
A graph empowered insider threat detection
framework based on daily activities

This is the Published version of the following publication

Hong, Wei, Yin, Jiao, You, Mingshan, Wang, Hua, Cao, Jinli, Li, Jianxin, Liu,
Ming and Man, Chengyuan (2023) A graph empowered insider threat detection
framework based on daily activities. ISA Transactions, 141. pp. 84-92. ISSN
0019-0578

The publisher’s official version can be found at
https://www.sciencedirect.com/science/article/pii/S0019057823002975?via%3Dihub
Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/47944/

ISA Transactions 141 (2023) 84–92

C
a

b

c

d

e

c
d
f
r
a
a
p
f

G
U
t
t
n

h
0

Contents lists available at ScienceDirect

ISA Transactions

journal homepage: www.elsevier.com/locate/isatrans

Research article

A graph empowered insider threat detection framework based on daily
activities
Wei Hong a, Jiao Yin b,∗, Mingshan You b, Hua Wang b, Jinli Cao c, Jianxin Li d, Ming Liu d,
hengyuan Man e

School of Artificial Intelligence, Chongqing University of Arts and Sciences, Chongqing, 402160, China
Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, VIC, 3011, Australia
Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC, 3086, Australia
School of Information Technology, Deakin University, Melbourne, VIC, 3125, Australia
Async Working Pty Ltd, Melbourne, VIC, 3149, Australia

a r t i c l e i n f o

Article history:
Received 30 November 2022
Received in revised form 27 June 2023
Accepted 28 June 2023
Available online 4 July 2023

Keywords:
Sequential activity
Graph neural networks
Insider threat
LSTM auto-encoder

a b s t r a c t

While threats from outsiders are easier to alleviate, effective ways seldom exist to handle threats
from insiders. The key to managing insider threats lies in engineering behavioral features efficiently
and classifying them correctly. To handle challenges in feature engineering, we propose an integrated
feature engineering solution based on daily activities, combining manually-selected features and
automatically-extracted features together. Particularly, an LSTM auto-encoder is introduced for auto-
matic feature engineering from sequential activities. To improve detection, a residual hybrid network
(ResHybnet) containing GNN and CNN components is also proposed along with an organizational
graph, taking a user-day combination as a node. Experimental results show that the proposed LSTM
auto-encoder could extract hidden patterns from sequential activities efficiently, improving F1 score
by 0.56%. Additionally, with the designed residual link, our ResHybnet model works well to boost
performance and has outperformed the best of other models by 1.97% on the same features. We
published our code on GitHub: https://github.com/Wayne-on-the-road/ResHybnet.
© 2023 The Author(s). Published by Elsevier Ltd on behalf of ISA. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Since the information boom from the early 90 s of last century,
ybersecurity has been a rising concern all the way to nowa-
ays [1–3]. According to one of the latest cyber-security reports
rom Accenture in 2021,1 the cyber attacks experienced by each
espondent increased 31% compared with previous year, reaching
n eye-catching high number of 270 times. Out of all those cyber
ttacks, although threats from insiders account for only a small
ortion of the total, organizations generally consider them to pose
ar more risks to their information security [4].

According to the seventh edition of the CERT Common Sense
uide to Mitigating Insider Threats published by Carnegie Mellon
niversity [5], insider refers to an individual who has or had au-
horized access to an organization’s critical assets. Therefore, on
he one hand, once insiders initiate attacks, they could bring sig-
ificant losses for the organization due to their access to essential

∗ Corresponding author.
E-mail address: jiao.yin@vu.edu.au (J. Yin).

1 https://www.accenture.com/us-en/insights/security/invest-cyber-resilience
ttps://doi.org/10.1016/j.isatra.2023.06.030
019-0578/© 2023 The Author(s). Published by Elsevier Ltd on behalf of ISA. This is a

org/licenses/by-nc-nd/4.0/).
assets. On the other hand, due to legitimate authorization, insider
threats are often hard to contain, even with comprehensive access
control solutions [6–8].

To mitigate the threats posed by insiders, the key is to find
hidden patterns in an insider’s malicious behavior and distinguish
them from benign ones. Typically, domain experts would first
preset specific rules for feature extraction, and then craft suitable
classification models to discover malicious activities [9]. Since
different domain experts see individual behavior from different
perspectives, the feature engineering approach often varies de-
pending on how the problem is defined. At the same time, applied
detection methods have also evolved from simple statistical ap-
proaches to machine learning ones such as linear regression (LR),
Gaussian naive Bayes (GNB), support vector machine (SVM), and
all the way to deep learning approaches such as convolutional
neural networks (CNNs) [10–12].

Regarding activity feature engineering, although domain
knowledge could help to select key features efficiently, they
are more related to the standalone properties of certain activi-
ties [13]. Some latent features in the sequential order of activities
could still exist during a specific time interval, and it has the

potential to improve detection performance [14].

n open access article under the CC BY-NC-ND license (http://creativecommons.

https://doi.org/10.1016/j.isatra.2023.06.030
https://www.elsevier.com/locate/isatrans
http://www.elsevier.com/locate/isatrans
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isatra.2023.06.030&domain=pdf
https://github.com/Wayne-on-the-road/ResHybnet
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jiao.yin@vu.edu.au
https://www.accenture.com/us-en/insights/security/invest-cyber-resilience
https://doi.org/10.1016/j.isatra.2023.06.030
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

W. Hong, J. Yin, M. You et al. ISA Transactions 141 (2023) 84–92

m
t
l
o
t
n
g
b

g
w
d
a
b
a
G

e
d
m
a
f
i
c
o

a

o
n
o
t
a

In terms of classification models, on the one hand, traditional
odels such as artificial neural networks (ANNs) and convolu-

ional neural networks (CNNs) only see user behavior in an iso-
ated way, trying to discover the patterns behind a large amount
f individual data separately [15–17]. On the other hand, when
aking the approach of graph intelligence such as graph neural
etworks (GNNs), individual characteristics would suffer down-
rade to a certain degree due to the over-emphasized connections
etween individuals [18–20].
In order to offer more solutions in insider threat detection re-

arding feature engineering, and considering that an employee’s
orkload would most likely show pattern according to calendar
ay, we first propose a daily activity based feature engineering
pproach. Furthermore, to better discover the behavior similarity
etween employees from organizational connection, we propose
residual hybrid network (ResHybnet) model that can combine
NN model and CNN model together.
Specifically, for daily activity feature engineering, we first

mploy domain knowledge to manually select features from stan-
alone activities, and then use a long short-term memory (LSTM)
odel based auto-encoder to extract features from sequential
ctivities automatically. After combining extracted features, we
eed them into the proposed ResHybnet, and along with the
nformation from constructed organizational graph, the insiders
onducted malicious behaviors during specific day could be found
ut.
To summarize, this paper makes contributions from three

spects listed below:

• We proposed an integrated feature engineering method
based on user’s daily behaviors. Firstly, we manually extract
domain knowledge-based features from standalone activi-
ties. Secondly, we define sequential activities on a daily basis
and use an LSTM auto-encoder model to extract latent fea-
tures from sequential activities automatically. Experimental
results show that the features extracted from sequential
activity indeed can improve the detection performance in
the final stage.

• We designed a residual hybrid network (ResHybnet) model
consisting of GNN and CNN layers, and a residual link from
node attributes to the CNN component to enhance the per-
formance of insider threat detection. ResHybnet achieves
the best results for the following three reasons. Firstly, the
GNN component can discover the topological connections of
daily behavior (represented by node attributes) from con-
structed organizational graph. Secondly, the residual link
can compensate node attributes that have been weakened
by the GNN component during propagation. Lastly, the CNN
component is a sound model for pattern discovering in
non-topological context. When integrated together with de-
signed residual link, the best part of two classical models
could be made use of.

• We conducted a comparative study to see the impact of
length choice on the final detection performance to bet-
ter understand how the input sequence length of LSTM
auto-encoder will affect feature engineering of sequential
activities. Experimental results show longer sequence set-
ting for LSTM auto-encoder facilitate better performance,
and the statistics of sequence length could contribute to
proper length selection.

In the rest of this paper, we will first review the related works
n insider threat detection and the corresponding feature engi-
eering approaches in Section 2, followed by Section 3 consisting
f framework overview and LSTM auto-encoder architecture in-
roduction. Section 4 implement the proposed methodology on

n open-source insider threat dataset as a use case. Section 5

85
presents experiment results on detection performance and abla-
tion study findings related to sequential activity feature engineer-
ing. Section 6 concludes the paper with limitation discussion and
future works.

2. Related works

2.1. Insider threat detection

For long, the terms insider and insider threat have never been
easy to define. Nowadays, the most widely recognized defini-
tions in this field are dynamically updated by the CERT research
team of the Software Engineering Institute at Carnegie Mellon
University [5].

Previous research works on insider threat detection could be
categorized mainly into two streams: conceptual works, which
focus on the methodology and theories about insider threat de-
tection, and operational works, which emphasize practical solu-
tions related to certain datasets. [21].

In the operational research fields that relate most to our work,
Schonlau, M. et al. [22] adopted a statistical approach to detect
insider threats and introduced a command history-based dataset
SEA as early as in 2001. Garg, A. et al. [23] then introduced a
new dataset based on mouse operation history, putting insider
detection problem in a graphical user interface (GUI) context. This
work also employed SVM method, which achieves an accuracy
rate up to 96% high with few false positives.

As time went by, more comprehensive approaches were intro-
duced to insider threat research thanks to the increasing avail-
ability of richer data, such as synthetic dataset CERT [24]. In
2015, Gavai, G. et al. [25] also presented a real-world dataset
containing enterprise social and online activity with intentionally
injected insider threat events. They modified the isolation forest
algorithm and tested it on the dataset based on supervised and
unsupervised settings.

Some researchers also experimented graph-based methods in
insider threat detection research. For example, a novel organiza-
tional graph was created in the paper [26], and then node degree
and betweenness centrality are introduced to practice clustering
techniques. Outliers in the clustering process are considered ma-
licious insiders. Jiang, J. et al. in paper [27] introduced a GCN
model to detect malicious insides. With the calculated similar-
ity of different users inside an organization, they constructed a
weighted graph to facilitate better performance. The mentioned
two works demonstrate graph neural networks is promising in
the research field of insider threat. However, while GNN-based
classification models are good at discovering the connections in
graph structures, they also may cause the downgrading of node
attributes, as found by previous researchers in [19].

To the best of our knowledge, previous work has yet to try to
address the node attributes downgrading problem and integrate
GNN and CNN layers into one model in insider threat detection
research.

2.2. Insider threat feature engineering

To discover malicious insiders, feature engineering often plays
an important role due to the fact that human behavior is com-
plex [28,29]. As early as 2005, Liu et al. [30] investigated three
feature representation ways on system calls and found that
parameter-based features for certain system calls indeed were
sensitive to some extent for detecting the insider threat. In the
paper [31], the authors used a deep belief network(DBN) to
extract hidden features from users’ behavior logs and showed its
effectiveness in insider threat feature engineering.

W. Hong, J. Yin, M. You et al. ISA Transactions 141 (2023) 84–92

n
t
o
p
a
A
t
e

Y
f
m
o
f
f

t
a

3

l
o
m
w
f
m

a
o
d
c
a
t

l
a
p
h
s
o

3

f

Fig. 1. Daily activity based insider threat detection framework.
Chattopadhyay et al. [32] saw the potential of feature engi-
eering from a time series perspective. From user activity logs,
hey constructed a time series feature vector based on statistics
f single-day features over a period of time. Singh et al. [33] ap-
lied isometric feature mapping (ISOMAP) for feature extraction
nd Emperor Penguin Algorithm for optimal feature selection.
lthough temporal nature was considered in feature extraction,
hose two works still focused on the statistical side of feature
ngineering.
To discover the behavioral pattern of a user in a certain day,

uan, F. et al. [34] designed a framework to extract fixed-size
eatures from activity sequence of one whole day using the LSTM
odel and applied a CNN classifier to distinguish insiders. An-
ther later work [35] applied LSTM auto-encoder as a classi-
ier based on the reconstructed loss to do detection rather than
eature extraction.

Based on our extensive review, no previous work has ex-
racted latent features from sequential activities using an LSTM
uto-encoder model under user-day problem setting.

. Methodology

In previous works, researchers defined insider detection prob-
ems in different ways. For example, paper [26,34] aim to find
ut insiders by examining users’ activities across a time window
ore than one year long, and considering all the activities as a
hole, while Liu et al. [36] define insider detection problem as to

ind out malicious activities. Those two approaches represent the
ajority problem settings for insider threat detection.
Considering that an employee in an organization usually has
working load pattern following the calendar day, we define
ur insider threat detection task as finding out malicious user-
ays. This is also because an insider could behave maliciously on
ertain days and otherwise on the rest days, and for cybersecurity
nalysts, monitoring risk level on a daily basis often echoes with
he typical operation pattern of an organization.

Based on this problem formation, we lay out the whole so-
ution for insider threat detection in this section, starting with
framework overview, followed by a detailed description of the
roposed integrated feature engineering method and the residual
ybrid network model. In regard to the implementation of this
olution, we present the whole process in Section 4, and apply it
n the CERT 4.2 dataset

.1. Framework overview

The proposed daily activity-based insider threat detection

ramework is shown in Fig. 1. Overall, the behavioral log files

86
are first pre-processed to generate daily activities, which can
be categorized into standalone activities and sequential activi-
ties. Then, we apply an integrated feature engineering approach
to extract features from them separately. At the same time, a
graph is constructed to represent the organizational connection
between different user-days. After combining the two feature
groups together, we use a special-designed residual hybrid net-
work model to perform insider threat detection with the help of
graph information. The detailed processes are described in the
following sections.

3.2. Integrated feature engineering

For malicious insiders, we believe the subtle difference in their
behavior could be revealed from two aspects. First, the stan-
dalone activities in a daily schedule, such as the first logon time,
could be an indicator of a threat if it significantly deviates from
normal ones. Second, within a single working day, the activities
conducted by an employee would happen in time series, which
naturally forms a sequence of activities. If an activity sequence
shows a different pattern from others, it could also serve as
a good indicator for insider threat detection. Therefore, in the
framework shown in Fig. 1, we start with feature engineering
regarding those two kinds of activities.

3.2.1. Manual engineering
For each user-day, features of standalone activities are selected

based on domain knowledge. As a result of this manual selection,
the output feature matrix for all user-days from this stream is
denoted as Xm (Xm ∈ Rn×dm), among which n represents the
total of user-day combinations, and dm stands for the number of
manually selected features for each user-day. Regarding a certain
user-day, the vector for manual features could be denoted as
x(i)m ∈ Rdm (i ∈ {1, 2, · · · , n}).

3.2.2. Automatic engineering
As for sequential activities, we designed an auto-encoder

based on a widely used LSTM model to extract useful features
automatically.

On the one hand, to use the LSTM auto-encoder, a fixed input
sequence length L needs to be set and then the actual sequence
will be trimmed or filled to the length L. After numbering and
one-hot encoding, each daily activity sequence is encoded as S(i)
= { s1, s2, · · · , sL}, where S(i) ∈ RL×ds (i ∈ {1, 2, · · · , n}), and ds
stands for the dimension of an encoded activity (depending on
how many unique types of activity are defined). This S(i) sequence

serves as the input for our auto-encoder.

W. Hong, J. Yin, M. You et al. ISA Transactions 141 (2023) 84–92

i
c
o
d

b
·

i
w
f

Fig. 2. LSTM auto-encoder for sequential activity feature extraction.
On the other hand, as shown in Fig. 2, the LSTM auto-encoder
s a symmetrical network consisting of two LSTM layers with L
ells for each and three fully connected (FC) layers. The first half
f the LSTM auto-encoder is the encoder part, and the rest is the
ecoder part.
In the training process, each sequence S(i) = { s1, s2, · · · , sL} will

e fed into the LSTM auto-encoder, and the output Ŝi = { ŝ1, ŝ2,
· · , ŝL} from the decoder side will be compared with the original
nput sequence. By minimizing the differences between Si and Ŝ(i),
e could find the best parameters of the LSTM auto-encoder for

eature extraction.
After training, for each sequence S(i), the extracted feature

from the output of the encoder part will be denoted as x(i)a ∈

Rda (i ∈ {1, 2, · · · , n}), since those features are automatically
generated from the trained encoder, where the da stands for the
dimension of automatic features.

By putting automatic features from all user-days together, we
will have the automatic feature matrix of sequential activities,
which can be denoted as Xa, where Xa ∈ Rn×da , n is the total
number of user-days.

3.2.3. Feature integration
In the final stage of feature engineering, features extracted

from the manual and automatic ways are concatenated as the
final behavioral feature matrix, as shown in Eq. (1).

Xb = concatenate(Xm, Xa), (1)

where Xb ∈ Rn×(dm+da) stands for the final behavioral feature
matrix of all user-days, and each feature vector has a dimension
of dm + da. For the ith user-day, the behavioral features could be
represented as x(i)b ∈ R{dm+da}, where i ∈ {1, 2, · · · , n}.

3.3. Residual hybrid network

Behavioral features Xb are successfully extracted from users’
behavioral log files at the final stage of the integrated feature
engineering. For insider threat detection, it will be sent into a
special-designed Residual hybrid network model consisting of
GNN, CNN, and FC layers, and a residual link, as shown in Fig. 1.

To apply the residual hybrid network model, a graph is first
constructed following paper [19], and denoted as G = {V, A},
where V stands for all the vertex of the graph, A stands for
the adjacency matrix of the graph, which is derived from the
organizational relationship between users. For any user-day, it
could be represented as a node in the graph (v ∈ V).
87
As shown in Fig. 1, the proposed ResHybnet will take behav-
ioral feature matrix Xb and user-day organizational graph G(V , A)
as inputs, and performs the final insider threat detection task.

The process of this detection can be described in Eq. (2), (3),
(4).

Hc = fgnns(Xb, V , A, Θgnns), (2)

X = Hc + Xb, (3)

Ŷ = ffc(fcnns(X, Θcnns), Θfc), (4)

where fgnns, fcnns and ffc are the mapping functions of the GNN,
CNN and FC layers shown in Fig. 1; Θgnns, Θcnns and Θfc are the
corresponding model parameters, which can be learned in an
end-to-end manner.

As shown in Eq. (2), in the first step of ResHybnet, the GNN
component will take the behavioral feature matrix Xb and graph
G(V , A) as inputs to embed the topological connections of user-
days. At the same time, a residual link from Xb will send the
original node attributes to the output side of the GNN component
for compensation purposes, as shown in Eq. (3). After adding Xb
back to GNN output Hc to generate X , the compensated node
feature, X , will be further processed by the CNN component,
followed by a fully connected layer to yield the final insider
threat detection result from the ResHybnet model, denoted as
Ŷ , as shown in Eq. (4). At the last stage, the effectiveness of
the proposed framework is evaluated through the comparison
between the predicted results Ŷ and the true labels Y .

4. A use case

For a better illustration of the implementation process, we
applied it to the CERT4.2 dataset for insider threat research [24],
which helps to avoid privacy concerns due to its synthetic na-
ture [37,38]. We constructed a balanced sample dataset using the
down-sampling technique. This section presents details on how
to construct the sample graph, conduct feature engineering and
perform the insider threat detection task.

4.1. Sample organizational graph

For CERT 4.2, there are 70 malicious insiders out of 1000 em-
ployees, and the raw dataset is organized by activity categories,
which contain logs of activities such as logging on/off a personal

W. Hong, J. Yin, M. You et al. ISA Transactions 141 (2023) 84–92

i
o

s
f
p

4

4

m
p
n
f

t

4

d
t
a
f
i

t
c
f
i
t
d
a
l

m
c

s
t
m
s

5

5

m
p
s
i
W
s
o
p
w

Table 1
File content description for CERT4.2 dataset.
File Content

LDAP files Describe organizational information of the enterprise,
such as supervisor name, department name .etc

Device Describe the activities related to USB device, such as
connect or disconnect a removable device

Email Describe all email activities including content in the
form of key words.

File Describe the activities related to file usages on a PC,
including file type and content summary.

Http Describe the web usage information from a PC,
including url and key words of content

Logon Describe the logon/logoff activities on a PC

Psychometric Describe the personality evaluation result for all
employees using big five OCEAN model

computer (PC), opening a file, using a USB drive, etc. Addition-
ally, the organizational relations are also given by LDAP file to
elaborate employee’s supervisor and department. In Table 1, key
information of CERT 4.2 dataset files is briefly described.

We first randomly down-sampled a balanced data set contain-
ng 1908 user-day samples, mapping them into 1908 nodes in an
rganizational graph by several rules:

• First: If user B supervises user A, then every user-day from
A will be connected with every user-day from B.

• Second: If user A shares the same supervisor with user B,
then every user-day from A will be connected with every
user-day from B.

• Third: All the user-days that belong to the same user will be
connected with each other.

After constructing this organizational graph, 70% of the whole
ample dataset are selected out for training while the rest 30%
or testing. Facilitated by this graph, behavior similarity could
otentially be discovered by deep learning models.

.2. Daily activity feature engineering

.2.1. Manual feature engineering based on domain knowledge
For manual feature engineering, it is largely relied on do-

ain knowledge to select the potential indicators. In this pa-
er, we studied two types of activity file for this feature group,
amely, device.csv file and logon.csv file, and manually selected
ive features that have the potential to be good indicators.

To be specific, the five manual features for standalone activi-
ies are shown in Table 2.

.2.2. Automatic feature engineering based on LSTM auto-encoder
For automatic feature engineering, we need to encode the

aily activities first and join them into a sequence based on the
ime each activity was performed. We referenced the practice
dopted by paper [34] and analyzed all the activities logged in
ile.csv, logon.csv, device.csv, and email.csv. The rules for encod-
ng those activities are shown in Table 3.

In total, we defined 12 different types of activities and encoded
hem further into 24 types of activities based on whether it is
onducted during work time or off-work time, numbering them
rom 1 to 24. Our sample dataset’s longest daily activity sequence
s 74, which serves as our sequence length setting when training
he LSTM auto-encoder for feature engineering. For those user-
ays that have shorter sequences, we add 0 to represent ‘none’
ctivity at the end of sequence until it reaches the sequence

ength setting 74. Before feeding the sequence into the LSTM

88
auto-encoder for training, we further did one-hot encoding for
the 24 types of activities plus the ‘none’ type. Therefore, for the
LSTM auto-encoder, the input sequence length is 74, and the
input dimension is 25.

In the training part, we take all the sample datasets as input
and try to minimize the training loss with an early stopping strat-
egy. After multiple training rounds, we use the encoder output
from the middle full connection layer as our automatic features
for sequential activities and concatenate it with manual features
extracted in Section 4.2.1. For this implementation, we set the
encoder output dimension to be 5, so for the final feature matrix,
the dimension would be 1908X10, and for each sample node, the
feature vector dimension is 10.

4.3. Integrated insider detection with ResHybnet

As illustrated in Section 3.1, the concatenated feature matrix
will serve as the node attribute matrix for nodes in the sample
graph. With the help of the data loader tool in PyTorch, node
attributes data and graph connection data (edge information) will
be fed into our ResHybnet model for a supervised insider threat
detection task.

During this process, the daily activity pattern would be mined
by the GNN and CNN component in our model, where GNN
focuses more on finding the behavior similarity between differ-
ent user-day nodes that have organizational connections, and
CNN focuses more on discovering the behavior pattern for each
individual node.

5. Experiments

In order to verify the effectiveness of the proposed solution,
we conducted our experiment mainly from two aspects. In the
first part, we hold the feature engineering part unchanged and
investigate the detection performance of our ResHybnet model.
In the second part, we apply the best setting of our model and
investigate how the different feature groups have contributed.

We performed all experiments with Python language. Specif-
ically, PyTorch package2 is used for CNN model constructing,
scikit-learn3 package is adopted for binary classifier implemen-
tation, and PyTorch Geometric4 is used for implementing GNN
odels. Default settings are used for all ready-to-go models and
lassifiers unless otherwise specified.
For the training process, we employed an early stop strategy,

etting the waiting epoch number to be 30, and monitored the
est loss value with 0.0001 as delta threshold, and each experi-
ent will be carried out for 10 rounds to report the average. This
etting is universally applied to all training processes.

.1. Performance study of the proposed model

.1.1. Performance comparison with other classifiers
Since ResHybnet is a model-independent structure that can

ake the best out of GNN and CNN components, in experimental
art, we first chose the most simple and popular GNN and CNN
tructures to verify the effectiveness of our model, and compared
t with commonly used binary classifier such as SVM, LR, RF, GNB.
e also compared it with a CNN and GNN classifier using the

ame setting as the components use in our model. Actually, for
ur ResHybnet model, when setting it to gnn mode, it would
erform exactly like a GNN classifier, while setting it to cnn mode
ill make it act like a CNN classifier. Specifically, for the CNN

2 https://pytorch.org/docs/stable/index.html
3 https://scikit-learn.org/stable/
4 https://pytorch-geometric.readthedocs.io/en/latest/

https://pytorch.org/docs/stable/index.html
https://scikit-learn.org/stable/
https://pytorch-geometric.readthedocs.io/en/latest/

W. Hong, J. Yin, M. You et al. ISA Transactions 141 (2023) 84–92

m
a
t
s
W
m
c
c
O
n
e
i
s
a

t
m
n

5

o
t
t
c

Table 2
Manual feature engineering method.
Feature name Process method Value type

First logon time Map the time of the activity to the
range of [0, 1], where 0 stands for
00:00, 1 stands for 24:00

FloatLast logoff time
First device activity time
Last device activity time

Number of off-work
device activities

Count the number of the activities
related to device in off-work time

Integer
Table 3
Daily activity encoding rules.
Activity type Code for work time Code for off-work time

Logon a PC 1 13
Logoff a PC 2 14
Connect a USB drive 3 15
Disconnect a USB drive 4 16
Open a .doc file 5 17
Open a .exe file 6 18
Open a .jpg file 7 19
Open a .pdf file 8 20
Open a .text file 9 21
Open a .zip file 10 22
Send an email to internal address 11 23
Send an email to external address 12 24
Table 4
Performance comparison for different detection models.
Model name Acc (%) Pre (%) Rec (%) F1 (%)

ResHybnet(GCN+CNN) 92.62 91.52 92.87 92.19
SVM 90.56 87.68 92.91 90.22
CNN 90.44 87.13 93.40 90.15
GNB 89.69 86.67 92.16 89.33
RF 89.69 87.46 91.04 89.21
LR 89.34 87.36 90.30 88.81
GCN 70.77 62.14 96.34 75.53

component, we used a simple two-layer convolutional networks,
and for the GNN component we choose one of the most popular,
namely GCNs, and apply a simple two-layer GCN model for our
hybrid model. The comparison results on the constructed sample
dataset are presented in Table 4.

From Table 4, we could clearly see that the proposed detection
odel achieved the best result overall, leading performance in
ccuracy and precision, with the number of 92.62%, 91.52%. Al-
hough Recall score does not top the list, the more balanced f1
core is notably higher than all the other classification models.
hat worth noticing is, when the components adopted in our
odel working separately as a classification model, none of them
ould achieve a desirable result. In particular, the GCN model
omes in the last place in all the metrics except for Recall rate.
ne explanation is that in the GNN model, each node will collect
ode attribute information from its neighbors for updating in
ach training round, which inevitable causes the attribute of
ts own to be downgraded. For this dataset, although there is
ome information hidden in organizational graph, individual node
ttribute still plays a more important role in classification.
Therefore, from Table 4, we could fairly say, for this insider

hreat sample dataset, the proposed ResHybnet model could
ake the best use of the discovering power from both compo-
ents, and has a satisfying performance.

.1.2. Discussion on the power of residual link
As shown in the previous part, our model outperforms not

nly traditional classifiers but also the deep learning models
hat have been adopted as a component of the model. However,
his improved performance does not come by simply stacking

omponents together. We did an ablation experiment by taking

89
out the residual link in our model to show the power of it. We
set the ResHybnet model to work in hybrid mode, and tried GCNs
and GATs as GNN component separately. Each time, we switch
the residual link on/off to see the effect. The result is shown in
Table 5, and Fig. 3.

From Table 5, we could see no matter which GNN component
we choose, just stacking it with CNN component will not improve
the performance. Without the residual link, the hybrid model’s
performance would even downgrade to the worst situation. This
phenomenon is also well visualized by the huge gap of per-
formance under the setting of with or without residual link in
Fig. 3.

As mentioned in the contribution part, we think the power
of this residual link mainly comes from the fact it keeps the full
information of the node attribute, and adds it back to the output
of GNN component. In this way, our model could make use of the
information from graph and individual node attribute to achieve
better performance.

5.2. Ablation study of feature engineering

In our solution, the other contribution is the integrated fea-
ture engineering combining manual features from standalone
activities and automatic features from sequential activities. In
this section, we will show how these two groups of features
contribute to the final detection task, holding the best hybrid
model setting unchanged. Which is to say, we choose GCN for
GNN component and working in hybrid mode. Firstly, we will
show the comparison result for different feature combinations,
and secondly, we will investigate how the length of sequence
affects the final result.

5.2.1. Representative power of different feature groups
To better capture the nature of employee’s behavioral pattern

in all kinds of activities, we designed two groups of features for
engineering as shown in Section 4.2. For standalone activities, it is
relatively easy to select out some feature based on domain knowl-
edge and experience. However, we believe there also exist some
patterns behind how those activities are performed, which could
only be discovered by algorithm. With the proposed LSTM auto-
encoder, we extracted out feature automatically from activity

W. Hong, J. Yin, M. You et al. ISA Transactions 141 (2023) 84–92

t
o
b
m
p
d
i
e

5
i

d
r
d
s
e
a
b
l
t
m
n

s
e
w
t
c

s

Table 5
Performance comparison for with/without the residual link.
Model setting Residual link status Acc (%) Pre (%) Rec (%) F1 (%)

ResHybnet
(GCN+CNN)

With residual link 92.62 91.52 92.87 92.19
Without residual link 70.38 63.12 89.51 73.73

ResHybnet
(GAT+CNN)

With residual link 91.01 89.79 91.19 90.47
Without residual link 68.69 62.66 88.02 72.16
Fig. 3. F1 score comparison for with/without the residual link.
Table 6
Performance comparison for different feature groups.
Feature combination Acc (%) Pre (%) Rec (%) F1 (%)

Manual + Automatic Feature 92.62 91.52 92.87 92.19
Manual Feature 92.01 89.97 93.36 91.63
Automatic Feature 86.03 83.06 88.25 85.56

sequence. Table 6 shows how different feature groups contribute
in our solution.

From Table 6, it shows that in some situations, manual fea-
ure selection based on domain knowledge could already help to
btain satisfying result, while the hidden pattern in sequential
ehavior may not be so significant. However, adding those auto-
atic features to feature pool indeed improves final classification
erformance for this case. Specifically, regardless of recall rate
rop, adding automatic feature to manual feature group will
mprove f1 score from 91.63% to 92.19%, and the rest metrics also
njoyed improvement.

.2.2. Discussion on sequence length in automatic feature engineer-
ng

In the previous section, we showed that for this sample
ataset, adding sequential activity features to the feature rep-
esentation indeed improves the performance of insider threat
iscovering. At the beginning, we intuitively set the maximal
equence length as the input sequence length for the LSTM auto-
ncoder, and fill the empty positions at the end with ‘none’
ctivities. However, it is possible there is a balance that needs to
e reached between detection performance and input sequence
ength due to computation concerns. Moreover, it is possible
hat employee’s activities have a circling pattern, and taking the
aximal sequence length as the input for LSTM auto-encoder is
ot a must choice.
Therefore, in this experimental part, we tried to find some in-

ights by looking into how the sequence length choice in feature
ngineering part will affect the final detection performance. Here,
e hold model setting and manual features unchanged, compare
he performance of classification for different sequence length
hoices during the feature engineering process.
Fig. 4 shows the statistical characteristics for daily activity

equence. Based on this information, we set the different input
90
Fig. 4. Statistics and histogram for activity sequence lengths.

length for auto-encoder to train and extract feature, and for all
sequence lengths, feature output dimension is set to the same
number of 5.

In the comparison process, we investigated different sequence
length based on how it deviates from the mean. Specifically, start-
ing from the average length, we set the sequence length roughly
every additional standard deviation both above and below aver-
age, until out of boundary. That is to say, for a specified user-day
sample, if the actual sequence length exceeds our setting, the rest
would be cut off, and if the actual sequence length is smaller than
the setting, empty positions at the end will be filled with ‘none’
activity type. We present the comparison result in Table 7.

From Table 7 and Fig. 5, we could observe there exists a gen-
eral trend of increased overall performance along with increased
sequence length. However, there are two things worth noticing.
First, starting from 1 standard deviation above mean all the way
to maximal sequence length, F1 score actually fluctuates around a
point, which means for this dataset and LSTM auto-encoder, after
a certain point of sequence length, features extracted are becom-
ing limited. Second, for sequence length equals to and smaller
than the mean, the final performance actually suffered draw-
ing back compared with the performance using only manually
selected features.

W. Hong, J. Yin, M. You et al. ISA Transactions 141 (2023) 84–92

d
l
t
b
p
a
s
s
a

6

n
t
r
m
t
m
L
i
t
e

c
o
s
m
S

Fig. 5. F1 score trend for different activity sequence lengths.
Table 7
Performance comparison for different activity sequence length settings.
Input sequence length Acc (%) Pre (%) Rec (%) F1 (%)

Length = 5 (−1 Std) 90.91 89.08 91.87 90.44
Length = 16 (Mean) 90.28 88.37 91.27 89.79
Length = 27 (+1 Std) 92.59 91.38 92.95 92.16
Length = 38 (+2 Std) 91.92 90.33 92.69 91.49
Length = 49 (+3 Std) 92.50 90.97 93.28 92.10
Length = 60 (+4 Std) 92.40 91.12 92.84 91.96
Length = 74 (Max) 92.62 91.52 92.87 92.19

Thus, we think how to choose the proper length is largely
etermined by how long the maximal length is. If the activity
ength is relatively small like the situation in our sample dataset,
hen using the maximal sequence length would certainly give a
etter result. However, if the maximal sequence is too long for
rocessing, and the distribution of length is extremely imbal-
nced, then analyzing statistic of sequence length could be a good
tarting point for reaching a balanced choice. For example, in this
pecific situation, setting the length to be 1 standard deviation
bove mean could have already given a satisfying result.

. Conclusion

In this paper, we proposed a residual hybrid network (ResHyb-
et) and an integrated featuring engineering solution to handle
he challenges in insider threat detection research. Experimental
esults on the CERT 4.2 dataset show the proposed ResHybnet
odel could outperform other state-of-art classifiers in insider

hreat detection task, and the residual link design in our detection
odel has proved to be effective. At the same time, the proposed
STM auto-encoder approach for automatic feature engineering
ndeed indicates there is some hidden information in daily ac-
ivity sequence, and LSTM auto-encoder is an effective feature
xtractor.
However, there are still some limitations in our work that

ould be improved in the future. Firstly, we only utilized part
f the activities provided by CERT 4.2 dataset in our use case
tudy, and it could be more promising as well as challenging if
ore activity data are introduced in the feature engineering part.
econdly, although our approach shows potential to a certain
91
extent, in practice, insider threat detection is an extremely im-
balanced classification problem, and we need to face this obstacle
in real-world application. Thirdly, in real world application, an
online learning strategy would be more suitable for insider threat
scenario, and this could be our prior working direction in the
future. As for insider threat detection itself, we think there still
exist two major challenges, one of which is that currently not so
many rich datasets are available due to privacy issues, and the
other is how to better protect privacy for an average employee
when monitoring insiders within an organization. We expect
follow-up researchers to propose some solutions regarding those
two aspects.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was partially supported by the Research Program
of Chongqing University of Arts and Sciences, China (Grant No.
P2020RG08).

References

[1] Rasool RU, Ahmed K, Anwar Z, Wang H, Ashraf U, Rafique W. CyberPulse++:
A machine learning-based security framework for detecting link flooding
attacks in software defined networks. Int J Intell Syst 2021;36(8):3852–79.

[2] Agrawal N, Kumar R. Security perspective analysis of industrial cyber
physical systems (I-CPS): A decade-wide survey. ISA Trans 2022.

[3] Wang Y, Shen Y, Wang H, Cao J, Jiang X. Mtmr: Ensuring mapreduce
computation integrity with merkle tree-based verifications. IEEE Trans. Big
Data 2016;4(3):418–31.

[4] Sun N, Zhang J, Rimba P, Gao S, Zhang LY, Xiang Y. Data-driven
cybersecurity incident prediction: A survey. IEEE Commun Surv Tutor
2018;21(2):1744–72.

[5] Center CNIT. Common sense guide to mitigating insider threats. Seventh.
Carnegie Mellon University; 2022.

[6] Wang H, Sun L. Trust-involved access control in collaborative open social
networks. In: 2010 Fourth International conference on network and system
security. IEEE; 2010, p. 239–46.

[7] Wang H, Cao J, Zhang Y. A flexible payment scheme and its role-based
access control. IEEE Trans Knowl Data Eng 2005;17(3):425–36.

http://refhub.elsevier.com/S0019-0578(23)00297-5/sb1
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb1
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb1
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb1
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb1
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb2
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb2
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb2
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb3
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb3
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb3
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb3
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb3
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb4
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb4
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb4
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb4
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb4
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb5
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb5
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb5
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb6
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb6
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb6
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb6
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb6
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb7
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb7
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb7

W. Hong, J. Yin, M. You et al. ISA Transactions 141 (2023) 84–92
[8] You M, Yin J, Wang H, Cao J, Wang K, Miao Y, Bertino E. A knowledge graph
empowered online learning framework for access control decision-making.
World Wide Web 2022;1–22.

[9] Sun X, Li M, Wang H, Plank A. An efficient hash-based algorithm for min-
imal k-anonymity. In: Conferences in research and practice in information
technology, vol. 74. CRPIT, 2008, p. 101–7.

[10] Yin Y, Yu W, Bu X, Yu Q. Security data-driven iterative learning control for
unknown nonlinear systems with hybrid attacks and fading measurements.
ISA Trans 2022.

[11] Wang H, Cao J, Zhang Y, Wang H, Cao J, Zhang Y. Building access control
policy model for privacy preserving and testing policy conflicting problems.
Access Control Manag Cloud Environ 2020;225–47.

[12] Lin G, Wen S, Han Q-L, Zhang J, Xiang Y. Software vulnerability detection
using deep neural networks: a survey. Proc IEEE 2020;108(10):1825–48.

[13] Sun X, Wang H, Li J, Pei J. Publishing anonymous survey rating data. Data
Min Knowl Discov 2011;23(3):379–406.

[14] Chen X, Li C, Wang D, Wen S, Zhang J, Nepal S, Xiang Y, Ren K. An-
droid HIV: A study of repackaging malware for evading machine-learning
detection. IEEE Trans Inf Forensics Secur 2019;15:987–1001.

[15] Yin J, You M, Cao J, Wang H, Tang M, Ge Y-F. Data-driven hierarchical
neural network modeling for high-pressure feedwater heater group. In:
Australasian database conference. Springer; 2020, p. 225–33.

[16] Tang C, Yin J. A localization algorithm of weighted maximum like-
lihood estimation for wireless sensor network. J Inform Comput Sci
2011;8(16):4293–300.

[17] Hu X, Ma W, Chen C, Wen S, Zhang J, Xiang Y, Fei G. Event detection
in online social network: Methodologies, state-of-art, and evolution. Comp
Sci Rev 2022;46:100500.

[18] Yin J, Tang M, Cao J, You M, Wang H, Alazab M. Knowledge-driven
cybersecurity intelligence: software vulnerability co-exploitation behaviour
discovery. IEEE Trans Ind Inf 2022.

[19] Hong W, Yin J, You M, Wang H, Cao J, Li J, Liu M. Graph intelligence
enhanced bi-channel insider threat detection. In: Network and system
security: 16th international conference, NSS 2022, Denarau Island, Fiji,
December 9–12, 2022, Proceedings. Springer; 2022, p. 86–102.

[20] Wang Y, Sun Y, Liu Z, Sarma SE, Bronstein MM, Solomon JM. Dynamic
graph cnn for learning on point clouds. Acm Trans Graphics (Tog)
2019;38(5):1–12.

[21] Homoliak I, Toffalini F, Guarnizo J, Elovici Y, Ochoa M. Insight into insiders
and it: A survey of insider threat taxonomies, analysis, modeling, and
countermeasures. ACM Comput Surv 2019;52(2):1–40.

[22] Schonlau M, DuMouchel W, Ju W-H, Karr AF, Theus M, Vardi Y. Computer
intrusion: Detecting masquerades. Statist Sci 2001;58–74.

[23] Garg A, Rahalkar R, Upadhyaya S, Kwiat K. Profiling users in GUI based
systems for masquerade detection. In: Proceedings of the 2006 IEEE
Workshop on information assurance, vol. 2006. 2006, p. 48–54.
92
[24] Glasser J, Lindauer B. Bridging the gap: A pragmatic approach to generating
insider threat data. In: 2013 IEEE Security and privacy workshops. IEEE;
2013, p. 98–104.

[25] Gavai G, Sricharan K, Gunning D, Rolleston R, Hanley J, Singhal M.
Detecting insider threat from enterprise social and online activity data.
In: Proceedings of the 7th ACM CCS International workshop on managing
insider security threats. 2015, p. 13–20.

[26] Gamachchi A, Boztas S. Insider threat detection through attributed graph
clustering. In: 2017 IEEE Trustcom/BigDataSE/ICESS. IEEE; 2017, p. 112–9.

[27] Jiang J, Chen J, Gu T, Choo K-KR, Liu C, Yu M, Huang W, Mohapatra P.
Anomaly detection with graph convolutional networks for insider threat
and fraud detection. In: MILCOM 2019-2019 IEEE Military communications
conference. MILCOM, IEEE; 2019, p. 109–14.

[28] Zhang S, Liu Z, Chen Y, Jin Y, Bai G. Selective kernel convolution deep resid-
ual network based on channel-spatial attention mechanism and feature
fusion for mechanical fault diagnosis. ISA Trans 2022.

[29] Wang H, Wang Y, Taleb T, Jiang X. Special issue on security and privacy
in network computing. World Wide Web 2020;23:951–7.

[30] Liu A, Martin C, Hetherington T, Matzner S. A comparison of system call
feature representations for insider threat detection. In: Proceedings from
the Sixth Annual IEEE SMC Information assurance workshop. IEEE; 2005,
p. 340–7.

[31] Lin L, Zhong S, Jia C, Chen K. Insider threat detection based on deep belief
network feature representation. In: 2017 International conference on green
informatics. ICGI, IEEE; 2017, p. 54–9.

[32] Chattopadhyay P, Wang L, Tan Y-P. Scenario-based insider threat detection
from cyber activities. IEEE Trans Comput Soc Syst 2018;5(3):660–75.

[33] Singh M, Mehtre B, Sangeetha S. Insider threat detection based on user
behaviour analysis. In: International conference on machine learning,
image processing, network security and data sciences. Springer; 2020, p.
559–74.

[34] Yuan F, Cao Y, Shang Y, Liu Y, Tan J, Fang B. Insider threat detection
with deep neural network. In: International conference on computational
science. Springer; 2018, p. 43–54.

[35] Paul S, Mishra S. LAC: LSTM autoencoder with community for insider threat
detection. In: 2020 the 4th International conference on big data research
(ICBDR’20). 2020, p. 71–7.

[36] Liu F, Wen Y, Zhang D, Jiang X, Xing X, Meng D. Log2vec: A heterogeneous
graph embedding based approach for detecting cyber threats within en-
terprise. In: Proceedings of the 2019 ACM SIGSAC Conference on computer
and communications security. 2019, p. 1777–94.

[37] Sun X, Wang H, Li J. Satisfying privacy requirements: One step before
anonymization. In: Pacific-Asia conference on knowledge discovery and
data mining. Springer Berlin Heidelberg; 2010, p. 181–8.

[38] Sun X, Wang H, Li J, Zhang Y. Satisfying privacy requirements before data
anonymization. Comput J 2012;55(4):422–37.

http://refhub.elsevier.com/S0019-0578(23)00297-5/sb8
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb8
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb8
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb8
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb8
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb9
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb9
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb9
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb9
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb9
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb10
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb10
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb10
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb10
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb10
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb11
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb11
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb11
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb11
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb11
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb12
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb12
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb12
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb13
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb13
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb13
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb14
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb14
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb14
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb14
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb14
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb15
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb15
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb15
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb15
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb15
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb16
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb16
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb16
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb16
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb16
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb17
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb17
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb17
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb17
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb17
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb18
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb18
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb18
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb18
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb18
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb19
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb19
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb19
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb19
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb19
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb19
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb19
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb20
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb20
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb20
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb20
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb20
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb21
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb21
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb21
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb21
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb21
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb22
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb22
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb22
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb23
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb23
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb23
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb23
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb23
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb24
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb24
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb24
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb24
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb24
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb25
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb25
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb25
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb25
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb25
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb25
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb25
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb26
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb26
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb26
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb27
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb27
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb27
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb27
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb27
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb27
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb27
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb28
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb28
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb28
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb28
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb28
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb29
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb29
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb29
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb30
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb30
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb30
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb30
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb30
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb30
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb30
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb31
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb31
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb31
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb31
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb31
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb32
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb32
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb32
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb33
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb33
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb33
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb33
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb33
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb33
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb33
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb34
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb34
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb34
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb34
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb34
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb35
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb35
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb35
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb35
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb35
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb36
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb36
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb36
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb36
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb36
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb36
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb36
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb37
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb37
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb37
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb37
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb37
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb38
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb38
http://refhub.elsevier.com/S0019-0578(23)00297-5/sb38

	A graph empowered insider threat detection framework based on daily activities
	Introduction
	Related works
	Insider threat Detection
	Insider threat feature engineering

	Methodology
	Framework overview
	Integrated feature engineering
	Manual engineering
	Automatic engineering
	Feature integration

	Residual hybrid network

	A Use Case
	Sample Organizational Graph
	Daily Activity Feature Engineering
	Manual feature engineering based on domain knowledge
	Automatic feature engineering based on LSTM auto-encoder

	Integrated insider detection with ResHybnet

	Experiments
	Performance study of the proposed model
	Performance comparison with other classifiers
	Discussion on the power of residual link

	Ablation study of feature engineering
	Representative power of different feature groups
	Discussion on sequence length in automatic feature engineering

	Conclusion
	Declaration of competing interest
	Acknowledgments
	References

