
Exercise is associated with younger methylome and 
transcriptome profiles in human skeletal muscle

This is the Published version of the following publication

Voisin, Sarah, Seale, Kristen, Jacques, Macsue, Landen, Shanie, Harvey, 
Nicholas, Haupt, Larisa M, Griffiths, Lyn R, Ashton, Kevin J, Coffey, Vernon G, 
Thompson, Jamie-Lee M, Doering, Thomas M, Lindholm, Malene E, Walsh, 
Colum, Davison, Gareth, Irwin, Rachelle, McBride, Catherine, Hansson, Ola, 
Asplund, Olof, Heikkinen, Aino E, Piirilä, Päivi, Pietiläinen, Krisi H., Ollikainen, 
Miina, Blocquiaux, Sara, Thomis, Martine, Coletta, Dawn K, Sharples, Adam P 
and Eynon, Nir (2024) Exercise is associated with younger methylome and 
transcriptome profiles in human skeletal muscle. Aging Cell, 23 (1). ISSN 
1474-9718  

The publisher’s official version can be found at 
http://dx.doi.org/10.1111/acel.13859
Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/48038/ 



Aging Cell. 2024;23:e13859.	 ﻿	   | 1 of 15
https://doi.org/10.1111/acel.13859

wileyonlinelibrary.com/journal/acel

Received: 12 January 2023 | Revised: 5 April 2023 | Accepted: 11 April 2023
DOI: 10.1111/acel.13859  

R E S E A R C H  A R T I C L E

Exercise is associated with younger methylome and 
transcriptome profiles in human skeletal muscle

Sarah Voisin1,2  |   Kirsten Seale1 |   Macsue Jacques1 |   Shanie Landen1 |   
Nicholas R. Harvey3,4 |   Larisa M. Haupt4,5,6 |   Lyn R. Griffiths4 |   Kevin J. Ashton3 |   
Vernon G. Coffey3 |   Jamie-Lee M. Thompson3 |   Thomas M. Doering7 |   
Malene E. Lindholm8 |   Colum Walsh9 |   Gareth Davison10 |   Rachelle Irwin9 |   
Catherine McBride10 |   Ola Hansson11,12 |   Olof Asplund11 |   Aino E. Heikkinen12 |   
Päivi Piirilä13 |   Kirsi H. Pietiläinen14,15 |   Miina Ollikainen12,16 |   Sara Blocquiaux17 |   
Martine Thomis17 |   Dawn K. Coletta18,19,20 |   Adam P. Sharples21 |   Nir Eynon1,22

1Institute for Health and Sport (iHeS), Victoria University, Footscray, Victoria, Australia
2Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
3Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Queensland, Australia
4Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, 
Queensland, Australia
5ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, Queensland, Australia
6Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Brisbane, Queensland, Australia
7School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, Queensland, Australia
8Department of Medicine, School of Medicine, Stanford University, Stanford, California, USA
9Genomic Medicine Research Group, School of Biomedical Sciences, Ulster University, Coleraine, UK
10Sport and Exercise Sciences Research Institute, Ulster University, Belfast, UK
11Department of Clinical Sciences, Genomics, Diabetes and Endocrinology Unit, Lund University Diabetes Center, Lund University, Lund, Sweden
12Institute for Molecular Medicine Finland (FIMM), Helsinki University, Helsinki, Finland
13Unit of Clinical Physiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
14Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
15HealthyWeightHub, Endocrinology, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
16Minerva Foundation Institute for Medical Research, Helsinki, Finland
17Department of Movement Sciences, Physical Activity, Sports and Health Research Group, KU Leuven, Leuven, Belgium
18Department of Medicine, Division of Endocrinology, University of Arizona, Tucson, Arizona, USA
19UA Center for Disparities in Diabetes Obesity and Metabolism, University of Arizona, Tucson, Arizona, USA
20Department of Physiology, University of Arizona, Tucson, Arizona, USA
21Institute of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
22Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2023 The Authors. Aging Cell published by Anatomical Society and John Wiley & Sons Ltd.

Abbreviations: CRF, cardiorespiratory fitness; dbGAP, database of genotypes and phenotypes; DEG, differentially expressed gene; DMG, differentially methylated gene; DMP, 
differentially methylated position; DNAm, DNA methylation; EWAS, epigenome-wide association study; FDR, false-discovery rate; GEO, gene expression omnibus; PC, principal 
component; TWAS, transcriptome-wide association study; VO2max, maximum oxygen uptake.

[Correction added on 28 August 2023, after first online publication: the forename and the surname of the author Dawn K. Coletta was tagged incorrectly and it has been corrected in 
this version.]  

https://doi.org/10.1111/acel.13859
www.wileyonlinelibrary.com/journal/acel
mailto:
https://orcid.org/0000-0002-4074-7083
mailto:
http://creativecommons.org/licenses/by/4.0/


2 of 15  |     VOISIN et al.

1  |  INTRODUC TION

The United Nations has declared 2021–2030 the “Decade of 
Healthy Ageing” to assist the aging population in living healthier for 
longer. Identifying reliable aging biomarkers that can be targeted 
by longevity-promoting interventions is a global priority, however, 
requires sizable human cohorts across a broad range of ages and 
relevant tissues, which is both costly and time-consuming. The last 
two decades have seen an open science revolution with the creation 
of free-access repositories overflowing with molecular data from all 
levels of gene regulation (e.g., epigenomics, transcriptomics). These 
rich repositories allow for the exploration of aging mechanisms and 
their susceptibility to environmental stressors, even in healthy and/
or young individuals, since age-related changes gradually accumu-
late from early life and affect organ systems years before disease 
manifestation (Belsky et al., 2015).

Aging is associated with a loss of muscle mass and function that 
leads to increased adverse outcomes including falling injury, func-
tional decline, frailty, earlier morbidity, and mortality (Cruz-Jentoft 
& Sayer, 2019). Exercise training is one of the most affordable and 
effective ways to promote healthy aging (Cartee et al.,  2016), as 
being physically active reduces mortality from all causes, indepen-
dent of levels and changes in several established risk factors (over-
all diet quality, body mass index, medical history, blood pressure, 
triglycerides, and cholesterol; Mok et al.,  2019). Cardiorespiratory 

fitness, as estimated by maximal oxygen uptake (VO2max) during an 
exercise test, shows a strong, graded, and inverse association with 
overall mortality (Laukkanen et al., 2001). However, we have an in-
complete understanding of the fundamental mechanisms by which 
physical activity delays the age-related decline in skeletal muscle 
function.

At the molecular level, aging arises from a tip in the balance 
between cellular damage and compensatory mechanisms (López-
Otín et al.,  2023; Thuault,  2021). Cells undergo constant dam-
age, such as genomic instability, telomere attrition, epigenetic 
alteration, loss of proteostasis, and disabled macroautophagy 
(López-Otín et al., 2023). This leads to impaired nutrient sensing, 
mitochondrial dysfunction, and cellular senescence, which play 
more nuanced roles in the aging process, as they can be beneficial 
at a young age (e.g., the nutrient-sensing network contributes to 
organ development until young adulthood but can have a detri-
mental role beyond this stage). Low doses such as occurs in mi-
tochondrial dysfunction can stimulate beneficial counterreactions 
via mitohormesis, or if spatially confined (e.g., cellular senescence 
suppression of oncogenesis and improved wound healing; López-
Otín et al.,  2023). Eventually, the accumulated damage inflicted 
by these primary and antagonistic hallmarks can no longer be 
compensated, leading to stem cell exhaustion, altered intercel-
lular communication, chronic inflammation, and dysbiosis, which 
are ultimately responsible for the physiological decline associated 
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Abstract
Exercise training prevents age-related decline in muscle function. Targeting epige-
netic aging is a promising actionable mechanism and late-life exercise mitigates epi-
genetic aging in rodent muscle. Whether exercise training can decelerate, or reverse 
epigenetic aging in humans is unknown. Here, we performed a powerful meta-analysis 
of the methylome and transcriptome of an unprecedented number of human skeletal 
muscle samples (n = 3176). We show that: (1) individuals with higher baseline aero-
bic fitness have younger epigenetic and transcriptomic profiles, (2) exercise training 
leads to significant shifts of epigenetic and transcriptomic patterns toward a younger 
profile, and (3) muscle disuse “ages” the transcriptome. Higher fitness levels were 
associated with attenuated differential methylation and transcription during aging. 
Furthermore, both epigenetic and transcriptomic profiles shifted toward a younger 
state after exercise training interventions, while the transcriptome shifted toward an 
older state after forced muscle disuse. We demonstrate that exercise training targets 
many of the age-related transcripts and DNA methylation loci to maintain younger 
methylome and transcriptome profiles, specifically in genes related to muscle struc-
ture, metabolism, and mitochondrial function. Our comprehensive analysis will inform 
future studies aiming to identify the best combination of therapeutics and exercise 
regimes to optimize longevity.
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with aging (López-Otín et al., 2023). The effect of aging on DNA 
methylation (DNAm) patterns is so profound that machine learn-
ing has spawned highly accurate predictors of both chronological 
and biological age (termed “epigenetic clocks”; Bell et al.,  2019). 
We developed an epigenetic clock for human skeletal muscle 
(Voisin et al., 2020) and reported widespread changes in the mus-
cle methylome at genes involved in muscle structure and function 
(Voisin et al., 2021). Downstream of epigenetic processes, changes 
in transcriptional patterns at genes involved in central metabolic 
pathways, and mitochondrial function have also been reported 
in muscle during aging (Su et al.,  2015). Regular exercise miti-
gates the age-related loss of proteostasis (Fernando et al., 2019; 
Ubaida-Mohien et al.,  2019), mitochondrial dysfunction (Cartee 
et al., 2016; Short et al., 2005), and stem cell exhaustion (Cartee 
et al., 2016; Sousa-Victor et al., 2015) in muscle, but there is cur-
rently limited evidence for its effect on age-related epigenetic and 
transcriptomic changes.

Several cross-sectional analyses found only weak associations 
between self-reported physical activity levels and epigenetic age 
in blood (Quach et al., 2017; Sillanpää et al., 2019, 2021) or skeletal 
muscle (Sillanpää et al., 2019), after adjusting for confounders such 
as diet. However, self-reported measures of physical activity poorly 
reflect actual physical activity levels, particularly in individuals with 
higher body fat and females who typically overestimate energy ex-
penditure (Prince et al.,  2008). Furthermore, these studies relied 
solely on DNAm clocks to quantify age-related changes in epigene-
tic patterns. While aging is associated with widespread changes at 
a plethora of CpG sites, epigenetic age, as measured by epigenetic 
clocks, is a single value that encompasses a very small portion of 
the aging methylome (typically a few hundred age-related DNAm 
loci, also called CpGs). Therefore, it offers a very narrow and in-
complete view of the aging methylome, and exercise training may 
affect aging regions that are not captured by epigenetic clocks. 
Interestingly, a recent study found evidence that late-life exercise 
mitigates age-related epigenetic changes in mouse gastrocnemius 
muscle (Murach et al.,  2022). In this study, the authors did not 
use clocks but investigated all DNAm loci that change with age in 
mouse muscle and applied a direct exercise training intervention. 
A couple of human studies are in line with these results: resistance 
training was shown to offset age-related changes both in the nu-
clear (Blocquiaux et al.,  2022; Gorski et al.,  2023) and mitochon-
drial (Ruple et al.,  2021) epigenome. Unfortunately, these studies 
had small sample sizes and have not been replicated to date, so 
they should be regarded as preliminary (Fanelli et al., 2017). They 
were also restricted to resistance training in males, which does 
not speak for the effect of exercise training in general in males or 
females across the lifespan. In another, large-scale meta-analysis, 
age-related changes in the transcriptome showed an inverse cor-
relation with higher cardiorespiratory fitness (CRF; Su et al., 2015). 
However, these associations were cross-sectional and could be con-
founded by other environmental and lifestyle factors that co-occur 
with higher CRF levels (e.g., a better diet). Therefore, there is a great 
need for a comprehensive, integrative, and robust assessment of 

the effects of CRF, exercise training, and inactivity on age-related 
molecular changes in human muscle.

To address these limitations, we identified relevant published 
datasets from online databases that we combined with our own 
original data to characterize the effect of cardiorespiratory (CRF), 
exercise training, and inactivity on human skeletal muscle aging 
across the methylome and transcriptome. We first compiled a list 
of age-related changes in 1251 samples across 16 cohorts (DNAm) 
and 1925 samples across 21 cohorts (mRNA expression). We then 
tested cross-sectional associations between aging molecular profiles 
and CRF; we hypothesized that individuals with higher CRF would 
display “younger” profiles than expected at age-related CpGs and 
mRNAs. Then, we investigated directly whether exercise training 
could shift molecular profiles in human skeletal muscle toward a 
younger profile, using high-resolution longitudinal data collected 
from exercise training studies of various types and durations. Finally, 
we tested whether inactivity could “age” transcriptomic profiles in 
human skeletal muscle, using longitudinal data from forced immobili-
zation interventions in humans. This work provides a comprehensive 
and integrative map of the effect of physical activity on age-related 
changes in fundamental processes controlling gene expression in 
human muscle.

2  |  RESULTS

2.1  |  Methodology overview

We describe our study design in Figure 1.
First, we identified the DNAm loci and transcripts that change 

with age in human skeletal muscle, by systematically mining and 
analyzing DNAm and mRNA microarray data from our laboratory, 
online databases, and our collaborators' laboratories. We conducted 
a random-effects epigenome-wide association study (EWAS) meta-
analysis of age across 1251 samples from 16 independent cohorts 
(Table  S1), and a random-effects transcriptome-wide association 
study (TWAS) meta-analysis of age across 1925 human muscle sam-
ples from 21 independent cohorts (Table S2). To uncover the effect 
of aerobic fitness and exercise training on the aging methylome and 
transcriptome of skeletal muscle, we then restricted our analysis 
to the identified age-related Differentially Methylated Positions 
(DMPs) and Differentially Expressed Genes (DEGs).

We first assessed whether an objective gold-standard measure 
of aerobic fitness (VO2max) was associated with younger methy-
lome and transcriptome profiles in skeletal muscle (Figure 1). At the 
epigenetic level, we conducted a random-effects meta-analysis of 
VO2max across 439 samples from five independent cohorts; at the 
transcriptomic level, we conducted a random-effects meta-analysis 
of VO2max across 354 samples from five independent cohorts 
(Table 1). There was a reasonably large range of VO2max in each of 
these cohorts (SD >5 mL/min/kg, Table 1), which is essential to de-
tect differences in OMIC aging between individuals with varying 
fitness levels.
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As cross-sectional analyses can be confounded by unmeasured 
factors (e.g., lifelong dietary patterns, socioeconomic status), we 
tested directly whether an exercise training program could shift 

OMIC profiles toward a younger state, in an interventional, longitudi-
nal setting. We conducted a random-effects meta-analysis of DNAm 
changes following aerobic, high-intensity interval, or resistance 

F I G U R E  1 Study overview. First, we performed a large-scale data mining exercise to gather all existing DNA methylation (DNAm) 
and mRNA expression microarray datasets from our own lab, our network of collaborators, and open-access repositories (GEO, dbGAP, 
ArrayExpress). See Methods for inclusion criteria of datasets. Step 1: We identified age-related changes in DNAm and mRNA expression 
in human skeletal muscle by meta-analyzing 1251 samples across 16 cohorts (DNAm) and 1925 samples across 21 cohorts (mRNA). Step 
2: First, we performed a cross-sectional association between DNAm levels at age-related CpGs or expression levels at age-related mRNAs 
and VO2max. Then, we determined whether DNAm levels at age-related CpGs, and expression levels at age-related mRNAs changed after 
exercise training, and we assessed whether expression levels at age-related mRNAs changed after muscle disuse. Finally, we performed a 
series of OMIC integrations and pathway analyses to identify the molecular pathways affected by age, VO2max, exercise training, and/or 
muscle disuse across both OMIC layers. Note: we only had OMIC data available at the transcriptomic level following muscle disuse. Note 
2: summary statistics for the exercise- and disuse-induced mRNA changes came from two recent meta-analyses (Fanelli et al., 2017; Garcia 
et al., 2022).

TA B L E  1 Characteristics of the cohorts used in the cross-sectional analysis (association between age-related CpGs or mRNAs and 
maximal oxygen uptake (VO2max).

Cohort
Number of 
samples

Number of unique 
individuals Age (years) Sex (% male)

VO2max 
(mL/min/kg) Data availability

DNA methylation

Gene SMART (Voisin 
et al., 2020, 2021)

234 66 32 ± 8.1 80% 48 ± 9.0 GSE151407, 
GSE171140

Finnish Twin Cohort (Sillanpää 
et al., 2021)

73 73 43 ± 16 38% 36 ± 8.5 Per request

E-MTAB-11282 (Garcia 
et al., 2022)

52 13 45 ± 11 38% 23 ± 5.0 E-MTAB-11282

EXACT 48 16 33 ± 10 100% 42 ± 7.8 Per request

CAUSE (Gorski et al., 2023) 32 16 60 ± 5.3 0% 30 ± 6.1 GSE213029

mRNA expression

GSE18732 (Gallagher 
et al., 2010)

117 117 54 ± 11 69% 28 ± 9.6 GSE18732

HERITAGE (Clarke et al., 2017; 
Takeshita et al., 2021)

82 42 34 ± 14 58% 36 ± 9.0 GSE117070

GSE44818 (Rowlands 
et al., 2015)

72 12 30 ± 7.2 100% 60 ± 6.0 GSE44818

The Malmö Prevention Study 
(De et al., 2010)

43 43 66 ± 1.5 100% 28 ± 6.4 E-CBIL-30

MSAT (Oskolkov et al., 2022) 39 39 36 ± 8.3 100% 52 ± 8.1 Per request



    |  5 of 15VOISIN et al.

training across 401 samples from six independent exercise training 
interventions (Figure 1 and Table 2); we also extracted summary sta-
tistics at age-related DEGs from a published meta-analysis of tran-
scriptomic changes induced by exercise training (Amar et al., 2021). 
Finally, and to further support the causal effect of exercise training 
in the shift of muscle OMIC patterns toward younger profiles, we 
tested whether age-related transcriptomic profiles were altered fol-
lowing a decrease in physical activity; we extracted summary statis-
tics at age-related DEGs from a published meta-analysis following 
forced immobilization protocols (Pillon et al., 2020).

2.2  |  Skeletal muscle aging alters DNA 
methylation and expression of genes involved in 
muscle structure and metabolism

Age-related changes to the methylome are widespread yet small 
(typically ~1% change in methylation per decade of age); out of 
the 595,541 tested CpG sites, we identified 3168 differentially 
methylated positions (DMPs) associated with age at FDR <0.005 
(Benjamin et al., 2017; Table S3), 73% of which were hypomethyl-
ated (Figure S1A). This is in concordance with our previous findings 

(Voisin et al., 2021), and in line with recent findings at the single-
cell level (Tarkhov et al., 2022). While DMPs were not enriched in 
any particular canonical pathway or expression signatures of genetic 
and chemical perturbations, they were overrepresented in two gene 
ontology terms related to muscle structure (contractile fiber, I band; 
Figure S1B), and in two human phenotype ontologies entirely con-
sistent with musculoskeletal aging (“difficulty climbing stairs,” and 
“muscle weakness;” Figure S1B).

Out of the 16,657 tested transcripts, we identified 330 differ-
entially expressed genes (DEGs) at FDR <0.005 (Table S4), 68% of 
which were downregulated with older age (Figure S2A). While DEGs 
were not enriched in any particular canonical pathway, they were 
overrepresented in several gene ontology terms related to mito-
chondrial function and energy production (ADP and ATP metabolic 
processes, generation of precursor metabolites and energy, en-
ergy derivation by oxidation of organic compounds, mitochondrial 
protein-containing complex, organelle inner membrane; Figure S2B). 
Furthermore, they were also overrepresented in expression signa-
tures of genetic and chemical perturbations (incl. genes up-regulated 
in differentiating myoblasts upon expression of PPARGC1A; Mootha 
et al., 2003), genes differentially regulated in myoblasts with IGF2BP2 
knockdown (Boudoukha et al., 2010), and genes that comprise the 

TA B L E  2 Participant characteristics from the cohorts in the interventional analysis (changes in levels of age-related CpGs or mRNA after 
exercise training or muscle disuse).

Cohort
Number of 
samples

Number 
of unique 
individuals Age (years)

Sex (% 
male) Intervention Dataset access

DNA methylation

Gene SMART (Voisin 
et al., 2020, 2021)

196 66 32 ± 8.1 80% 4 weeks of HIIT repeated twice 
after a > 1-year washout, and 
an additional 8 weeks of HIIT

GSE151407, 
GSE171140

E-MTAB-11282 (Garcia 
et al., 2022)

52 13 45 ± 11 38% 8 weeks of aerobic training E-MTAB-11282

EPIK (Blocquiaux 
et al., 2022)

48 14 45 ± 22 100% 12 weeks of resistance training 
repeated twice after a 
12-week washout (older 
individuals) or 2-week 
immobilization (younger 
individuals)

Per request

GSE114763 (Seaborne 
et al., 2018)

39 8 29 ± 6 100% 7 weeks of resistance training 
repeated twice after a 7-week 
washout

GSE114763

EpiTrain (Lindholm 
et al., 2014)

34 17 27 ± 4 44% 3 months of aerobic training GSE60655

CAUSE (Gorski 
et al., 2023)

32 16 60 ± 5.3 0% 5 months of aerobic training GSE213029

mRNA expression

ExTraMeta (Amar 
et al., 2021)

952 476 Meta-analysis of 28 
datasets

Exercise training of various types 
and duration

https://www.
extra​meta.
org

MetaMEx (Pillon 
et al., 2020)

250 125 Meta-analysis of 7 datasets Forced immobilization of various 
durations

https://metam​
ex.serve.
scili​felab.
se/

http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CGP
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CP
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CP
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=GO
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=GO
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=HPO
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CGP
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=GO
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CP
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CP
http://www.extrameta.org/
http://www.extrameta.org/
http://www.extrameta.org/
https://metamex.serve.scilifelab.se/
https://metamex.serve.scilifelab.se/
https://metamex.serve.scilifelab.se/
https://metamex.serve.scilifelab.se/
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mitochondria gene module (Wong et al., 2008). DEGs were also en-
riched in two human phenotype ontologies related to muscle func-
tion (“exercise intolerance”, and “myoglobinuria”; Figure S1B).

Finally, we estimated whether the age-related DNAm and mRNA 
changes were possibly driven by changes in cell type composition. 
We tested whether the DMPs and DEGs were overrepresented in 
twelve gene sets containing curated cluster markers for cell types 
identified in a single-cell sequencing study of human skeletal mus-
cle (Rubenstein et al., 2020). We found no significant enrichment of 
DMPs in any of the cell type marker genes (Figure S1C), suggesting 
that the age-related DNAm changes are not confounded by changes 
in cell type proportions. In contrast, DEGs were enriched for 
genes whose expression differs between type I and type IIa fibers 
(Figure  S2C), with a change in mRNA expression suggestive of an 
increase in type I fiber % with older age; TPM3, PDLIM1, and MYOZ2 
are all markers of type I fibers and increased in expression with age, 
while PKM, ENO3, and PFKM are all markers of type IIa fibers and 
decreased in expression with age. DEGs also showed a trend for 
enrichment in marker genes of smooth muscle cells that make up 
the walls of blood vessels (Figure S2C), but it is unclear whether it 
reflected an increase or a decrease in the proportion of smooth mus-
cle cells, as the signal was inconsistent: 17/28 of the marker genes 
increased in expression, and 11/28 decreased in expression.

As the DMPs and DEGs were associated with related yet distinct 
ontologies, we further examined the overlap between differentially 
methylated genes (DMGs) and DEGs. We identified 63 genes that 
were altered both at the epigenetic and transcriptional levels during 
aging (Figure S3A and Table S5). This overlap between age-related 
changes at the epigenetic and transcriptomic levels was greater than 
expected by chance alone, as DMGs were more likely to also be 

DEGs than non-DMGs (p-value for over-representation = 0.00011, 
Figure S3B); conversely, DEGs were more likely to be DMGs than 
non-DEGs (p-value for over-representation = 1.7 × 10

−5, Figure S3B).

2.3  |  CRF and exercise training are associated with 
younger epigenetic and transcriptomic profiles in 
human skeletal muscle, in contrast to muscle disuse

We identified 25 age-related DMPs and one age-related DEGs that 
showed a significant association with VO2max (FDR <0.005, Tables S3 
and S4), but it is likely that we were underpowered to detect more 
associations at a high level of confidence. A quantile-quantile plot of 
p-values for the association between VO2max and DNAm or mRNA 
levels at age-related DMPs or DEGs showed a clear increase (infla-
tion) above the diagonal line (Figure S4A,B). This diagonal line indi-
cates the expected p-value distribution under the assumption (null 
hypothesis) that the p-values follow a uniform [0,1] distribution (i.e. 
that there are no true associations between VO2max and DNAm or 
mRNA levels at age-related DMPs and DEGs). The amount of de-
parture from this diagonal line correlates with the expected number 
of true associations (van Iterson et al.,  2017). We did not identify 
age-related DMPs that were significantly altered following exercise 
training at FDR <0.005, but with substantially more samples (n = 952 
from 28 datasets) and therefore statistical power at the transcrip-
tional level, we found 40 age-related DEGs that were altered fol-
lowing exercise training (Table S3). Importantly, at age-related DMPs 
and DEGs most significantly associated with VO2max or altered fol-
lowing exercise training (the points on the far right of the Q–Q plots), 
VO2max and training were associated with changes that directly 

F I G U R E  2 Aerobic fitness and exercise training have similar associations with muscle epigenetic profiles, which contrast with those 
seen with age. (a) Pairwise correlation (Spearman) between the effect sizes of age, aerobic fitness (VO2max), and exercise training at age-
related DMPs. Each dot corresponds to one of the 3168 age-related DMPs, and the axes represent the magnitude of effect for age, VO2max, 
and exercise training. (b) Unsupervised hierarchical clustering of the effect sizes of age, VO2max, and exercise training at age-related DMPs 
(ordered from the most hypomethylated to most hypermethylated with age). Note that the legend is arbitrary as effect sizes were scaled to 
an SD of 1 for age, VO2max, and exercise training to be comparable.

http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=HPO
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=C8
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=C8
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=C8
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F I G U R E  3 Aerobic fitness and exercise training show similar associations with muscle transcriptomic profiles and contrast with those 
seen with age and muscle disuse. (a) Pairwise correlation (Spearman) between the effect sizes of age, aerobic fitness (VO2max), exercise 
training, and muscle disuse at age-related DEGs. Each dot corresponds to one of the 330 age-related DEGs, and the axes represent the 
magnitude of effect for age, VO2max, exercise training, and disuse. (b) Unsupervised hierarchical clustering of the effect sizes of age, VO2max, 
exercise training, and disuse at age-related DEGs (ordered from the most downregulated to most upregulated with age). Note that the legend 
is arbitrary as effect sizes were scaled to an SD of 1 for age, VO2max, exercise training, and disuse to be comparable. (c) Comparison of the 
magnitude of exercise-induced changes in gene expression between a hypothetical 20- and 70-year-old. The genes displayed are those 
for which “age” was a significant moderator according to the meta-regression conducted by Amar et al. (2021) “Down DEG” = gene whose 
expression decreases during normal aging; “Up DEG” = gene whose expression increases during normal aging. (d) Multi-contrast enrichment 
comparing the effects of age, VO2max, exercise training, and muscle disuse at age-related DEGs. Genes related to mitochondrial function 
showed clear indications of downregulation during aging and following muscle disuse while being simultaneously upregulated with higher 
VO2max and following exercise training. This was visible across the Gene Ontology, Canonical Pathways, and Expression Signature of Genetic 
and Chemical Perturbations gene sets.
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countered the effect of age (Figure S4C,D). In other words, DMPs 
or DEGs whose methylation or expression levels decreased with 
age overwhelmingly increased in methylation or expression with 
higher VO2max and following exercise training; DMPs or DEGs whose 
methylation or expression levels increased with age overwhelmingly 
decreased in methylation or expression with higher VO2max and fol-
lowing exercise training. Finally, we observed a very pronounced 
effect of muscle disuse on the aging transcriptome, despite a sub-
stantially lower sample size (n = 250 from 7 datasets, Table  2): 68 
age-related DEGs were significantly altered following forced immo-
bilization at FDR <0.005 (Table S4 and Figure S4E). DEGs that were 
downregulated with age tended to decrease in expression following 
muscle disuse, and vice versa.

The contrast between age-related and VO2max-  and exercise-
related changes are visible when all age-related DMPs and DEGs 
were taken into account; we noted strong negative correlations 
between the effects of age and VO2max across all age-related 
DMPs (Figure  2a, Spearman correlation ρ = −0.39, p < 2.2 × 10

−16 , 
Figure  2b), and across all age-related DEGs (Figure  3a, Spearman 
correlation ρ = −0.18, p = 0.0013, Figure 3b), as well as strong neg-
ative correlations between the effects of age and exercise training 
overall age-related DMPs (Figure 2a, Spearman correlation ρ = −0.37, 
p < 2.2 × 10

−16) and across all age-related DEGs (Figure 3a, Spearman 
correlation ρ = −0.38, p = 6.7 × 10

−12). The “pro-aging” effect of mus-
cle disuse was visible at the scale of the whole aging transcriptome; 
we found a strong positive correlation between the effects of age 
and immobilization overall age-related DEGs (Figure 3a, Spearman 
correlation ρ = 0.43, p < 2.2 × 10

−16).
To further highlight the association between VO2max and muscle 

OMIC aging, we performed principal component analysis (PCA) for 
DMPs in the Gene SMART cohort, and for DEGs in the GSE18732 co-
hort. These two cohorts have the largest sample size and VO2max range 
in our study (Table  2). In the Gene SMART cohort, individuals clus-
tered by VO2max levels both on Dimension 1 and Dimension 3 (Pearson 

correlation p = 0.0011 for PC1 and p = 0.0047 for PC3), indicating 
that individuals of similar fitness levels show similar patterns of DNAm 
at age-related DMPs (Figure 4a). Similarly, in the GSE18732 cohort, 
individuals tended to cluster by VO2max levels both on Dimension 1 
and Dimension 3 (Pearson correlation p = 0.05 for PC1 and p = 0.0019 
for PC3), indicating that individuals of similar fitness levels have similar 
mRNA levels at age-related DEGs (Figure 4b).

2.4  |  Older individuals have a blunted response to 
exercise at a small fraction of age-related DEGs

We then explored whether the effects described above were applica-
ble to the entire lifespan (i.e. whether older individuals were as able as 
young individuals to reap the “anti-aging” benefits of exercise training). 
We could not test this hypothesis at the DNAm level due to the more 
limited number of older individuals with DNAm data in the studied 
cohorts (Tables 1 and 2), but we investigated this in the transcriptional 
response to exercise training as effect sizes came from 28 different 
cohorts with a wide variability in age range (Table  2). We extracted 
summary statistics from the original paper from Amar et al. (2021) and 
identified 12 DEGs (3% of all DEGs) whose exercise-induced change 
in expression levels depends on age. For all 12 DEGs, older individuals 
showed a blunted response to exercise training (Figure 3c).

2.5  |  Mitochondrial and metabolic 
pathways are simultaneously inhibited by age and 
muscle disuse, and enhanced with greater CRF and by 
exercise training

We compared the associations between age, aerobic fitness, ex-
ercise training, and muscle disuse in an integrated, multi-contrast 
enrichment analysis that uses a rank-MANOVA-based statistical 

F I G U R E  4 Principal component analysis of individuals from the Gene SMART cohort at age-related DMPs, and individuals from the 
GSE18732 cohort at age-related DEGs. We used principal component analysis (PCA) to reduce dimensionality and show each individual on 
a two-dimensional graph. Individuals from the Gene SMART cohort (a) and from the GSE18732 cohort (b) are colored according to their 
baseline VO2max levels. Lower levels of VO2max are indicated by smaller circles in lighter colors, while higher levels are indicated by larger 
circles in darker reds. To objectively test the clustering of individuals according to VO2max, we ran Pearson correlations between individual 
coordinates on Dimension 1, Dimension 2, or Dimension 3 and VO2max.
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approach (Kaspi & Ziemann,  2020). We could only perform this 
multi-contrast analysis at the transcriptional level, as this statistical 
approach has not been adapted for DNAm data (i.e., it has not been 
optimized to take into account the severe bias in gene-set analysis 
applied to genome-wide methylation data; Maksimovic et al., 2021; 
Phipson et al.,  2016). This multi-contrast analysis identified mito-
chondrial and metabolic pathways as simultaneously inhibited by 
age and muscle disuse, while enhanced by aerobic fitness and ex-
ercise training (Figure 3d). The effects of VO2max and exercise train-
ing were highly consistent both at the epigenetic and transcriptomic 
levels (Figures 2 and 3). Conversely, the effect of muscle disuse con-
trasted with both VO2max and exercise training (Figures 2 and 3).

3  |  DISCUSSION

We showed, in a large sample (>3200) of human muscles, that higher 
aerobic fitness is associated with younger epigenetic and transcrip-
tomic profiles. In line with this, exercise training shifts the aging 
muscle epigenome and transcriptome toward a younger profile, 
while muscle disuse significantly accelerates transcriptomic aging. 
The magnitude of “anti-aging” or “aging” effects was highly site- and 
gene-dependent, suggesting that exercise training can reverse spe-
cific OMIC changes occurring during normal aging in human skeletal 
muscle. Transcriptomic integration revealed a pronounced dete-
rioration of mitochondrial function and energy production during 
aging, which is accelerated by forced immobilization but restored by 
exercise training.

Although there were few age-related DMPs and DMGs signifi-
cantly associated with CRF or exercise training, a close inspection of 
all statistical tests performed suggested that this was more likely due 
to a lack of statistical power than an absence of true associations. In 
support of this, we observed a striking similarity between the effect 
sizes of aerobic fitness and exercise training on the aging muscle 
methylome and transcriptome, which directly contrasted with the ef-
fects of age and forced immobilization. Adults lose about ~2.5–3 mL/
min/kg of VO2max per decade of age (Rapp et al., 2018), partly be-
cause of primary aging (i.e. the inevitable deterioration of cellular 
structure and biological function, independent of disease or harmful 
lifestyle or environmental factors; Holloszy, 2000), but also due to 
a decline in physical activity levels as we age (Hallal et al.,  2012). 
Therefore, the anti-aging effect of exercise and the aging effect of 
disuse are perhaps unsurprising, given that some of the age-related 
signals captured in the EWAS and TWAS meta-analysis of age reflect 
a decline in physical activity levels, rather than primary aging per se. 
This exemplifies the complex nature of aging biology and highlights 
the challenge of assessing which factors mutually affect each other 
when causality becomes circular (Cohen et al.,  2022; e.g., aging 
leads to a decline in physical activity/fitness levels, and a decline in 
physical activity/fitness levels leads to aging; Booth et al., 2011). In a 
small study of older men, master athletes showed hypomethylation 
in the promoter of genes involved in energy metabolism and mus-
cle structure, compared with men who reported lifelong sedentary 

behaviour (Sailani et al.,  2019). However, without a young control 
group, this study could not distinguish the age-related changes that 
can be counteracted by exercise, from those that remain unaffected 
by even the most extreme exercise regimes. Without adjusting for 
other environmental confounders, it is also unclear whether these 
effects come from the exercise regime or rather from the effects of 
other lifestyle factors that correlate strongly with high physical ac-
tivity levels (e.g., a healthy diet). In our study, the interventional data 
(i.e. exercise training & muscle disuse protocols) entirely supported 
the cross-sectional findings (i.e. associations with CRF), suggesting 
that the association between CRF and OMIC aging is due to exercise 
training rather than other unmeasured confounding factors.

We used a large-scale data mining approach to achieve an un-
precedented sample size (>1200 epigenetic profiles and >1900 
transcriptomic profiles across 37 cohorts). We applied random-
effects meta-analyses allowing the effects of age, fitness, exercise, 
and disuse to vary between cohorts while maintaining the speci-
ficity of each dataset (i.e., we did not force a normalization across 
datasets). Our results may therefore be applicable to a broad range 
of individuals (sex, health/training status) and exercise regimes 
(training type/duration). However, the cohorts profiled for DNAm 
included a majority of healthy, young/middle-aged, male individu-
als, so we cannot confidently extrapolate the DNAm results to all 
populations. It is possible that older, or diseased individuals show 
blunted responses to exercise training, or that specific training 
regimes (e.g., endurance vs resistance training) lead to anti-aging 
effects that are entirely specific to that training regime. We could 
only test this at the transcriptional level, and we found that a few 
age-related DEGs showed a blunted response to exercise training 
in older individuals.

While we observed the anti-aging effect of exercise training at 
both the epigenetic and transcriptomic levels, and despite a signif-
icant overlap between DMPs and DEGs, the molecular pathways 
affected by age were distinct between the two OMIC layers. It 
may be due to differences in gene coverage between the DNAm 
and mRNA arrays, or it could reflect differences in aging mecha-
nisms at the epigenetic and transcriptomic levels. Nevertheless, 
the integration of all effects at the transcriptomic level clearly 
showed a downregulation of mitochondrial and energy metabo-
lism pathways during aging and following muscle disuse, which 
was restored by aerobic fitness and exercise training. This is in 
line with the known beneficial effect of exercise on mitochondrial 
function (Goh et al., 2021). The integration was not feasible at the 
DNAm level because a given CpG can be annotated to multiple 
genes, and a given gene can harbor multiple CpGs, severely bi-
asing the statistical test for enrichment (Maksimovic et al., 2021; 
Phipson et al., 2016).

A major challenge in OMIC analysis is determining whether 
changes are due to a modification of the intrinsic profiles of the 
cells, or to a change in the relative proportions of different cell 
types in the sample. We could not directly estimate the propor-
tions of different cell types in our samples, as deconvolution al-
gorithms have currently not been developed for human skeletal 
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muscle, whether at the methylation (Zhu et al., 2022) or transcrip-
tional level. We, therefore, tested for an enrichment of DMGs 
and DEGs in genes whose expression differs between muscle cell 
types (Rubenstein et al.,  2020). While we found no evidence of 
confounding by cell type in the epigenetic analysis, some of the 
age-related changes in mRNA were indicative of an increase in 
the proportion of type I fibers (vs type II fibers). This is surprising 
given that age does not affect the relative proportion of different 
fiber types, but rather the size and distribution of fibers within the 
muscle (Deschenes,  2004). Furthermore, we observed younger 
OMIC patterns in individuals of higher aerobic fitness levels, yet 
fitter individuals typically harbor greater proportions of type I fi-
bers (Stuart et al., 2013). Therefore, it is likely that the DNAm and 
mRNA expression changes were intrinsic to muscle cells, rather 
than reflecting a shift in the proportions of different cell types 
within the muscle. To answer this question, future studies should 
investigate the effects of age, aerobic fitness, exercise training, 
and muscle disuse on OMIC profiles within individual cell types 
using cell sorting, or single-cell methods.

We avoided using epigenetic clocks in this analysis for multiple 
reasons. There are only two clocks currently available that could 
be applied to muscle DNAm data, namely the Horvath pan-tissue 
clock (Horvath, 2013) and the MEAT clock we recently developed 
for human muscle (Voisin et al., 2020; all other clocks were devel-
oped for non-muscle tissue). First, both the pan-tissue and MEAT 
clocks were trained to predict chronological age, which is a poor 
proxy for clinically relevant measures of biological age (this has 
been highlighted by others; Bell et al.,  2019; Field et al.,  2018; 
Zhang et al.,  2019) and is the reason for the development of 
second-generation clocks, such as PhenoAge (Levine et al., 2018) 
and GrimAge (Lu et al.,  2019, 2022), clocks better adapted to 
longitudinal data such as DunedinPoAm (Belsky et al., 2020) and 
DunedinPACE (Belsky et al., 2022), and clocks able to disentangle 
damaging and adaptive changes during aging (Ying et al.,  2022). 
There are currently too few DNAm datasets with corresponding 
measurements of muscle function (e.g., mitochondrial function, 
contractile properties, etc.) to develop an epigenetic clock that 
would capture muscle biological age. Second, the pan-tissue clock 
is poorly calibrated in skeletal muscle, and most of the muscle 
datasets from the present study were used to generate the MEAT 
clock (Voisin et al., 2020). This means that epigenetic age estima-
tions using the MEAT clock would be severely biased and unsuit-
able to assess the effects of fitness and exercise on epigenetic 
aging. Finally, until recently (Higgins-Chen et al., 2022), epigenetic 
clocks only selected a limited number of CpGs to maximize pre-
diction accuracy, which means they would discard information at 
many potentially relevant CpGs associated with age. We adopted a 
broader perspective to look at the entire aging methylome and ex-
amine the effect of exercise training on this aging trend. We were 
unable to assess the functional effects of the age-related OMIC 
changes on muscle structure, function, and metabolism, so we 
cannot firmly conclude that the effect of exercise training led to 
gains in muscle function or quality. Future studies combining OMIC 

profiles with genetic data to implement Mendelian Randomization 
analyses (Ying et al., 2022) that would determine whether OMIC 
aging leads to a decline in muscle function and whether the ben-
eficial effects of fitness and exercise training on muscle function 
are mediated by a reversal of OMIC aging.

In conclusion, using an unprecedented number of epigenetic and 
transcriptomic human muscle profiles, meta-analyses, and OMIC in-
tegration, we demonstrated the power of exercise training in shifting 
the epigenome and transcriptome toward a younger state. We hope 
that this work will inspire future studies to look deeper at the mech-
anisms underlying this shift of muscle epigenetic and transcriptomic 
patterns toward younger profiles.

4  |  METHODS

This study was a large-scale investigation of the effect of exer-
cise training on the aging muscle methylome and transcriptome 
in humans. We used a wide range of bioinformatics and compu-
tational techniques (data mining, epigenome-wide association 
studies, transcriptome-wide association studies, random effects 
meta-analysis, overrepresentation analysis, and multi-contrast en-
richment analysis) to analyze and interpret large amounts of OMIC 
data in human muscle. By exploiting the power of meta-analysis, 
we overcome many limitations of “omics” research in humans. 
Specifically, large sample sizes are required to detect changes with 
small effect sizes, which is the case of age (Su et al., 2015; Voisin 
et al.,  2021) and exercise (Amar et al.,  2021; Jacques et al.,  2019; 
Pillon et al.,  2020; Voisin et al.,  2015)-related changes in muscle 
OMIC profiles. All bioinformatics and statistical analyses were per-
formed using the R statistical software.

4.1  |  Data mining

4.1.1  |  Description of muscle DNA methylation and 
mRNA expression datasets

First, we gathered all existing DNAm and mRNA expression data-
sets from our laboratory and our collaborators’, in conjunction with 
public repositories, to assemble an exhaustive database of DNAm 
and mRNA expression profiles in muscle (Figure  1 and Tables  S1 
and S2). We focused exclusively on microarray experiments, as they 
are widely used, scalable (so individual datasets have larger sam-
ple sizes), and they measure the same CpGs or transcripts across 
datasets (so they are straightforward to meta-analyze). We col-
lected the methylomes of 1251 human samples from 16 datasets, 
profiled on the Illumina HumanMethylation platform (27 K, 450 K, 
and EPIC; Table S1), as well as the transcriptomes of 1926 samples 
from 21 datasets, profiled on Affimetrix, Illumina, and Agilent plat-
forms (Table S2). For robustness, we only included datasets with >20 
samples, with an age SD >5 years (age-associated changes cannot 
be detected if age is invariant). Cohorts varied in their age range, 
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health status, ethnicity, and potential treatments, so were adjusted 
for relevant covariates in the statistical analysis to detect age-, CRF-, 
exercise-, and disuse-related changes that are independent of unde-
sirable confounders (see Tables S1 and S2 for the list of confounders 
adjusted in each cohort).

4.1.2  |  Pre-processing

We downloaded the raw IDAT files and pre-processed all DNAm 
datasets, except for dataset GSE50498 for which we were missing 
batch information (we used the already pre-processed matrix for this 
dataset). Details on the pre-processing steps have been previously 
published (Voisin et al., 2021), and the preprocessing code is availa-
ble on Sarah Voisin's Github account. First, we obtained β-values 
defined as Methylated signal

(Unmethylated signal+Methylated signal+ 100)
 . Then, we confirmed the 

sex of each sample by using the DNAm signal from the sex chromo-
somes (Aryee et al.,  2014) and removed any sample whose anno-
tated sex did not match the predicted sex (three samples removed 
across 16 datasets). We used the ChAMP pipeline (Tian et al., 2017) 
to preprocess each dataset; we ensured all samples had <10% of 
probes with detection p-value > 0.01, and only excluded probes with 
missing β-values, with a detection p-value > 0.01, or with a bead 
count < 3 in more than 5% of samples. We removed non-CG probes, 
SNP-related probes (Zhou et al., 2017), and probes aligning to multi-
ple locations; for datasets containing males and females, probes lo-
cated on the sex chromosomes were also removed. Then, a β-mixture 
quantile normalization method was applied to adjust for the Type I 
and Type II probe designs for methylation profiles generated from 
the HM450 and HMEPIC arrays. To identify technical and biological 
sources of variation in each individual dataset, singular value decom-
position was performed. In all pre-processed datasets, both the 
plate and the position on the plate were identified as significant 
technical effects. Thus, all β-values were converted to M-values, and 
the ComBat function from the sva package (Leek et al., 2012) was 
used to adjust directly for these technical artifacts.

We downloaded the already pre-processed mRNA expres-
sion datasets, resolved any gene ID ambiguity (e.g., outdated gene 
names), and averaged the expression of transcripts annotated to the 
same EntrezID gene.

4.2  |  Identifying age-related changes in the muscle 
methylome and transcriptome

4.2.1  |  EWAS and TWAS meta-analysis of age

To determine whether exercise training can slow down/reverse 
OMIC aging in human muscle, we first need to know which CpGs 
and mRNAs change during aging, in which direction, and to what 
extent. Therefore, we first conducted independent EWAS or 
TWAS of age in each methylation or transcription dataset. Details 

on the EWAS pipeline are available elsewhere (Voisin et al., 2021), 
and TWAS was conducted in a similar manner. The code for each 
EWAS and each TWAS is available on Sarah Voisin's Github ac-
count. Briefly, we regressed the DNAm level for each CpG (or the 
mRNA expression level for each transcript) against age, and ad-
justed the models for dataset-specific covariates known to influ-
ence DNAm or mRNA expression levels (e.g., sex, ethnicity). We 
then conducted a random-effects meta-analysis to pool the sum-
mary statistics at each CpG and mRNA across datasets. Not all 
CpGs were present in all DNAm datasets, and not all mRNAs were 
present in all transcriptional datasets and restricted the analysis 
to the 595,541 CpG sites present in at least 10 of the 16 DNAm 
cohorts, and we restricted the analysis to the 16,657 genes pre-
sent in at least 15 of the 21 datasets. Meta-analysis was carried 
out using metafor (Viechtbauer, 2010) using “EB” (Empirical Bayes) 
as the residual heterogeneity estimator, 0.5 as the step length, 
10,000 iterations, and an accuracy of 1−8 in the algorithm that es-
timates τ2. CpGs and mRNAs that showed a meta-analysis false 
discovery rate (FDR) < 0.005 (Benjamin et al., 2017) were consid-
ered age-related and selected for downstream analyses.

4.2.2  |  Over-representation analysis of ontologies 
(molecular pathways, human phenotypes)

To gain insights into the cellular and physiological consequences 
of aging on the muscle methylome and transcriptome, we tested 
whether genes belonging to canonical pathways (CP gene set in 
MSigDB), expression signatures of genetic and chemical pertur-
bations (CGP gene set in MsigDB), gene ontology terms (GO gene 
set in MsigDB), and human phenotype ontologies (HPO gene set in 
MsigDB) were over-represented among the age-related CpGs and 
mRNAs. Over-representation analysis (ORA) was performed with the 
missmethyl package (Phipson et al., 2016; Maksimovic et al., 2021) 
for DNAm, using all 595,541 tested CpGs as the background; ORA 
was performed with the clusterProfiler package (Wu et al., 2021) for 
transcription, using all 16,657 genes as the background. The ORA 
was restricted to gene sets containing 10–500 genes to limit type I 
error rate. Gene sets showing an FDR <0.005 (Benjamin et al., 2017) 
were considered significantly overrepresented.

4.2.3  |  Confounding by changes in muscle cell type 
proportions

We used the same ORA technique to estimate whether age-related 
changes in DNAm signal were potentially confounded by changes 
in muscle cell type proportions. We created a gene set containing 
markers genes for muscle cell types identified in a recent single-
cell transcriptional study of human muscle (Rubenstein et al., 2020; 
marker genes for muscle endothelial cells, smooth muscle cells, 
pericytes, FAP cells, PCV endothelial cells, satellite cells, FBN1 
FAP cells, NK cells, myeloid cells, B cells, and T cells were from the 

https://github.com/sarah-voisin
https://github.com/sarah-voisin
https://github.com/sarah-voisin
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CP
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=CGP
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=GO
http://www.gsea-msigdb.org/gsea/msigdb/human/genesets.jsp?collection=HPO
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“Rubenstein_skeletal_muscle” gene set in MSigDB, while marker 
genes for type I and type II fibers were downloaded directly from 
the original paper's supplementary table). Cell types showing an 
FDR <0.005 (Benjamin et al.,  2017) were considered significantly 
overrepresented.

4.2.4  |  Integration of aging methylome and 
transcriptome

We used the same ORA technique to estimate whether there was 
a significant overlap between age-related changes at DNAm and 
mRNA expression levels. Age-related differentially methylated 
genes (DMGs) were used as a gene set in the ORA for transcription, 
and age-related differentially expressed genes (DEGs) were used as 
a gene set in the ORA for DNAm.

4.3  |  Estimating the effects of CRF, exercise 
training, and muscle disuse on the aging 
methylome and transcriptome

All analyses described henceforth have been conducted on the 
age-associated Differentially Methylated Positions (DMPs) and 
Differentially Expressed genes (DEGs) identified in Step 1.

4.3.1  |  Cardiorespiratory fitness

We focused on the muscle datasets for which information on base-
line maximal oxygen uptake (VO2max) was available (Table  1). We 
only included datasets with baseline VO2max SD >5 mL/min/kg (CRF-
associated changes cannot be detected if there is no variability in 
baseline CRF between participant). VO2max, measured during a graded 
exercise test, is considered the gold-standard measurement of CRF.

We applied the same EWAS and TWAS meta-analysis pipeline 
described previously but regressing DNAm or mRNA expression 
levels against VO2max. We then performed meta-analysis for each 
aging CpG and transcript across datasets and adjusted for multiple 
testing. Aging CpGs or mRNAs that were associated with VO2max at 
FDR <0.005 (Benjamin et al., 2017) were considered significant.

4.3.2  |  Exercise training

For DNAm, we focused on the muscle datasets that came from ex-
ercise training studies (Table 2). We included all types of exercise 
training interventions (aerobic training, high-intensity interval train-
ing, resistance training) as our aim was to test whether exercise in 
general could counteract the effect of age on aging OMIC profiles. 
We applied the same EWAS meta-analysis pipeline described previ-
ously but looking at changes in DNAm levels after exercise training 
(i.e. regressing DNAm levels against Timepoint (PRE/POST training). 

Then, we performed the meta-analysis for each aging CpG across 
datasets and adjusted for multiple testing. Aging CpGs whose DNAm 
levels changed following exercise training at FDR <0.005 (Benjamin 
et al., 2017) were considered significant.

For mRNA expression, we extracted summary statistics at age-
related mRNAs from a recently published meta-analysis of exercise-
induced transcriptional changes (Amar et al.,  2021). For each 
transcript, we used the summary statistics from the model selected 
by the authors (all data came from the meta_analysis_input.RData 
file uploaded by the authors on their Github page).

4.3.3  | Muscle disuse

There were no available muscle immobilization studies that profiled 
DNAm patterns in human muscle, so we could not estimate the ef-
fect of muscle disuse on age-related DNAm patterns.

For mRNA expression, we extracted summary statistics at age-
related mRNAs from a published meta-analysis of disuse-induced 
transcriptional changes (Pillon et al., 2020). We used summary sta-
tistics sent by the authors upon correspondence with them.

4.4  |  Transcriptomic integration of age, CRF, 
exercise, and disuse

To contrast the effects of age, CRF, exercise training, and mus-
cle disuse, we used multi-contrast enrichment analysis as im-
plemented in the mitch package (Kaspi & Ziemann,  2020). As 
recommended in the package, we first created a score to repre-
sent the importance of the differential gene expression for each 
transcript and each contrast:

For example, the FEZ2 gene decreased in expression with age at 
a magnitude of log2FC = −0.12 per year of age at a p-value of 
1.24 × 10

−10. The age score for FEZ2 was therefore 

− 1 × − log10

(

1.24 × 10
−10

)

= − 9.9.

We then performed multi-contrast enrichment analysis using 
the same gene sets as in the ORA analysis described above (canon-
ical pathways, expression signatures of genetic and chemical, gene 
ontology terms, and human phenotype ontologies), using the de-
fault parameters in the mitch_calc() function. Gene sets showing an 
FDR <0.005 were considered significant.

4.5  |  Visualization tools

Pairwise correlation plots using Spearman correlations were graphed 
using the GGally package, heatmaps were graphed using the pheatmap 
package after scaling the effect sizes for age, VO2max, exercise and/
or disuse, and forest plots were graphed using the metafor package.

Score = sign
(

log2FC
)

× − log10(pvalue)

https://github.com/MoTrPAC/motrpac_public_data_analysis
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