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Abstract 

Integrating Internet technologies with traditional healthcare systems has enabled the emergence of cloud healthcare 
systems. These systems aim to optimize the balance between online diagnosis and offline treatment to effectively 
reduce patients’ waiting times and improve the utilization of idle medical resources. In this paper, a distributed genetic 
algorithm (DGA) is proposed as a means to optimize the balance of patient assignment (PA) in cloud healthcare 
systems. The proposed DGA utilizes individuals as solutions for the PA optimization problem and generates better 
solutions through the execution of crossover, mutation, and selection operators. Besides, the distributed framework 
in the DGA is proposed to improve its population diversity and scalability. Experimental results demonstrate the effec‑
tiveness of the proposed DGA in optimizing the PA problem within the cloud healthcare systems.
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Introduction
The rapid advancement of Internet and information tech-
nologies [1–7] has led to a growing demand for cloud 
healthcare systems [8–13] that can effectively provide 
all medical services [14–16]. These systems are based on 
integrating online diagnosis [17–21] and offline treat-
ment to reduce patients’ waiting time and improve the 
utilization of idle medical resources. However, the devel-
opment of such systems [22–25] is contingent upon the 
successful resolution of the patient assignment (PA) 
problem. The PA problem is a crucial aspect of cloud 
healthcare systems, as it directly impacts the efficiency 
and effectiveness of the system. Therefore, it is para-
mount that the PA problem is carefully considered and 
appropriately addressed in the design and implementa-
tion of cloud healthcare systems.

The PA problem in cloud healthcare systems has been 
the subject of ongoing research, with various strategies 
proposed to address it. One such approach is the use of 

discrete event simulation to develop a queuing model 
[26]. This strategy aims to reduce patient waiting time 
and increase the system’s overall throughput. Another 
approach uses Petri nets to describe the relationship 
between medical processes and resources [9]. A hybrid 
ant agent algorithm has also been proposed [27], which 
aims to identify the optimal path for patients, thus reduc-
ing both waiting and cycle time. Previous studies have 
emphasized the importance of reducing patients’ wait-
ing time. However, it should be noted that a continuous 
influx of patients characterizes cloud healthcare systems. 
The balance of assignments among doctors is also crucial 
in improving the system’s efficiency. Therefore, in this 
paper, we optimize the balance of assignments among 
doctors in the cloud healthcare systems.

The optimization of the PA problem can be achieved 
through the utilization of genetic algorithms (GAs) 
[28, 29]. GAs are a type of evolutionary algorithm (EA) 
[30–33] that have been widely used in the field of com-
putational mathematics to solve optimization prob-
lems. Evolutionary biology concepts such as heredity, 
mutation, natural selection, and hybridization are 
used to construct EAs [34–36]. GAs are beneficial for 
finding reasonable solutions quickly, even in complex 
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spatial solutions, by using parallel studies, selection 
operations, alteration operations, and mutation func-
tions [37–39]. Previous studies have demonstrated the 
advantages of using EAs, including GAs, in various sce-
narios, such as reliability and performance. They have 
been applied to various fields such as computer science, 
engineering, and operations research and have con-
sistently shown to be effective in solving optimization 
problems [40–42]. Previously, GA has been utilized in 
the optimization of the PA problem [43] and its advan-
tages in terms of convergence speed and scalability 
have been verified.

This paper proposes a distributed genetic algorithm 
(DGA) to optimize the PA problem. Over the previous 
approaches for the PA problem, DGA shows its advan-
tages of global optimization performance and diversity 
maintenance (not easily trapped by local optima), robust-
ness and scalability (the capability of handling complex 
and noisy problem spaces), flexibility (easily fits different 
problem formulation), and increased parallelism (enables 
faster convergence and reduces running time). Each indi-
vidual in the proposed DGA represents a solution to the 
PA optimization problem. Several individuals in the pro-
posed DGA form multiple sub-populations. During the 
evolution of each sub-population, information included 
in all the individuals is exchanged by the crossover opera-
tor. Individuals are randomly adjusted in the mutation 
operator. After that, the selection operator evaluates the 
competitiveness of different solutions. The more com-
petitive solutions are kept in the population, and the less 
competitive individuals are gradually eliminated. Then, 
with a predefined interval, the elite individuals of all the 
sub-populations are exchanged to accelerate the conver-
gence. Finally, the optimal solution to the PA problem is 
outputted.

More specifically, the contributions of this paper are 
listed as follows. 

1. We propose the DGA to optimize the PA balance in 
cloud healthcare systems.

2. We propose a distributed framework in the DGA to 
improve population diversity and scalability.

3. We utilize the operators in DGA to improve the 
competitiveness of the solutions to the PA problem.

The organization of this paper is as follows. In Sect. 2, a 
formal problem formulation of the PA problem is illus-
trated. Then, we review the related work of the PA prob-
lem and the application of GA. In Sect. 4, we introduce 
the DGA. Afterward, the proposed DGA is introduced 
in detail. In Sects. 6 and 7, the experimental study is 

executed, and the experimental results are analyzed. 
Finally, we conclude this paper.

Problem formulation
In Fig.  1, an example of patient assessment and assign-
ment modules is given. In the given example, the con-
dition of four patients is assessed at the beginning. 
Accordingly, the estimated diagnosis time and available 
doctor lists are produced. Our optimization objective in 
the patient assignment module is to minimize the diag-
nosis time difference among different doctors. Finally, the 
patients are assigned to the corresponding doctors for 
further diagnosis.

Specifically, in PA, the i-th patient is represented by 
Pi ; Dj represents the j-th doctor. The estimated diagnosis 
time of i-th patient is indicated by T̃i.

The total diagnosis time of j-th doctor (represented by 
Tj ) is calculated as follows:

where nP is the number of patients; S indicates a status 
matrix. Sji equals to one when the i-th patient is allocated 
to the j-th doctor; Sji equals to zero when the i-th patient 
is not allocated to the j-th doctor.

Thus, the mean value of diagnosis time is calculated as:

(1)Tj =

nP∑

i=1

T̃i × S
j
i

Fig. 1 Illustration of the patient assignment in the cloud healthcare 
systems
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where nD is the number of doctors.
The time factor (TF) is then obtained by calculating the 

standard deviation of diagnosis time of all the doctors. 
Formally,

As mentioned above, the optimization objective is to bal-
ance the doctors’ diagnosis time. Therefore, the optimiza-
tion objective is to minimize the value of TF.

Related work
In [44], a positive model of the public hospital waiting 
lists was established. According to the studies, doc-
tors did not necessarily treat the mildest cases on the 
waiting list to have the shortest overall hospital stay. In 
[45], Takakuwa and Wijewickrama created a discrete-
time simulation model and integrated the simula-
tion model into the optimization algorithm to reduce 
patient waiting and physician idle time without adding 
any additional resources. In [46], the dynamic patient 
scheduling with different priorities in a public health-
care setting was tackled. The proposed method dynam-
ically assigns available capacity to incoming demand to 
achieve cost-effective wait-time targets. This study col-
lected real-time data from Nagoya University Hospital’s 
outpatient clinic to create a simulation. In [47], the Lean 
Six Sigma (LSS) method was used to solve the problem 
of the long waiting time of patients. The entire proce-
dure was covered, from patient registration to prescrip-
tion distribution. A causal map was created for patients 
with longer waiting times, and data collected during 
the process were used to verify the reasons. In [26], a 
queuing model was developed using discrete event 
simulation, which could reduce the patient waiting 
time and improve the system’s overall throughput. To 
resolve ambiguities in the present system, required data 
was collected, and alternative scenarios were generated 
and examined. Furthermore, the best solution concern-
ing patient satisfaction was proposed. In [48], a system 
was designed to reduce the doctors’ idle time instead 
of the patients’ waiting time. It provides an alterna-
tive perspective on this problem. This study aimed to 
improve resource efficiency and modify how doctors 
schedule visits. The results showed that patients’ wait-
ing time might be lowered without affecting doctors’ 
work efficiency. In [9], a Petri net was presented to 
describe the relationship between the medical process 

(2)T =

nD∑

j=1

Tj

(3)TF =

√∑nD
j=1(Tj − T )2

nD

and resources in this integrated healthcare system. A 
PA scheduling problem was investigated and studied to 
allocate this system’s bottleneck medical resource effi-
ciently. A mathematical model was established, and a 
greedy-based heuristic algorithm was designed. In [49], 
Chawasemerwa et  al. developed a constraint satisfac-
tion and penalty minimization scheduling model that 
satisfied “hard constraints” and minimized the cost of 
“soft constraints” violations. Furthermore, since multi-
ple schedules may be obtained using the same param-
eters defined by users, an optimization protocol can 
be added to the system to reduce the search space and 
obtain the optimal schedule while satisfying the con-
straints. In [27], the real-time walk-in patient sched-
uling optimization problem was addressed. An overall 
patient scheduling model was integrated. The status 
and information of all outpatient departments were 
combined. The hybrid and agent algorithm was devel-
oped to identify the best path for the patient while also 
lowering cycle time (from registration to exit). In [50], 
similar issues have been further refined. Conforti et al. 
defined that the scheduling objective of radiotherapy 
patients in the oncology department was to ensure the 
best treatment in the shortest possible time. As a result, 
the waiting time should be minimized, and device uti-
lization should be maximized. Various criteria were 
added to the optimization model.

The limitations of previous PA approaches are mani-
fold. Firstly, previous PA approaches emphasized the 
importance of reducing patients’ waiting time, ignor-
ing the balance of assignments among doctors, which is 
crucial for cloud healthcare systems’ efficiency and scal-
ability. Secondly, previous optimization approaches did 
not provide sufficient global optimization performance, 
easily trapped by the local optima. Thirdly, no distributed 
computation framework was proposed. Therefore, the 
convergence speed is limited and the running time can-
not be reduced.

The application of GAs also has remarkable achieve-
ments in the medical and healthcare fields. Yadav et  al. 
[51] focused on optimizing blood bank inventory con-
trol, a healthcare system, on enhancing its determinism. 
The problems of inbound and outbound logistics and 
inventory inflation were solved by a multi-objective GA 
and reliability application using minimum cost optimiza-
tion of other parameters. Ahmed et al. [52] improved the 
modeling of building degradation to alleviate budgetary 
constraints on the maintenance of medical resources and 
to reduce the incidence of accidents. Developing a fuzzy 
Markov model based on a hybrid GA with a nonhomo-
geneous transition probability matrix based on fuzzy 
membership functions representing the hospital system’s 
condition, age, and relative deterioration rate is utilized 
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to address the inherited uncertainties. Mutingi and 
Mbohwa [53] tackled the home healthcare worker sched-
uling problem. Considering the accelerating demand for 
home care requires careful task allocation and scheduling 
of limited healthcare resources, Mutingi and Mbohwa 
proposed a group GA for scheduling the dispatch of 
healthcare while considering the minimum economic 
cost of time.

Genetic algorithm
GAs are potent meta-heuristics that improve and refine 
Darwin’s theory of natural evolution. Based on ini-
tialization methods, GAs usually start by constructing 
initial populations in a randomized and uniform man-
ner. Each population is evaluated for its fit to the target 
problem using a fitness function. New populations are 
formed through a series of processes, such as crossover 
and mutation, and new individuals replace the origi-
nal ones to form a new population. The great advantage 
of GAs is that they can process problems of different 
dimensions in parallel, considering several factors and 
characteristics simultaneously. It is possible to optimize 
the computational speed by managing the task alloca-
tion between off-the-shelf. In terms of application areas 
and problem areas, we focus on the typical characteris-
tics of applications and the classification of GAs, respec-
tively, and optimize solutions from different dimensions 
through examples. The overall procedure of GA is given 
as follows.

First, the program creates a set number of individu-
als representing the solutions to the optimized prob-
lem at random. When the operator interferes with this 
randomly produced process to increase the quality of 
the first population, the quality of the initial population 
improves. After that, each generation’s individuals are 
given a value, and the fitness value is calculated using 
the fitness function. Dominant populations obtain a 
higher degree of adaptation compared to disadvantaged 
populations.

The next step is to generate the next generation of indi-
viduals to form the population. This process is done by 
selection and replication, which involves crossover and 
mutation in algorithmic studies. Selecting the winners 
from the population and eliminating the inferior ones is 
called selection. The goal of selection is to pass on their 
directly optimized genes to the next generation or gener-
ate new individuals through crossover pairing and gen-
eration, which are then passed on to the next generation. 
Selectivity is based on assessing the individual’s physical 
condition in the population. Selection is based on the 
fitness of new individuals. However, it does not mean at 
the same time that it is entirely oriented toward fitness 
because simply selecting individuals with high fitness will 

lead to a rapid local conversion of the algorithm to the 
optimal solution rather than to the optimal global solu-
tion, which we call the initial stage. As a compromise, 
GAs follow the principle that the higher the fitness, the 
higher the chance of being selected, and the lower the fit-
ness, the lower the chance of being selected. The initial 
data can be selected to form a relatively optimal group.

After that, the selected individuals enter the mating 
process. The core of biological evolution in nature is the 
recombination of biogenetics (coupled with mutation). 
After this series of processes (selection, crossover, muta-
tion), a new generation of individuals differs from the 
first generation. Each generation moves toward improved 
overall fitness Because individuals with greater adapt-
ability are more likely to survive and produce the next 
generation. Conversely, poorly adapted individuals are 
gradually eliminated.

Distributed genetic algorithm for patient 
assignment
This section illustrates the proposed DGA for optimizing 
the PA problem. Firstly, we introduce the representation 
manner and initialization strategy of DGA. Secondly, the 
distributed framework of DGA is illustrated in detail. 
Afterward, the crossover and mutation operators of DGA 
are described. Finally, the entire procedure of DGA is 
described.

Representation and initialization
In GA, each individual represents a solution for PA. In 
each individual, each gene indicates the assignment of 
each patient. An example of this representation manner 
is given in Fig. 2. In this example, three doctors allocated 
to for each patient (represented by A, B,..., F). Different 
digits with different colors represent different doctors. 
In total, six doctors are included in this example. There-
fore, one doctor is chosen from the candidature lists for 

Fig. 2 Illustration of the representation manner in DGA
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each patient. In this example, two individuals are given 
(represented by I1 and I2 ). For the first patient (patient A), 
doctor 1 is allocated to in individual I1 , while doctor 2 is 
allocated to individual I2 . For each complete individual, 
it can be directly evaluated according to the definition of 
the PA problem.

In the initial population of the proposed DGA, all the 
individuals are generated randomly according to the 
above manner. More specifically, the doctor is randomly 
chosen from the corresponding candidature list for each 
patient listed in each individual.

Distributed framework
As we introduced, GA with the distributed framework 
has shown its advantages in terms of population diversity, 
convergence speed, and optimization speed. The initial 
population is divided into several sub-populations in the 
distributed framework, each completing the evolutionary 
process independently. Based on the predefined topol-
ogy, sub-populations share their elite individuals (e.g., the 
best individuals) with the predefined migration interval 
(MI). Once one sub-population receives the elite individ-
ual from the neighbors in the topology, the current sub-
population will randomly select an existing individual 
(not the best one) to replace.

The proposed DGA uses a distributed framework with 
a ring communication topology. An example of the dis-
tributed framework is given in Fig.  3. As shown in this 
figure, each big hexagon represents a sub-population. 
The small triangle and five hexagons represent the best 
individual and the other five individuals in each big hexa-
gon. During the migration operator, the best individuals 
in sub-populations are sent to the corresponding neigh-
bor sub-populations according to the ring topology with 
the predefined migration topology. Afterward, one hexa-
gon in the sub-population is replaced by the triangle, 
representing one random individual replaced by the best 
individual.

In DGA, the distributed framework is effective in main-
taining population diversity. Thus, the exploration search 
ability of DGA is guaranteed. Besides, by migrating elite 
individuals among the sub-populations, the population 

quality of each sub-population is improved, which helps 
improve the exploitation search ability of DGA. With 
the help of the distributed framework and migration 
operator, DGA is likely to achieve the trade-off between 
exploration and exploitation during the evolution. Fur-
thermore, the distributed framework helps improve the 
execution speed of DGA.

Crossover operator
In genetics, the crossover operator is an algorithmic 
procedure that encapsulates the phenomena of chro-
mosomal crossover exchange and biological hybridiza-
tion. For example, the act of recombining and assigning 
genes on the chromosomes of two parents to form the 
next generation of humans may combine the dominant 
genomes of the two parents to produce new individuals 
more adaptable and closer to the ideal solution via cross-
ing over.

Similarly, the core of GAs is the internal operation of 
genetic manipulation. By crossover, we mean the func-
tion of replacement and recombination of parts of the 
structure of biparental individuals, resulting in new indi-
viduals. The searchability of GAs is greatly improved by 
crossover. First, general GAs have a mating probability 
(crossover probability). This mating probability reflects 
the probability of two selected individuals mating. Each 
pair of parent individuals produces one or multiple new 
individuals as the offspring, while the unmated individu-
als remain unchanged. In the produced child individual, 
part of the information comes from the father individual, 
while the left comes from the mother individual.

An example of the crossover operator in GA is given 
in Fig. 4. In the example, two individuals (represented by 
I1 and I2 ). The information included these two individu-
als is then exchanged. In this example, each individual 
includes six genes representing six patients. The values 
on six genes indicate the assignment of these six patients. 
For each gene, with the same possibility, one value is ran-
domly chosen from two individuals during the crosso-
ver operator. For instance, on the first gene (gene A), the 
value in individual I1 is chosen. Thus, in the child indi-
vidual (represented by C), the value on the first bit is 1. 

Fig. 3 Illustration of distributed framework in DGA Fig. 4 Illustration of crossover operator in DGA
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Similarly, on the second gene (gene B), the value in C 
comes from individual I2.

Mutation operator
There are always individual differences between the 
parents and offspring of an organism, i.e., differences in 
the genetic material of different individuals in the same 
gene pool are called mutations.

The mutation operator’s primary goal is to change the 
gene values at a specific location in individual strings in 
the population. The probability of the mutation opera-
tor is represented by a constant in the general GA for 
fixed mutations (the probability of mutation). Based 
on this probability, a random mutation on the chromo-
some of a new individual is usually a change of one byte 
of the chromosome. There are two reasons for intro-
ducing mutations into GAs: First, give the GA a local 

random search function. The variation operator’s local 
random search capability can speed up the convergence 
in the optimal solution when the GA approximates the 
optimal solution neighborhood by the crossover opera-
tor. In this case, the variance probability should take a 
small value. Otherwise, the variation will destroy the 
building blocks close to the optimal solution. The sec-
ond is to enable the GA to maintain population diver-
sity and prevent premature convergence. In this case, 
the convergence probability should take a more mean-
ingful value.

In Fig.  5, an example of the mutation operator 
is given. With the mutation rate MR, each gene of 
the child individual (represented by C) is randomly 
adjusted. The third gene (gene C) is chosen randomly in 
this example. Therefore, its value is randomly adjusted, 
and its value is changed from 5 to 4.
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Overall procedure
The pseudo-code of DGA is given in Algorithm  1. As 
shown in the pseudo-code, a master–slave model is uti-
lized to implement the DGA algorithm. At the master 
node, the generation index g is set as zero. Then the entire 
population is divided into NSP sub-populations and sent 
to the corresponding NSP slave nodes. With the prede-
fined migration interval MI, the master node receives the 
elite individuals from all the slave nodes. Then it sends 
these elite individuals to the corresponding slave nodes 
according to the ring topology. The migration process is 
executed until the terminal condition is satisfied. Finally, 
the best solution to the PA problem is outputted.

At the slave node, each sub-population evolves inde-
pendently. During the evolution, in each generation, for 
each pair of parent individuals, the crossover operator is 
executed to exchange the allocation information in par-
ent individuals and generate the child individual. After-
ward, the mutation operator is carried out on the child 
individual to improve the population diversity. After the 
mutation operator, the mutant child individual is evalu-
ated and compared with the parent individuals by the 

selection operator. If the mutant child individual is better 
than any parent individual, one of the parent individuals 
will be replaced. Otherwise, the mutant child individual 
will not be kept in the population. Then, the migration 
operator is carried out with the predefined mutation 
interval MI. Each slave node sends the best individual to 
the master node and receives one elite individual from 
the master node. Afterward, one randomly chosen indi-
vidual in the sub-population that is not the best individ-
ual will be replaced by the received migrated individual. 
Finally, the best individual is returned to the master node.

Experimental setup
This section illustrates the test instances, parameter set-
tings, and algorithm implementation in the following 
experiments.

In the subsequent experimental studies, 16 test 
instances are utilized to investigate the performance of 
the proposed DGA. Table  1 outlines the properties of 
these test instances, including the number of patients nP, 
the number of doctors nD, and the range of estimated 
diagnosis time T.

In the proposed DGA, the sub-population size SPS is 
set as 20; the number of sub-population NSP is set as 4; 
the mutation rate MR is set as 0.1; the migration interval 
MI is set as 5. For all the algorithms, the maximum fit-
ness evaluation number is set as nP × nD.

The distributed framework of DGA is implemented by 
the Message Passing Interface (MPI). Each sub-popula-
tion is assigned to an independent computation core in 
the CPU. The communication between sub-populations 
is implemented by the message passing between CPU 
cores. DGA and all the compared algorithms in this 
paper are implemented in C++.

Experimental result

Comparison with existing approaches
To verify the performance of the proposed DGA, it is 
compared with three existing algorithms, i.e., Random, 
Greedy, differential evolution (DE) [54], and GA [43]. 
These algorithms are described as follows: 

1. Random: This algorithm uses a random manner to 
solve the PA problem. Random solutions are continu-
ously generated and compared with the best solution. 
The best solution is replaced once a more competi-
tive solution is generated.

2. Greedy: This algorithm uses a greedy manner to 
solve the PA problem. Each patient is greedily allo-
cated to a doctor.

3. DE [54]: This DE algorithm utilizes the “DE/best/1” 
mutation schema to generate the mutant individu-

Fig. 5 Illustration of mutation operator in DGA

Table 1 Properties of 16 test instances

Test instances nP nD T

T1 100 10 [5, 20]

T2 100 20 [5, 20]

T3 100 30 [5, 20]

T4 100 40 [5, 20]

T5 200 10 [5, 20]

T6 200 20 [5, 20]

T7 200 30 [5, 20]

T8 200 40 [5, 20]

T9 300 10 [5, 20]

T10 300 20 [5, 20]

T11 300 30 [5, 20]

T12 300 40 [5, 20]

T13 400 10 [5, 20]

T14 400 20 [5, 20]

T15 400 30 [5, 20]

T16 400 40 [5, 20]
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als, which can help accelerate the exploitation search 
ability during the optimization of the PA problem.

4. GA [43]: In this algorithm, a GA is specifically 
designed for the PA problem, including the repre-
sentation manner, crossover operator, and mutation 
operator.

Table 2 lists the mean (Avg) and standard deviation (Std) 
of TF values (defined in Sect.  2) over 25 independent 
runs. Therefore, a lower TF value indicates that the cor-
responding algorithm can provide better optimization 
performance with regard to the balance of doctors’ diag-
nosis time. The best results (i.e., the lowest Avg values) in 
Table 2 are highlighted in boldface. The Greedy approach 
only lists its results since it can generate determinis-
tic results. The proposed DGA can achieve significant 
advantages on all 16 test instances. The benefits of DGA 
in heuristic strategies are confirmed compared to Ran-
dom. With the help of the crossover and mutation opera-
tors, information allocation among different individuals 
is effectively exchanged, and more competitive individu-
als are generated and inserted into the population. Com-
pared with Greedy, the stronger feasibility of DGA in 
population diversity is verified. The greedy technique is 
more likely to get trapped by the local optima during the 
PA problem optimization. Unlike the Greedy approach, 
the population diversity of DGA can effectively guarantee 

the exploration search ability of DGA. The benefit of 
DGA in discrete-domain optimization is demonstrated 
when compared to DE. The mutation strategy of DE, 
such as “DE/best/1”, is efficient in the continuous-domain 
calculation. For this discrete PA problem, its mutation 
strategies are challenging to transfer information among 
individuals. Compared with GA, the advantage of the 
distributed framework in DGA is verified. Moreover, 
with the architecture of the distribution framework, the 
population diversity in DGA is maintained. Furthermore, 
the migration of elite individuals among sub-populations 
accelerates the optimization process. As a result, the 
advantage of convergence speed is based on the ring 
topology.

Besides, the Wilcoxon rank-sum test with a 0.05 level 
is utilized to investigate the performance of these algo-
rithms in a statistical sense. In Table  2, the symbol † 
shows that the corresponding result is significantly better 
than the other compared results. The advantage of DGA 
obtained in all the test instances is significant.

According to the problem formulation in Sect.  2, 
the time complexity of calculating a given solution to 
the PA problem is O(nP) . Therefore, the time com-
plexity of the proposed DGA is O(nP2

× nD) . Simi-
larly, the time complexity of Random, DE, and GA is 
O(nP2

× nD) , the same as DGA. Different from these 
algorithms, the time complexity of the Greedy method 
is O(nP × nD) . Although the Greedy method is of lower 

Table 2 TF values of DGA and compared algorithms on all text instances

† indicates that the difference among the compared results is significant based on the Wilcoxon rank-sum test with a 5% level

Test instances Random Greedy DE GA DGA

Avg Std Result Avg Std Avg Std Avg Std

T1 1.28E+01 1.81E+00 2.40E+01 1.11E+01 1.90E+00 6.90E+00 9.27E−01 5.68E+00† 8.68E−01

T2 1.49E+01 1.01E+00 1.22E+01 1.24E+01 8.55E−01 7.45E+00 6.43E−01 6.28E+00† 6.86E−01

T3 1.40E+01 8.01E−01 9.66E+00 1.13E+01 8.18E−01 7.30E+00 4.94E−01 5.72E+00† 6.85E−01

T4 1.37E+01 5.67E−01 8.98E+00 1.14E+01 6.25E−01 8.05E+00 2.76E−01 6.41E+00† 3.58E−01

T5 1.91E+01 1.72E+00 4.83E+01 1.60E+01 1.80E+00 9.42E+00 1.26E+00 7.85E+00† 9.04E−01

T6 2.03E+01 1.47E+00 2.54E+01 1.64E+01 1.16E+00 1.00E+01 1.05E+00 7.79E+00† 8.33E−01

T7 1.91E+01 1.01E+00 1.73E+01 1.50E+01 7.02E−01 9.50E+00 6.93E−01 7.58E+00† 5.52E−01

T8 1.86E+01 7.84E−01 1.22E+01 1.51E+01 6.48E−01 9.69E+00 4.59E−01 7.88E+00† 6.03E−01

T9 2.08E+01 3.02E+00 8.06E+01 1.63E+01 2.31E+00 1.05E+01 1.23E+00 8.16E+00† 1.27E+00

T10 2.61E+01 1.91E+00 3.58E+01 1.96E+01 1.50E+00 1.22E+01 8.68E−01 9.21E+00† 8.82E−01

T11 2.43E+01 1.04E+00 2.54E+01 1.94E+01 1.30E+00 1.22E+01 8.33E−01 9.97E+00† 8.09E−01

T12 2.07E+01 9.75E−01 1.33E+01 1.72E+01 8.47E−01 1.11E+01 5.24E−01 9.19E+00† 4.46E−01

T13 2.24E+01 3.51E+00 9.62E+01 1.91E+01 3.23E+00 1.12E+01 1.64E+00 8.51E+00† 1.18E+00

T14 2.93E+01 2.25E+00 3.89E+01 2.24E+01 2.05E+00 1.37E+01 9.76E−01 1.06E+01† 9.58E−01

T15 2.78E+01 1.28E+00 2.61E+01 2.15E+01 1.44E+00 1.34E+01 9.04E−01 1.09E+01† 6.53E−01

T16 2.57E+01 1.18E+00 1.91E+01 2.03E+01 1.03E+00 1.32E+01 9.04E−01 1.06E+01† 6.58E−01
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time complexity, due to the limitation of search diver-
sity, its optimization performance is significantly worse 
than the proposed DGA. Regarding the space com-
plexity, the space complexity of Random and Greedy 
is O(nP × nD) , while the space complexity of DE, GA, 
and the proposed DGA is O(nP × (nD + SPS)).

In Fig. 6, the convergence curves of Random, DE, GA, 
and DGA on six typical test instances are plotted. A line 
with unique color indicates each approach. The num-
ber of fitness evaluations is indicated on the horizontal 
axis, and the value of TF is represented on the vertical 
axis for each point on the line. The Greedy approach 
is not given in the figure since no eligible solution is 
generated during the greedy construction. Compared 
with the Random approach, the advantage of DGA in 
search efficiency is verified. Furthermore, with the help 
of the population crossover and mutation operators, 
DGA is more likely to achieve the trade-off between 
exploration and exploitation. Compared with DE, the 
advantage of DGA in discrete-domain optimization is 
verified. In addition, compared with GA, the advantage 
of DGA in information exchange efficiency and popula-
tion diversity is shown. In summary, DGA achieves the 
best convergence performance in all six test instances.

Impact of proposed components
In this section, we will experiment to verify the impact of 
the proposed components in the DGA. Besides the pro-
posed DGA, we have implemented three variants. 

1. DGA-no-crossover: This variant is implemented by 
removing the crossover operator from DGA.

2. DGA-no-mutation: In this variant, the mutation 
operator is removed. Accordingly, the crossover 
operator and distributed framework are kept.

3. DGA-no-distributed: In this variant, the proposed 
distributed framework is proposed. Therefore, this 
variant is implemented serially.

Table  3 lists the average (Avg) and standard deviation 
(Std) values of TF (defined in Sect. 2) obtained by three 
variants and DGA. The best results (i.e., the lowest Avg 
values) in all the test instances are labeled in boldface. 
Overall, the complete-version DGA can outperform the 
compared variants on all 16 test instances. Compared 
with DGA-no-crossover, DGA shows its advantage in 
terms of the crossover operator, effectively exchanging 
allocation between parent individuals. Compared with 
DGA-no-mutation, DGA shows its advantage in terms 
of the mutation operator, which can effectively improve 
population diversity. Finally, compared with the variant 

Fig. 6 Convergence curves of DGA and compared algorithms on six typical test instances
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DGA-no-distributed, DGA shows the advantage of the 
distributed framework, which can effectively balance the 
exploration and exploitation searching abilities.

Besides, the Wilcoxon rank-sum (significance level 
0.05) is employed to verify DGA’s advantage in a statisti-
cal sense. As shown in the table, the symbol † shows that 
the labeled results are significantly better than the com-
pared results. In all 16 test instances, the advantages of 
the complete DGA are significant.

Conclusion
In this paper, a DGA has been proposed to optimize the bal-
ance of PA schedules. Each individual in the proposed DGA 
represents a solution for the PA optimization problem. Fur-
thermore, three operators in the proposed DGA, i.e., cross-
over, mutation, and selection, have been utilized to improve 
the competitiveness of these solutions. The distributed 
framework in the proposed DGA helps improve population 
diversity and scalability. Through the analysis of the experi-
mental results, we have verified that the proposed DGA 
effectively optimizes the PA problem. In addition, we have 
verified the effectiveness of all the proposed components.

In the future, it would be crucial to include more objec-
tives in the PA problem. Thus, some practical multi-
objective optimization algorithms should be designed 
accordingly.
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