case Study

Case Study Overview: In the healthcare scenario we previously examined, nurses
have the authority to access a patient’s personal health data, which they share with the
main parties involved in the patient’s care. Nonetheless, private information, such as
the precise home address of the patient, remains confidential unless an urgent situation
necessitates disclosure.

• Patient Location: Somewhere, a suburb of Melbourne.
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• Primary Stakeholders: Patient, GP, Paramedics, Emergency Room Nurse.
• Secondary Stakeholders: Family members, Insurance provider.
• Patient Health Situation: A man with Type 2 diabetes living at 5 Somewhere Street in

a Melbourne suburb regularly sees his GP for health monitoring and treatment. His
insurance provider and primary stakeholders have access to his health records, but
not his specific home address. One night, he experiences a car accident and suffers
from severe chest pain, difficulty breathing, and dizziness. A witness calls 000 for
emergency help and the operator dispatches paramedics after learning the accident
occurred in a Melbourne suburb.

Due to the urgency, the operator shares the patient’s exact address with the paramedics,
enabling them to reach him promptly and provide life-saving treatment. In emergencies,
every second counts, and sharing a patient’s information can be vital for paramedics to act
quickly, administer treatment, and transport the patient to a hospital if needed. Knowledge
of the patient’s home address helps plan the most efficient route to the hospital, which
is crucial in some cases. Therefore, the emergency operator shares the address with the
responding paramedics. Upon arrival, the paramedics evaluate the patient’s condition and
suspect a heart attack. They provide oxygen and aspirin to stabilize him before transporting
him to the closest hospital for further care. At the hospital, the emergency room nurse
is briefed on the patient’s condition and gains access to his personal health data to aid
in his treatment. In light of the emergency, the nurse also obtains the patient’s private
information, including his precise home address, to facilitate any required follow-up care
or communication with family members.

Throughout the entire process, the primary stakeholders, including the patient’s GP,
paramedics, and the nurse, stay informed about the patient’s condition and treatment.
They work together to ensure the patient receives the best possible care and support during
this emergency. In this case, the patient’s private health information is disclosed only to the
necessary primary stakeholders in response to a critical emergency. This disclosure enables
a fast and effective response that ultimately saves the patient’s life.

A detailed health scenario (an emergency case is given in Table 3).

Table 3. A case study of a health emergency.

Personal Health Information Privacy Policy Emergency Situation

A primary address, such as “suburb is a
suburban area in Melbourne”, will only be
released to all stakeholders. However, the

patient’s actual address, which is “5
Somewhere Street, a suburban area in

Melbourne”, is only released in the event of
any emergency.

All primary stakeholders have
access to patients’ personal

health information. However,
they do not have access to
private health information.

In an emergency, some primary stakeholders
can have access to patients’ private health

information. For example, in cases where the
patient considered to be in a very critical

condition and needs to be admitted to hospital,
medical practitioners have access to patients’

exact home address for an emergency
treatment/situation.

5. Evaluation of Privacy Ontology and Experiments

We evaluated the privacy ontology by categorizing health-related privacy policies
into two types: valid and illegitimate privacy policies. To differentiate between valid
and illegitimate policies, we employed NLP-based ML models, specifically Bidirectional
Encoder Representations from Transformers (BERT) [72]. Based on our proposed privacy
ontology, we identified the following five steps to conduct the experiments:

X Data Collection and Preprocessing: We collected a large dataset of health-related
privacy policies from various online sources, such as hospitals, clinics, health insur-
ance providers, and health-related mobile applications. These policies were then
preprocessed to remove any irrelevant information, formatting inconsistencies, and to
convert them into a machine-readable format.



Informatics 2023, 10, 60 18 of 28

X Annotation and Labeling: After preprocessing the data, we manually annotated and
labeled the privacy policies based on their adherence to our privacy ontology. The
annotation process involved experts in privacy and health domains, who categorized
the policies into two classes: valid (policies that comply with the privacy ontology)
and illegitimate (policies that do not comply with the privacy ontology).

X Feature Extraction: We extracted relevant features from the preprocessed privacy
policies, such as the presence of specific keywords or phrases, using NLP techniques.
These features were critical for training the BERT model, which was then used to
classify the policies into valid and illegitimate categories.

X Training and Evaluation of the BERT Model: We used the annotated and labeled
dataset to train the BERT model. During the training process, the model learns to iden-
tify patterns and relationships between the extracted features and the corresponding
labels (valid or illegitimate). After training, we evaluated the model’s performance
using standard evaluation metrics such as precision, recall, and F1-score [73].

X Analyzing and Interpreting Results: We analyzed the results obtained from the BERT
model to identify common patterns and trends in the classification of health-related
privacy policies. This analysis provides valuable insights into the effectiveness of the
privacy ontology and helps identify potential areas for improvement

Through these five steps, we aimed to demonstrate the effectiveness of our privacy
ontology in distinguishing between valid and illegitimate health-related privacy policies.
By leveraging state-of-the-art NLP techniques and ML models, such as BERT, we can
automate the evaluation process, making it easier to ensure that privacy policies adhere to
established privacy principles and guidelines.

5.1. Experiment Setup and Dataset Preparation

This section delineates the processes involved in dataset preparation and experimental
setup to construct and evaluate our proposed privacy mechanism. To overcome previous
limitations, our enhanced experiment design incorporated a broader range of healthcare pri-
vacy policies and adopts cross-validation techniques, ensuring a robust and comprehensive
evaluation of the machine learning models.

Our dataset is an amalgamation of numerous health-related privacy policies, collected
from various healthcare organizations worldwide. It includes 100 manually labeled policies
categorized as either valid privacy policies (labelled ‘1’) or illegitimate privacy policies
(labelled ‘0’). Additionally, we incorporated 69 pre-labelled illegitimate privacy policies
(labelled ‘0’) from the “SpywareGuide” online archive. The total dataset comprises 169 la-
belled privacy policies, providing a diverse and substantial foundation for training our
privacy model. The labeling was performed based on specific health privacy and security
terms, in accordance with the APPs. A custom Python script implemented on Google Colab
facilitated the process, scanning for 13 specific phrases within each policy before labeling
them as ‘1’ or ‘0’. This comprehensive 13-phase word analysis provided a rigorous method
for categorization, ensuring accurate labeling.

Our research method approach involved using this dataset in combination with
four BERT-NLP techniques: BERT, Distil BERT, Albert Tokenizer, and Roberta Tokenizer.
The objective was to develop a machine learning-based privacy model specific to EHR
environments, capable of accurately distinguishing between valid and illegitimate privacy
policies. The model was built upon the principles derived from our updated privacy
ontology, identifying a valid privacy policy as one that is either identical to or similar to a
known policy previously labeled as ‘1’. Conversely, new policies that do not conform to
these principles were considered illegitimate and labeled as ‘0’.

5.2. Clarifying Privacy Policy Classification

In our study, we used machine learning (ML) models to classify privacy policies as
‘valid’ or ‘illegitimate’. This raises the question: why is there a need to classify a policy as
legitimate or illegitimate, especially in a context where, as an example, healthcare providers
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in the U.S. must abide by the regulations established by the Health Insurance Portability
and Accountability Act (HIPAA) [74], regardless of what the ML model dictates?

1. First, it is essential to note that, while healthcare institutions in the U.S. must follow
HIPAA guidelines, not all institutions worldwide must adhere to the same guidelines.
Different countries have different privacy regulations, and the level of privacy protection
can vary significantly across countries and even across different institutions within
the same country. This variability increases the importance of having a tool that can
automatically assess the validity of privacy policies across a broad range of contexts.

2. Second, even within the U.S., not all healthcare entities are required to follow HIPAA
regulations. HIPAA applies primarily to healthcare providers, health plans, and
healthcare clearinghouses, but it does not extend to entities such as life insurers, em-
ployers, or schools. Some of these entities might have access to sensitive health-related
information and might formulate their privacy policies, necessitating a mechanism to
evaluate their policies’ validity.

3. Third, even when healthcare entities are required to follow HIPAA guidelines, there
may still be differences in how these guidelines are interpreted and implemented.
Privacy policies can be complex and nuanced, and different entities might have
different interpretations of what constitutes a ‘valid’ policy under HIPAA guidelines.
An ML model that classifies privacy policies can serve as an additional check on these
entities’ interpretations, highlighting potential areas of concern.

4. Finally, while we used the example of HIPAA in our study, the principles of our
privacy ontology and our ML-based privacy model are not limited to HIPAA. Our
approach was designed to be adaptable to various privacy regulations, not just HIPAA.
This adaptability makes our approach potentially useful in a wide range of contexts,
even in situations where the applicable privacy regulations differ from HIPAA.

Given these considerations, it becomes clear that there is a need to classify privacy
policies as ‘valid’ or ‘illegitimate’ and that our ML-based privacy model can provide a
valuable tool in this regard. It enables a more nuanced understanding of privacy policies
across different contexts, aiding in the ongoing effort to ensure that sensitive health-related
information is appropriately protected.

5.3. Development of ML-Based Privacy Model

In this section, we present an improved ML-based privacy model for classifying valid
and illegitimate privacy policies in EHR environments. We have opted for four transformer-
based text classification models, specifically BERT, DistilBERT, ALBERT, and RoBERTa, to
categorize privacy policies. The rationale for choosing these models lies in their state-of-the-
art performance in various natural language processing tasks, including text classification,
sentiment analysis, and named entity recognition. Moreover, these models have demonstrated
strong generalization capabilities in different domains and languages.

The primary goal of our privacy model was to determine whether a privacy policy
is ‘valid’ or ‘illegitimate’ based on the type and extent of personal, private, sensitive, and
historical information that the relevant organization usually collects from its clients (e.g.,
healthcare stakeholders requesting patient information). Our proposed privacy model
employs an automated text classification mechanism to effectively distinguish between
valid and illegitimate privacy policies.

To further enhance the model, we provide a detailed explanation of the four transformer-
based text classification models:

• BERT: BERT is a powerful pre-trained language model that has achieved state-of-the-art
results in various NLP tasks. Its bidirectional nature enables it to understand the context
from both left and right sides of a word, resulting in improved understanding and
classification accuracy.

• DistilBERT: DistilBERT is a distilled version of BERT, offering a smaller and faster
alternative while maintaining most of the original model’s performance. This model is
particularly useful in cases where computational resources or model size is a concern.
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• ALBERT (A Lite BERT): ALBERT is another variant of BERT that reduces model size
and improves training efficiency by sharing parameters across layers. Despite its
reduced size, ALBERT maintains competitive performance, making it a suitable choice
for our privacy model.

• RoBERTa (Robustly Optimized BERT Pretraining Approach): RoBERTa is a modified
version of BERT that has been optimized for increased training efficiency and perfor-
mance. It uses dynamic masking, larger batch sizes, and other training optimizations
to achieve superior results in text classification tasks.

By leveraging these advanced transformer-based models, we have developed a ma-
chine learning-based privacy model derived from the concepts of our proposed privacy
ontology. The objective of the model is to accurately and efficiently classify privacy policies
in EHR environments as either valid or illegitimate, ensuring the protection of sensitive
patient information. We first manually annotated a training dataset of 169 policies, labeling
each policy as either valid (1) or illegitimate (0). A privacy policy was considered valid if it
is either identical or closely comparable to an already labeled “1” policy within the training
dataset. Policies that did not meet these criteria were labeled as “0” and deemed illegitimate.
An example of an illegitimate privacy policy sourced from the “SpywareGuide.com” online
dataset is shown in Table 4.

To enhance the model’s performance, we explored various BERT-based techniques for
processing the training data. These methods included transforming the data into tensors,
creating data batches, fine-tuning the model, and finally validating its accuracy. We trained
multiple BERT variants and systematically compared their results to determine the most
accurate model for our privacy policy classification task.

Table 4. An example privacy policy.

Policy Type Policy Statement

0]

. . . Alexa Internet Privacy Policy, based on the last updated version on 7 April 2011.
What Personal Information About Users Does Alexa Gather? Information You Give Us—We
receive and store any information you enter on our Web site or give us in any other way.
Automatic Information We Collect From the Toolbar Service—When you use the Toolbar
Service, we collect information about the websites you visit and the advertisements that you
see on those websites, the searches you perform using search engines. . .

5.4. Application of Privacy Ontology in the Machine Learning Experiment

In this section, we elaborate on how the developed privacy ontology model is inte-
grated into the machine learning experiment and how it enhances the privacy of patient
data. Our privacy ontology model is crucial in setting up the ground rules for classifying
privacy policies. It defines the valid and illegitimate privacy policy categories, shaping
the direction of our machine learning model training. The privacy ontology model, con-
structed based on in-depth analysis and understanding of privacy laws and principles,
ensures a high standard in distinguishing valid and illegitimate privacy policies. The
application of privacy ontology in our machine learning experiment can be elaborated in
three distinct steps:

1. Annotation and Labeling: The privacy ontology serves as a guidance for annotating
and labeling the collected privacy policies. The experts involved in the annotation
process utilize the ontology’s principles to identify the class of each policy. As such,
the ontology enables a more reliable and consistent labeling process.

2. Feature Extraction: Privacy ontology plays a crucial role in determining the relevant
features from the privacy policies. It aids in identifying the specific keywords or phrases
that signify valid or illegitimate policies, thereby helping in effective feature extraction.

3. Model Training: During the model training phase, the privacy ontology plays a pivotal
role in guiding the learning process of the BERT model. The model learns to identify
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patterns that align with the principles of our privacy ontology, which helps to classify
new privacy policies accurately.

The integration of our privacy ontology model into the machine learning experiment
significantly enhances the privacy of patient data. It does so by ensuring that any privacy
policy, whether from healthcare providers, health insurance providers, or health-related
mobile applications, complies with established privacy principles and guidelines before
being classified as valid. This procedure guarantees that only policies that uphold high
privacy standards will be deemed valid, thereby providing a robust safeguard for patient
data privacy. It is worth noting that our ML model’s potential to accurately classify privacy
policies does not negate the human role in this process. Our model acts as an assisting tool
that automates and speeds up the classification process, but the initial rules and principles
(as defined by the privacy ontology) are still set by human experts. Thus, while our model
provides an additional layer of protection for patient data privacy, it does not eliminate the
need for human oversight, particularly in complex cases where a human might be more
adept at identifying the appropriate policy.

5.5. Evaluation Results

The main objective of this section is to identify the legitimate privacy policies that are
associated with the health and personal information in different EHR environments. The
primary purpose was to ensure the EHR remains secure from any unauthorized attempts
to access it. Towards this goal, we conducted a set of experiments to evaluate the efficiency
of the proposed ML based privacy model. The technical details of the experiments and the
relevant results have been presented as follows.

5.5.1. Technical Details

A valid privacy policy is represented as 2-tuple relation, including privacy policies
from our proposed privacy ontology and legitimate actions (e.g., collecting, storing and/or
disseminating health information where personal, private or sensitive information is in-
volved with authorized parties). On the contrary, an illegitimate privacy policy is one where
illegitimate actions (e.g., using health information for marketing purposes) are involved with
unauthorized parties (e.g., who are not primary or secondary health related stakeholders).

We calculated accuracy, precision, recall, and f1 score using different BERT techniques
to classify the privacy policies (the dataset of 169 policies). These BERT models were used to
model our ML-based privacy approach. We use automated text categorisation mechanism
to classify a privacy policy is valid or illegitimate.

5.5.2. Dataset and Results

The proposed model was evaluated on a dataset containing valid and illegitimate
privacy policies generated by health related organisations. We collected those privacy
policies from multiple health related organisations. We also used some illegitimate privacy
policies from the online SpywareGuide archive.

Table 5 shows the experiment’s results using the different NLP based BERT techniques,
such as BERT, Distil BERT, Albert Tokenizer, and Roberta Tokenizer. In these experiments,
we used the concept of automated text categorisation mechanism in our ML-based privacy
approach through our introduced privacy classification technique—illegitimate versus
valid. We achieved 94% accuracy using the Distil BERT technique, which is better than the
other BERT techniques which achieved 76%, 90%, and 92% accuracy using Albert Tokenizer,
Roberta Tokenizer, and BERT techniques, respectively.

In the aforementioned experiments conducted on Google Colab, a cloud-based ma-
chine learning platform, we utilized a custom dataset comprising privacy policies obtained
from a variety of health-related organizations, both legitimate and illegitimate. The illegiti-
mate policies were primarily sourced from the SpywareGuide archive, an online resource
providing information about privacy risks. Each privacy policy in our dataset was trans-
formed into a vector representation using the BERT tokenizer before being processed by
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our machine learning model. For the experimental setup, we used the BERT, DistilBERT,
Albert, and RoBERTa models as implemented in the Google Colab Transformers library.
The models were fine-tuned on our dataset using a learning rate of 2 × 10−5, batch size
of 16, and for a total of four epochs, leveraging the high-performance computing power
of Google Colab. The choice of these parameter settings was informed by preliminary
experiments and the recommended settings from the original papers introducing these
models. To validate the practicality of the proposed model, we performed an additional set
of experiments using privacy policies from a diverse range of healthcare sectors, including
hospitals, insurance providers, and digital health applications. We found that our model,
trained and fine-tuned on Google Colab, consistently achieved high accuracy in identifying
legitimate and illegitimate privacy policies across these sectors, reinforcing its practical
applicability in a real-world context.

Table 5. Experiment results using NLP-based BERT techniques.

BERT Techniques Accuracy Precision F1 Score

BERT 0.92 0.86 0.90
Distil BERT 0.94 0.94 0.94

Albert Tokenizer 0.76 0.87 0.76
Roberta Tokenizer 0.90 0.82 0.92

5.6. Summary of the Findings

In our experimental setup, we employed various BERT techniques to distinguish
between legitimate and illegitimate privacy policies, with the primary aim of establishing
privacy measures that effectively protect EHR from unauthorized access. To conduct this
experiment, we utilized a dataset consisting of 169 illegitimate and valid privacy policies
collected from the online SpywareGuide archive and relevant health-related organizations.
Our experiments demonstrated that the proposed ML-based privacy approach can reliably
recognize illegitimate policies, achieving an F1 score exceeding 0.94 when using a testing
dataset comprising 20% of the data and a training dataset of 80%, indicating that our
approach has been effective in identifying privacy policies that may not provide adequate
protection for sensitive health information. The results of our analysis showed that Distil
BERT outperformed the other techniques in terms of accuracy, precision, and F1 score,
achieving a balanced performance in identifying both legitimate and illegitimate privacy
policies. This finding suggested that Distil BERT can be an effective tool for analyzing
privacy policies in e-Healthcare systems, providing valuable insights for enhancing privacy
protection measures.

We anticipate that the accuracy and precision of our approach could be further im-
proved by using a larger dataset containing a more diverse range of health-related privacy
policies. In future experiments, we plan to expand our dataset and refine our proposed
ML-based approach to better determine the validity of these privacy policies. By doing
so, we hope to develop a more robust and accurate system for identifying and protecting
against potential risks associated with inadequate privacy policies in e-Healthcare systems.

6. Discussion

This section will focus on discussing the key insights gathered during the research.

6.1. The Relationship between the Ontology and the ML Model

Integrating an ontology-driven approach with ML could enhance the confidentiality
of MHRs and refine data categorization processes [75–80]. Primarily, an ontology-driven
methodology offers a structured classification of medical terms and concepts. This struc-
ture eases the accurate identification and categorization of sensitive health data [79]. An
organized and standardized approach to health information ensures interoperability and
streamlines data management. Additionally, the ontology can link various data compo-
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nents, delivering contextual information that could refine ML algorithm performance when
detecting sensitive information [77].

Training ML algorithms with a dataset containing pre-identified sensitive information
can further enhance data categorization accuracy [76]. Here, the algorithm learns to
recognize patterns and characteristics associated with sensitive data, ensuring the effective
detection and protection of such data. In conclusion, combining an ontology-driven
approach with ML offers a robust platform for protecting medical records. This combination
substantially improves health data confidentiality and security, contributing to superior
patient care and privacy.

6.2. The Complementarity of Ontology and ML Model

Our research illustrates that the interplay between ontology and ML can significantly
enhance healthcare data management. The ontology’s role is multifold: it serves as a
semantic framework that provides context and meaning to raw data, it defines the scope
of data to be processed, and it structures the data in a manner that can be effectively
utilized by ML models [81,82]. The ontology model plays an instrumental role in the
preprocessing stage of ML by identifying relevant data sources and features [83]. This
identification ensures that ML models are trained on pertinent and meaningful data,
thus enhancing the models’ capability to accurately identify sensitive information while
maintaining patient confidentiality. Additionally, ML models assist in the continuous
refinement of the ontology [83,84]. The models identify patterns and relationships within
data, which provide insights into potential improvements to the ontology. These insights
help refine the ontology’s structure and contribute to a more accurate representation of the
health information domain.

In essence, the interplay between ontology and ML in our work exhibits a synergis-
tic relationship, where the strengths of one approach are leveraged to complement the
other [82]. The ontology model provides a meaningful and context-rich foundation for ML
models, whereas the ML models contribute to the iterative refinement and validation of the
ontology. This complementary relationship culminates in a system that is not only secure
and privacy-preserving, but also efficient in managing sensitive health information [81].

6.3. Adoption of Privacy-Preserving Technologies for Health Information Security

Although our focus has largely been on ontology-driven methodologies and ML tech-
niques, it is also essential to acknowledge the role of privacy-preserving technologies in
ensuring the security of health information. The privacy ontology model we propose in this
paper provides a structured framework for understanding and managing health-related
information but it needs to be complemented with various privacy-preserving technologies
to fully realize its potential. These technologies include, but are not limited to, data encryp-
tion, differential privacy, and secure multi-party computation, which provide the technical
means to protect sensitive data while still enabling valuable insights to be gleaned [85,86].
The integration of such technologies with our proposed privacy ontology model can ensure
that the privacy rules and regulations, as well as the rights and privileges of stakeholders,
are effectively enforced in real-world applications. This integrated approach can also ad-
dress potential vulnerabilities, such as data breaches and unauthorized access, thus further
enhancing the confidentiality and security of health data. Consequently, while the privacy
ontology model contributes significantly to conceptualizing and organizing privacy in
healthcare, the adoption of privacy-preserving technologies is integral to operationalizing
these concepts and effectively safeguarding health information.

6.4. Section Summary

The relationship between privacy ontology and ML significantly enhances e-Healthcare
systems’ security, privacy, and interoperability. By offering structured and standardized
frameworks, these techniques improve data management, access control, and overall sys-
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tem efficiency. As a result, they support the secure and confidential exchange of health
information in an increasingly digital landscape.

7. Conclusions and Future Research

This study has explored the potential of a universal privacy model in the realm of EHR
systems and context-sensitive privacy policies. Challenges such as the trade-off between
privacy and accessibility, user-friendliness, and legal compliance persist, and our work
aimed to contribute to these ongoing discussions. We proposed a conceptual privacy model,
employing a novel privacy ontology and an ML-based mechanism, which sought to discern
between legitimate and illegitimate privacy policies while factoring in patients’ PII.

We leveraged various BERT techniques in our endeavor to pinpoint illegitimate privacy
policies, indicating that our proposed ML-based approach has the potential to effectively
discern such policies. Distil BERT was particularly adept at identifying both legitimate
and illegitimate policies. The research suggests that refining the ML-based approach and
expanding the dataset could result in a more resilient system to combat potential risks
linked to inadequate privacy policies in e-Healthcare systems.

7.1. Limitation

Our study, while pioneering, is not without limitations. Indeed, these limitations un-
derscore the need for further research and validation of the proposed privacy model in the
context of evolving technology and privacy regulations. Our study lacks empirical evidence
to fully support the effectiveness and reliability of our approach, suggesting the necessity of
thorough evaluations and real-world testing. Moreover, our solution’s scalability and inter-
operability with existing healthcare IT systems and EHR platforms remain largely untested.
As such, our model may require continuous updates and adjustments to align with techno-
logical advancements and emerging privacy-enhancing techniques. Ethical considerations,
such as potential bias in ML algorithms, data ownership, and consent management, have
yet to be explored within the scope of this study. Additionally, the adaptability of our
solution in the face of changing legal landscapes and ongoing compliance with shifting
privacy regulations warrants further scrutiny. Lastly, the practicalities of implementing
our proposed solution in real-world healthcare settings, including overcoming resource
constraints and resistance to change, as well as addressing the need for user training and
support, are areas that require future exploration and validation.

7.2. Future Research Directions

To address the limitations elucidated above, future research should focus on com-
prehensive evaluations of the proposed ontology and ML-based approach in terms of
performance, scalability, and interoperability. Future studies should also investigate strate-
gies for integrating novel technological advancements and changes in privacy regulations
to ensure the maintenance of a relevant and effective solution. Key areas of future research
to advance this field include thorough evaluations through real-world case studies and
pilot implementations, exploring frameworks to adapt to advancements and changes, ex-
amining ethical implications and fostering collaboration among stakeholders. In addition,
future research should investigate user-centered design principles to create a solution that
is both user-friendly and accessible, alongside the development of practical implementation
strategies to seamlessly integrate the proposed solution into existing healthcare settings.
The proposed solution’s resilience against various security threats and attack scenarios,
along with strategies to mitigate potential vulnerabilities, remains an essential focus area
for future research. By following these research directions, we hope to contribute to the on-
going evolution of secure healthcare information systems, aiming to enhance both privacy
and accessibility in the world of e-Healthcare.
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