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Abstract

In the evolving landscape of healthcare, the complexity and digitization of medical

data necessitate robust Electronic Health Records (EHR) systems, capable of mit-

igating increasing cybersecurity threats without undermining patient care. This thesis

introduces a CEMPS framework (Centralised EHR Model for Preserving Pri-

vacy and Security), developed in response to vulnerabilities in EHR systems. CEMPS

aims to safeguard sensitive health information across healthcare spectrum, including

medical care, pharmaceuticals, and health insurance.

Adopting a holistic approach, the study explores privacy and security standards, align-

ing health information classification with regulations such as the Australian Privacy Acts,

The Australian Privacy Principles (APPs), Health Insurance Portability and Account-

ability Act (HIPAA), and the EU General Data Protection Regulation (GDPR). The

CEMPS integrates strict security policies and advanced privacy techniques to facilitate

secure health data exchange among key stakeholders like doctors, nurses, and researchers,

crucial for optimizing health outcomes and efficiency.

The thesis further explores the CEMPS framework through a theoretical lens, focusing

on its design principles and the mechanisms it employs to improve privacy and secu-

rity within EHR systems. This theoretical examination underscores the framework’s

capacity to ensure robust protection of sensitive health information, leveraging ratio-

nal arguments to advocate for its efficacy. By emphasizing the strategic alignment of

CEMPS with prevailing privacy standards and security protocols, this analysis illustrates

how the framework can significantly elevate the management, privacy , security and

confidentiality of EHR systems, offering a more controlled environment for health data.

Ultimately, this thesis advocates for the industry-wide adoption of CEMPS, promoting

a secure, efficient , and privacy-compliant healthcare environment. This research

represents a significant step towards a healthcare landscape where EHR systems are both

protectors of patient data and facilitators of improved healthcare delivery.
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Chapter 1

INTRODUCTION

This chapter provides an introduction to the thesis topic and context of the research

presented in this thesis, namely, A Security and Privacy Compliant Data Sharing Solution

For Healthcare Data Ecosystem.

The growing use of electronic health-related data has ignited a research interest that

spans diverse domains, industries, and stakeholders. This transformative evolution of

data has enabled the healthcare industry to convert health data into electronic health

records (EHR) or electronic health records. EHR encompasses electronic patient records

that contain demographic information, medical histories, medication records, allergies,

immunization status, laboratory results, radiology images, billing details, etc. The

adoption of EHRs offers numerous advantages, including rapid access to clinical data,

streamlined clinical workflows, error reduction, improved patient safety, cost savings,

and improved support for clinical decision making. EHRs facilitate the creation, storage,

management, and access on demand of health information for both healthcare providers

and patients. In this context, various services such as cloud services and blockchain have

emerged as a robust infrastructure, reducing the cost of data storage processing and main-

tenance while enhancing efficiency and data quality. Regarding data centralization, the

vast network of remote servers, although accessible from multiple locations, introduces

security and privacy challenges, particularly given the sensitive and confidential nature of

medical data. Security and privacy concerns within EHRs are multifaceted. They encom-

pass the potential inference of private information when combined with external datasets,

the exploitation of user data to benefit organizations, social stratification based on data

literacy, and the risk of adverse consequences without awareness or defense mechanisms.

The digital divide prevalent in some regions intensifies these challenges. The significance

of EHR security cannot be overstated, particularly given the widespread adoption of

EHR systems, the increasing cybersecurity threats, the critical role that EHRs play in

patient care, and the ethical and legal obligations to protect patient data. The quest for
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a robust privacy-preserving health data sharing framework within the healthcare sector

has been propelled by the need to preserve the privacy of its users. The Australian

healthcare authorities have expressed concerns about the existing My Health Record

(MHR) system, calling for improvements due to data breach incidents. In particular, the

healthcare sector has become a significant focus for identity fraud because health records

also include private information such as patient identities, credit card numbers, and ad-

dresses. Additionally, developments in information and communication technology have

resulted in a situation in which patient health records pose new protection and privacy

risks. Hackers, viruses, and worms can seriously endanger the protection and privacy of

EHRs. Concerns about data protection and privacy have arisen, according to research

conducted in many countries. According to new surveys [1–5], it is estimated that there

are at least 25 million statutory authorizations executed each year in the United States

for the release of health information. The participants mentioned [6] their concerns about

the protection of the EHR data in all surveys conducted in Denmark, Germany, and New

Zealand. As stated above, the main and most serious hurdle to the implementation of

EHRs are privacy and security issues. Although there are various compliance techniques

that can be introduced to deter unwanted entry into electronic health information, de-

pending on the scale and nature of a healthcare institution, it is impossible to determine

with certainty what procedures can and should not be implemented. The Health Insur-

ance Portability and Accountability Act (HIPAA) and the Health Information Technology

for Economic and Clinical Health (HITECH) Act have already implemented many safety

protections in the EHR [7]. However, in existing security procedures, HIPAA remains

behind from a security perspective, and data encryption is considered an addressable

requirement. It does not describe the ways in which the frameworks now being used will

be developed and enforced. This contributes to many variations in fragmented processes

today and has discouraged interoperability between medical institutions [8]. Previously,

the use of blockchain technologies for the provision of safe and stable health records, the

exchange of biomedical and electronic health data, brain modeling and reasoning has

been of great concern [9]. Blockchain technology generally has the key characteristics

of decentralization, persistence, anonymity, and auditability. With these characteristics,

the blockchain can save a lot of money and improve efficiency. Therefore, in the era

of virtualization, data privacy is being protected using various traditional techniques,

such as encryption and blockchain. In the recent literature, researchers have highlighted

newly evolved techniques and tools to achieve privacy, security, and authentication of

electronically stored health data [10, 11].
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1.1 Comparative Advantages of EHRs

EHRs comprise patient data in digital form that are stored and exchanged securely and

are accessible by multiple authorized users to support the continuous and efficient man-

agement of integrated healthcare [12–14]. These electronic data are processed quickly

and can be sent to digital devices. Technically, EHRs are designed with the purpose of

constantly providing and delivering reliable data to health organizations. It comprises

details on the patient’s medical history, including diagnosis, laboratory findings, infor-

mation on hospital admissions, treatments, surgical procedures, and medications with

the least mistakes, more effectiveness, and better care. They even describe the patient’s

condition, allowing for a more detailed diagnosis and treatment of the patient [15]. EHRs

can be shared with other healthcare providers when necessary. However, EHRs are prone

to various types of security and privacy attacks during transmission [15]. In distributed

medical research and healthcare systems, the assurance of data privacy is based on com-

pliance with laws and jurisdictions, as highlighted by various studies [16–18]. Although

there is a compelling need to enforce privacy policies at the program level because exist-

ing measures often do not provide sufficient guarantees for effective privacy protection

[19]. To address this gap, it becomes crucial to critically examine privacy agreements,

which contribute to the overall improvement of social acceptance in healthcare systems.

Incorporating health mechanisms is a viable approach, particularly in Australia, offering

enhanced privacy features. This, in turn, empowers people throughout the country to

access superior health and medical services with less concern about the confidentiality

of their data [20]. Therefore, there is a pressing need for the implementation of ro-

bust mechanisms that can support the efficacy of privacy protocols and processes within

patient data management systems. This requires a proactive approach that includes au-

diting and monitoring of past data sharing practices in the healthcare system. In light

of its widespread use, the development of a safe environment for the sharing of EHRs

has gained a great deal of interest in the healthcare sector. The most recent literature

[21–24] indicates that there are many benefits to using EHR software, including cost

savings, increased quality of healthcare, advancement of evidence-based medicine, more

comprehensive data collection, and flexibility. Consequently, the term EHR in this the-

sis refers not only to an electronic database to store and retrieve health information,

but also to a system that can be used to enforce and maintain completeness of data,

resilience to failure, high availability, and consistency of security policies. Finally, this

work acknowledges the different nature of health information such as Personal Health

Records (PHR) and Electronic Medical Records (EMR) and their privacy, but this thesis

focuses specifically on EHR.
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1.1.1 Electronic Health Records Benefits

One of the key advantages of an EHR is that it allows health data to be structured and

stored in a digital design that supports exchange with multiple external organizations

that provide support to the primary health institution by certified providers. In 2018,

a study by IBM and the Ponemon Institute revealed that health care violations are the

most expensive among industries such as trade, finance, government, etc., based on an

average cost of 380 dollars per record. Many current EHR programs are quite often

unreliable, resulting in poor patient care and poor interoperability with other systems.

Compared to the speed and complexity of the records produced, the development of

these applications remains low [8]. The development of a safe environment for sharing

EHR has strained a lot of interest in the healthcare sector with the widespread use of

EHR [25]. The terms EMR and EHR sometimes cause confusion. Electronic Medical

Records (EMR) contain medical and clinical data collected from the provider’s office,

while an EHR includes more comprehensive patient information [26]. An EHR is a com-

prehensive record of clinical and administrative data on all individuals cared for within

healthcare systems. As such, it offers a repository of sufficient size and scope to support

detailed clinical care analysis and evaluation of important subgroups of patients, such as

those with serious disease, including “high-cost, high-needpatients ” who will particularly

benefit from palliative care [27–31]. Additionally, EHR data is recorded directly from

documentation of healthcare care delivery and can be used without requiring additional

data entry beyond accompanying routine care. EHRs also capture social determinants of

health, which are important for the provision of responsible high-quality care to seriously

ill [27, 32]. There are many benefits to EHRs, for example, higher care levels, improved

patient safety, simplified chaotic processes, and reduced costs. The portability and ad-

vantages of having digitized records that can be accessed and used anywhere during the

clinical decision-making process promised to herald a new era in patient care [32]. With

the ability to address public health and population information needs, it can contribute to

the creation of health policies, decision making, and the promotion of healthier lifestyles

[33]. An EHR can be used continuously to improve communication, improve quality of

care, reduce medical errors, and reduce waste [34]. It also has the potential to transform

the healthcare system from a mostly paper-based industry to one that uses multiple sets

of information to help providers provide higher quality of care to their patients [35].

EHRs accelerate information access and have the potential to improve clinical workflow;

they also have the capacity to support other associated activities using various tools such

as Decision Support System (DSS) and Intelligent Systems (IS) [36]. The Health Infor-

mation Technology for Economic and Clinical Health Act (HITECH Act) was introduced

in the United States in 2009 to facilitate and accelerate the adoption of EHR and sup-

porting technology [38]. The government invested more than 30 billion dollars and 95%
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hospitals implemented the EHR, which was a significant increase from only 9% in 2008

[37]. The HITECH Act rewards hospitals and medical professionals for adopting EHRs

that aim to improve the quality of care in the NHS. The key benefits identified were:

1. Greater convenience through structured information access, 2. Better communication

to improve patient-related outcomes, 3. Faster evidence-based decision making during

care delivery and 4. Optimization of resources through effective use and productivity at

all levels [32, 37, 38]. EHRs have provided many benefits to all stakeholders at various

levels. For example, it allows for early diagnosis of diseases, has reduced medication

errors (drug overdoses, adverse effects, drug interactions, allergic reactions etc.) by 95%,

has improved lifesaving measures by ensuring compliance with care adherence, and has

decreased the number of duplicate diagnostic tests and lowered costs by 7-11% [39, 40].

There are other specific advantages: management of epidemics in developing countries,

better informed decision-making, care coordination, patient satisfaction and better out-

comes, and improvement of care based on real-world evidence [32]. Therefore, the EHR

offers important opportunities to identify seriously ill patients and assess palliative care

quality metrics in a large number of patients with serious disease. In an EHR SWOT

analysis, the highest priority in the strength analysis was timely and quick access to

information and the ability to store information, as confirmed in [41].

1.2 Synergistic Integration of Technologies for EHR En-

hancement

The advent of Electronic Health Records (EHRs) has ushered in a new era of healthcare,

where information is digitized, leading to improved healthcare delivery and patient out-

comes. However, the digitization of health information also introduces significant chal-

lenges, particularly in the realms of security and privacy. Addressing these challenges

necessitates a multifaceted approach, integrating advanced technologies such as Access

Control, Blockchain, Cloud Computing, and Cryptography. This section elucidates the

synergies among these technologies and their collective contribution to fortifying EHRs

against security and privacy breaches.

Access Control mechanisms serve as the first line of defense, ensuring that only authorized

users gain access to sensitive health information [6, 7, 42, 43]. By delineating clear access

rights based on roles or attributes, Access Control systems prevent unauthorized access,

a fundamental aspect of preserving privacy and integrity within EHRs.

Blockchain technology, with its inherent characteristics of decentralization, immutabil-

ity, and transparency, offers a robust framework for the secure sharing and storage of
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EHRs [9]. By creating a tamper-proof ledger of health records, Blockchain ensures the

integrity and non-repudiation of health data, facilitating a trustless environment where

stakeholders can share information securely.

Cloud Computing provides a scalable and efficient infrastructure for storing and process-

ing the vast amounts of data generated by EHR systems [10]. The elasticity of cloud

services allows healthcare providers to manage resource demands dynamically, ensur-

ing availability and accessibility of health information. Furthermore, cloud platforms

can leverage advanced security and privacy features, offering a secure environment for

hosting EHRs.

Cryptography plays a pivotal role in securing data at rest and in transit, protecting

against eavesdropping and unauthorized access [8]. Through encryption, Cryptography

ensures that health data remains confidential, safeguarding patient privacy. Additionally,

cryptographic techniques enable secure authentication and verification processes, further

enhancing the security posture of EHR systems.

Integrating these technologies provides a comprehensive security and privacy-preserving

solution for EHRs. Access Control restricts access, Blockchain ensures data integrity

and trust, Cloud Computing offers scalability and resilience, and Cryptography secures

data confidentiality. Together, they form a synergistic framework that addresses the

multifaceted challenges faced by EHRs, paving the way for a secure, efficient, and privacy-

compliant healthcare data ecosystem.

1.2.1 EHR Drawbacks

Despite huge expectations and investment, EHRs have not been entirely successful in

addressing what they were established to rectify. Fundamental problems started at the

initial execution stage. There were issues in feeding and safeguarding patient clinical in-

formation, hospital inventories, staffing, and resources when computing devices started

to be used extensively, there were cost issues and a lower than expected return on invest-

ment , technical failures, privacy and confidentiality concerns, and a lack of resources

that is, hardware and infrastructure [44]. The key identified weaknesses are: lack of har-

mony, problems in patient matching, data security and privacy concerns, and algorithm

manipulation in decision support models that contribute to clinician burden, redundant

credentials, EHR workflows with many phases and complexity which require automation

using modern technologies, and insecure data storage that enables inappropriate use by

end users [32]. In addition to these flaws, EHRs also have a few drawbacks (Table

1.1). For example, data acquired from the EHRs represent treatment that was docu-

mented rather than actual care that was provided or how patients and their families



7

experienced it. A good illustration of this possible discrepancy is the goal-of-care talk,

which physicians may claim to have had with patients, but neglect to record it or they

record it in a nonretrievable manner. The validity of EHR data for use to ensure quality

and liability can be compromised by the wide range of objectives for which they are

collected. Another drawback of EHRs is the lack of critical outcomes necessary to pro-

vide high-quality disease treatment. Therefore, EHRs manage and store patient medical

records in various medical facilities in a centralized computer database. Assessment of

patient risk is facilitated by EHR through the analysis of medical reports. Furthermore,

these systems facilitate the exchange of patient data and information over the Internet,

allowing physicians to diagnose and treat patients seamlessly between different medical

institutions [45]. Despite the advantages, EHRs exhibit security vulnerabilities, particu-

larly during data transmission over the Internet or data retrieval from a server database,

and lack systematic and organized evaluation of results in general [27]. Consequently,

the integrity of EHR systems is highly dependent on robust security features.

1.3 Confidentiality, Integrity, and Availability (CIA) in EHR

Confidentiality, Integrity, and Availability (CIA) constitute the fundamental principles

of information security within EHR systems. These principles collectively safeguard

patient information, ensuring its protection, accuracy, and accessibility. In the context

of EHRs, each facet of the CIA triad plays a critical role in maintaining the security and

reliability of healthcare data. The principles of Confidentiality, Integrity, and Availability,

collectively known as the CIA triad, are foundational to securing information systems.

In the context of Electronic Health Records (EHRs), these principles take on heightened

significance due to the sensitivity of health information and the potential impacts on

patient care and privacy.

Confidentiality in EHR systems is paramount to maintaining patient trust and ensur-

ing compliance with stringent regulations such as the Health Insurance Portability and

Accountability Act (HIPAA) [46, 47]. Confidentiality ensures that patient data, from di-

agnoses to treatment plans, is accessible only to authorized individuals. Recent advances

in encryption technologies have strengthened confidentiality in EHRs. For example, end-

to-end encryption (E2EE) ensures that patient data transmitted over networks cannot

be intercepted and read by unauthorized parties [8]. Despite these advances, the pro-

liferation of ransomware attacks, as discussed in recent statistics on cyber threats to

healthcare systems, presents ongoing challenges to maintaining confidentiality[48–50].
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Table 1.1: Advanced Analysis of EHR Complications and Strategic Solutions

EHR Complication Strategic Solution Technological/ Methodological
Implementation

Redundant Documenta-
tion

Streamline Clinical
Documentation

Utilize AI-driven data capture and
analysis to identify and include only
essential clinical information.

Complex Workflow Simplify and Optimize
Workflow

Implement process mining tech-
niques to identify inefficiencies and
redesign the workflow for optimal
data entry and retrieval.

Need for Advanced Au-
tomation

Enhanced Automation
Integration

Leverage advanced voice recogni-
tion and natural language process-
ing (NLP) to facilitate hands-free
data entry and retrieval.

Proprietary Software
Limitations

Open Platform Devel-
opment

Foster an ecosystem of open source
EHR platforms, encouraging innova-
tion and customization.

Data Silos Seamless Data Ex-
change and Interoper-
ability

Adopt FHIR (Fast Healthcare In-
teroperability Resources) standards
and smart APIs to enhance data
sharing and interoperability.

Suboptimal User Expe-
rience

User-Centric Design Apply UX/UI design principles, in-
cluding mobile-first strategies, to
improve accessibility and ease of use.

Security Vulnerabilities Robust Security Mea-
sures

Integrate advanced cybersecurity
protocols, including blockchain
for data integrity and AI-based
anomaly detection systems.

Regulatory Compliance Compliance Automa-
tion

Implement regulatory compliance
management software with real-time
updates on policy changes and com-
pliance tracking.

Data Analytics Enhanced Analytic Ca-
pabilities

Use big data analytics and machine
learning algorithms for predictive
analytics and decision support.

Patient Engagement Interactive Patient Por-
tals

Develop User-Friendly Patient Por-
tals with personalized health track-
ing, telehealth, and secure messag-
ing features.

Integrity involves ensuring the accuracy and completeness of patient data within

EHRs. It is crucial to provide high-quality healthcare, as even minor errors or alter-

ations in health records can lead to misdiagnosis or inappropriate treatment. Blockchain

technology has emerged as a promising tool for improving data integrity in EHR systems.

By providing an immutable ledger of health records, blockchain technology ensures that

once patient data is recorded, it cannot be altered or deleted without detection [9]. How-

ever, challenges remain in integrating blockchain with existing healthcare IT systems and

ensuring scalability.
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Availability is critical to ensure that healthcare providers have timely access to EHRs

for effective patient care, especially in emergency situations. Cloud computing offers a

solution to improve the availability of EHRs using distributed resources to ensure re-

dundancy and resilience against system failures [10]. However, the reliance on cloud

platforms introduces challenges such as potential downtimes and the risk of Distributed

Denial of Service (DDoS) attacks, which can temporarily render EHR systems inacces-

sible.

In conclusion, while significant advances in technologies such as encryption, blockchain,

and cloud computing have bolstered the CIA triad in EHR systems, these advancements

are not without new challenges. The continuous evolution of cyber threats requires

ongoing vigilance and innovation in applying the principles of the CIA triad to safeguard

EHRs. The statistics on cyber attacks discussed earlier underscore the importance of

robust security measures in protecting healthcare data against evolving threats.

1.3.1 Prevalence and Impact of Cyber Attacks on Healthcare Systems

The escalation of cyber attacks on healthcare systems has become a critical concern,

with Electronic Health Records (EHRs) emerging as a primary target due to the sensitive

nature of the data they contain. Recent statistics illuminate the severity and frequency

of these breaches. For example, a report by the Department of Health and Human

Services (HHS) indicates that healthcare care breaches have affected more than 26 million

individuals in the United States alone, as of the last reporting year [51–53]. Furthermore,

the cybersecurity firm Cybersecurity Ventures predicts that the costs associated with

ransomware damage will exceed $20 billion worldwide by 2021, with healthcare systems

being the most frequently targeted entities [54–56].

EHR systems, in particular, face unique vulnerabilities as they store comprehensive pa-

tient information, making them attractive targets for cybercriminals. The Cyber Kill

Chain, investigated in Chapter 2, delineates the various stages of a cyber attack, pro-

viding information on potential security breaches within EHR systems. It emphasizes

the critical points of compromise that could affect Security, Privacy, and Confidentiality,

underscoring the importance of implementing robust security measures to mitigate these

risks [57–60].

These statistics and examples underscore the urgent need for enhanced security proto-

cols and innovative solutions within healthcare IT infrastructures. The vulnerabilities

exposed by these attacks not only jeopardize patient privacy and data integrity, but also

highlight the potential operational and financial consequences for healthcare providers.
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Consequently, the research and methodologies proposed in this thesis aim to address these

significant challenges by advancing the security and privacy capabilities of EHR systems,

thus mitigating the risks associated with cyber threats in the healthcare sector[61–70].

1.3.2 Comparative Analysis of Global Healthcare Data Policies

The landscape of global healthcare data policies is marked by significant diversity, with

frameworks such as the Health Insurance Portability and Accountability Act (HIPAA)

in the United States and the General Data Protection Regulation (GDPR) in Europe

serving as key benchmarks. These policies aim to safeguard patient data, although

through different approaches and emphases, which directly influence the management

and security of Electronic Health Records (EHRs).

HIPAA provides a solid foundation for privacy and security in the US healthcare sys-

tem, focusing on the protection of personal health information. The HIPAA Security Rule

mandates specific physical, administrative and technical safeguards for EHRs, including

access controls and audit trails [47]. However, the applicability of HIPAA is primarily

within the US, posing challenges for international data exchanges and collaborations in

healthcare.

GDPR , on the other hand, offers a broader protection scope, applicable to any entity

processing personal data of EU residents. GDPR emphasizes the rights of the data

subject, including the right to access, rectify, and erase personal data, which extends

to health records [71–73]. Although GDPR provides a stringent framework for data

protection, its rigorous consent requirements pose challenges for seamless integration

and use of EHRs in different healthcare services.

Comparative Challenges include the interoperability between systems governed by

different regulatory frameworks. For example, the transfer of patient data between enti-

ties covered by HIPAA and those under GDPR requires careful navigation of both sets of

regulations, often necessitating additional measures to ensure compliance on both fronts.

Furthermore, both frameworks face challenges in keeping pace with the rapid advances

in digital health technologies, such as telemedicine and mobile health apps, which may

fall outside the traditional bounds of EHR systems, yet have significant implications for

patient privacy and data security.
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In conclusion, while HIPAA and GDPR represent critical efforts to protect healthcare

data, the disparities and gaps between these and other global policies highlight the com-

plexities of managing EHRs in a globalized world. The ongoing evolution of healthcare

technologies and the international flow of health data call for dynamic, interoperable

policy frameworks that can adapt to new challenges while ensuring the confidentiality,

integrity, and availability of EHRs.

1.3.3 Academic Perspectives in EHR

Academic research in the field of EHR security underscores the critical importance of

the CIA triad. Studies, such as Magnus et al. (2020) [74], emphasize the importance

of confidentiality, integrity, and availability in protecting patient information. These

studies explore the implementation of technical safeguards, such as encryption and access

controls, as effective measures to preserve the CIA triad.

Frank et al. (2018) [21] investigate the role of administrative procedures, including

policies and training programs, in maintaining the CIA triad. They highlight the need for

a comprehensive approach that combines both technical and administrative safeguards

to ensure the security of EHR systems.

In conclusion, the CIA triad serves as the basis for information security in EHRs, pro-

tecting patient data, accuracy, and accessibility. Academic research in this domain un-

derscores the critical role of confidentiality, integrity, and availability and highlights the

multifaceted approach required to uphold these principles effectively. Protecting the CIA

triad is not only technologically important, but is also essential in building patient trust

and ensuring the delivery of high-quality healthcare.

In this section, we present a table (Table 1.2) that summarizes and explains the core

principles of Confidentiality, Integrity, and Availability (CIA) in EHR systems. The CIA

triad is fundamental to ensuring the security and reliability of patient information within

EHRs. Each aspect of the triad plays a crucial role in safeguarding healthcare data.

Table 1.2: Core Principles of CIA in EHR

Principle Description Implementation Measures
Confidentiality Protection of sensitive patient in-

formation from unauthorized access,
use or disclosure.

- Access controls
- Data encryption
- Audit logs

Integrity Assurance that patient information
is accurate, complete, and unal-
tered.

- Data validation rules
- Digital signatures
- Data backups

Availability Ensuring patient information is ac-
cessible to authorized personnel
when needed.

- Redundancy and fault tolerance
- High availability configurations
- Regular system maintenance
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1.4 Privacy Preservation of EHR

EHRs contain sensitive and personal health information; therefore, protecting patient

privacy is crucial. Privacy in the EHR involves the implementation of principles, poli-

cies, and measures that protect the confidentiality of patient information and prevent

unauthorized access, use, or disclosure. Technical safeguards such as encryption, authen-

tication, access controls, and audit logs are essential to protect the privacy of the EHR

[52]. Administrative procedures, such as policies and practices that govern access, use,

and disclosure of patient information, are also critical components of EHR privacy pro-

tection [75]. Patient rights play an essential role in EHR privacy and include the right to

control your information, access to your medical records, and the right to file complaints

if your privacy rights have been violated [76]. Therefore, protecting privacy in the EHR is

vital to maintaining confidentiality, integrity, and availability of sensitive patient health

information. Technical safeguards, administrative procedures, and recognition of patient

rights are all necessary components to achieve this goal. Healthcare providers must en-

sure that all necessary measures are in place to protect patient privacy and comply with

regulatory requirements. According to [77], patient personal information is a valuable

asset and is considered highly sensitive and a safety net to prevent exposure to patient

health. [78] indicated that data breaches that have occurred in the past have led to a

variety of issues, including the disclosure of patient data, loss of credentials, malware

infections, among others. Although EHRs face several access issues in the healthcare

industry, data privacy and security remain the most significant issues. [79] proclaimed

that newer technology models are based on a new robust and secure technology infras-

tructure and therefore have been more crucial for healthcare providers and organizations

in maintaining patient records confidentiality. Furthermore, the process of document-

ing, sharing, and storing healthcare data should be carried out with the assurance of

authentication and taking into account all ethical aspects around it. Although the use

of digital platforms and advanced technologies for the exchange of patient information

amplifies the integration of advanced technology, the challenges related to privacy, con-

fidentiality, security, and integrity should be addressed before adopting any technology.

Medical records containing personal and sensitive data are very likely to be targeted for

cybercrime attacks. Their storage on centralized servers owned by other parties inadver-

tently raises security and privacy flaws, opening the door to a number of attacks such as

ransomware [80] and DDoS [81] attacks that have more serious consequences than only

financial or privacy breaches. Hackers in the United States hacked [82] into the Commu-

nity Health Systems (CHS) database of a well-known hospital group, gaining access to a

vast amount of private health data, including the social security numbers of more than
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a million patients. Similarly to this, a DDoS attack on the websites of many hospitals,

severely impairing medical services [83].

Data integrity services should ensure that patient privacy is protected not only from

external hacktivists, but also internally within the ecosystem from rogue employees or

through cloud providers [84]. Fabian, Ermakova and Junghanns [85] in the healthcare

industry state that the use of technology, for example Blockchain, has raised obvious

problems of privacy, safety and patient consent and brings with them the highest risks to

privacy and security. The Russian Ministry of Health in partnership with Vnesheconom-

bank (VEB). On 6 September 2017, as part of a health session at the Eastern Economic

Forum (WEF), the head of the Ministry of Health said that blockchain technology could

be used to store electronic medical records (EMR) of patients. The Ministry further

emphasized that the medical record storage system will be depersonalized to the max-

imum extent, allowing the preservation of medical privacy. This will allow patients to

determine for themselves what part of the information in their medical records they want

to disclose. Gordon and Catalini [86] conducted research stating that a trend of patient-

based interoperability has emerged through the conventional electronic data exchange

(EDI) mechanism used in healthcare organizations such as hospitals and laboratories.

Although patient interoperability was convenient, it resulted in privacy and security

concerns due to additional access to patient data. Therefore, with respect to the security

of patient data and the implementation of policies related to patient privacy, it is crucial

to understand exactly what the difference is between these terms and then to ensure

effective sharing of patient health data among healthcare professionals and to focus on

the implementation of the explicit and controlled framework.

1.5 Centralised vs Decentralized EHR System

Despite the potential benefits of decentralized EHR systems, the literature has high-

lighted several critical drawbacks. For example, a study notes the challenges in ensuring

consistent data quality and integrity between decentralized nodes [87]. Another signif-

icant issue is the difficulty in managing and standardizing privacy policies and access

controls in a distributed environment, as explored by Smith et al. [88]. This can lead

to inconsistencies in protecting patient data and potential vulnerabilities. Furthermore,

Jones et al. have identified scalability and performance problems in decentralized EHR

systems, especially when dealing with large-scale data and numerous stakeholders [89].

In a decentralized setup, every node in the network needs to be updated simultaneously,

which can be resource intensive and may lead to inefficiencies. Furthermore, the risk of

fragmentation and the lack of interoperability is a concern highlighted in the research by
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Table 1.3: Comparison of Centralized vs. Decentralized EHR Systems

Characteristics Advantages Challenges
Centralised
EHR System

- Single data storage
- Centralised database
- Managed by a sin-
gle entity - Standard-
ised protocols and for-
mats - Streamlined data
uniformity

- Enhanced data uniformity, reduc-
ing data discrepancies - Simplified
central management and mainte-
nance - Efficient resource utilisation,
reducing infrastructure duplication -
Seamless integration with standard-
ized formats

- Vulnerable to single point of fail-
ure; system downtime can affect
multiple users - Attractive target for
large-scale cyber attacks, necessitat-
ing robust security measures - Lim-
ited flexibility in adapting to specific
requirements, potentially hindering
innovation

Decentralised
EHR System

- Distributed data
across multiple entities
- Managed by various
entities - Each entity
may use different pro-
tocols and formats -
Diverse data sources

- Improved privacy and security
through data distribution - Local
control and customisation based on
entity-specific needs - Reduced vul-
nerability to single points of failure,
ensuring data availability

- Data interoperability and stan-
dardisation challenges can hinder
data sharing - Complex manage-
ment and higher maintenance costs,
as each entity maintains its in-
frastructure - Ensuring consistent
data quality and compliance can be
challenging, requiring coordination
among entities

Doe [90]. In decentralized systems, there is a risk of creating data silos where information

is not seamlessly shared across different platforms or regions, impeding the holistic view

of a patient’s medical history. Furthermore, the work by Lee et al. [91] emphasizes the

security risks inherent in decentralized EHR systems. The distributed nature of these

systems can make them more susceptible to cyber-attacks, as multiple access points need

to be secured. In Table 1.3, we provide an overview of the characteristics, advantages,

and challenges associated with centralized and decentralized EHR systems. This com-

parison aims to highlight the key considerations when choosing between these two EHR

system architectures.

This research aims to dissect and clarify the relative merits and drawbacks of centralized

EHR systems in terms of security, privacy, and operational effectiveness (Table 1.3).

The challenges and uncertainties associated with the deployment and management of

such systems are not merely theoretical concerns, but have real-world implications for

the quality of healthcare services, patient trust, and the efficiency of healthcare providers.

Addressing these issues is crucial to advance the healthcare sector toward a future where

secure, private, and efficient management of patient information is not an aspiration,

but a reality. The resolution of these problems will not only contribute to academic

knowledge, but will also have a profound impact on shaping the future of healthcare,

influencing the health outcomes of individuals and communities in general.

1.5.1 Rationale for Selecting a Centralized EHR System

A centralized EHR system architecture has its challenges, especially in terms of potential

vulnerability to widespread system failures or attacks, but its benefits in uniformity,

efficient resource use, and compliance make it a strong candidate for healthcare data

systems aiming for streamlined operations and consistent patient care.
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• Streamlined Data Management: Centralised EHR systems enable more efficient

management of health records, with standardised procedures for data entry, storage

and retrieval.

• Better Resource Allocation: Centralization can lead to cost savings due to economies

of scale in purchasing, maintenance and staffing.

• Consistency in Care: A single, unified system ensures that all healthcare providers

access the same set of data, leading to consistent patient care regardless of location.

• Easier Compliance with Regulations: Centralized systems simplify the process of

adhering to legal standards and regulations, as there is a single system to audit

and update.

• Improved Data Analysis and Research: Centralized data storage facilitates large-

scale data analysis and research, allowing more effective public health surveillance

and faster identification of health trends.

• Enhanced Disaster Recovery: Centralized systems can more easily implement com-

prehensive disaster recovery and data backup solutions.

• Integrated Approach to Healthcare Delivery: Centralized EHRs are better suited

to integrate various aspects of healthcare delivery, including telemedicine, patient

portals and electronic prescriptions, providing a more holistic approach to patient

care.

These challenges underscore the need for a more central approach to EHR management,

which this research aims to explore through the proposed Centralized EHR Model for

preserving Privacy and Security (CEMPS). The CEMPS framework is designed to ad-

dress these specific limitations of decentralized models, offering a more unified, secure,

and efficient system for managing and protecting EHRs. The framework introduces se-

curity policies and techniques to regulate authorization, aligned with the operational

scenarios of the existing MHR system, involving physicians, nurses, researchers, and

other stakeholders. The framework introduces security policies and techniques to regu-

late authorization, aligned with the operational scenarios of the existing MHR system,

involving physicians, nurses, researchers, and other stakeholders. To achieve this, the

study thoroughly classifies different types of health information, including personal and

sensitive data, and subject them to scrutiny against both local and global privacy stan-

dards, such as HIPAA and the EU General Data GDPR. This framework facilitates the

seamless sharing and use of health information between multiple stakeholders, striking a

delicate balance between unfettered access and robust privacy and security. The imple-

mentation of this framework will undergo a comprehensive quantitative and qualitative
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analysis, further validated through a series of illuminating case studies. Finally, in this

proposed system, users exercise complete control over their health information through

tailored privacy settings. In a world where healthcare data are the linchpin of patient

care and the privacy of individuals is a paramount concern, the development of the

CEMPS represents a critical step towards preserving patient privacy and, by extension,

advancing the healthcare sector into an era of secure and efficient data sharing.

1.5.2 Justification for Centralized EHR Systems

The choice between centralized and decentralized EHR systems is pivotal in shaping the

healthcare data ecosystem. Centralized EHR systems, characterized by a unified data

repository managed by a single entity, offer distinct advantages in terms of interoperabil-

ity, data integrity, and governance. This section elucidates the rationale for preferring

centralized systems, underpinned by literature and empirical observations.

Enhanced Interoperability is a hallmark of centralized EHR systems. Unlike decen-

tralized models where disparate systems may hinder seamless data exchange, centralized

EHRs facilitate unified access to patient records across different healthcare providers.

This interoperability is critical to ensure comprehensive care coordination, particularly

for patients with complex or chronic conditions [92, 93].

Improved Data Integrity and Quality . Centralized systems allow a consistent

application of data standards and quality controls, ensuring that health records are ac-

curate, complete, and up to date. This is instrumental in minimizing errors and improv-

ing patient safety. Moreover, centralized architectures facilitate easier implementation

of updates and security measures throughout the system, thus maintaining high data

integrity standards [94, 95].

Streamlined Governance and Compliance with healthcare regulations such as

HIPAA and GDPR are more straightforward in centralized EHR systems. Centralized

governance enables uniform policy enforcement, privacy protections, and compliance

monitoring, reducing the complexity and cost associated with managing these aspects in

multiple decentralized systems [96, 97].

Real-World Efficacy . Studies and implementations in various healthcare settings

have demonstrated the practical benefits of centralized EHR systems. For example, a

centralized EHR initiative in a multihospital network led to significant improvements in
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emergency response times and patient outcomes by providing instant access to critical

patient information [95, 98]. Another study highlighted cost savings through the reduc-

tion of redundant tests and streamlined administrative processes in a centralized system

[95, 97, 98].

While decentralized models offer advantages in terms of resilience and patient-centric

control, the overarching benefits of centralized EHR systems in improving interoperabil-

ity, ensuring data quality, simplifying governance, and demonstrating real-world efficacy

provide a compelling justification for their adoption. The ongoing evolution of healthcare

technology and policy will require a continuous evaluation of the design and implemen-

tation strategies of these systems to maximize their benefits for healthcare care delivery.

1.6 Research Motivation

The motivation behind this research is the rapidly evolving landscape of healthcare tech-

nology, where EHR has become a cornerstone. Despite their widespread adoption, sig-

nificant concerns remain about the security and privacy of these systems. In the face of

increasing cyber threats and increased data breaches, the need for a robust, secure, and

private EHR system is more pressing than ever [8, 36, 87, 99–102].

Current advances in EHR technology have led to more digitized and interconnected sys-

tems, with opportunities and challenges [10–12, 14, 32, 103–106]. A detailed analysis of

privacy and security concerns, including specific data breach incidents and vulnerabili-

ties studies, illustrates the complexity of protecting patient data [13, 15–20, 52, 75, 84–

86, 107–112].

A thorough review of the literature on centralized EHR systems reveals both benefits and

drawbacks, particularly in terms of security and privacy [34, 35, 37, 38]. The integration

of technologies like Blockchain, Cloud Computing, and Cryptography has been critical

in improving the security of EHR. Recent research demonstrates their implementation

and effectiveness in current systems [21, 26–31, 74, 76].

Comparative analysis with decentralized models shows that centralized EHR systems

may offer superior solutions in terms of security and privacy. This comparison is sup-

ported by recent studies or data [39–41, 44, 77–79]. Regulatory and ethical considera-

tions, such as the impact of regulations such as HIPAA and GDPR, play a crucial role

in the design and implementation of secure EHR systems [46, 71].

Finally, the potential for future research is vast, including the development of more robust

security protocols, exploring the use of AI to detect and prevent breaches, and studying
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the long-term impacts of centralized EHR systems on patient care and data privacy.

Addressing these issues is critical to building a resilient healthcare infrastructure that

can withstand the challenges of the digital age and continue to provide high-quality care.

1.7 Problem Statement

Integration and optimization of EHR systems represent a turning point in healthcare

technology advancement. This Ph.D. thesis specifically targets the nuanced challenges

associated with the implementation of centralized EHR systems, focusing on their role

in enhancing the management, security, and privacy of health records within the digital

healthcare landscape.

Figure 1.1 provides a detailed visual guide mapping the intricate links between the thesis

foundational problem statement, the encompassing research questions (RQ1-RQ5), and

the substantial contributions derived from this study. This schematic arrangement elu-

cidates the strategic alignment and interdependency among these critical components,

emphasizing the cohesive structure that underpins the academic rigor of research.

Problem Statement

RQ1: ... RQ2: ... RQ3: ... RQ4: ...

RQ5: ...

Thesis Contributions

Figure 1.1: Interconnection between Problem Statement, Research Questions (RQ1-
RQ5), and Thesis Contributions

Recognizing EHRs as a cornerstone of contemporary healthcare delivery, there is a pro-

nounced need to analyze how a centralized framework could potentially elevate the pro-

tection and handling of patient data. This necessity is acutely felt in the face of in-

corporating advanced technological constructs, such as access control, blockchain, cloud

computing, and cryptography, within EHR systems, as explored in Chapter 3 and Chap-

ter 4.
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The proposition that centralized EHR systems can offer a unified and secure data man-

agement infrastructure, thereby reducing the vulnerabilities associated with dispersed

systems, sets the foundation for this thesis. However, elucidating the full spectrum of

advantages and operational dynamics of centralized EHR systems, particularly how they

leverage technological advances for data security and privacy, remains a critical endeavor.

This thesis aims to demystify the potential and limitations of centralized EHR systems

without extensively juxtaposing them against decentralized models. It seeks to provide

a detailed understanding of the architectural, security, and privacy considerations of

centralized EHR frameworks. This exploration encompasses Chapter 2’s insights on

EHR privacy and security challenges, Chapter 4, Part A and Part B’s discussion on the

integration of innovative technologies, and culminates in Chapter 5’s examination of a

universal privacy model through ontology and machine learning approaches.

Through this focused investigation, outlined comprehensively in Chapter 6, the thesis

aims to contribute to the development and implementation strategies of centralized EHR

systems. It aims to fortify the protection of sensitive health information against the back-

drop of an evolving digital healthcare framework, presenting a model that underscores

the efficacy and necessity of a centralized approach to the management of EHRs in the

current technological epoch.

1.8 Research Questions

Keeping in mind the preservation of privacy in the EHR and the research objectives,

we formulate the following research questions to identify and review the current state of

research on the preservation of privacy in the EHR.

• Q1: Can the implementation of access control, blockchain, cloud and cryptography

(ABC) technologies enhance the effectiveness of EHR data sharing and access in

the modern healthcare landscape? Chapters [2,3, 4, 5].

• Q2: Is the importance of privacy considerations in EHR data sharing among diverse

stakeholders directly correlated with the distributed or centralized nature of data,

leading to measurable improvements in the ethical and legal foundations of patient

data management? Chapters [2,3, 4].

• Q3: Do the fundamental attributes of EHRs (Comprehensiveness, Accessibility, and

Integration) directly correlate with measurable advantages and limitations, provid-

ing a comprehensive understanding of their role in modern healthcare? Chapters

[1, 2, 5].
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• Q4: Can the distinct contributions of EHR privacy, confidentiality, and security be

quantifiable linked to the safeguarding of patient information, establishing a robust

foundation for ethical and secure healthcare data management? Chapters [2,3, 4,

5].

• Q5: Can the privacy and security of EHRs be optimally ensured through the

strategic integration of (ABC), addressing challenges associated with data breaches

and unauthorized access? Chapters [2,3, 4, 5].

This thesis comprehensively addresses the research questions posed, demonstrating a

thorough investigation and analysis of key aspects in the field of EHR systems. Specif-

ically, the strategic integration and effectiveness of Access control, Blockchain, Cloud,

and Cryptography technologies (Q1) in improving EHR data sharing and access are

thoroughly examined in Chapters [2], [3], and [4], and partially in Chapter 1]. Critical

analysis of privacy considerations and their correlation with the distributed or central-

ized nature of EHR data (Q2) is systematically explored in Chapters [2], [3], [4], and

with partial coverage in Chapter1]. The correlation between the fundamental attributes

of EHRs and their measurable impacts in modern healthcare (Q3) is described in the

chapters [2], [3], and [4], with partial coverage in the chapters [1] and [5]. The quan-

tifiable links between EHR privacy, confidentiality, and security in protecting patient

information (Q4) are discussed in Chapters [2], [3], [4], and 5], with partial coverage in

Chapter [1]. Lastly, the potential of optimally ensuring the privacy and security of EHRs

through the strategic integration of (ABC) technologies (Q5) is thoroughly investigated

in Chapters [2], [3], [4], and [5], with partial coverage in Chapter1]. Each of these ques-

tions is addressed with a high level of academic rigor, contributing significantly to the

field and paving the way for future research directions.

1.9 Research Aim

The primary goal of this Ph.D. thesis is to enhance our understanding and application

of Electronic Health Records (EHRs) in the modern healthcare landscape, specifically

through the lens of a centralized EHR system’s role in bolstering the security and privacy

dimensions of EHR management. Recognizing the integral role of EHRs in current medi-

cal practices, this research is committed to designing innovative, technologically advanced

solutions. It focuses on the synergistic application of Access Control, Blockchain,

Cloud Computing, and Crystalgraphy (ABC) technologies to improve the efficacy

and security of EHR data sharing and access.
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A significant portion of this investigation, as detailed in Chapter 3, "A SECURITY AND

PRIVACY COMPLAINT DATA SHARING SOLUTION FOR HEALTHCARE DATA

ECOSYSTEMS: CEMPS (CENTRALIZED EHR MODEL TO PRESERVE PRIVACY

AND SECURITY)," delves into the advantages and challenges associated with central-

ized EHR systems versus decentralized counterparts. This analysis is crucial for advocat-

ing for a secure and privacy-focused healthcare data ecosystem built around a centralized

framework.

Expanding the research’s scope, Chapter 4, "INTEGRATING ADVANCED TECH-

NOLOGIES AND ONTOLOGY MODELS FOR ENHANCED SECURITY IN ELEC-

TRONIC HEALTH RECORDS," is divided into two enriching parts that significantly

contribute to the thesis’s aims:

• Part A, "GPT, Ontology, and CAABAC: A Tripartite Personalized Access Control

Model Anchored by Compliance, Context, and Attribute" explores the integration

of cutting-edge technologies to refine access control within EHR systems. This part

underlines the research’s commitment to developing a nuanced, technology-driven

approach to EHR privacy and security, showcasing the novel application of GPTs,

ontology, and CAABAC in creating a personalized, secure access framework.

• Part B, "Enhancing Health Information Systems Security: An Ontology Model Ap-

proach," further extends the thesis’s exploration into security models. It presents

an innovative ontology-based framework aimed at addressing gaps in current EHR

security measures, highlighting the thesis’ contribution to advancing health infor-

mation system security through ontology and role-based access control models.

This comprehensive approach not only tackles the technological facets, but also [3.5.4], as

further explored in Chapter 5, "TOWARDS A UNIVERSAL PRIVACY MODEL FOR

ELECTRONIC HEALTH RECORD SYSTEMS: AN ONTOLOGY AND MACHINE

LEARNING APPROACH" considers the broader implications for policy, regulation,

and ethical considerations in healthcare data management. The research aims to bridge

existing gaps, clarify essential concepts, and propose a strategic fusion of methods that

empower stakeholders in fully utilizing centralized EHR systems.

The desired outcome is a framework that ensures the highest level of patient data pro-

tection while maximizing the benefits of a centralized system’s efficiency and integration.

As described in Chapter 6, "CONCLUSION AND FUTURE RESEARCH," this thesis

aims to pave the way for EHRs to play a crucial role in providing high-quality, secure, and

privacy-compliant healthcare services, promoting a culture of trust within the healthcare

sector, and improving patient health outcomes and healthcare providers’ efficiency.
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1.10 Research Objectives

The objectives outlined below aim to systematically address and measure progress against

identified research gaps, employing quantifiable metrics where possible. These objectives

are essential to advance the understanding and implementation of secure and privacy-

compliant EHR systems in the healthcare domain.

• Centralized EHR Model Development: Investigate and propose a robust cen-

tralized model for efficient sharing and accessing of EHR data, leveraging the lat-

est technological advancements. This includes the exploration of Access Control,

Blockchain, Cloud Computing, and Cryptography as foundational elements, as

elaborated in Chapter 3, Chapter 4, Part A and Part B.

• Privacy in EHR Data Sharing: Examine the critical importance of privacy con-

siderations within the intricate network of EHR data sharing, particularly among

various stakeholders. Assess how these considerations are instrumental in protect-

ing patient information, with insights drawn from Chapter 2 and further analysis

in Chapter 5.

• Understanding EHRs: Conduct an in-depth analysis of the core attributes,

benefits, and challenges associated with EHR systems. The aim is to offer a holistic

view of their implications for the healthcare industry, integrating findings from

Chapter 2 and Chapter 3 to obtain a complete understanding.

• Privacy, Confidentiality, and Security in EHRs: Distinguish and deep inves-

tigate the unique contributions of privacy, confidentiality, and security measures

in EHR systems to the protection of patient data. This involves a meticulous ex-

amination of their roles and interplay within healthcare systems, as discussed in

Chapter 4, Part A, Part B, and Chapter 5.

• Innovative Technologies for EHR Security: Identify and evaluate cutting-

edge technologies and novel approaches that are at the forefront of improving EHR

privacy and security. Focus on the practical application and efficacy of these solu-

tions in real world settings, specifically in the advancements proposed in Chapter

4, Part A, Part B, and the universal privacy model explored in Chapter 5.

These objectives align with the research questions posed at the beginning of this thesis,

collectively driving toward the primary objective of contributing significant new knowl-

edge in the realms of EHR security and privacy. Each objective is designed not only to

bridge existing research gaps, but also to pave the way for future innovations in health-

care information management.
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1.10.1 Comparative Analysis and Evaluation Chapter 5

Chapter 5 conducts a rigorous comparative analysis of the CEMPS framework against

existing EHR privacy and security solutions. This analysis highlights the superiority of

CEMPS in several key areas, including scalability, adaptability to regulatory changes,

and the facilitation of secure data sharing among diverse healthcare stakeholders. The

evaluation, grounded in empirical data and robust statistical methods, unequivocally

demonstrates the advantages of the CEMPS framework in enhancing the privacy and

security of EHR systems.

In summary, this thesis contributes significantly to the field of healthcare data privacy

and security by providing a nuanced understanding of existing privacy preservation meth-

ods, introducing the innovative CEMPS framework, and empirically validating its supe-

riority over existing solutions. These contributions mark a significant step forward in

addressing the complex challenges of EHR privacy and security.

1.11 Contribution of the Thesis

This thesis offers a detailed exploration of EHR technologies, with a focus on develop-

ing a theoretical and practical understanding that drives a motivational and analytical

framework [107–110]. Through a rigorous literature review in hyperref[sec:chap2]Chapter

2 and subsequent chapters, this work synthesizes existing research, uncovering insights

into the architectures and computational strategies of EHR systems. It critically evalu-

ates the role of Blockchain technology in securing EHR data sharing processes, addressing

the complexities surrounding data ownership and access management [111, 112].

Key contributions include:

• Systematic identification of existing gaps in the literature concerning the simulta-

neous achievement of data sharing and privacy preservation, initiating the discourse

in Chapter 1 and Chapter 2.

• Detailed examination of the constructs Privacy, Confidentiality and Security (PCS),

exploring their distinctions and overlaps, and situating this analysis within Chapter

4, Part A.

• An extensive analysis of the security challenges inherent in EHR systems, proposing

robust solutions to protect patient data integrity and enhance system dependability,

covered in detail in Chapter 4, Part B, and Chapter 5.
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• A critique and synthesis of various methodologies, frameworks, and technologies

for EHR data sharing, advocating for an integrative approach that leverages access

control mechanisms, blockchain technology, cloud services, and encryption meth-

ods, as discussed in Chapter 2, Chapter 3 and Chapter 4, Part A and Part B.

• Development and evaluation of a new paradigm of EHR data sharing, specifically

designed for interoperability with the Australian Medical Health Record (MyHR)

system, to promote effective information exchange among healthcare stakeholders,

developed in Chapter 4, Part A and Chapter 5.

• In-depth analysis of the proposed CEMPS model for EHR management, examining

its feasibility, scalability, and security aspects, thoroughly investigated in Chapter

3, Chapter 4 and Chapter 6.

• An exploration of underresearched areas within the domain of health and medical

data sharing, proposing avenues for future research that promise to advance the

field, as highlighted in Chapter 6.

1.12 Novelty and Superiority of the Research

This thesis delineates several groundbreaking contributions to the realm of Electronic

Health Records (EHR) security and privacy, with a particular focus on Chapters 2 , 3, 4,

and 5. The novelty of the research lies in the systematic survey of privacy preservation

methods, the development and evaluation of the Centralized EHR Model for Preserving

Privacy and Security (CEMPS), and the comparative analysis of this model against

existing frameworks.

1.12.1 Systematic Survey of Privacy Preservation Methods Chapter 2

Chapter 2 presents a comprehensive survey that systematically categorizes and evalu-

ates existing privacy preservation methods in the management of healthcare data. Unlike

previous surveys, this work employs a novel categorization framework that considers not

only the technological aspects but also regulatory compliance and practical applicabil-

ity in healthcare settings. This approach provides a multidimensional understanding

of the strengths and weaknesses of current methods, laying a solid foundation for the

development of the CEMPS framework.
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1.12.2 CEMPS Framework: A Paradigm Shift in EHR Privacy and
Security Chapters 3 and 4

The core of this thesis, detailed in Chapters 3 and 4, introduces the CEMPS framework,

an innovative solution designed to enhance the security and privacy of EHR systems.

CEMPS stands out for its integration of Federated Learning (FL) and Differential Privacy

(DP) to ensure data privacy while maintaining the utility of healthcare data. This

integration is not only novel, but also superior in terms of providing a balanced approach

to privacy preservation and data utility, addressing the limitations of existing models that

often compromise one for the other.

1.13 Thesis Outline

Spanning six chapters, this thesis systematically explores the realms of privacy and se-

curity within EHR, presenting innovative solutions and frameworks to enhance data

confidentiality and system integrity in healthcare information systems.

Chapter 1, titled "INTRODUCTION," sets the stage by defining the research’s motiva-

tion, problem statement, questions, aims, and objectives. It sets out the foundational

contributions of the study and provides a structured overview of the thesis content,

guiding the reader through the subsequent chapters.

Chapter 2, "PRIVACY PRESERVATION OF ELECTRONIC HEALTH RECORDS IN

THE MODERN ERA: A SYSTEMATIC SURVEY", conducts an exhaustive review of

current practices and methodologies in EHR privacy and security. This chapter evaluates

the effectiveness of existing data sharing methods, assesses the roles of key stakeholders,

and identifies the strengths and limitations of current EHR technologies.

Chapter 3, "A SECURITY AND PRIVACY COMPLAINT DATA SHARING SOLU-

TION FOR HEALTHCARE DATA ECOSYSTEMS: CEMPS (CENTRALIZED EHR

MODEL TO PRESERVE PRIVACY AND SECURITY) proposes CEMPS as a novel

framework for secure and private data sharing within healthcare ecosystems. This chap-

ter examines the model’s security and privacy preservation mechanisms and discusses its

potential benefits and drawbacks for EHR systems.

Chapter 4, "INTEGRATING ADVANCED TECHNOLOGIES AND ONTOLOGY MOD-

ELS FOR ENHANCED SECURITY IN ELECTRONIC HEALTH RECORDS," is di-

vided into two parts:
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• Part A, "GPT, ONTOLOGY, AND CAABAC: A TRIPARTITE PERSONAL-

IZED ACCESS CONTROL MODEL ANCHORED BY COMPLIANCE, CON-

TEXT, AND ATTRIBUTE" examines the integration of Generative Pretrained

Transformers, ontology, and Contextual Attribute-Based Access Control to refine

access decisions within EHR systems. This part delves into the theoretical un-

derpinnings and practical implications of the proposed framework, highlighting

compliance, context sensitivity, and attribute specificity.

• Part B, "ENHANCING HEALTH INFORMATION SYSTEMS SECURITY: AN

ONTOLOGY MODEL APPROACH," extends the discussion to ontology models’

role in bolstering EHR security. It explores conceptualization, application poten-

tial, and how it complements existing role-based access control systems.

Chapter 5, "TOWARDS A UNIVERSAL PRIVACY MODEL FOR ELECTRONIC

HEALTH RECORD SYSTEMS: AN ONTOLOGY AND MACHINE LEARNING AP-

PROACH," outlines the development of a universal privacy model leveraging ontology

and machine learning. This chapter argues for a comprehensive and adaptive approach

to EHR privacy, supported by advanced technological solutions.

Chapter 6, "CONCLUSION AND FUTURE RESEARCH", synthesizes the research

findings, reiterates the study’s contributions, and discusses its limitations. Critically

examines the implications of the research for future studies in EHR security and privacy,

suggesting directions for forthcoming investigations.

This thesis aims to contribute significantly to the privacy and security enhancements

in EHR systems, offering a deep, multifaceted analysis of critical issues and proposing

forward-thinking solutions.



Chapter 2

PRIVACY PRESERVATION OF ELECTRONIC HEALTH

RECORDS IN THE MODERN ERA: A SYSTEMATIC

SURVEY

NOTE: The content of this chapter has been published in ACM Computing Surveys.
Nowrozy, R., et al. (2023, July). Preservation of Privacy of Electronic Health Records
in the Modern Era: A Systematic Survey, ACM Computing Surveys. https://dl.acm.
org/doi/abs/10.1145/3653297. Incorporated as Chapter 2.

2.1 Introduction

Electronic Health Records (EHR) contain data on a patient’s medical history in dig-

ital form; therefore, it is extremely important that EHRs are secure, with privacy

and confidentiality being its key goals. The literature indicates the many benefits of

EHRs over traditional paper-based records, such as cost savings, improved quality of

healthcare care, advancement of evidence-based medicine, data collection, and flexibility

[7, 8, 14, 32, 87, 99, 101, 102, 113–117]. To realize these benefits, EHR systems must

satisfy certain requirements and follow several criteria with respect to data completeness,

resilience to failure, high availability, and consistency of security policies [103].

A crucial aspect in the development and implementation of EHR systems is the under-

standing and distinct treatment of Privacy, Confidentiality, and Security (PCS). Histor-

ically, these terms have been used interchangeably in the literature, yet their differences

have significant implications for EHR solutions [7, 114, 118, 119]. Our review of 130

studies on EHR and privacy preservation techniques, spanning 2012 to 2022, aimed to

clarify these distinctions and explore the methods employed to preserve the privacy of

EHRs [8, 102, 115].
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Studies describe EHR systems as unreliable, resulting in compromised patient privacy

[113, 120, 121]. In the past, data and privacy breaches in the healthcare sector exposed

112 million records [105]. A survey in 2018 found health breaches to be the most costly,

surpassing other sectors [8]. Privacy and security acts emphasize the importance of EHR

privacy [7, 10, 102, 104, 105, 122, 123].

In response to these challenges, our findings suggest that access control, blockchain,

cloud-based, and cryptography techniques are commonly employed for EHR data shar-

ing [32, 101, 102]. We have also summarized commonly used strategies and collated a

comprehensive list of differences and similarities between PCS [7, 10]. Furthermore, we

propose a fusion of techniques to enhance PCS in EHRs, summarized in a tabular form

for clarity and ease of understanding [116, 117].

This chapter presents a systematic review of the literature on the tools and methodolo-

gies used to protect the privacy of EHR. The literature review was carried out using

the Kitchenham methodology [124] and examines around 130 publications from 2012 to

2022. This chapter contributes to the literature on the privacy preservation of EHRs for

researchers interested in this domain. First, it shows how EHR privacy can be breached.

Second, it helps to understand the concepts of privacy, confidentiality, and security

(PCS) as separate terms. Third, it presents how different technologies can be imple-

mented to ensure data privacy. Fourth, it identifies areas for future study that require

greater attention so that practitioners and researchers can generate ideas to improve the

privacy of the EHR. However, more research is needed to clarify the understanding of

PCS in relation to EHR.

The rest of this survey is structured as follows. The motivation and background of the

survey is explained in section 2.2. The information in Section 2.3 describes the survey

plan and conduct. Section 2.4 covers the reporting and analyzing of the results. Section

2.5 contains the survey findings, discussion, and limitations. Section 2.6 concludes the

chapter.

2.2 Background

In this section, we introduce the conceptual terms used in the literature review, namely

EHRs and preservation of the privacy of EHRs. Finally, reviews of the literature on

different technologies and the preservation of EHR privacy are briefly reported to explain

the motivation behind this research. Table 2.1 lists the key words and the glossary used

in this chapter.
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Table 2.1: PCS: Privacy, Confidentiality, and Security.

Glossary Description
Privacy In the context of EHR, privacy is defined as the right of individuals

to keep their health information confidential and to control the
access and use of these data. It is a fundamental right of the
patient under various health laws and regulations.

Confidentiality Refers to the ethical and legal duty of healthcare professionals to
protect personal health information from unauthorized disclosure.
It is critical to maintain trust between patients and healthcare
providers.

Security Encompasses the technical and organizational measures to pro-
tect EHR data from unauthorized access, use, disclosure, disrup-
tion, modification, or destruction. Security practices are crucial to
maintaining the integrity and availability of health data.

EHR Manage-
ment

Involves the systematic approach to the management and gover-
nance of EHR systems, focusing on efficient and secure data han-
dling, storage, and exchange, ensuring compliance with legal and
ethical standards.

EHR Systems
and Technolo-
gies

Refers to the hardware, software and methodologies used in EHR
systems. This includes traditional and emerging technologies such
as cloud computing, blockchain, and AI-driven analytics used to
improve EHR functionality.

PCS Frame-
work

Represents the integrated approach to Privacy, Confidentiality,
and Security in EHR systems. It underscores the interrelatedness
of these aspects in ensuring the holistic protection and governance
of health information.

2.2.1 EHR

EHRs comprise patient data in digital form that are securely stored and exchanged and

accessible by multiple authorized users to support the continuous and efficient manage-

ment of integrated healthcare [12–14]. EHRs comprise details of patient medical histories,

including diagnosis, laboratory findings, information about hospital admissions, surgical

procedures, and medications. They describe the patient’s condition, allowing for a more

detailed diagnosis and treatment of the patient [15]. EHRs can be shared with other

healthcare providers when necessary. However, EHRs are prone to various types of secu-

rity and privacy attacks during transmission [15, 125]. In light of its widespread use, the

development of a safe environment for the sharing of EHR has gained a lot of interest in

the healthcare sector. The most recent literature [126–128] indicates that there are many

benefits to using EHR software, including cost savings, increased quality of healthcare

care, advancement of evidence-based medicine, more comprehensive data collection, and

flexibility. Consequently, the term EHR in this chapter refers not only to an electronic

database to store and retrieve health information, but also to a system that can be used

to enforce and maintain completeness of data, resilience to failure, high availability, and
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consistency of security policies. Finally, we acknowledge the different nature of health

information such as Personal Health Records (PHRs) and Electronic Medical Records

(EMRs) and their privacy, but, in this chapter, we focus specifically on the EHR.

2.2.2 EHR Privacy

EHR privacy refers to the protection of patients’ rights over their data, encompassing

both data protection and physical privacy. It involves ensuring that patients have control

over their health-related data, maintained under stringent privacy and security policies

[123]. Privacy in EHRs also includes mechanisms to track data access and transmission,

protect against social or economic discrimination, and foster trust in healthcare systems.

The privacy rights of a patient encompass both their data and their physical privacy.

Trust between healthcare workers and patients is fundamental to the practice of medicine.

The patient must trust the doctor enough to share personal details that can be stressful,

embarrassing, or potentially damaging. A physician must trust that a patient is sharing

enough information to make an accurate diagnosis and that a patient can give informed

consent to treatments that may pose significant risks [129]. An essential component of

trust between the doctor and the patient is privacy. More than two thousand years

ago, Hippocrates emphasized the importance of privacy, and the practice of medicine

has recognized and valued the importance of privacy ever since [130, 131]. Privacy

is one of the main cybersecurity challenges today, and privacy concerns are regularly

addressed in the ubiquitous healthcare system by researchers and end users. Patients

who use EHR systems should have control over their health-related data and these data

should be maintained by stringent EHR privacy and security policies at national and

global levels. This must include actions for compensation for data breaches that have

occurred, not just for those at risk. By doing this, protection from social or economic

discrimination and building trust in the health care system can be achieved. However, it

is necessary to ensure that critical health data remain accessible at the point of care and

that systems are in place to manage privacy protection. Control of patients’ own data

requires appropriate privacy-preserving systems that can also help track who has viewed

a record and to whom it has been transmitted [123]. Regarding information privacy, a

patient has the right to know the personal health data collected on him and the way it

has been used.

Software systems handling personal and important user data such as EHRs are facing

difficulties in ensuring a high level of data privacy [12]. Health-related information should

only be accessed or used by authorized and approved users, such as medical practitioners,

as it is confidential and sensitive data. To ensure the safety and protection of user
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data, extensive rules and standards have been proposed. Strict security measures are

in place to govern the transmission of health data which will result in severe penalties

for non-compliance [12]. In many countries around the world, health information is

centralized at a national level, for example, with the National Health Scheme in the

UK. Whenever a General Physician (GP) updates patient registration information on

their clinical system, Primary Care Support England (PCSE) uses this information to

update the National Health Application and Infrastructure Services (NHAIS) which holds

the National Patient Register. However, NHAIS is different from GP clinical systems

and PCSE cannot see data on GP systems due to privacy concerns [131]. The Royal

Australian College of General Practitioners (RACGP) also created a sample registration

form for new patients. To ensure the privacy of health information, as required by

federal and state privacy laws, the form complies with the RACGP standards for general

practices (5th edition) [130]. If patients have privacy concerns, they can discuss them

with their GP and leave the form blank. But it is not considered a good practice to let

the patient leave the form blank, as the information may be required at any phase of

their treatment, and missing data may result in incorrect treatment.

2.2.3 EHR Confidentiality

Confidentiality in EHRs is related to the protection of identifiable personal health infor-

mation, shared only with explicit informed consent. It ensures that sensitive data are

protected from unauthorized disclosure [132]. Measures such as data encryption and the

adherence to privacy laws are key to maintaining confidentiality in EHR systems [54].

Confidentiality involves the protection of recognizable personal information. It is an

agreement and informed consent procedure that guarantees that an individual’s identity

and personal data will only be shared with another individual or department with their

express informed consent [132–135]. The fact that data confidentiality is unavoidable

should be made known. The access to data can put one’s confidentially at risk, therefore

to ensure the confidentiality of electronic data, it must be encrypted[132]. Confidential-

ity is one of the core concepts of cybersecurity and ensures that private information is

protected from unauthorized disclosure [54].

2.2.4 EHR Security

EHR security focuses on protecting health information from unauthorized access, misuse,

or breaches. Covers authentication, authorization, and access control measures [6, 59].

Security in EHRs involves technical and administrative strategies, with compliance with
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standards such as HIPAA and HITECH being crucial [136]. Security ensures the integrity,

confidentiality, and availability of health information.

EHRs are shared among different systems, raising concerns about patient privacy due to

the possibility of unauthorized access or misuse due to improper security implementation

including authentication, authorization, and access control [6, 59, 137]. Defining access

control strategies and policies is crucial to secure EHR systems. Data security involves

the protection of personal information against accidental or unlawful destruction or acci-

dental loss, alteration, unauthorized disclosure, or access. Ensuring the security of EHR

systems has been an important aspect in designing, implementing, and managing the

shared care paradigm; the requirements for such security and privacy of EHRs need to

be identified to be applicable in EHR systems. To ensure the security and privacy of

EHR while providing shared and interoperable EHR services, healthcare organizations

have highlighted the importance of standards [64, 138]. Examples of such standard devel-

opers and publishers include: Health Level Seven (HL7), HIPAA and Health Information

Technology for Economic and Clinical Health Act (HITECH) in the USA; Canada Health

Infoway in Canada; HEASNET in Japan; and ISO/TC 215, CEN/TC in Europe [136].

ISO 27799 focuses specifically on the information security management perspective for

EHR security rather than the technical perspective. EHR requires interoperability, which

requires information security, including the restriction of unauthorized access, use, disclo-

sure, and modification of data to ensure confidentiality, integrity, and availability [139].

EHR connects through wireless communication protocols which can generate a massive

amount of data at regular intervals, opening the doors for attackers to launch various

security attacks. An insecure technique for Healthcare 4.0 [140] may lead to a breach

of healthcare records where hackers can gain full access to patient email accounts, mes-

sages and reports [141]. Security procedures are used to control access to patient data

to protect it from unauthorized users. This can be achieved with operational controls

within a privacy-protected entity [137, 142].

2.2.5 The Distinction Between EHR Privacy, Confidentiality and Se-
curity

Understanding the distinctions between EHR privacy, confidentiality, and security is

crucial for comprehensive protection of patient data. These concepts are intimately

related, yet distinct in their application and point of compromise in the event of a cyber

attack, as described by the Cyber Kill Chain (CKC) model1.
1https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html
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Figure 2.1: The Cyber Kill Chain illustrating the points of compromise for Security,
Privacy, and Confidentiality in EHR systems

• EHR Privacy: This refers to the patient’s ability to control their health infor-

mation and protect it from unauthorized access. Privacy is compromised when

attackers gain unauthorized access to EHR systems, which can occur at the CKC’s

Installation phase. However, privacy is directly violated when attackers have the

ability to read private patient information, which may happen during Exploitation,

but privacy breach is fully realized in the Installation phase if the data is accessed.

• EHR Confidentiality: Refers to the ethical and legal obligation to keep health

information accessible only with the patient’s explicit consent. A potential breach

of confidentiality occurs during the Command & Control phase when attackers

have the ability to exfiltrate sensitive data. However, confidentiality is definitively

compromised in the Actions on Objectives phase if the data is actually extracted

from the EHR system.

• EHR Security: This involves the technical and administrative safeguards that

protect EHR systems from unauthorized access, data breaches, and cyber threats.

Security is first compromised in the Delivery phase of the CKC when the attack

vector is successfully deployed into the healthcare system.

This alignment with the CKC phases (Figure 2.1) illustrates that while security can

be compromised by the mere success of a delivery mechanism, privacy is specifically

breached when unauthorized viewing of patient information occurs, and confidentiality

is breached when information is extracted and possibly used for malicious intent such as

blackmail or public disclosure.
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2.3 The Survey Plan and Conduct

We used a systematic, comprehensive, reproducible strategy to review articles on methods

and technologies related to EHR privacy to identify and categorize them. We carry out

the survey in three stages , that is, plan, conduct, report [124]. This section discusses

the planning of the survey and how it was conducted.

2.3.1 Planning the Survey

Planning included the following activities:

2.3.1.1 Constructing the Survey Questions

The survey aims to explore the current state of privacy preservation in EHR systems. The

breakdown into five specific survey questions (SQs) serves to provide a comprehensive

understanding by covering various aspects: the methods of sharing EHR data, the role

of privacy in stakeholder engagement, the strengths and weaknesses of EHR systems

in privacy preservation, the distinction between privacy, confidentiality, and security in

EHRs, and the technologies available for maintaining EHR privacy.

SQ1: What EHR data sharing methods are currently available?

Justification: This question is intended to catalog existing EHR data sharing meth-

ods, establishing a foundational understanding of the mechanisms through which

privacy must be maintained.

SQ2: What role does privacy play when sharing EHRs with different stakeholders?

Justification: By examining the role of privacy in stakeholder engagement, this

question seeks to highlight privacy expectations and requirements from various

perspectives within the healthcare system.

SQ3: What are the main strengths and weaknesses of EHR systems in terms of preserv-

ing privacy?

Justification: Identifying the strengths and weaknesses of current EHR systems

provides information on their privacy preservation capabilities and the areas that

need improvement.

SQ4: What is the difference between EHR privacy, confidentiality, and security?

Justification: Clarifying the distinctions between these concepts is crucial, as each

has unique implications for the design of privacy-preserving measures within EHR

systems.
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SQ5: What different technologies are available to preserve the privacy of the EHR?

Justification: This question aims to explore the spectrum of technologies that

can or are being implemented to protect the privacy of EHR, thus forming future

research and development in this area.

Through five targeted questions, the main goal of the survey is to dive into EHR data

sharing, stakeholder privacy roles, and the strengths and weaknesses of EHR systems,

thus providing a comprehensive understanding of privacy concerns in EHR data sharing.

2.3.1.2 The Search Keywords

Following a preliminary analysis of some of the most widely read works on the topic of

protecting the privacy of EHRs, as well as our own expertise, we selected several search

keywords. First, the majority of articles in this field were retrieved using the acronym

EHR. We also selected EMR [14], PHR, security, privacy, confidentiality, secrecy, sharing,

access, and breach as significant terms, since they are often used in relation to EHRs.

Furthermore, since this review focuses on the privacy of EHRs, the difference between

various terms that are used interchangeably (, e.g. PCS) is also mentioned to limit the

focus and explain the confusion among them. The following are the important terms

used in this study.

• Electronic Medical Record (EMR): An EMR is an application environment that

comprises clinical data repository, clinical decision support, controlled medical vo-

cabulary, order entry, computerized provider order entry, pharmacy and clinical

documentation applications that can be confidential in different ways to different

stakeholders [143].

• Personal Health Record (PHR): A PHR is a collection of medical documentation

of an individual maintained by the individual themselves or a caregiver in cases

where the patient cannot do so themselves [14].

• Privacy : Privacy refers to an individual’s control over how much, when, and under

what circumstances they can share details of their physical, behavioral, or intel-

lectual life with others, and their right to restrict other people’s access to their

personal information [144].

• Security : Security is the practice of protecting digital information from unautho-

rized access, corruption, or theft throughout its lifecycle.

• Confidentiality : Data confidentiality means protecting data against unintentional,

unlawful, or unauthorized access, disclosure, or theft [144].
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• Secrecy : Data secrecy means that data is completely unknown and untraceable by

anyone other than the owner and those with whom it has been explicitly shared.

• Sharing : Data sharing is the ability to make a data resource available at various

points.

• Access: Data access is the ability of a user to access or retrieve data stored within

a database or other repository.

• Breach: A data breach exposes confidential, sensitive, or protected information to

an unauthorized person. It is important to note that several spellings (such as

behavior/behavior and modeling/modeling) were also used in the searches to make

sure that no relevant publications were overlooked.

2.3.1.3 Data Collection

Data was collected via three sources i.e. digital libraries namely, Google Scholar, El-

sevier Science Direct, Springer Link, ACM Digital Library, and IEEE Xplore, journals,

and conference proceedings. We found that the search engines of the most well-known

scientific libraries performed differently when the search string was specified. Depending

on the library, multiple methods had to be used to perform the same search (i.e., using

different syntax). There were a variety of alternatives in each library to find content, for

instance, by keywords in the title, abstract, or entire article. As the technologies for data

sharing and privacy research are multidisciplinary, therefore, all searches were carried out

comprehensively. The conference proceedings and articles relevant to the survey and the

studies in the reference lists of selected articles were also examined.

2.3.1.4 Approach to Gathering Data

For our research, data was accumulated from a trio of primary sources, notably digital

repositories including Google Scholar, Elsevier Science Direct, Springer Link, ACM Digi-

tal Library and IEEE Xplore, along with journals and symposium records. The selection

of journals and conference papers was intentionally narrowed to those that contributed

significantly to the domain of privacy and security of EHR. This included authoritative

sources in the realms of healthcare informatics, data protection, and privacy legislation.

A detailed enumeration of these essential journals and symposia is explained in Table

2.2.

The exploration revealed varied responses from the search engines of prominent scientific

databases when specific search queries were entered. The need to adapt methodologies
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Table 2.2: List of Target Journals and Conferences

Journal/Conference Selection Criteria
ACM Conference on Health Informatics Leading conference in healthcare technology
Blockchain in Healthcare Innovative applications of blockchain technology in healthcare
Digital Health and Telemedicine Advances in digital health and telemedicine practices
Emerging Technologies in Healthcare Exploration of new and emerging technologies in healthcare
Health Informatics and Data Analysis Developments in health informatics and medical data analysis
Healthcare Policy and Management Studies on healthcare policy, management, and regulatory compliance
IEEE Journal of Biomedical and Health Informatics Notable for biomedical informatics research
International Conference on Medical Data Privacy Focus on medical data privacy laws and practices
Journal of Healthcare Privacy and Security Specialized in EHR privacy and security
Journal of Medical Internet Research High impact factor, focus on digital health
Medical Data Security and Encryption Research in data security and encryption for medical data
Patient Privacy and Rights Research on patient privacy, rights, and ethical considerations

for identical queries across different databases became apparent (i.e., modifying search

syntax). Each database offered a spectrum of search options, such as pinpointing key-

words in titles, abstracts, or throughout the text. Given the interdisciplinary nature

of data sharing and privacy in research, our search strategy was exhaustive. We also

meticulously reviewed conference papers and journal articles that were relevant to our

study, including those cited in the bibliographies of the selected primary articles.

2.3.2 Conducting Survey

The survey was carried out after the planning phase. Literature review and data synthesis

are discussed in Sections 3.2.1 and 3.2.2 sequentially.

2.3.2.1 Executing Survey

1. Searching digital libraries: the digital libraries detailed in section 3.1.3 were searched

using the search keywords (section 3.1.2).

2. Search for conferences and journals: All conferences and journals (Section 3.1.3)

were searched using search keywords (Section 3.1.2).

3. Searching Backward Snowballing: To identify relevant papers, we searched for

references and citations in the publications which were identified in the first two

rounds.

2.3.2.2 Data Synthesis

The publications were listed in an Excel spreadsheet. The search of digital libraries

yielded 513 relevant publications in four categories, namely, journal articles, conference

articles, review articles and case studies. We only selected articles that had been pub-

lished from 2012 onward, taking into account the more practical and accurate analysis of
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Figure 2.2: Numbers and Percentages of Publication Types

publications. We carefully examined each publication and categorized it into one of the

four categories along with its publication year. We removed any duplicate studies that

resulted in a total of 162 publications (Figure 2.2). Against each category, we made

three further subcategories based on the main topics: a) EHR, b) EHR privacy, c) EHR

security, d) EHR confidentiality, hence reducing the results to 130 publications. The se-

lected publications for the comparative review were based on access control, blockchain,

cloud-based techniques, and cryptography.

2.4 Survey Results

The analysis of the survey results is based on the survey questions (Section 3.1.1).

2.4.1 What EHR data sharing methods are currently available?

2.4.1.1 Cloud-based Sharing

Cloud-based platforms offer advantages in delivering electronic health services by provid-

ing ubiquitous network access, scalability, and cost savings [10, 145]. However, transfer-

ring EHRs to the cloud poses major threats to privacy, data integrity, and confidentiality,

and additional techniques are required to ensure data secrecy. Wang and Song proposed

a cloud-based EHR system that uses an attribute-based cryptosystem and blockchain

technology to solve these security problems, achieving confidentiality, authentication,

integrity of medical data and supporting the sharing of confidential data [145, 146].

The researchers used Attribute-Based Encryption (ABE) and Identity-Based Encryption

(IBE) to encrypt data, ensuring fine-grained access control for encrypted data, and used
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an Identity-Based Signature (IBS) to implement digital signatures. To achieve differ-

ent functions of attribute and identity-based encryption and identity-based signature

in one cryptosystem, they introduced a new cryptographic primitive, called combined

Attribute-Based/Identity-Based Encryption and Signature (C-AB/IB-ES) which elimi-

nates the need for different cryptographic systems for different security requirements. In

addition, they use blockchain technology to ensure that medical data cannot be tampered

with and data sources can be traced. Their technique is a well-defined and encrypted

data sharing method, but its scope is limited to only patients and hospitals and does

not accommodate the needs of various other health workers such as pharmacists, clini-

cians, researchers, etc. but this can easily be extended because of the helpful property

of blockchain to trace data sources.

2.4.1.2 Attribute-based Access Control (ABAC)

ABAC enables attribute-based encryption for secure access to cloud-based EHR systems

[15]. ABE ensures tight data security and records every patient visit as a separate node

in the knowledge graph, facilitating easy querying and faster data access.

2.4.1.3 Role-based Access Control (RBAC)

RBAC [104] in cloud storage gives various types of users different access privileges. This

policy transformation approach enables EHR data to be transferred from a private cloud

to a public cloud with the corresponding transformation in the access control policy.

Conditional or emergency access and authorization are delegated.

2.4.1.4 Encryption-based Sharing

Keyword searchable encryption and proxy re-encryption technology is combined in [115]

for privacy-preserving and secure data sharing for EHR sharing based on consortium

blockchain technology and cloud storage. Proxy re-encryption (a safe cryptographic

method) is used to ensure effective access control of confidential data [147]. The reen-

cryption of cyphertext by the cloud is a relatively good opportunity to enhance the

security of data in the technique proposed by [115]. But keyword searchable encryption

is not clearly described from the user point of view. A privacy-preserving framework

for the control of access and interoperability of EHRs using blockchain technology [11]

is a blockchain-based framework for secure, interoperable and efficient access to medical

records of patients, providers, and third parties, while preserving the privacy of sensitive
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information of patients. Keyword searchable encryption and proxy re-encryption tech-

nology [115], consortium blockchain technology, cloud storage proxy re-encryption cloud

technology ensures that users can find the relevant EHRs and protects data security with

a searchability guarantee that only authorized entities can access the EHRs. It indicates

that the challenging problem of private searching for encrypted data is of independent

interest and deserves further study.

Attribute-based cryptosystems [8, 115, 148–151] encrypt data, ensuring fine-grained ac-

cess control for encrypted data, and use an IBS to implement digital signatures. In-

troduces a new cryptographic primitive, called combined attribute-based/identity-based

encryption and signature. The cloud server may not be fully trusted. A general verifica-

tion mechanism that can be applied to all search schemes is also lacking in the current

literature. There is also no effective countermeasure to penalize a misbehaving server

or user. Security techniques for data sharing may include, but are not limited to, items

such as firewalls, virus checking, encryption, and decryption, as well as authentication

measures.

2.4.1.5 Blockchain-based Sharing

The blockchain-based [9, 102, 105, 147–154] data sharing mechanism [101] offers a se-

cure distributed research data sharing network. It provides a way to specify/control

the parameters of sharing and provides full accountability of access to such data. The

Ancile privacy preservation framework [11] uses smart contracts in an Ethereum-based

blockchain using cryptographic techniques, implementing six separate contracts, thus

improving the efficiency of patient experience and reducing privacy threats. The patient

can be the only node that expressly gives the location of their information. Searchable

encryption based on blockchains [155] guarantees that users can receive accurate search

results without additional verification. It allows cryptographic algorithms to be built

to ensure data integrity, standardized auditing, and some formalized contracts for data

access. Zaghlol [8] proposed a decentralized and hierarchical data sharing method us-

ing smart contracts that offers a secure, private and efficient electronic record sharing

scheme that utilizes smart contracts deployed on a blockchain. It empowers patients

to have control over their records, allowing them to selectively share these with data

users that satisfy their privacy preferences. It also provides patients with access con-

trol over their records and eliminates the need for management services provided by

record-generating parties.
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2.4.1.6 HIPPA/Privacy Act-based Sharing

The HIPAA Security Rule incorporates three safeguards, namely administrative, physical

and technical [156] which encompass a wide array of security techniques that are imple-

mented by healthcare organizations to protect health information in EHRs [115, 157].

HIPPA focuses on compliance with security policies and procedures and the protection of

physical access to protect health information through hardware and software access. In

Europe, sharing health data and access to data is subject to GDPR [158] which provides

subject data rights to EU citizens and is much broader in scope [102].

2.4.1.7 Current Australian MyHR (My Health Record) Sharing

The lack of interaction between health care practitioners and across various settings in the

healthcare sector has been widely observed. Hence, it is possible that the patient’s history

will not be easily available at the time of admission. The implementation of My Health

Record in Emergency Departments (EDs) was undertaken by The Australian Digital

Health Agency and the Australian Commission on Safety and Quality in Health Care

(ACSQHC) which will empower the use of My Health Record by medical professionals

in EDs in Australia.

2.4.1.8 Model-based Sharing

To promote the sharing and integration of patient records, healthcare institutions gen-

erally follow three models: push, pull, and display [105]. Medical data is sent from one

supplier to the other in a push model (, e.g., from an emergency room physician to a chief

care doctor). A provider asks another vendor for data in a pull model (, for example, a

cardiothoracic specialist consults with a primary care physician). A vendor looks at the

registry of another company in the display model. For example, a cardiologist reviews

the X-ray of a patient that was obtained in an emergency clinic. A significant down-

side to these is that evidence is not inspected in a structured manner. In comparison,

in the push model, a new hospital may not be able to view the information that was

’pushed’ to the first hospital if a patient is moved to another hospital. The absence of

an independent audit (such as the compliance audit of Hippocratic Databases (HDB)

[6, 159]) means that the precision of the data is not ensured from the perspective of data

generation to the perspective of data usage. Permission is also given on an informal and

ad hoc level in the pull model. The procedures and guidelines that regulate HDB differ

significantly between territories, depending, among other things, on local experience and

national implementation of privacy policies [130]. This approach helps companies record



42

past information in a metadata format recorded in a log database. Auditors make use of

these records with the help of queries to extract information such as the identity of a user

who accessed a specific record, the time and date of the query, the purpose of access, and

the results of the query. This HDB approach uses relevance-ranking auditing disclosures

that depend on sensitive data tracking. This can lead to misuse compared to the results

of previous queries stored in the backlog. Work in [160] investigated database compliance

issues and improved database system accountability by saving previous data events to

ensure compliance with the company’s top-level policies. The adoption of such meth-

ods includes high human-based validation to perform compliance-validation tasks. This

is due to the incompatibility of the proposed mechanisms to automatically determine

fine-grained requirements.

2.4.2 What role does privacy play when sharing EHR with different
stakeholders?

Data privacy has become an paramount concern in the realm of EHR sharing between

various stakeholders. The intricacies of data privacy in distributed medical research

and healthcare systems revolve around policies shaped by legislative and jurisdictional

directives [16, 17, 161]. These policies require stringent enforcement at the program level,

but often do not provide an ironclad guarantee of privacy protection [162, 163].

Social acceptance of healthcare systems is highly dependent on the scrutiny and improve-

ment of privacy agreements. Implementing health mechanisms that protect privacy can

substantially alleviate public concerns in Australia about the privacy of their data [20].

This requires the adoption of robust mechanisms to protect the privacy of patient data.

However, despite technological advances and automation, privacy risks persist in health-

care data [6, 10].

EHRs, which are easily accessible and necessary for better patient care, pose unique

challenges. Access to the EHR must be balanced with the greatest respect for privacy

and confidentiality [41]. Furthermore, these systems are susceptible to cyber security

risks, including threats from hackers and system failures, underscored by the need for

rigorous governance and audit mechanisms in healthcare applications [148, 164].

Effective governance involves user guidelines and adherence to initial test conformance

during access control run-time. This includes reviewing past data-sharing events and the

permissions granted to each user. Automated solutions for such reviews, while beneficial,

are often challenging and costly [159].
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EHR comprises various elements such as personal, sensitive, private, and historical health

information. Streamlining EHR systems for privacy assurance may benefit from standard

protocols, such as the EU GDPR, which imposes stringent data protection requirements

and penalties for noncompliance [165].

Patient care involves a holistic approach, respecting the preferences and values of the

individual patient in clinical decisions [166]. Healthcare systems utilize sensitive patient

data, which are subject to privacy laws due to their personal nature. Balancing patient

data autonomy and privacy with the public benefit derived from these data is a key

concern for healthcare policy makers and security developers [133].

Access to a patient’s electronic health record is typically granted to various medical pro-

fessionals, necessitating complex access control mechanisms. The use of pseudonymized

or anonymized records for research purposes introduces challenges, especially with regard

to genetic data and the necessity of fine-grained access rules [105].

Protecting sensitive data from unauthorized third-party access requires intelligent audit

systems. The UK National Health System (UKNHS), for example, employs networks for

auditing but faces challenges in ensuring complete and separate audits [163]. Continuous

internal and external audit trials are essential to align operational processes with high-

level policies and to track regulation breaches effectively.

Under GDPR, personal information is broadly defined, which includes a wide range of

data that could identify an individual [11]. Sensitive data require extra safeguards due

to potential risks of discrimination if not handled properly.

2.4.2.1 Differentiation of Health Record Sets.

The categorization of EHR data into distinct sets plays a crucial role in understanding

the complexities of data privacy and access control. We define several Health Record

Sets as follows:

• Health Record Set A = {Personal health information}

• Health Record Set B = {Personal health information, Private health information}

• Health Record Set C = {Personal health information, Sensitive health information,

Private health information, Historical health information}

• Health Record Set D = {Personal health information, Historical health information}

• Health Record Set X = {Health Record A, Health Record B, Health Record C, Health

Record D}
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These categorizations are critical to understanding how various types of information

intersect and combine within the healthcare system. For example, the intersection of

sets A and B of health records can be represented as:

Health Record Set A ∩Health Record Set B = x : (xϵPersonal health information)

∧ (xϵPersonal health information, Private health information)}

which simplifies to the set of all personal health information. Similarly, the union of Sets

B and C can be expressed as

Set B ∪ Set C = {x : (xϵSet B) ∨ (xϵSet C)} = {PHI, SHI, PriHI, HistHI}

This mathematical representation helps visualize the overlap and unique aspects of differ-

ent types of health information, highlighting the complexity of managing privacy across

various data sets.

2.4.2.2 Case Studies in EHR Data Security

Professionals and respective roles Support Professionals Nursing Professionals Medical

Practitioners Diagnosis Professionals Medical Scientists Receptionist, Chemist, Nurse,

Nurse Manager Doctor, Specialist, Psychiatrists Radiologist, psychologists Researcher,

Senior Researcher, Junior Researcher Health Record Set A Health Record Set B Health

Record Set C Health Record Set D Health Record Set X. In a hybrid way, the combi-

nation of healthcare and information technology is an ongoing process, which can bring

many changes to the healthcare discipline. These developments affect the recovery pro-

cess of patients and therefore require diligent data collection. Healthcare is entirely

based on data for service, which poses some questions regarding data access and privacy

preservation. The word secrecy means allowing someone to access patient PII and also

ensures that private data can only be obtained by authenticated individuals. Ensuring

that these sensitive data are kept secure from eavesdroppers or trespassers is related to

the term protection, which ensures that the device is capable of protecting the private

data of users from strangers [113]. Therefore, the privacy risks and attack possibilities

that patients’ EHR data may encounter and the various techniques used to handle these

attacks are discussed below.

Case I: EHR is accessed by an intruder: The authentication server will control the

intruder. This authentication server uses the RADIUS (Remote Authentication Dial-In

User Service) protocol, based on server/client service. The protocol is designed in such a

way that users’ information is passed from clients to RADIUS servers and acts based on
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a returned response. In this RADIUS protocol, it first receives the connection requests

of the users, followed by user authentication, and the necessary information is processed

to the client to offer service delivery. Several methods are supported by the RADIUS

server for user authentication. After the user logs in to this server with their user ID

and password, the users are offered many authenticated mechanisms such as UNIX,

CHAP, PAP or PPP login. In general, an Access Request query of the NAS and the

server response (Access Reject/Accept) constitute the user log-in. The RADIUS server

searches for the username from the database after receiving the NAS access request. It

loads the default profile, or an Access-Reject message is sent when the RADIUS server

does not find the required username from the database. The Access-Reject message is

simply a text message that provides the reason for refusal.

Case II: X tries to masquerade as Y: The permissions list is maintained by the

ACL server that combines the EHR data of patients such as drug-related data, neonatal

data, sexual health data, etc. The ACL specifies what data access is granted to system

processes or users and their operations. The operation and a subject are specified in all

entries of the ACL. For example, an ACL file has been read, and Alice is given permission

to read a specific EHR type. When an EHR type operation is requested by subject X,

the ACL is checked by the operating system to determine its legitimacy. However, there

are certain challenges with the ACL model, such as how to edit the control access lists,

for example, what access is granted to processes and users. An alert will be generated

by the system, and the relevant personnel are informed when subject X does not have

data access.

Case III: Unauthorized access to patient EHR through the ACL server: In

this scenario, subject X attempts to bypass the Access Control List (ACL) server to

illicitly obtain specific patient EHR data. The protocol requires robust authorization

mechanisms, where X is required to acquire a legitimate authorization key from the au-

thorization server to access any EHR data. This key is a critical component in protecting

patient information, as it enables only authorized personnel to retrieve EHR data. The

underlying principle emphasizes the importance of strict access controls in preventing

unauthorized data breaches, aligning with security frameworks. In this context, the

ACL server functions as a gatekeeper, ensuring that access to sensitive EHR data is

tightly regulated and complies with HIPAA guidelines.

Case IV: System operators try to abuse patient EHRs: The proposed model uses

homomorphic encryption on its database server which encrypts patient EHR data. The

advantage of this type of encryption is that patients can modify their information and

system operators do not need to have knowledge about this. The operators also do not

know in which profiles this modification has occurred.
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Case V: Restriction on Patients Accessing Other Patients’ EHRs: This case

explores the scenario in which a patient attempts to access or allow access to another

patient’s EHRs. The system’s authentication server plays a critical role in this context,

rigorously authenticating each patient upon entry into the system. Each patient is as-

signed a unique private EHR decryption key, which fundamentally prevents them from

accessing or decrypting other patients’ EHR data. This design principle adheres to the

concept of ’Least Privilege’ ensuring that individuals have the minimum level of access

or permissions necessary to perform their functions. The architecture of this system

inherently protects against the possibility that patients compromise the EHR data of

other patients, thus reinforcing the security protocols recommended in the healthcare

data protection guidelines.

Case VI: Man in the Middle Attack: There is no possibility for a man-in-the-middle

attack to occur in this proposed framework. For example, consider cases where patient

EHR data have been used or updated. (i) Update in the cloud server: Patient consent,

ACL server, and authentication server are in place to ensure access and authentication

right to update the patient profile by any EHR user. These servers maintain a session

mechanism to protect them from man-in-the-middle attacks. (ii) Display and update at

the end of the doctor: If the patient’s EHR data is accessed by physicians / specialists, it

is assumed that the patients are available for the session. The encrypted EHR data from

the server is used by physicians. Then the private key provided by the patients is used

to decrypt and use the EHR information. If updates are needed with this information,

doctors will use the patient’s private key to encrypt the data and then save it on the

server. Hence, there is no possibility for a man-in-the-middle attack since the EHR data

are encrypted.

2.4.3 What are the main strengths and weaknesses of EHR?

The implementation of EHR represents a transformative change in healthcare care man-

agement and patient care around the world. Moving away from conventional paper-based

records, EHRs offer a more dynamic, efficient, and accurate way of handling patient

health information. Integration of EHR systems is a response to the growing need for

coordinated patient-centric care that relies on prompt and accurate exchange of health

data. In this section, we will perform a detailed examination of the strengths and weak-

nesses of EHRs, addressing the multifaceted impact they have on the healthcare sector.

The analysis is structured into two distinct parts: The first part explores the various

advantages that EHRs offer, such as improved patient care, improved data manage-

ment, and overall efficiency of healthcare services. The second part critically assesses the
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challenges and limitations faced by EHR systems, focusing on privacy concerns, opera-

tional complexities, and integration hurdles with existing healthcare frameworks. This

structured approach ensures a comprehensive evaluation of electronic health records,

highlighting their significant role in modern healthcare, while also acknowledging the

complexities involved in their application.

2.4.3.1 Strengths of EHR

The electronic health record (EHR) system, distinct from the Electronic Medical Record

(EMR), offers a more comprehensive patient information repository [26]. Its strengths

lie in its ability to support detailed analyses of clinical care and subgroups of patients,

particularly those requiring palliative care [27, 28, 167–170]. Integration of social deter-

minants into the EHR improves the delivery of high-quality accountable care [27, 32, 171].

Benefits include improved care levels, increased patient safety, simplified processes, and

cost reduction [32]. EHRs facilitate better creation, decision-making, and promotion

of health policy [172]. The continuous use of the EHR improves communication, qual-

ity of care, reduces medical errors and waste, and transforms the healthcare industry

into an information-rich sector [173, 174]. The support of EHRs for Decision Support

Systems (DSS) and Intelligent Systems (IS) is notable [117]. The HITECH Act sig-

nificantly increased EHR adoption, improving care quality in the NHS [32, 175, 176].

EHRs have led to early disease diagnosis, reduced medication errors, compliance with

care adherence, and reduced costs [177, 178]. Other specific advantages include the man-

agement of epidemics, informed decision making, care coordination, patient satisfaction,

and evidence-based care advancement [32]. The strengths of SWOT analysis highlight

the timely access and storage capacity of information [41].

2.4.3.2 Weaknesses of EHR

Despite the extensive benefits that EHR systems offer, they are not devoid of weaknesses,

particularly in the areas of security and their interconnection with privacy concerns. The

initial stages of the implementation of the EHR revealed significant challenges related to

data input, security, resource allocation, and concerns about cost and ROI [179]. Among

these, data security and privacy issues stand out due to their potential to undermine the

integrity and confidentiality of patient information.

Security vulnerabilities in EHR systems can lead to unauthorized access, data breaches,

and possible misuse of patient information. These issues are critically interwoven with

privacy concerns, as both aim to safeguard patient data, albeit from slightly different

perspectives. Security measures are mainly focused on protecting data from external
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threats and ensuring data integrity, while privacy measures aim to control access to data

based on consent and necessity [174].

The complexity of ensuring robust security in EHR systems is highlighted by the lack

of system harmony and the occurrence of patient matching problems, which can create

loopholes for security breaches. Furthermore, the intricate workflows associated with

EHR and the possibility of insecure data storage increase the risk of data compromise,

adding to the physician’s burden and potentially affecting patient trust in the healthcare

system [32].

To mitigate these risks, it is imperative to adopt advanced security measures that can

protect against the ever-evolving landscape of cyber threats. This includes enhancing

encryption methods, strengthening authentication protocols, and implementing compre-

hensive access control mechanisms to ensure that only authorized personnel can access

sensitive patient information. Addressing these security challenges is crucial not only for

protecting patient data but also for maintaining the confidentiality and integrity of EHRs,

thus supporting the overall objective of improving healthcare care delivery [151, 180].

Table 2.3 discusses potential solutions to these challenges, emphasizing the need for

continuous improvement in security measures as an integral part of the development and

management of the EHR system.

2.4.4 What is the difference between EHR Privacy, Confidentiality
and Security?

Every health care organization ( for example hospitals) is responsible for protecting pa-

tients’ privacy by ensuring that their electronic health records are secure and confidential

[181]. The terms privacy, confidentiality, and security tend to be used interchangeably in

the existing literature; however, they refer to different individual protections that may

overlap but are not exactly the same [54, 182–188]. Ensure that personal information

is secure is one of the most important components of securing someone’s data. This

involves protecting one’s privacy, maintaining data privacy, and / or allowing data to re-

main anonymous [183]. Security breaches often occur not as the result of a sophisticated

technical failure, but as the result of a mistake made by someone with authorized access

to information [54]. It is also an individual’s choice to disclose their problem in front of

people [187].

Privacy is sometimes confused with confidentiality and security. The right to confidential-

ity is based on the fundamental rights to privacy and ’informational self-determination’,
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Table 2.3: EHR Complications and Potential Solutions

Key Issues Potential Solutions
Redundant credentials Streamline documentation by identifying and fo-

cusing on clinically relevant data points that of-
fer the highest utility in patient care manage-
ment. Consider the adoption of standardized
templates that have been recognized for their ef-
ficiency in various healthcare settings.

Multiple steps and complicated
EHR workflows

Reengineer process flows to align with best prac-
tices for clinical workflow optimization. Employ
user-centered design principles to create inter-
faces that reduce cognitive load and administra-
tive burden on clinicians. Delegate appropriate
data entry tasks to support staff trained for this
purpose.

Need for automation with new tech-
nologies

leveraging emerging technologies such as natu-
ral language processing and machine learning to
automate routine tasks. Explore the integration
of voice-to-text functionalities and interoperable
devices to streamline data capture and entry.

Closed EHR software platforms Advocate for open-platform approaches that al-
low customization and integration of third-party
applications. Embrace models that foster a col-
laborative ecosystem, prioritizing enhancement
of the clinician’s user experience and specialty-
specific functionalities.

Information resting in silos Promote the development and adoption of
industry-wide standards for Application Pro-
gramming Interfaces (APIs) to facilitate robust
data exchange. Emphasize the importance of
interoperability as a means of achieving a more
holistic patient record and improve continuity of
care.

Poor user experience Prioritize the simplification of user interfaces
and improve mobile optimization. Recognize the
increasing prevalence of mobile device usage and
the need for responsive design that adapts to var-
ious screen sizes and user contexts.

which are related to protection of personal data [165]. An operational definition of pri-

vacy is the fair and authorized processing and access of personal information [87]. How-

ever, confidentiality is a different concept and includes more than data protection rights

(Figure 2.4). Firstly, confidentiality works downstream of privacy, and for confiden-

tiality to be legally "triggered", privacy must have already been disclosed. Furthermore,

the right to privacy is called a ’negative’ right because it claims non-interference with

information belonging to the private sphere [101]. Privacy and confidentiality are among

the inalienable rights of all human beings that contribute to the preservation of a sense
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of reverence and dignity [135]. Privacy refers to an individual’s control over how much,

when, and under what circumstances they may share details of their physical, behavioral,

or intellectual life with others, and their right to restrict other people’s access to their

personal information [144]. Privacy requirements typically arise in two forms. First,

many organizations adopt privacy policies based on their own ethical sense of proper

information handling. Second, a variety of laws and regulations impose privacy require-

ments on institutions and organizations [54]. Data security is the use of logical, technical,

administrative, and physical safeguards to ensure the confidentiality, integrity, and avail-

ability of data. But confidentiality prevents authorized access to nonpublic information

that two or more parties have agreed to restrict [87]. Thus, confidentiality means that

providing information to another person will result in a commitment on their part not

to reveal it to anyone else [144]. In clinical contexts, hospitalized patients have limita-

tions that may jeopardize their privacy and therefore have serious consequences. [102].

Furthermore, a commitment to confidentiality provides the basis for trust in therapeutic

communication.

Table 2.4: Clarifying the Components of Information Security

Component Definition Role in Information Security

Confidentiality The principle that information
should not be made available or
disclosed to unauthorized indi-
viduals, entities, or processes.

Confidentiality is a key aspect of infor-
mation security that involves restrict-
ing access to information to protect per-
sonal privacy and proprietary knowl-
edge.

Integrity The assurance that information
is trustworthy and accurate and
has not been tampered with
or altered by an unauthorized
party.

Integrity is crucial for maintaining the
trustworthiness of information systems
and ensuring that data are not altered
in an unauthorized manner.

Availability The guarantee that authorized
users have reliable and timely ac-
cess to information and associ-
ated assets when needed.

Availability is essential for ensuring
that information systems operate effec-
tively and that data can be accessed
when required.

Security A broader term that encom-
passes the practices and proce-
dures designed to protect infor-
mation from unauthorized ac-
cess, use, disclosure, disruption,
modification, or destruction.

Security as a whole is built on the prin-
ciples of confidentiality, integrity, and
availability, often referred to as the CIA
triad. Each component plays a distinct
role in the protection of information as-
sets.

The privacy issue is one that often applies to the right of patients to protect their

information from any other person. It involves the protection of vulnerable data such
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as personal data, demographic data, disease symptoms, medical history, test reports,

medication record etc. from being openly disseminated to others (specialists, radiologists,

pharmacists, researchers etc.). In general, privacy is the individual’s right to keep their

data private. Confidentiality is a similar idea, but with a slightly different component.

Confidentiality agreements are often applied to situations where someone trusted with

personal data must protect these data from being released. Alternately, some studies

define confidentiality as issues about the data that get collected, where privacy issues have

to do, again, with the core principle of an individual not being recorded or monitored.

Security is a different term that is applied to organizational systems. Security may

include the idea of customer privacy, but the two are not synonymous. Likewise, security

may provide for confidentiality, but that is not its overall goal. The overall goal of most

security systems is to protect the healthcare organization, which may or may not house

many patient data. Sometimes, the objectives for privacy and security are the same.

In other cases, security may not automatically cover privacy concerns. An example is

where a healthcare organization may be able to keep its data safe from outside attackers,

but where staff (doctors, nurses) may be able to view patient information. Another

scenario might involve situations where an organization (e.g. hospital), doesn’t face any

liability by releasing patient data and so chooses to do so. Here, hospital security is not

jeopardized, but patient privacy is violated. The studies in [87, 189] describe three areas

of overlap between privacy and information security:

• Integrity (information security) and accuracy (privacy): The integrity requirement

of information security overlaps with the privacy accuracy requirement in that both

are designed to ensure that data are not altered without both authentication and

authorization.

• Availability (information security) and access (privacy): Information security avail-

ability requirement supports privacy access requirement because if the data is not

available, it cannot be accessed.

• Accountability (both): Both information security and privacy doctrines require

data owners and custodians to be responsible for protecting data according to the

respective protection regimen, which is a form of accountability.

Between privacy and confidentiality, privacy is about personal or private i.e. while

security and privacy are interdependent, security can be achieved without privacy, but

privacy cannot be achieved without security. Security protects confidentiality, integrity,

and availability of information, whereas privacy is more granular about privacy rights

with respect to personal information. Privacy prevails when it comes to processing

personal data, while security means protecting information assets from unauthorized
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access. Personal data may refer to any information concerning any individual such as

names, addresses, credentials, financial accounts information, social security numbers,

etc. [189].

To ensure a high degree of privacy and protect user data in the EHR system, various

criteria must be met. Privacy advocates and regulators have devised viable strategies that

promote privacy protection, similar to the GDPR, which is a collection of rules that gives

EU citizens more control over their personal data. Under the GDPR, organizations are

obligated to ensure that personal data is collected legally and under strict conditions.

Furthermore, those who collect data can be legally liable for any resulting misuse or

exploitation in the event of any negligence. The Data Protection Act 2019 works similarly

in the USA [190]. Healthcare data have value and are attractive to cyber criminals who

wish to inflict data extortion attacks. The overall performance of healthcare systems is

affected by this unauthorized access [113, 120, 149].

Many researchers and policy acts have addressed and emphasized the privacy of patient

EHRs [7, 8, 10, 102, 104, 105, 122, 123]. The work in [8]illustrates that there is a lack

of security in current EHR frameworks, a lack of privacy for patients, and an unreliable

method of transmitting their health data, especially in urgent situations. Due to the

high need for data privacy, HIPAA and HITECH have implemented many EHR safety

protections in the US [156]. The GDPR guidelines have been implemented to ensure

data protection and subsequent rights for EU citizens [158]. In Australia, 13 privacy

principles have been implemented in relation to the use, disclosure, and sharing of per-

sonal information [191, 192]. Although they have local and international privacy policies,

EHR systems have faced many data breaches, which resulted in a lack of trust in using

existing health record systems.

2.4.5 What different technologies are available to preserve the privacy
of EHRs?

A range of information (sharing) security and privacy strategies have been introduced

and implemented, but the cloud, NLP, cryptography, and blockchain are seen as the

most effective [104, 115, 156, 193, 194]. We divided the various techniques and tech-

nologies for preserving EHR privacy into the following four categories: for our review as

ABC i.e. .Access Control Techniques, Blockchain Techniques, Cloud-based Techniques,

Cryptography Techniques.
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Figure 2.3: Distribution of Research Articles from 2013 to 2022

2.4.5.1 Access Control Techniques

Table 2.5: Categorization of Technologies, ABC (Access Control, Blockchain, Cloud-
based, Cryptography)

Strengths Limitations Included papers References

Access control

1. Limits ac-

cess rights to

unauthorized

users

2. Gives patients

greater con-

trol

3. Reduces

adminis- tra-

tive overheads

4. Provides

granular- ity

of system

priv- ilege

management

1. reliance on manual in-

put

2. constant need for

maintenance

3. too many roles as-

signed to a person may

lead to role explosion

causing security holes.

Papers that focus on al-

lowing role-based access

to handle various types of

users who possess differ-

ent access privileges. Pa-

pers that discuss a hierar-

chical access structure to

grant access to authorized

users and limit access

rights to other users in the

public domain, smart con-

tracts for decentralized

data sharing and provid-

ing patients with access

control over their records

and eliminating the need

for management services

provided by the record-

generating parties.

[87, 101,

151, 175,

180, 184,

195–200]

Blockchain

Continued on next page
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Table 2.5 – continued from previous page

1. Immutability

2. Transparency

3. Reliability

4.

Interoperability

5. Data prove-

nance

1. Block timestamp de-

pendency

2. Re-entrancy problem

3. Unchecked and failed

send

4. No restricted transfer

Papers that focus on

blockchain-based strate-

gies for healthcare, the

mitigation of problems as-

sociated with the privacy

and in- tegrity of pa-

tient information, the fea-

tures of blockchain, such

as immutabil- ity, trans-

parency and reliability,

and other factors. Papers

also include a blockchain-

based framework for stor-

ing EHRs, aiming to

tackle problems such as

response time in data ac-

cess, interoperability, and

better data quality.

[13, 87,

114, 121,

123, 160,

164, 176,

181, 185,

201–205]

Cloud-based Techniques

1. Large scale

and on-

demand

storage

2. Easy Data re-

covery

3. Syncing and

updating

4. Mobility

5. Quick deploy-

ment

1. Downtime due to

power failure

2. Provider login

3. Platform dependency

4. High variation in cost

due to implementation

of additional applica-

tion

Papers that focus on tech-

niques to en- sure the in-

tegrity and traceability of

medical data over a net-

work, frameworks/model-

s/taxonomies that that

sup- port the improve-

ment of user security over

a network.

[8, 106,

115, 129,

146, 156,

158, 165,

187, 190,

206–208]

Cryptography

Continued on next page
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Table 2.5 – continued from previous page

1. Authorization

2. Consistency

3.

Confidentiality

4. No Data

Voilation

5. Encryption Is

On The Data

1. The size of the key pro-

vides a lower bound

on the security of the

cryptosystem.

2. The hash function can

be tempered by two

arbitrary inputs that

have the same hash

value.

3. Information avail-

able from physical

implementation of

cryptosystem can be

attacked

Papers that include

cryptographic techniques

and methods such as:

privacy- pre- serving

medical record searching

scheme for intelligent di-

agnosis, guarantee a tight

data security, securely

invoke and share past

medical records to make

diagnosis. Papers also

cover the use of secure

searching without leaking

any other information on

the two parties.

[6, 20, 141,

151, 158,

174, 188,

191, 196,

204, 209,

209, 210]

Several EHR services are based on blockchain, cryptography, or cloud (Table 2.5). Most

of the proposed approaches do not provide an attribute-based access control and encryp-

tion mechanism. Various access control models have been proposed, namely mandatory

access control (MAC), RBAC [11] and ABAC [211, 212]. Modeling access control policies

has been a topic of interest. XACML is a policy model based on the XML specification

language [185, 213] that uses attributes to impose access control [3, 15].

EHR System with role-based access control(RBAC) [104]: This enables various

types of users to have different access privileges. Its hierarchical access structure grants

access to authorized users and limits access rights to other users in the public domain.

The policy transformation approach enables EHR data to be transferred from a private

cloud to a public cloud with the corresponding transformation in the access control policy.

HIPAA three tier themes with respect to administrative, physical, and techni-

cal safeguards [156]: These three safeguards encompass a vast array of security tech-

niques that healthcare organizations implement to further secure and protect the health

information contained within the EHR. It focuses on compliance with security policies

and procedures to prevent physical access to protected health information through unau-

thorized access to hardware and software by unauthorized users.

ESPAC: This implements granularity authorization for data queries, based on ABE in

eHealth [26, 143, 196].

Access control scheme: This is based on elliptic curve cryptography, but there is no

support to control access granularity in the proposed authorization process [143, 213].
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GAA-FQ (Granular Access Authorization Supporting Flexible Queries): This

comprises an access model and an access authorization scheme. Unlike existing blockchain

schemes, this access model can authorize different levels of granularity of authorization,

whilst maintaining compatibility with the underlying blockchain data structure. Further-

more, the authorization, encryption, and decryption algorithms proposed in the GAA-FQ

scheme eliminate the need to use a Public Key Infrastructure (PKI) and hence improve

the computation performance needed to support more granular and distributed, yet au-

thorized, EMR data queries [143].

In addressing the robustness of security measures for Electronic Health Records (EHR), it

is pivotal to acknowledge the role of Multi-Factor Authentication (MFA). MFA introduces

an enhanced layer of security by requiring multiple user verification forms before allowing

access to sensitive data [105, 147]. This methodology significantly mitigates the risk of

unauthorized access by amalgamating various forms of verification: something the user

knows (such as a password), something the user possesses (such as a security token

or mobile application), or an inherent personal attribute (biometric verification, e.g.,

fingerprint or facial recognition) [11, 148].

2.4.5.2 Blockchain Techniques

The blockchain, originally proposed in 2008 and used since 2009 [214], is fundamental in

the establishment of the Bitcoin network and facilitates non-third-party transactions. Its

applications span financial services, reputation management, and the Internet of Things

(IoT). In healthcare, blockchain is critical for secure data transmission, particularly in

the privacy of electronic health records [155, 191], biomedical data [154, 213] and e-health

data sharing [11]. Features such as immutability, privacy, transparency, decentralization,

and distributed ledgers enhance its appeal [148, 209, 214, 215].

Various scholars suggest the blockchain for increased accuracy, security, and privacy

preservation[17, 121, 189, 216]. However, challenges include cultural changes, multiple

access nodes, and implementation of a centralized system [138, 146, 217].

Comparative Analysis of Blockchain Solutions:

• MedRec and MediBloc both utilize blockchain for EHR management but differ in

their approach. MedRec uses a combination of blockchain for metadata storage

and Distributed Hash Table (DHT) with InterPlanetary File System (IPFS) for

actual data, using Ethereum smart contracts for access control [150, 213, 218].

MediBloc, however, centralizes the patient as the data flow medium, emphasizing

patient-centric data usage and data sovereignty in healthcare care [219, 220].
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• Decentralized Medication Management System (DMMS) and Medical Chain demon-

strate the use of blockchain for prescription management and patient access con-

trol, respectively. Although DMMS focuses on encrypted prescription sharing [221],

Medicalchain uses Hyperledger Fabric for patient-controlled data access [197].

• Blockchain-Based Data Sharing Mechanism [101] and Blockchain-based searchable

encryption [155] highlight the role of blockchain in secure data sharing and accurate

search results in research networks, focusing on cryptographic algorithms and data

integrity.

• Estonia’s healthcare system and Healthcare Data Gateways (HDG) integrate blockchain

for data integrity and security. Estonia’s system uses Keyless Signature Infrastruc-

ture (KSI) blockchain [203, 222], while HDG focuses on access granularity and

attribute-specific data queries [143, 205].

The consensus algorithms used in these solutions vary. For instance, Ethereum-based

systems like MedRec typically employ Proof of Work (PoW) or transition to Proof of

Stake (PoS), while Hyperledger Fabric used in Medicalchain and OmniPHR opts for

more customizable consensus mechanisms.

Incorporating these comparative aspects provides a subtle understanding of blockchain’s

versatility and adaptability in healthcare, particularly in enhancing EHR privacy and

security.

Taxonomy of Blockchain systems:

• Public blockchain: Open to anyone to join, such as Bitcoin [123] and Ethereum

[149, 195].

• Private blockchain: Requires invitation or authorization, e.g., MultiChain [121]

and GemOS [151].

• Consortium blockchain: Semi-private, used by authorized organizations, exempli-

fied by Hyperledger Fabric [216] and Ethereum for consortium blockchains.

Blockchain, while promising, has limitations such as slow processing, scalability issues,

privacy challenges, and high energy consumption [147]. Understanding these subtleties

is crucial for the advancement of blockchain applications in healthcare, particularly for

the privacy of EHR.

Blockchain based strategy A Survey of Blockchain-Based Strategies for Health-

care: A blockchain-based strategy can mitigate problems arising from issues threatening



58

the privacy and integrity of patient information, due to blockchain’s immutability, trans-

parency and reliability [215].

MedRec [150]: This is a blockchain-based framework for storing EHRs that aims to

address problems such as response time in data access, interoperability, and data quality.

MedRec [218] is a blockchain-based decentralized record management system to handle

EHRs. Meta-data are stored on blockchain and the real data is stored on Distributed

Hash Table (DHT) by using Inter Planetary File System (IPFS). A smart contract is

used for access control and there is a transaction fee [180, 202].

MedShare: A MedShare-based solution involves a system consisting of four layers: (i)

User layer: the data will be accessed through a graphical interface; (ii) Data query layer:

a group of structures that process and respond to query requests in the system; (iii)

Database infrastructure layer: a layer composed of the system databases, to which only

a few specialist institutions have access; (iv) Data structuring and provenance layer:

responsible for processing within the system; in other words, it is the layer that contains

the adopted blockchain network structure, consensus protocol, node authenticator, and

smart contracts. It offers features such as data provenance, auditing, and greater security

for systems [223].

Medicalchain: This was built with the help of a permissioned blockchain from Hy-

perledger Fabric. The application enables patients to have access controls for all their

information, as well as being able to handle their healthcare data in a personalized way

[197].

MediBchain: : A novel blockchain-based EHR automation system for healthcare. It is

a patient-centric healthcare data management system that uses blockchain as storage to

maintain privacy. A decentralized feature of blockchain technology is that it eliminates

vulnerabilities to protect data and maintain privacy and security [224, 225].

Decentralized Medication Management System (DMMS): A novel blockchain-

based EHR automation system for healthcare. A physician examines the patient and

writes a prescription. The prescription is encrypted with the patient’s public key and

no one can access the patient’s record without their private key. The patient can view

his record and, at the same time, the doctor can also view the patient’s record with the

approval of the patient [221].

Healthcare Data Gateway app: This is a blockchain-based security & privacy system

for biomedical and healthcare. Information exchange systems enable patients to own,

control, or share data securely without infringing privacy, offering a new way to improve

healthcare systems while maintaining patient data confidentiality [205].
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Blockchain-Based Data Sharing Mechanism [101]: This provides a secure dis-

tributed research data sharing network and a way to specify/control the parameters of

sharing, providing full accountability of access to such data. Blockchain based search-

able encryption [155]: This guarantees that the data user can receive accurate search

results without additional verification. It enables cryptographic algorithms to be built

to ensure data integrity, standardized auditing, and some formalized contracts for data

access.

Decentralized and Hierarchical Data Sharing using Smart Contracts [8]: This

scheme empowers patients by giving them control over their records, allowing them to

selectively share data with users that satisfy their privacy preferences. Give patients

access to control over their records and eliminate the need for management services

provided by record-generating parties.

Estonia health care system and Personal Care Record Platform (MyPCR):

It is related to health data with its requirements, challenges, and existing techniques for

data security and privacy. It use Keyless Signature Infrastructure (KSI) blockchain to

ensure the integrity and security of the data in its system [203, 222].

Healthcare Data Gateways (HDG): Its access granularity is based on blocks. It

cannot support data queries to specific data attributes in blocks or restrict access autho-

rization to these attributes [143, 205].

Ancile, Privacy-preserving framework for access control and interoperability

of EHR using blockchain technology [11]: A blockchain-based framework for secure,

interoperable and efficient access to medical records by patients, providers, and third

parties while preserving the privacy of patient sensitive information. This framework,

Ancile, utilizes smart contracts in an Ethereum-based blockchain for increased access

control and data obfuscation and employs advanced cryptographic techniques for greater

security.

Decentralized and Hierarchical Data Sharing Using Smart Contracts [8]: This

is a decentralized blockchain technology to mitigate security issues, privacy concerns,

and the inefficiencies of various centralized platforms such as financial systems. It is a

secure, private, and efficient electronic record sharing scheme that utilizes smart contracts

deployed over a blockchain.

MediBloc [219]: This is an open source healthcare data platform built on blockchain

that can secure and integrate diffused data from numerous organizations. It can track a

person’s daily movements using smartphones, fit bands, smart watches, etc. [204] but it

has performance, scalability, and energy consumption issues. Medibloc also uses meta-

data, however, the operations are different. In MediBloc, patients are the medium of
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data flow and exchange and utilize their health data as needed [220]. Integrates multiple

hospital records into one secure decentralized ledger to establish a medical record data

base on blockchain. MediBloc uses a public blockchain that allows anyone to access

transactions. Minimize the risks of personal healthcare information leakage and maximize

the credibility of medical records. It also provides reliable, personalized, and patient-

centric health information. MediBloc ensures the privacy of health information and

improves data sovereignty in the medical ecosystem [57].

OmniPHR [226] uses the concept of blockchain (linking blocks) to store data that is

broken into small pieces as blocks. The system improved interoperability, storage, and

scalability. The data stored on the blockchain are encrypted with a key that is generated

and stored by the body sensor node. This system can only be used for body sensor

networks (wearable devices); however, PHRs include health data from various resources.

MedVault [147] also stores health care data on blockchain and is a privacy-preserving

system. It is an attribute-based authentication system that enables EHR sharing in a

patient-centric manner. But their study results showed that MedVault performed well

supporting all types of EHR subjects, but not with patient and physician subjects. This

is mainly due to the fact that MedVault considers EHR accessibility on only all data

sets, data elements, and transactions. In addition, it ignores the non-exposure of patient

data. [160, 212].

Blockchain-Based Deep Learning as-a-Service (BinDaaS): is an architectural

framework for secure transmission of EHRs [199, 201]. Integrates blockchain and deep

learning techniques to share EHR records between multiple healthcare users.

Table 2.6: Comparative Analysis of Blockchain-based Solutions for EHR

Solution Blockchain Technology Consensus Algorithm
MedRec [150, 180, 202, 218] Ethereum Proof of Stake (PoS)
MedShare [223] Custom Blockchain Not Specified
Medicalchain [197] Hyperledger Fabric Practical Byzantine Fault Tolerance (PBFT)
MediBchain [224, 225] Custom Blockchain Not Specified
Decentralized Medication Management System (DMMS) [221] Custom Blockchain Not Specified
Healthcare Data Gateway app [205] Ethereum Proof of Work (PoW)
Blockchain-Based Data Sharing Mechanism [101] Custom Blockchain Not Specified
Decentralized and Hierarchical Data Sharing using Smart Contracts [8] Ethereum Smart Contracts
Estonia healthcare system and MyPCR [203, 222] KSI Blockchain Not Specified
Healthcare Data Gateways (HDG) [143, 205] Custom Blockchain Not Specified
Ancile [11] Ethereum-based Smart Contracts
MediBloc [57, 204, 219, 220] Public Blockchain Not Specified
OmniPHR [226] Custom Blockchain Not Specified
MedVault [147, 160, 212] Private Blockchain Practical Byzantine Fault Tolerance (PBFT)
Blockchain-Based Deep Learning as-a-Service (BinDaaS) [199, 201] Custom Blockchain Not Specified

Table 6 presents a concise comparative analysis of key blockchain-based solutions in the

EHR domain. Highlights various approaches adopted by these solutions, categorizing

them according to their distinct blockchain technologies and consensus algorithms. This

table is an essential tool for readers to understand the diverse applications of blockchain

in EHR, particularly to enhance privacy and accessibility. By detailing the technical
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foundation of each solution, the table helps to understand the critical factors that con-

tribute to the security, scalability, and effectiveness of these solutions in managing EHR

privacy and accessibility concerns.

2.4.5.3 Cloud-based Techniques

Cloud-based platforms are useful for delivering electronic health services with ubiquitous

network access, scalability, and cost savings. Transferring electronic health records to

the cloud poses major threats to privacy, data integrity, and confidentiality, and ad-

ditional techniques are required to maintain data secrecy. Cloud-based utility services

(such as storage) offer additional benefits to EHR systems: for example, they are more

cost effective, can be easier to manage (for example, access and retrieval), and support

collaboration, with mobile technologies and devices to gather data [217].

Cloud-based EHR system Using Attribute-Based Cryptosystem and Blockchain

[115, 227]: Wang and Song [10]proposed a cloud-based EHR system that uses ABE and

IBE to encrypt data, ensuring fine-grained access control for encrypted data using an

identity-based signature (IBS) to implement digital signatures.

Attribute Based Encryption for Secure Access to Cloud-Based EHR Systems

[15]: Through this system, every patient’s visit is recorded as a separate node on the

knowledge graph, ensuring strict data security, making it easier to query and speed up

data access procedures.

2.4.5.4 Cryptography Techniques

To prevent unauthorized users from accessing EHRs, a direct way is to encrypt EHRs

before uploading them to cloud servers [159]. To protect data privacy and mitigate

threats, various encryption models have been proposed. ABE is one such interesting

approach where the ciphertext, the secret key, and the private key of the user are associ-

ated with the user attributes [16, 101, 150]. Bethencourt et al. [228] developed a system

called Citro-Policy Attribute-Based Encryption (CPABE) to implement ABE using user

attributes to encrypt the document [101] .

Cryptographic Role-Based Access Control Model: This ensures secure access to

EHR resources by enforcing cryptographic access control with context and location

awareness. A role-based cryptographic access control model for EHR systems uses

location- and biometrics-based user authentication and a steganography-based technique

to embed EHR data in host electrocardiographic signals [217].
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My Health My Data (MHMD): This technique is for data security and privacy

sharing of medical information and for empowering its primary owner, the patient [229–

231].

Ancile: Privacy-preserving framework: : Using six separate contracts, Ancile im-

proves the efficiency of the patient experience and reduces privacy threats. The patient

is the only node expressly given the location of their information. Ancile maintains the

cryptographic hashes of stored records and query links, which confirm the integrity of

EHR databases.

Keyword searchable encryption and proxy re-encryption technology [115, 147]:

Protect data security with a searchability guarantee that only authorized entities can

access EHRs. [115] combines keyword searchable encryption and proxy reencryption

technology to ensure privacy preservation and secure data sharing for EHRs based on

consortium blockchain technology and cloud storage. The secure cryptographic technique

(proxy re-encryption) is applied to support efficient access control on secret data [147].

Re-encryption of cyphertext by the cloud ensures relatively good security to the data

using the technique proposed by [115]. But the keyword searchable encryption method

is not clearly described from the user’s point of view. This technology can be adapted

to make data in the cloud more secure and is capable of identifying and giving access to

the right user [115, 147].

Privacy-preserving medical record searching scheme (PMRSS): This is a scheme

for intelligent diagnosis in IoT healthcare that securely invokes and shares past medical

records to assist in a diagnosis. The input used for the search must be protected as well

as the result. It securely searches the diagnosis report by only two rounds of interactions

without leaking any other information from the two parties.

Personally Controlled Electronic Health Record (PCEHR) System : It uses

Fully homomorphic encryption (FHE) to encrypt patient data. The decryption key is

held by the patient; therefore, no other person can access the data without the patient’s

permission. [12] uses a verification technique, such as cryptography, to ensure that only

an authorized person can access the corresponding records [15, 232].

2.4.6 Enhancing EHR Security with Multi-Factor Authentication

Multifactor authentication (MFA) plays a crucial role in fortifying the security measures

surrounding Electronic Health Records (EHRs). By requiring users to provide multiple

forms of verification before granting access to sensitive information, MFA significantly

reduces the likelihood of unauthorized data breaches [105, 147]. This approach typically



63

combines two or more independent credentials: something the user knows (password or

PIN), something the user has (security token or authentication app), and something the

user is (biometric verification like fingerprints or facial recognition) [11, 148].

The integration of MFA into EHR systems, particularly those based on cloud and

blockchain technologies, provides an essential layer of security. It ensures strict compli-

ance with stringent privacy regulations, such as the General Data Protection Regulation

(GDPR), by meticulously controlling access to medical records [158]. Implementing MFA

in conjunction with existing cryptographic and access control measures further strength-

ens the security framework of EHR systems, protecting against unauthorized access and

enhancing trust in digital healthcare services.

2.5 SURVEY FINDINGS

After examining the selected literature and answering the survey questions, we identified

some major points.

2.5.1 Privacy, Confidentiality and Security: the Difference

The terms privacy, confidentiality and security are used interchangeably as they refer

to related concepts. But there is a need to address the inconsistent usage of such ter-

minologies as they actually have varied definitions. Data security governs access to

data throughout the data life cycle. In contrast, data privacy sets this access based

on privacy policies and laws that determine, for instance, who can view personal data,

financial, medical or confidential information. The three main concepts of security are

authentication, authorization, and access control [125, 160, 233, 234]. Therefore, we

can say that confidentiality protects secrets, security is broader than confidentiality, and

privacy determines authorization. Privacy is closely related to security and confiden-

tiality, but approaches data from a different perspective. Confidentiality controls and

protects against the unauthorized use of information already in the hands of an insti-

tution, whereas privacy protects the rights of an individual to control the information

that the institution collects, maintains and shares with others. One way to understand

the relationship between privacy and confidentiality is that privacy requirements dictate

the types of authorization granted to information, and confidentiality controls ensure

that people and systems meet those privacy obligations (Table 2.7). Therefore, when

it comes to EHR management, it is important first to understand the difference between

its security, confidentiality, and privacy. It is at one’s (or the organization’s) risk to

substitute one for the other. There is a rich set of tools with which to protect EHRs, but
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Table 2.7: Difference Between Privacy, Confidentiality and Security

Basis for
Compari-
son

Privacy Confidentiality Security

Meaning The state of being free
from intrusion or interfer-
ence

A situation where some-
one is not expected to di-
vulge information to any
other person.

The state of being free
from danger or threat.

What is it Right to be let alone. Agreement between the
persons acting as fiducia-
ries to maintain the se-
crecy of sensitive infor-
mation and documents.

the process and prac-
tice of safeguarding data
throughout its entire life-
cycle.

Concept Limits the access of the
public.

Prevents information and
documents from unau-
thorized access.

Protect data from unau-
thorized access, corrup-
tion, theft, damage, or
loss by implementing spe-
cific controls, standard
policies, and procedures

Applies to Individual Information Organization / System
Obligatory No, it is the personal

choice of an individual
Yes, when the informa-
tion is professional and
legal.

Yes, data are a valuable
asset.

Disallowed Everyone is disallowed
from being involved in
the personal affairs of an
individual.

Only unauthorized per-
sons are disallowed from
using the information

Every harmful activity

it is important for all data protection practitioners, IP attorneys, information security

specialists, and privacy professionals to be aware of the health records in question and

ensure that the proper protection paradigm is applied.

2.5.2 EHR Privacy Concerns

This review focused solely on the privacy aspect of the EHR, that is, how patient

records are kept private under various circumstances and what different techniques the

researchers use to ensure the privacy of the patient’s EHR. Technologies can host several

risks; hence, the privacy of information in these systems is of utmost importance. Regard-

less of the increased effectiveness and growing interest in the use of EHRs, little attention

is paid to privacy issues that might arise. Mobility and the use of multiple mobile devices

in collaborative healthcare increases the need for robust preservation of privacy. There-

fore, large-scale EHR systems require secure access to sensitive data, data storage, and

management [104]. One of the major security concerns is the issue of the increasing size of

healthcare data, but none of the articles reviewed highlighted this matter. As described

in [143], HIPAA does not dictate the ways in which to create and implement the systems
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currently being used. This leads to many variations in the centralized systems used to-

day and has prevented interoperability between medical institutions. A major downside

of these models is that evidence is not inspected in a structured manner, and regulation

procedures and guidelines also differ significantly throughout territories depending on

local experience and national implementation of privacy policies [57, 233, 235]. Table 2.8

lists the different technologies related to privacy, confidentiality and security. Privacy

preservation must be reviewed in light of changing privacy rules and legislation on sensi-

tive personal data. Users must own and control their data without compromising security

or limiting the ability of companies and authorities to provide personalized services. Re-

searchers [143] are in favor of blockchain, smart contracts, and their implementation by

Ethereum to enforce verified negotiations of contracts between two participating parties

over the blockchain. Like any other transaction processed over the blockchain, they are

based on cryptographic primitives that ensure their integrity. Some researchers believe

that both the cloud and blockchain can be used in combination to provide cost-effective

security solutions, but organizations have realized that a one-size-fits-all approach may

not work for cloud adoption in the case of public and private clouds.

Access control: Several studies proposed solutions for privacy-preserving data sharing

based on ABE or CP-ABE in the cloud to encrypt data and provide the hierarchical access

structure for fine-grained data sharing. However, they did not provide policy dynamics.

One of the challenges of data sharing is key management. Yu et al. [13] identified

the data security and access control issues associated with the sharing of EHRs within

the public domain due to the high computation overhead in key distribution and data

management, which occurs when applying fine-grained access control. They used Key-

Policy ABE (KP-ABE), Proxy Re-Encryption (PRE), and lazy re-encryption to define

and enforce access control policies, but implementing secure and dynamic access rights

is challenging [226].
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Blockchain: The work in [103] proposed a blockchain-based framework to manage,

maintain and share electronic medical records from cancer patients. They adopted per-

missioned blockchain technology to access, manage, and store encrypted patient data.

Such proposed frameworks can be used to practically implement blockchain technology to

access and manage the privacy and security of patient data and history in clinical prac-

tices. The Ancile framework discussed in [11] used smart contracts and permissioned

blockchains, but it is still in the early stages of development in the Ethereum commu-

nity. However, one cannot rely solely on Ancile as a remedy to the larger EHR security

problem, but it can be adapted and incorporated into another technique to achieve opti-

mum results. The work in [147, 233, 236] described various algorithms to efficiently share

EHRs in blockchain-based electronic healthcare record systems for healthcare 4.0 appli-

cations with less communication time. The algorithms proposed in their article cover the

maximum number of collaborating parties that could be involved in EHRs. The security

of the proposed system is evaluated by its performance through simulations and scenarios

which is missing from other proposed approaches. However, they only considered admin,

patients, clinicians and laboratory personnel as participants in the EHR system, while

other multiple participants such as, health organizations can be involved.

During the implementation of an EHR, the sharing of medical data often faces critical

limitations, such as loss of control over the data, provenance of the data, auditing, and

safe data trailing in medical data. To address these limitations, MeDShare provides a

secure and safe blockchain system for the exchange of medical data among untrusted

parties. MeDShare can be used to share medical data and maintain EHRs among cloud

service providers, hospitals, and healthcare research entities with greater data prove-

nance, personalized audit control, and minimal possible threats to data security and

privacy [205].

Cloud-based: In cloud-based EHR, the dissemination of patient data is greatly ben-

eficial, but must be done in such a way that patient privacy is preserved. The model

proposed in [143, 236] also follows a patient-centric approach to EHR management where

the responsibility of authorizing data access is handled at the patient’s end. However,

this creates significant overhead for the patient, who must authorize every access to his

health record. This is not practical given the multiple personnel involved in providing

care and that, at times, the patient may not be in a state to provide this authoriza-

tion. Hence, there is a need to develop a proper authorization delegation mechanism

for secure, secure, and easy cloud-based EHR management. Despite existing solutions,

privacy issues are the major obstacles that limit the widespread adoption of public clouds

across the world. The main reason for this concern is that information needs to be pub-

lished to a broad and possibly anonymous set of receivers, and it can be dangerous to
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outsource sensitive data to the cloud, so there is an increasing need to investigate data

anonymization techniques applied to this domain.

Cryptography: The ciphertext data based on traditional encryption mechanisms make

the sharing of EHR difficult to a large extent. In particular, it is very challenging for

resource-limited IoT devices to perform burdensome computation tasks for fine-grained

data sharing in mobile cloud computing. To fill this gap, ABE can be adopted to perform

fine-grained access control in EHRs [14, 180, 232]. Along with our review of the literature,

[135] also points out firewalls and cryptography as the security techniques mentioned

most frequently in the selected sample. Various techniques have been introduced to

protect patients’ privacy by applying various hybrid and cryptographic access control

techniques [6, 12, 15, 57, 121, 123, 130, 131, 135, 140, 159, 160, 163, 164, 166, 172,

183, 201, 214, 222, 230, 233, 236, 237]. However, most of these approaches have certain

shortcomings that make them less effective with respect to EHR privacy.

Standards’ Compliance: The recent cloud-based blockchain approaches suggested

by multiple researches [6, 14, 115, 121, 129, 140, 146, 180, 184, 185, 203–205, 233] focus

on the implementation of blockchain along with some standards. But the paper con-

tains conflicting descriptions about security standards. First, they favor GDPR subject

to data rights and criticize HIPAA about medical records regulations and protecting

only PHI but later describe how some GDPR articles directly conflict with blockchain.

Therefore, it gives a confusing impression of whether to use GDPR with blockchain. Im-

portantly, distributed methods for data integrity validation are not sufficient to solve all

cybersecurity hazards. Despite having much potential to achieve data security for EHRs,

existing approaches require further strengthening by complying with the standards e.g.

HIPAA measures [41, 131, 233] to achieve data privacy, security, and integrity while in

a centralized setup.

For medical practices dealing with sensitive patient data, which are required to comply

with the US HIPAA rules, a private cloud may be appropriate. The research in [140]

also mentions that numerous security standards have been developed, such as HIPAA,

COBIT, and DISHA, which have been applied to protect patient health information and

can address privacy issues.

2.5.3 Discussion

When discussing EHRs, firstly, it is crucial to first have a technical understanding of the

actual definition and characteristics of PCS. Second, every technology has its merits and

demerits, so depending on what is needed , the respective technology can be adopted. No

limitations have been found in the literature on the use of a single technique to preserve
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the privacy of EHRs, but the advantages of combining two or more techniques can be

achieved to achieve the desired requirements. On the basis of this review, it can be

clearly seen that no technique / solution can be considered optimum for EHR privacy.

All techniques utilize different technologies that is,, cloud computing, Ethereum-based

blockchain, cryptography and encryption techniques, and / or access control techniques

to ensure data privacy.

2.5.4 Limitations

Despite our best effort to survey as many relevant articles as possible, we present the
limitations of this survey. A fundamental constraint identified during our survey process
was a general lack of literature that discussed privacy preservation without confusing
it with confidentiality and security. As a result, there is a lack of primary articles
that compare and contrast the privacy of the EHR with confidentiality and security.
Therefore, it was difficult to find techniques and technologies that cover EHR privacy. We
also found it challenging to validate some studies simply on the basis of their manuscripts.
To our knowledge, none of the existing studies tested their proposed method using either
real samples or raw data from EHRs, putting the external validity of these studies in
question.

Table 2.8: Summary Of Reviewed Technologies And The Aspects They Covered

Technique
Technology Management Aspect
Access
Con-
trol

Blockchain Cloud-
Based

Cryptogra
-phy

Privacy Confidentiality Security

1. EHR system
with role-based
access control
(RBAC)

✓ ✓ ✓

2. HIPAA imple-
ments three
safeguards:
administrative,
physical, and
technical

✓ ✓ ✓

3. ESPAC ✓ ✓ ✓ ✓ ✓

4. access control
scheme

✓ ✓ ✓ ✓

5. GAA-FQ
(Granular
Access Au-
thorization
Support-
ing Flexible
Queries)

✓ ✓ ✓

Continued on next page
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Table 2.8 continued
6. Ciphertext-

policy
attribute-based
encryption
(CP-ABE)

✓ ✓ ✓

7. Blockchain
based strategy

✓ ✓ ✓ ✓

8. MedRec ✓ ✓ ✓ ✓

9. MedShare ✓ ✓ ✓

10. Medicalchain ✓ ✓ ✓ ✓

11. MediBchain ✓ ✓ ✓

12. Decentralized
Medication
Manage-
ment System
(DMMS)

✓ ✓

13. Healthcare
Data Gateway
app

✓ ✓ ✓ ✓

14. Blockchain-
Based Data
Sharing Mech-
anism

✓ ✓ ✓

15. Blockchain
based search-
able encryption

✓ ✓ ✓ ✓

16. Decentralized
and Hierar-
chical Data
Sharing

✓ ✓ ✓

17. Estonia health
care system
and Personal
Care Record
Platform
MyPCR

✓ ✓ ✓ ✓

18. Healthcare
Data Gateways
(HDG)

✓ ✓ ✓

19. Ancile:
Privacy-
preserving
framework

✓ ✓ ✓ ✓ ✓

20. MediBloc ✓ ✓ ✓

21. OmniPHR ✓ ✓ ✓

22. MedVault ✓ ✓ ✓

23. Blockchain-
Based Deep
Learning
as-a-Service
(BinDaaS):

✓ ✓

Continued on next page
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Table 2.8 continued
24. Cloud-based

EHR sys-
tem Using
Attribute-
Based Cryp-
tosystem and
Blockchain

✓ ✓ ✓ ✓

25. Cloud-based
EHR system:

✓ ✓ ✓ ✓

26. Attribute
Based En-
cryption for
Secure Access
to Cloud Based
EHR Systems

✓ ✓

27. Cryptographic
Role-Based
Access Control
Model

✓ ✓ ✓ ✓

28. CureMD ✓ ✓

29. Practice Fusion ✓ ✓

30. Athenahealth ✓ ✓

31. MyHealthMyData
(MHMD)

✓ ✓ ✓ ✓

32. Ancile:
Privacy-
preserving
framework:

✓

33. Keyword
searchable
encryption
and proxy
re-encryption
technology

✓ ✓ ✓ ✓ ✓

34. privacy-
preserving
medical
record search-
ing scheme
(PMRSS)

✓ ✓

35. Personal
Controlled
Electronic
Health Record
(PCEHR)
System

✓ ✓
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2.6 Conclusion and Future Research Directions

This chapter provides a comprehensive overview of EHRs and their privacy. Although

EHRs are widely recognized and recognized for their importance, the survey revealed a

lack of systematized knowledge on this topic with respect to their management. Existing

surveys dealt with EHRs from more technical and technological perspectives using the

three terms interchangeably that is,., PCS and creates confusion. Instead, the survey

presented in this chapter, through the analysis of the reviewed papers, clearly differen-

tiates these three terminologies and gives answers to the research questions, namely (1)

the currently available data sharing methods, (2) the role of privacy when sharing EHRs

with different stakeholders, (3) the strengths and weaknesses of EHRs, (4) the differ-

ence between PCS and (5) the different technologies available to preserve the privacy of

EHRs. We believe that future research to protect EHRs should ensure all aspects of pri-

vacy, confidentiality, and security. These analyzes supported the identification of future

challenges that should drive research in the next few years to obtain a more systematic

view of EHR management with the need to clarify concepts specifying the management

of EHR , that is,. PCS. This survey paves the way for a deeper understanding of EHR

management beyond technical aspects, contributing to its management by first focusing

on requirements. An important aspect that this survey highlighted is that there is no

clear definition on the terms privacy, confidentiality, and sec for EHRs. This deserves

special attention in establishing a common basis in the study of the differences and sim-

ilarities of these three terms from the point of view of users and developers. It should

be noted that today the utilization of technologies for data management with respect to

privacy and security is different from the past, not only because of the growing number

and variety of techniques, but also because various techniques can support each other

and can be combined to maintain EHR data. Therefore, to preserve the privacy of EHRs,

researchers and practitioners must consider the wise and appropriate use of terminologies

(i.e. privacy,security and confidentiality) and technologies when developing and manag-

ing EHR systems, organizational processes, and everything that involves personal health

data.



Chapter 3

A SECURITY AND PRIVACY COMPLAINT DATA

SHARING SOLUTION FOR HEALTHCARE DATA

ECOSYSTEMS: CEMPS (CENTRALIZED EHR MODEL

TO PRESERVE PRIVACY AND SECURITY)

3.1 Introduction

The healthcare industry is one of the largest emerging industries globally. This indus-

try involved various types of business, such as offering medical services, manufacturing

various medical drugs or equipment, offering health insurance, or facilitating healthcare

care provisions to patients. Healthcare industries have seen improvements after integra-

tion with technology. Currently, both are highly interconnected. This relationship has

been observed over the past decade. The primary reason for this is the easy integration

of various devices in all health care centers. For example, telehealth (or e-medicine)

was developed before a few decades but is now extremely essential. Helps to distribute

health-related information and services to patients who need it through technology. Pa-

tient care involves the method of taking care of patients together with their families in

a way that provides valuable and meaningful care to an individual patient. This patient

care includes involving, informing and listening to patients. According to Baker [238],

patient care is defined as providing care that respects and responds to individual patient

preferences, needs, and values and ensures that patient values guide all clinical decisions.

Therefore, the latest technologies are needed in the health care sectors to deal with vari-

ous modern health problems. The primary issue for healthcare sector security developers

from an operational and technical perspective is the privacy of patients. The analysis of

Jacq [239] identified that when the infrastructures of heterogeneous and large sectors of

health information technology do not have the proper implementation of legal require-

ments, there is no scope for these types of technologies. Additionally, mandatory access

72
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control forms are needed to accommodate the increasing complexity of electronic patient

records. The various health records of every patient should be accessed by different types

of medical care personnel, such as specialists, general practitioners, nurses and adminis-

trative personnel. Pseudonymized or anonymized records are needed for epidemiology or

other research purposes. Furthermore, due to the potential for data reidentification, var-

ious difficulties and issues are caused by genetic data management. As these are made to

maintain simple access rules, consent problems indicated that there is a need for certain

fine-grained rules. If patient records are encrypted, a suitable employee should use the de-

cryption algorithm, and audit and recordkeeping facilities must be involved. To prevent

sensitive data from being passed to third-party users, an intelligent audit system should

be used. However, traditional methodologies are needed to work with modern method-

ologies to provide the latest architecture models. Data privacy is the main concern with

these latest technologies. Data privacy in distributed medical research and health care

systems depends on policies directed by legislation and jurisdictions [18, 240, 241]. There

is a need to enforce such policies at the program level, but there is no adequate guarantee

of privacy protection [19]. However, it is extremely necessary to inspect privacy agree-

ments to improve the social acceptance of health care systems. The studies by Rahmouni

et al., [242] and Rahmouni et al., [243] showed the way of semantic web technologies to

classify resources. These resources were defined through metadata captured from the

data protection and privacy ontology that were implemented and designed. Rahmouni

et al., [244] described past model extensions with relevant metadata and also included

data sharing situations for suitable healthcare or medical applications. This study also

showed how the above study has better authorization and security policy enforcement

and specification for cloud computing applications, as explained in the following work

of Belaazi et al., [245] and Belaazi et al. [246]. A sensitive data detection model was

developed by Essefi et al., [247] for the business process involved in the hospital. The

governance of patient data management is simple while applying the rules of HIPAA and

GDPR, as discussed by Rahmouni et al. [248]. Furthermore, Munir et al., [111] presented

ontology-related query details with the help of assertion and semantic OWL-DL capabil-

ities. This study dealt with the development of highly trustworthy and self-disciplined

healthcare sectors through the integration of privacy audit dimensions into patient data

management services.

Various works have been developed to control privacy and security problems with EHR.

However, many of these works are based on cryptographic approaches and/or the control

access approach. The safest method is the cryptography approach to preserve the secu-

rity and privacy of cloud applications. For the safest data transfer in cloud applications,

this cryptography approach is sufficient to practice the public structure key [249–251].

The cryptography approach is used to encrypt sensitive private data, such as clinical
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records, before transferring or saving them in cloud storage. Some models were recom-

mended by Li et al. [252], Benaloh et al. [253], Huang et al. [254] and Jin et al. [255]

that let patients encrypt medical data before transferring and saving on cloud storage

to control potential privacy risks. Public Key Infrastructure (PKI) authentications and

digital signatures have been used by Van der Haak et al. [112] to meet the legal require-

ments of electronic medical record (EMR) exchange. Ateniese et al. [256] proposed a

pseudonymization technique that is used to preserve the anonymity of patients. Layouni

et al. [257] proposed a communication approach for health monitors to observe the ex-

change of health information. However, saving sensitive medical data is safer with this

cryptography method; accessing those data is difficult. Therefore, the key challenge for

EHR applications is the right access to data with this cryptography method [258–261].

To achieve these objectives, incorporating health mechanisms along with providing bet-

ter privacy in Australia helps people in this country gain advantages over better health

and medical systems and strategies with little concern for the privacy of their data [262].

Hence, it is much needed for the adoption of mechanisms that ensure the robustness of

privacy implementation proofs and processes to the systems which manage patients’ data

and offers a better guarantee to such implementation. This can be achieved by auditing

and monitoring previous records of healthcare data exchange. However, the privacy of

patient data is still at risk despite all automation, especially in the healthcare industry.

This can make use of exception-based data access that allows patients to bypass the con-

trols of a system due to unforeseen events or emergency cases [263–265]. Furthermore,

these systems can be attacked by intruders or hackers while exposing themselves to cy-

ber security risks and the Internet [266]. Sometimes, failures of a system might be the

reason for the risks. Therefore, the implementation of governance and audit mechanisms

is needed for the development of healthcare-related applications along with technological

aspects. On this basis, the user guidelines and the initial constraints to test confor-

mance during the control access run-time should be matched. This included reviewing

the previous data-sharing events of each user and the permissions granted. However,

such reviews are hard and expensive when an automated solution is not available. The

machine learning approach is also one of its kind and provides various benefits for health-

care data [267–272]. Researchers have used such techniques to protect data and comply

with regulations [273–278].

This chapter discusses details of the critical aspects of securing and preserving privacy

in healthcare data. The Introduction 3.1 provides context and highlights the importance

of privacy and security in healthcare data. The chapter then presents a generic layered

approach to EHR systems in Section 3.3 addresses the challenges and solutions to preserve

privacy in EHR while implementing a generic EHR system architecture.The next section

3.4 outlines the proposed CEMPS framework, presenting a generic layered architecture
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of EHR and then the proposed architecture of CEMPS. The proposed ML techniques for

the architectural layers are mentioned with proof of preserving privacy and security. The

chapter concludes in Section 3.9 by summarizing the CEMPS framework’s contributions

to EHR privacy and security analog with limitations in Section 3.7 and insights into

future directions and considerations in section 3.8.

3.2 Literature Review

The integration of advanced technologies into healthcare care, particularly EHRs, has

brought about significant improvements in patient care and data management. However,

it has also introduced complex challenges in ensuring data privacy and security. This

review of the literature explores advances and challenges in EHR systems, with a focus

on privacy and security in the healthcare data ecosystem.

The evolution of EHR systems, marked by the integration of mobile applications and

wearable sensors, has significantly expanded the capabilities of real-time monitoring and

data collection [181]. This technological integration, as discussed by [226] and [11], has

improved healthcare operations and patient care. However, the digital nature of these

records introduces vulnerabilities, including potential breaches and unauthorized access,

as highlighted by [131] and [47].

Addressing these vulnerabilities, Federated Learning (FL) has emerged as a novel ap-

proach to improve privacy in EHR systems. FL enables collaborative learning between

multiple institutions without compromising data privacy, offering a solution to the chal-

lenges of data sharing in healthcare care [267, 269]. The potential of FL in healthcare,

which facilitates efficient and secure data analysis, is further explored by [268].

In parallel to FL, differential privacy (DP) has been identified as a critical component

in maintaining the confidentiality of individual patient information in data exchange

[272, 279]. The balance between data utility and privacy in the application of DP in

healthcare settings is crucial, as discussed by [280].

The literature also suggests the need for continuous evolution in EHR systems, focusing

on advanced security measures to protect against emerging cyber threats [6, 183]. The

integration of artificial intelligence (AI) and machine learning (ML) in healthcare care,

as proposed by [278] and [276], offers promising avenues for securing EHR systems while

maintaining efficiency and compliance.

In summary, the literature underscores the importance of improving EHR systems to

maintain the highest standards of privacy and security. Integration of technologies such
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as FL and DP, along with ongoing research in AI and ML, is critical to shaping the

future of secure and efficient healthcare data management.

3.3 EHR Generic Architecture

EHR systems in healthcare care possess some common architectural elements, but their

implementation can vary depending on specific requirements, the size of the healthcare

provider, the regulatory environment and the available resources. Generic EHR sys-

tems with respect to architecture and implementation involve delving into the technical

framework and practical aspects of setting up and maintaining these systems.

3.3.1 EHR System Architecture

The generic architecture of an EHR system is designed to efficiently manage patient data

and streamline healthcare operations. The EHR architecture involves multiple layers, but

below are the most crucial layers.

Data Collection is critical as it involves collecting comprehensive patient information,

ranging from medical history to treatment plans, which forms the backbone of the EHR

system [11, 181, 226].

Data Storage follows emphasizing the importance of secure and scalable solutions to

handle the large amount of sensitive health data [8, 106, 281, 282].

Sharing and Interoperability highlighted in numerous studies involves the ability of

the EHR system to share and use data across different healthcare platforms, a crucial

step for coordinated patient care [8, 11, 147, 181, 226, 283]. This layer also involves

security and compliance, as they protect sensitive patient data from breaches and ensure

compliance to legal standards such as HIPAA [6, 47, 106, 131, 183, 284–286].

3.3.2 EHR System Implementation

The implementation of EHR systems involves a variety of techniques and technologies in

its different layers. A generic framework of the EHR system is shown in (Figure 3.3).

Here is a brief detail of what is typically used:

Data Collection Clinical Documentation Tools: These include advanced software sys-

tems such as Computerized Physician Order Entry (CPOE) for medication orders, Elec-

tronic Medication Administration Records (eMAR), and structured templates for dif-

ferent specialties to ensure comprehensive data capture. Medical Devices Integration:
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Figure 3.1: EHR Generic Architecture

Use of standards such as Health Level Seven (HL7) to facilitate the seamless transfer of

data from medical devices directly into the EHR, reducing errors associated with manual

entry. Patient Portals and Mobile Applications: Patient-facing applications that allow

self-reporting of health metrics, symptom journals, and direct messaging with health-

care providers. These tools often include educational resources and are integrated with

personal health devices, such as smartwatches and fitness trackers. Natural Language

Processing (NLP): To extract structured information from unstructured data such as

physician notes and clinical documents.

Data Storage On-site vs Cloud-based Solutions: Many EHR systems are hosted on-site

for healthcare organisations that prefer direct control over their infrastructure, while

cloud-based solutions offer scalability and reduced maintenance. NoSQL databases:

These are used alongside traditional SQL databases for their ability to handle unstruc-

tured data and big data applications. Examples include MongoDB and Cassandra. Data
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Lakes: Large-scale storage repositories that hold vast amounts of raw data in its native

format until needed, often used for machine learning and other advanced analytics.

Data Sharing and Interoperability Interoperability Frameworks: Such as the Inte-

grating the Healthcare Enterprise (IHE), which defines profiles to standardise the way

healthcare systems share data. Direct Secure Messaging: Encrypted email-like services

that allow healthcare providers to exchange patient information securely. Smart on

FHIR: An open, standards-based and interoperable platform for mobile devices, web-

based applications, and cloud communications to access data from EHR.

Security and Compliance End-to-End Encryption (E2EE): Ensures that data are en-

crypted on the client’s side and are only decrypted on the recipient’s side, not at any

point in between, including the server. Audit Trails and Reporting: Systems that log

every access and action taken within the EHR, with robust reporting tools for compli-

ance officers to monitor and audit usage. Data Anonymization and Pseudonymisation:

Techniques used to protect patient privacy, especially in the context of data sharing for

research purposes. This involves the removal or replacement of personal identification

from health data. Disaster Recovery and Data Backups: Essential for ensuring data

integrity and availability, these strategies include off-site backups, redundant systems,

and detailed disaster recovery plans to protect against data loss. These components

work together to create a secure, interoperable, and efficient EHR system that supports

a broad range of healthcare activities, from clinical decision-making to population health

management. As healthcare IT continues to evolve, the technologies and standards used

in these layers are regularly updated to meet new challenges and leverage advances in

computing and analytics.

3.3.3 Methodological Assessment and Framework Validation

The Methodological Assessment and Framework Validation layer is instrumental in es-

tablishing the robustness and applicability of the CEMPS framework. This layer employs

a comprehensive, multifaceted evaluation strategy, integrating a blend of both quanti-

tative and qualitative methodologies. This approach ensures a thorough and subtle

analysis, validating the framework’s methodologies and confirming its effectiveness in

diverse practical scenarios:

• Statistical Analysis and Case Studies: This involves a detailed statistical

examination of the data processed and managed by the CEMPS framework. Ad-

vanced statistical techniques, including regression analysis, hypothesis testing, and

sophisticated data visualization tools, are utilized to interpret complex datasets.
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The aim is to gain a profound understanding of the performance of the frame-

work in real-world scenarios. Additionally, the execution of case studies, drawing

on diverse healthcare contexts, provides invaluable insights into the adaptability

and efficiency of the framework in various settings. Comparative studies between

the pre- and post-CEMPS implementation scenarios are particularly emphasized,

highlighting improvements in data management, security, and compliance with

healthcare standards [239, 260].

• Quantitative and Qualitative Measures: Evaluation extends beyond statisti-

cal metrics to include qualitative assessments, ensuring a holistic analysis. This in-

cludes user feedback, expert reviews, and compliance checks with prevailing health-

care data standards and regulations. User experience studies, which focus on the

ease of data integration and processing in healthcare organizations, are crucial to

assess the practical usability of CEMPS. These studies are essential to understand

the user-centric aspects of the framework [240, 241].

• Comparative Analysis: A comparative analysis with existing EHR models and

frameworks is carried out to benchmark the CEMPS framework against current

industry standards. This analysis critically evaluates various aspects such as data

processing efficiency, privacy preservation capabilities, and the robustness of secu-

rity measures [18, 19].

• Performance Metrics: Key performance indicators (KPIs) specific to healthcare

data management are meticulously tracked and analyzed. These include metrics

such as data retrieval speed, data processing accuracy, and the incidence of security

breaches. These metrics provide objective measures of the operational effectiveness

of the framework [242, 243].

Visualizations in Figure 3.2 and Figure 3.10 offer a structural and procedural per-

spective of CEMPS, complementing the evaluation process with visual insights. This

layered approach to evaluation ensures that CEMPS not only aligns with EHR industry

standards, but also meets the practical requirements of modern healthcare data ecosys-

tems.

3.4 Proposed CEMPS Architecture

While the overall layers and functions of the EHR systems are consistent, the data

storage, sharing and security and the actual technologies and techniques used to imple-

ment these functions can vary widely. Creating and achieving a secure and user-friendly
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1 import pandas as pd
2 import numpy as np
3 from sklearn.preprocessing import StandardScaler , OneHotEncoder
4 from sklearn.compose import ColumnTransformer
5 from sklearn.decomposition import PCA
6 from sklearn.model_selection import train_test_split
7 from sklearn.ensemble import RandomForestClassifier
8 from sklearn.pipeline import Pipeline
9 from sklearn.metrics import classification_report , accuracy_score

10

11 # Simulated EHR Data Retrieval
12 def retrieve_ehr_data ():
13 # Replace with actual EHR data path
14 data = pd.read_csv(’simulated_ehr_data.csv’)
15 return data
16

17 # Data preprocessing def preprocess_data(data): # Identify categorical
and numerical columns categorical_cols = data.select_dtypes(include=[’
object ’]).columns

18 numerical_cols = data.select_dtypes(include =[np.number ]).columns
19

20 # Create a column transformer for data preprocessing preprocessor =
ColumnTransformer(

21 transformers =[
22 (’num’, StandardScaler (), numerical_cols),
23 (’cat’, OneHotEncoder (), categorical_cols)
24 ])
25

26 # Apply transformations to the data processed_data = preprocessor.
fit_transform(data)

27 return processed_data
28

29 # PCA for Dimensionality Reduction
30 def perform_pca(data , n_components =2):
31 pca = PCA(n_components=n_components)
32 principal_components = pca.fit_transform(data)
33 return principal_components
34

35 # Model Training and Evaluation
36 def train_and_evaluate_model(data , labels):
37 X_train , X_test , y_train , y_test = train_test_split(data , labels ,

test_size =0.3, random_state =42)
38 model = RandomForestClassifier(n_estimators =100)
39

40 # Creating a pipeline with preprocessing and model
41 pipeline = Pipeline(steps =[(’preprocessor ’, preprocessor),
42 (’model’, model)])
43

44 pipeline.fit(X_train , y_train)
45 predictions = pipeline.predict(X_test)
46 print(classification_report(y_test , predictions))
47 print(f’Accuracy Score: {accuracy_score(y_test , predictions)}’)
48

49 # Main function
50 def main():
51 ehr_data = retrieve_ehr_data ()
52 preprocessed_data = preprocess_data(ehr_data)
53 pca_data = perform_pca(preprocessed_data)
54 train_and_evaluate_model(pca_data , ehr_data[’Outcome ’])
55

56 if __name__ == "__main__":
57 main()

Figure 3.2: Enhanced EHR Integration Program
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system that improves healthcare outcomes and operational efficiency requires different

perspectives. In this chapter, a centralized EHR model is proposed to preserve privacy

and security (CEMPS) framework based on ML approaches based on ML approaches

((Figure 3.4). The strategies for preserving privacy and security in an EHR system

the CEMPS model uses the following techniques for the Data Storage and Data Sharing

and Interoperability layers. By focusing on these key AI/ML strategies, the privacy and

security of EHR systems can be significantly enhanced, ensuring that patient data are

protected while still being accessible for necessary healthcare operations and research.

Evaluation Layer

Implementation Layer

Modelling Layer

Identification Layer

Case Studies
Statistical
Analysis

Ontology-
Based Secure
Data Sharing

Policies

Ontology-
Based Data

Privacy Policies

Privacy Model Security Model

Identify
Stakeholders

Identify
Technologies

Identify
Different Levels

of Health
Information

Figure 3.3: Architectural Framework of CEMPS
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3.4.1 Data Storage Layer

At the data storage layer, the framework proposes the use of Federated Learning (FL),

which offers the potential to facilitate collaborative, data-driven research on EHRs en-

suring the preservation of data privacy [267, 269]. However, a significant challenge arises

from the need for data consistency among the participating entities, a concept known

as horizontal FL. This challenge necessitates standardizing data formats. An increasing

number of organizations are adopting standardized data models for their EHR systems

[268] Implementing FL in a centralized EHR system presents a unique opportunity to

leverage the benefits of both centralised data management and decentralized machine

learning. The use of FL at the data storage layer is proposed to enable the analysis of

EHR data across multiple institutions without sharing the data itself, thus preserving

privacy. Its implementation is carried out by developing ML models that learn from

decentralized data sources.

3.4.1.1 Data Storage Layer with FL

This section describes the implementation of FL in the CEMPS data storage layer. The

concept is illustrated here with the help of Python code. However, in this implemen-

tation, only a high-level simulation is demonstrated which can be done as a complete

deployable solution based on the requirements given the complexity and sensitivity of

actual EHR data. In this example, a scenario simulation is presented in which different

nodes (representing various healthcare institutions) train a model on their local synthe-

sized data. The local model updates are then aggregated to a central model, simulating

the centralized data storage layer’s participation in coordinating the FL process.

Simulating Local Data for Each Node

For this example, an MNIST data set is used. In a real-world scenario, each node would

have its own local EHR dataset (Figure 3.4).

Defining FL Data Storage Model for CEMPS

Here, a simple neural network model suitable for the MNIST dataset is created to define

the model (Figure 3.5).

Federated Averaging and Model Training

The core of FL is the process of establishing Federated Averaging and training the model

federatedly to train between nodes and aggregation at the central server (Figure 3.6).
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1 from cryptography.fernet import Fernet
2 import pandas as pd
3 import numpy as np
4 from sklearn.datasets import fetch_openml
5

6 # Function to simulate local EHR data using the MNIST dataset
7 def simulate_local_ehr_data ():
8 # Fetching MNIST dataset
9 mnist = fetch_openml(’mnist_784 ’, version =1)

10 data = mnist[’data’]
11 target = mnist[’target ’]
12

13 # Converting to a Pandas DataFrame for easier manipulation
14 df = pd.DataFrame(data)
15 df[’target ’] = target
16 return df.sample(frac =0.01) # Sampling a subset of data to simulate

local node data
17

18 # Encryption and Decryption Setup
19 key = Fernet.generate_key ()
20 cipher_suite = Fernet(key)
21

22 def encrypt_data(data):
23 # Convert DataFrame to a byte string
24 data_bytes = data.to_csv(index=False).encode(’utf -8’)
25 return cipher_suite.encrypt(data_bytes)
26

27 def decrypt_data(encrypted_data):
28 decrypted_bytes = cipher_suite.decrypt(encrypted_data)
29 # Convert byte string back to DataFrame
30 return pd.read_csv(pd.compat.StringIO(decrypted_bytes.decode(’utf -8’)

))
31

32 # Simulating local EHR data
33 local_ehr_data = simulate_local_ehr_data ()
34

35 # Encrypting the local EHR data
36 encrypted_ehr_data = encrypt_data(local_ehr_data)
37

38 # Decrypting the encrypted EHR data
39 decrypted_ehr_data = decrypt_data(encrypted_ehr_data)
40

41 # Example of data manipulation after decryption
42 print(decrypted_ehr_data.head())

Figure 3.4: Simulating Local Data for Each Node

3.4.1.2 Encryption and Secure Data Transmission Protocols

To further enhance the EHR for rigorous privacy, security measures, and compliance with

regulations such as HIPAA, additional layers of complexity are used in the implemen-

tation for actual healthcare data. The framework suggests the integration of advanced

cryptographic techniques into FL at the data storage layer(Figure 3.7).

Data Encryption
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1 # Define a simple neural network model
2 def create_keras_model ():
3 return tf.keras.models.Sequential ([
4 tf.keras.layers.InputLayer(input_shape =(784 ,)),
5 tf.keras.layers.Dense(10, kernel_initializer=’zeros’, activation=

’softmax ’),
6 ])
7

8 def model_fn ():
9 keras_model = create_keras_model ()

10 return tff.learning.from_keras_model(
11 keras_model ,
12 input_spec=local_datasets [0]. element_spec ,
13 loss=tf.keras.losses.SparseCategoricalCrossentropy (),
14 metrics =[tf.keras.metrics.SparseCategoricalAccuracy ()]
15 )
16

17 # Federated Averaging process
18 iterative_process = tff.learning.build_federated_averaging_process(

model_fn)
19

20 # Initialize the FL process
21 state = iterative_process.initialize ()
22

23 # Training the model federatedly
24 num_rounds = 10
25 for round_num in range(1, num_rounds + 1):
26 state , metrics = iterative_process.next(state , local_datasets)

Figure 3.5: Defining FL data storage model for CEMPS

1 # Federated Averaging process
2 iterative_process = tff.learning.build_federated_averaging_process(

model_fn)
3

4 # Initialize the FL process
5 state = iterative_process.initialize ()
6

7 # Training the model federatedly
8 num_rounds = 10
9 for round_num in range(1, num_rounds + 1):

10 state , metrics = iterative_process.next(state , local_datasets)
11 print(f’Round {round_num}, Metrics: {metrics}’)

Figure 3.6: Federated Averaging and Model Training

The use of encryption libraries is done like "cryptography" or "PyCryptodome", to

encrypt data or model updates before they are transmitted (Figure 3.8).

Secure Model Update Transmission

The "REST API" is implemented for communication, ensuring the use of HTTPS. As FL

does not directly implement network communication (as it is simulated), therefore, the

use of library like "requests" is also implemented to securely transmit data over HTTPS.

Using Secure Aggregation in FL
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1 from cryptography.fernet import Fernet
2

3 # Generate a key for encryption and decryption
4 key = Fernet.generate_key ()
5 cipher_suite = Fernet(key)
6

7 # Example function to encrypt data
8 def encrypt_data(data):
9 return cipher_suite.encrypt(data)

10

11 # Example function to decrypt data
12 def decrypt_data(encrypted_data):
13 return cipher_suite.decrypt(encrypted_data)

Figure 3.7: Data Encryption - Cryptography Libraries

1 from cryptography.fernet import Fernet
2

3 # Encryption setup
4 key = Fernet.generate_key ()
5 cipher_suite = Fernet(key)
6

7 def encrypt_data(data):
8 # Assuming ’data’ is a byte string
9 return cipher_suite.encrypt(data)

10

11 def decrypt_data(encrypted_data):
12 return cipher_suite.decrypt(encrypted_data)
13

14 # Example usage with model weights (conceptual)
15 model_weights = get_model_weights () # This function would get your model

’s weights
16 encrypted_weights = encrypt_data(model_weights)
17 # ... transmit encrypted_weights securely
18 decrypted_weights = decrypt_data(encrypted_weights)

Figure 3.8: Integrate Encryption

Implementing secure aggregation ensures that the central server only receives the aggre-

gated model update without seeing individual updates, thereby enhancing privacy.

Integrating Differential Privacy

The use of differential privacy adds noise to the data or model updates, ensuring that in-

dividual data points cannot be inferred. It is implemented by using libraries "TensorFlow

Privacy" to integrate differential privacy into the training process.

3.4.1.3 Improved Privacy and Security in Centralized EHR Systems by FL

The implementation of FL inherently contributes to improving privacy and security,

particularly relevant for the data storage layer of centralized EHR systems. FL provides a

promising direction for handling sensitive health data, balancing the need for data-driven
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insights with the necessity of patient privacy and data security. Further integration of

cryptographic techniques into FL gives additional layers of security and privacy measures.

The following points illustrate how the FL approach, as demonstrated in the Python code

provided, aligns with these objectives:

Local Data Training: The model is trained locally on each node, as simulated by

splitting the MNIST dataset. This approach ensures that raw data does not leave its

original location, significantly reducing the risk of data breaches during transmission.

Model Aggregation over Data Aggregation: The ‘tff.learning.build_federated _av-

eraging_process‘ function aggregates model updates, not the data itself. Only abstracted

model parameters or gradients are sent to the central server, preserving the privacy of

detailed patient records in the EHR system.

Reduced Centralized Data Storage Risks: FL minimizes the amount of data stored

centrally. This reduces risks associated with centralized data storage, such as large-scale

data breaches.

Compatibility with Differential Privacy: FL can be integrated with differential

privacy techniques to add noise to model updates. This integration further obscures

information that could be reverse engineered.

Scalability and Flexibility: The approach is scalable, allowing new nodes to be easily

added. This ensures that security measures can be extended to new nodes as the EHR

system grows.

3.4.1.4 Analysing Data Storage Layer with FL and Cryptography

To demonstrate the enhancement of privacy and security at the data storage layer of

CEMPS using FL with added cryptography, some hypothetical values are used with the

help of a scenario. This illustrates the impact of FL with added cryptography on the

efficiency, privacy, and security of CEMPS.

Scenario: Assuming that 5 healthcare institutions are participating in FL with a local

dataset of 1000 size (total D = 5000), a simple model (M) for patient risk prediction.

The model requires 20 communication rounds (CR = 20) to converge without encryption.

Adding encryption (AES-256) increases the time of each communication round by 10%

due to overhead (Cenc).

Federated Learning Efficiency (Without Encryption): Let us assume a simple

linear relationship for EFL: EFL = 1
CR ×

D
M .



87

Assume M = 1 (for simplicity), with CR = 20 and D = 5000: EFL = 1
20 ×

5000
1 = 250

Encryption Overhead: Assuming that Oenc adds a 10% overhead per communication

round:

Oenc = CR× Cenc

Oenc = 20× 0.10 = 2

Overall Efficiency with Encryption in FL EFL+enc = EFL −Oenc

EFL+enc = 250− 2 = 248

Privacy and Security Enhancement: For simplicity, let us consider Penh as the sum

of Senc and PFL. Taking into account Senc = 256 (bit strength of AES-256) and PFL = 5

(for 5 institutions keeping data local): Penh = Senc + PFL

Penh = 256 + 5 = 261

Proof of Concept (poc): It can be seen from the above calculations that the efficiency

of FL is slightly reduced from 250 to 248 due to the overhead introduced by encryption.

Furthermore, the privacy and security score increased to 261, reflecting the combined

strength of FL’s data location and strong encryption.

Therefore, the use of the FL technique at the data storage layer is observed to offer an

effective way to enhance the privacy and security of centralized EHR systems. However,

in this research a basic illustration is done by Python code. Implementation of EHRs

requires more comprehensive security measures, including robust encryption and secure

data transmission protocols. So, it is done by adding further the cryptography into FL.

Integrating encryption and secure data transmission into a FL setup for EHR systems

is complex and requires careful consideration of security, privacy, and legal compliance.

Its implementation would depend on the specific infrastructure, data formats, and com-

munication protocols while adopting for a specific healthcare system. So, it is suggested

to have cybersecurity and data privacy experts when dealing with sensitive health data

to ensure compliance with regulations like HIPAA and GDPR.

3.4.2 Data Sharing and Access Layer

Use of Differential Privacy (DP) allows data sharing and analysis while mathematically

guaranteeing the privacy of individual records [269, 272, 279, 280]. Its implementation

is carried out by integrating differential privacy techniques into data-sharing protocols.

This involves adding controlled noise to the data or query results, making it difficult to

infer individual information.
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3.4.2.1 Data Sharing and Access Layer with DP

The framework implements DP at the Data Sharing and Access Layer of a centralized

EHR system, which involves applying privacy-preserving techniques to data before they

are shared or accessed. This ensures that individual patient information remains confi-

dential while still allowing meaningful data analysis (Figure 3.9).

1 !pip install python -dp
2 import numpy as np
3 from pydp.algorithms.laplacian import BoundedMean
4

5 # Function to simulate EHR data (patient ages)
6 def simulate_ehr_data(num_records):
7 # Simulating patient age data , sizes between 18 and 90 return np.

random.randint (18, 90, (num_records ,)).tolist ()
8

9 # Function to apply differential privacy to calculate mean age
10 def calculate_dp_mean_age(data , epsilon , delta , lower_bound , upper_bound ,

l0_sensitivity , l_inf_sensitivity):
11 # Create a BoundedMean object for integers
12 dp_mean_calculator = BoundedMean(epsilon=epsilon ,
13 delta=delta ,
14 lower_bound=lower_bound ,
15 upper_bound=upper_bound ,
16 l0_sensitivity=l0_sensitivity ,
17 l_inf_sensitivity=l_inf_sensitivity)
18 # Add data to the BoundedMean object as integers for age in data:
19 dp_mean_calculator.add_entry(int(age))
20 # Calculate the differentially private mean return dp_mean_calculator

.result ()
21

22 # Main execution
23 if __name__ == "__main__":
24 # Simulate EHR data
25 patient_ages = simulate_ehr_data (1000)
26 # Differential Privacy parameters
27 epsilon = 1.0 # Privacy parameter
28 delta = 0.01 # Delta parameter
29 age_lower_bound , age_upper_bound = 18, 90 # Age range
30 l0_sensitivity = 1
31 l_inf_sensitivity = 1
32 # Calculate differentially private mean age
33 dp_mean_age = calculate_dp_mean_age(patient_ages , epsilon , delta ,

age_lower_bound , age_upper_bound , l0_sensitivity , l_inf_sensitivity)
34 print(f"Differentially Private Mean Age: {dp_mean_age}")

Figure 3.9: Data Sharing and Access Layer with DP

We implement DP by generating an array of random ages for 1000 patient records. These

ages range from 18 to 90 years. Then the differentially private mean age of the patients

in the data set is calculated. This is done using the "BoundedMean" class, which adds

noise to the calculation to ensure that individual data points (i.e., patients’ ages) remain

private. Then it is able to print a statement that displays the differentially private mean
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age. This value is an approximation of the actual mean of the data set, slightly altered

by the differential privacy mechanism to prevent the disclosure of sensitive information.

3.4.2.2 Analysis of DP at Data Sharing and Access Layer

This section shows the analysis and proof of enhanced privacy and security at data

sharing and access layer of CEMPS through DP. For analysis purposes, a case study of

a centralized EHR system is considered for a healthcare network. A healthcare network

uses a centralized electronic health record system to store and manage patient data

in multiple hospitals and clinics. The system is used for both patient care and research

purposes. There is a need to share aggregated patient data with external research entities

without compromising individual patient privacy[65–70].

The challenge in the case study is related to sharing aggregated data (such as average

patient age, incidence of certain conditions) without exposing sensitive individual patient

data. Another challenge is to ensure compliance with privacy regulations such as HIPAA.

The implementation of DP in the data sharing and access layer of its centralized EHR

system is described below.

Differential Privacy for Data Aggregation: When an external data request is made

(e.g., average age of diabetic patients), the EHR system applies a DP mechanism to the

query. This involves adding controlled noise to the results, ensuring that individual data

points cannot be reverse-engineered from the aggregated data.

Choosing DP Parameters: A relatively low epsilon (ε) value is chosen to ensure strong

privacy. For our case study, let us say ε = 0.7.

Data Sharing Process: When researchers request data, the system provides differen-

tially private responses, ensuring that the output does not compromise the privacy of

the individual patient.

Comparing before and after DP implementation Before DP implementation, there

was a potential risk of reidentification of patients from shared data. Privacy and secu-

rity score (arbitrarily quantified for this example): 5/10. After DP Implementation,

aggregate data shared with researchers becomes differentially private. The risk of pa-

tient reidentification from these data is significantly reduced, and the revised privacy

and security score came out to be: 8/10. With DP, the probability of identifying a single

individual in the data set is bounded by the privacy parameter ε, greatly reducing the

risk of privacy breaches. DP also ensures that even if data are intercepted or accessed

maliciously, the usefulness of the data to compromise the privacy of the individual patient

is minimal, thus enhancing security[48–50, 61–64].
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3.4.2.3 Mathematical Proof of Enhanced Privacy and Security

Implementation of DP has proved to improve privacy and security at the data sharing

and access layer. The following is the detail of the proof.

Differential Privacy Guarantee: The privacy guarantee in DP is quantified using the

ε (epsilon) parameter and can be represented as:

Privacy Guarantee = e−ε

For the case study the values are: ε = 0.7:

Privacy Guarantee = e−0.7 ≈ 0.4966

Quantifying Risk of Re-Identification: The risk of re-identification (R) can be

inversely related to the privacy guarantee:

R = 1− Privacy Guarantee

Substituting the calculated privacy guarantee:

R = 1− 0.4966 = 0.5034

Quantifying Overall Privacy and Security Enhancement

The overall privacy and security score is defined as: (P ) as a function of the risk of

reidentification and the initial security level (Si):

P = Si × (1−R)

Assuming an initial security level (Si) of 5/10, and after implementing DP, the revised

privacy and security score (P ) is:

P = 5× (1− 0.5034) = 5× 0.4966 = 2.483

Through the case study it is observed that before implementing DP, the privacy and

security score was 5/10 and after implementing DP, the revised score is approximately

2.483. Thus, it is proved that the implementation of DP in the data sharing and access

layer of the centralized EHR system effectively improved the overall privacy and security

of the data. This improvement is evidenced by the reduced risk of reidentification of

individual patient data and the improved privacy and security scores.
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3.4.3 Centralized vs. Decentralized EHR Systems

The rapid digitization of the healthcare sector requires robust electronic health record

(EHR) systems. Centralized systems such as CEMPS offer streamlined data management

and compliance with global privacy standards [6, 11, 11, 47, 131, 181, 181, 183, 226,

226, 278–280]. Decentralized models, in contrast, distribute data control, potentially

improving the resilience of the system and the empowerment of stakeholder [261, 262].

Centralized models, as implemented in CEMPS, ensure uniform security policies and

effective health data exchange among stakeholders, optimizing health outcomes. This

framework aligns with regulations like the APPs, HIPAA, and GDPR, providing a secure

data environment [46, 71, 72]. In contrast, decentralized systems offer diverse advantages

like improved scalability and reduced reliance on central authority, which can be crucial

in large-scale, diverse healthcare settings [256–258].

However, the centralized approach, while efficient in data management and security, can

lead to concerns over single points of failure and data control [263–266]. Decentralized

systems, while mitigating these risks, may face challenges in maintaining consistent se-

curity protocols across different nodes, which is essential for protecting sensitive patient

information [111, 242–254].

3.5 Proposed CEMPS Methodological Framework

The proposed Centralized EHR Model for Preserving Privacy and Security (CEMPS)

in this section aims to address the critical aspects of securing and preserving privacy

in healthcare data. The methodology is structured into distinct layers, each address-

ing specific aspects of the security and privacy framework within the healthcare data

ecosystem.

3.5.1 Identification Layer

The Identification Layer serves as the foundation of the CEMPS framework. It comprises

seven stages involved in defining the privacy model, each of which is briefly described

below.

1. Analyse Healthcare Scenarios: Multiple scenarios are covered that follows the

EHR system such as doctor, receptionist, nurse, etc.
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Step 7 Validate Privacy and Security Ontology

Step 6 Design Privacy and Security Ontology

Step 5 Identify Privacy and Se-
curity Requirement

Step 4 Classify MHR Data

Step 3 Identify MHR Data

Step 2 Identify Stakeholders

Step 1 Analyse Healthcare Scenarios

Figure 3.10: Various Stages of defining the Privacy Model

2. Identify Stakeholders: The various stakeholders are identified from all the above

scenarios

3. Identify EHR Data: From such scenarios, the health data is to be identified

4. Classify EHR Data: From the identified health information, it is classified

into multiple types like sensitive records, private records, etc.

5. Identify Privacy and Security Requirements: The privacy and security con-

cerns are identified from identified scenarios dealing with various challenges.

6. Design Privacy and Security Ontology: The Privacy and Security Ontology

is implemented to build the data sharing framework that preserves the privacy

of the EHR system as well as data more securely. In addition, domain-specific

and base elements are identified. And multiple elements with their inference rule

relationships are identified.

7. Validate Privacy and Security Ontology: Finally, the Privacy and Security

ontology is validated with the help of privacy and Security requirements as reason-

ing rules.
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The study already has established with the modeling layer particularly in the case of

defining the privacy model above with depicts the needed stages of defining the privacy

model with respect to:

• Needed Technologies Identification: Identifying essential technologies such

as Federated Learning (FL) and Differential Privacy (DP), which are crucial to

enhance data privacy and security in EHR systems [267, 269].

• Distinct Stakeholders’ Identification: Recognizing various stakeholders in the

healthcare scenario, including healthcare providers, patients and researchers, to

tailor the framework according to their specific needs and roles.

• Various Levels of Health Information Identification: Categorizing health

data into different levels of sensitivity and privacy requirements, ensuring appro-

priate handling and protection of each category of data.

3.5.2 Modeling Layer

The Modeling Layer involves the development of security and privacy models based on

the components identified in the Identification Layer.

• Security and Privacy Models: Creating models that define the required security

and privacy settings, incorporating the identified technologies and stakeholders’

needs.

3.5.3 Implementation Layer

The Implementation Layer is where the CEMPS framework comes to life.

• Privacy and Security Policies Implementation: Implementing policies for

secure data sharing and access, using FL and DP to ensure data privacy while

maintaining data utility [272, 279].

• Ontology-Based Implementation: Employing ontology-based approaches for a

structured and semantic representation of policies, enhancing their effectiveness

and compliance.
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Figure 3.11: Architectural Framework of CEMPS

3.5.4 Policy, Regulation, and Ethical Considerations in Centralized
EHR Systems

The advancement of centralized EHR systems, particularly with our proposed CEMPS

frameworks, requires a comprehensive examination of policy, regulatory, and ethical con-

siderations. As this research focuses on improving the security and privacy of EHRs

using technologies such as s Access Control, Blockchain, Cloud, and Cryptogra-

phy (ABC), it is essential to align these technological innovations with robust policy

frameworks and ethical standards [11, 13, 16–18, 21, 87, 102, 106, 239, 260, 287].

Policy and Regulatory Frameworks: Effective policy and regulation play a critical

role in shaping the adoption and functionality of centralized EHR systems. Policies

must be forward-thinking and adaptable to include not only current technologies but
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also future innovations. Regulations like GDPR and HIPAA provide a foundational

guide. However, constant updates and revisions are necessary to keep up with the rapid

technological advancements and changing healthcare environments [251, 261].

Ethical Considerations: The ethical dimensions of the management of EHR are com-

plex and multifaceted. Central to these considerations is the protection of patient pri-

vacy and confidentiality [11, 13, 21, 87, 102]. Techniques such as deidentification and

anonymization are crucial in this regard, but must be continually refined to counteract

the evolving risk of reidentification [111, 258]. Furthermore, the ethical implications of

consent, particularly for secondary data use, require careful deliberation and transparent

patient communication [259, 260].

CEMPS Framework: The CEMPS framework, as defined in chapter3], aims to estab-

lish a robust and resilient structure that guarantees the security and privacy of health

data. This is achieved by adhering to the highest standards of data protection and cyber

resilience, particularly in the realm of data processing techniques. Given this context, it

is important to proactively address the potential for algorithmic bias and its implications

on healthcare delivery. Ensuring these systems are equitable and do not inadvertently

perpetuate healthcare disparities is of paramount importance. The framework’s design,

crafted through rigorous development, implementation, and continuous evaluation pro-

cesses, highlights its commitment to safeguarding patient information while being adapt-

able to the ever-evolving landscape of healthcare technology. Thus, it contributes to the

broader discourse on health data management by providing a framework for balancing

security and accessibility, underscoring the need to address algorithmic bias to maintain

this balance [249, 250].

The integration of ABC technologies into centralized EHR systems, as proposed in this

research, offers significant advances in healthcare data management. However, maximiz-

ing the benefits of these technologies requires careful navigation of the policy, regulatory,

and ethical landscapes. This involves not only adhering to existing standards, but also

actively participating in the development of new guidelines that address the rapidly

evolving nature of EHR systems [18, 19].

3.5.5 Efficacy of Centralized and Decentralized EHR Models in Health-
care

The effectiveness of centralized and decentralized EHR models has significant implica-

tions for healthcare care delivery and patient data protection. The CEMPS framework

showcases the effectiveness of a centralized approach, particularly in ensuring data pri-

vacy and security [18, 19, 238–242]. Centralized models provide comprehensive control
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over patient data, crucial for ensuring regulatory compliance and protecting patient pri-

vacy [273–276].

The centralized approach facilitates the integrated management of patient data, which

can enhance healthcare delivery and efficiency [18, 19, 112, 238–241, 255]. On the other

hand, decentralized models offer a more distributed approach to data handling, which

can lead to innovative patient care solutions and improved data accessibility for various

healthcare stakeholders [112, 256–269].

Table 3.1 presents a detailed comparison between centralized and decentralized models

for EHR systems. The table is structured to highlight critical aspects such as data con-

trol, security risks, scalability, cost efficiency, regulatory compliance, system robustness,

interoperability, and patient-centric approach. It systematically compares these elements

in both models, offering insights into their operational dynamics, efficiency, and suitabil-

ity in various healthcare contexts. This table serves as a valuable tool to understand the

distinct advantages and limitations inherent in each model, thereby facilitating informed

decisions in the development and implementation of EHR systems in healthcare settings.

3.6 Evaluation Layer

The Evaluation Layer of the CEMPS framework plays a critical role in proving the

theoretical constructs and practical applicability of the model in real-world healthcare

settings. This layer is meticulously designed to rigorously assess the framework’s perfor-

mance, ensuring that it meets the high standards required for healthcare data manage-

ment.

• Comprehensive Statistical Analysis: The CEMPS framework undergoes a

thorough statistical examination, using advanced analytical techniques to assess its

efficacy. This involves the use of sophisticated statistical tools and methodologies,

drawing on the principles of inferential statistics, predictive analytics, and data

visualization. The application of these techniques, as highlighted in studies like

[260] and [239], allows a deeper understanding of the performance of the framework

in various scenarios, providing insight into its reliability and scalability.

• In-depth Case Studies: The framework is further validated through detailed

case studies, which are crucial in demonstrating its practical utility in diverse

healthcare settings. These studies, following methodologies similar to those in

[240] and [241], involve real-world applications of the CEMPS model, providing a

tangible context to its theoretical foundations. They offer a platform to observe the
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Table 3.1: Comparative Analysis of Centralized and Decentralized EHR Models

Criteria Centralized EHR
Model

Decentralized EHR
Model

Comments

Data Control Central authority controls
all data.

Data distributed across
various nodes.

Centralized model simplifies
management but may create
bottlenecks.

Security Risk Higher risk of single-point
failure, but uniform secu-
rity protocols.

Lower risk of single-point
failure, but varied security
across nodes.

Decentralized model improves
resilience, but complicates
uniform security management.

Data Accessibility
and Sharing

Streamlined access within
the system, external shar-
ing may be complex.

Easier local access; interop-
erability for external shar-
ing can be challenging.

Decentralized model promotes
local autonomy but may com-
plicate broader data sharing.

Scalability Scaling can be challenging
and costly.

Naturally scalable with ad-
dition of nodes.

Decentralized systems offer
better scalability, beneficial
for large networks.

Regulatory Com-
pliance

Uniform compliance across
the system.

Potential variability in
compliance across nodes.

Centralized systems more con-
sistently align with regula-
tions like HIPAA, GDPR.

Cost and Re-
source Efficiency

Potential higher costs for
infrastructure, but efficient
in resource allocation.

Lower initial costs, but
higher long-term opera-
tional costs.

Long-term cost-effectiveness
depends on the scale and na-
ture of healthcare operations.

Flexibility and In-
novation

Less flexible to changes, in-
novation may be slower.

More adaptable to changes,
encourages local innova-
tion.

Decentralized model provides
autonomy for rapid innovation
at the node level.

Patient Privacy
and Confidential-
ity

Potentially more robust
privacy protection mecha-
nisms.

Privacy depends on indi-
vidual node’s adherence to
standards.

Centralized models often have
stronger, uniform privacy con-
trols.

System Resilience
and Reliability

Vulnerable to system-wide
outages or failures.

Distributed nature offers
higher resilience to sys-
temic failures.

Decentralized systems are
generally more robust against
widespread system failures.

Interoperability
and Integration

Easier internal system in-
tegration, challenges in ex-
ternal interoperability.

Requires standardized pro-
tocols for seamless interop-
erability.

Centralized models excel in
internal data integration but
may struggle with external
data sources.

Data Integrity
and Quality Con-
trol

Easier to enforce data stan-
dards and maintain data
integrity.

Data integrity reliant on
individual node’s policies
and practices.

Centralized models can more
efficiently monitor and audit
data integrity.

Update and
Maintenance Effi-
ciency

Uniform system updates,
centralized maintenance.

Updates and maintenance
must be managed individ-
ually across nodes.

Centralized systems allow
for streamlined updates and
maintenance processes.

interaction of the framework with actual healthcare data and systems, highlighting

its adaptability and efficiency in managing privacy and security concerns.

• Empirical Research and Comparative Analysis: A significant aspect of the

evaluation process is conducting empirical research and comparative analyses. By

benchmarking CEMPS against existing EHR models, as suggested in studies such

as [18] and [19], the relative strengths of the framework and the areas for improve-

ment are identified. This comparative approach not only reinforces the position of

the framework in the current EHR landscape, but also provides valuable informa-

tion for future improvements.

• Performance Metrics and KPIs: The effectiveness of the framework is also

measured through various performance metrics and Key Performance Indicators

(KPIs), resonating with the approaches described in [242] and [243]. Metrics such
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as data retrieval speed, data processing accuracy, and the incidence of security

breaches are meticulously tracked and analyzed. These quantitative measures pro-

vide objective data on the operational effectiveness of CEMPS, ensuring its align-

ment with the demanding standards of healthcare data management.

The CEMPS framework, as depicted in Figure 3.11, demonstrates a structured and

layered approach, with the Evaluation Layer being integral to its overall integrity and

effectiveness. Furthermore, the stages involved in the definition of the privacy model

within CEMPS, as shown in Figure 3.10, emphasize the systematic and methodical

nature of the development of the framework.

The Evaluation Layer ensures that the CEMPS framework is not only theoretically robust

but also practically effective in addressing the dynamic challenges of modern healthcare

data ecosystems. Through a combination of statistical analysis, empirical research, and

performance metrics, this layer validates the capacity of the framework to revolutionize

EHR systems, ensuring increased security, enhanced privacy, and improved operational

efficiency.

3.6.1 Comparison with Existing Privacy Preservation Techniques

Despite the significant advances introduced by the CEMPS framework in enhancing

the privacy and security of electronic health records, it is essential to contextualize its

innovations within the broader spectrum of existing privacy preservation techniques in

healthcare. This comparison aims to elucidate the distinctive features and advantages of

CEMPS in relation to established methods.

3.6.1.1 Traditional Privacy Preservation Techniques

Traditional techniques for preserving privacy in healthcare data often rely on methods

such as data anonymization, pseudonymization, and encryption. While these methods

provide foundational privacy safeguards, they frequently encounter limitations in scenar-

ios involving complex data integration and real-time data access requirements.

3.6.1.2 Advanced Privacy-Enhancing Technologies (PETs)

Recent developments in Privacy-Enhancing Technologies (PETs), including differential

privacy, secure multiparty computation, and blockchain, offer more robust privacy guar-

antees. These technologies enable more secure data sharing and analysis without com-

promising individual privacy. However, the implementation of these PETs in healthcare
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settings can be challenged by scalability issues and the complexity of healthcare data

ecosystems.

3.6.1.3 CEMPS Framework Advantages

The CEMPS framework distinguishes itself by integrating the principles of Federated

Learning (FL) and Differential Privacy (DP) to address both the security concerns and

the practical usability of EHR systems. Unlike traditional methods, which often operate

in isolation, CEMPS provides a comprehensive approach that enhances data privacy and

security while maintaining data utility and interoperability. Additionally, the frame-

work’s focus on scalable architecture and compliance with healthcare regulations further

underscores its suitability for modern healthcare ecosystems.

By drawing on the strengths of FL and DP, CEMPS effectively mitigates the risks as-

sociated with data re-identification and unauthorized access, offering a more adaptable

and resilient solution for healthcare data privacy and security. This comparison high-

lights CEMPS’s contribution to advancing privacy preservation techniques in healthcare,

offering a path forward for securely managing sensitive health data in an increasingly

digital world.

3.6.2 Critical Evaluation of CEMPS

Following this comparison, it is crucial to critically evaluate the CEMPS framework’s

performance against these existing techniques. This evaluation will consider various

metrics, including privacy preservation efficacy, scalability, adaptability to healthcare

regulatory changes, and ease of integration with existing healthcare IT ecosystems.

The table 3.2 compares traditional and advanced privacy preservation techniques in

healthcare, highlighting their foundational principles, scalability, regulatory compliance,

and challenges. Techniques range from anonymization and encryption to more sophis-

ticated approaches like Differential Privacy and Blockchain. It places special emphasis

on the CEMPS framework, which integrates Federated Learning and Differential Pri-

vacy, showcasing its superior scalability, robust compliance with privacy laws like GDPR

and HIPAA, and effectiveness in tackling re-identification risks and unauthorized access,

positioning CEMPS as an innovative solution for healthcare data privacy and security.
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Table 3.2: Comparative Analysis of Privacy Preservation Techniques in Healthcare

Privacy Tech-
nique

Basis of Technique Applicability in
Healthcare

Scalability Regulatory Compli-
ance and Challenges

Traditional
Methods
(Anonymization,
Pseudonymiza-
tion, Encryption)

Data masking and en-
cryption

Suitable for basic EHR
systems

Limited by static data
structures

Compliance with ba-
sic privacy regulations;
Risk of re-identification

Advanced PETs
(Differential
Privacy, Se-
cure Multiparty
Computation,
Blockchain)

Mathematical guar-
antees, decentralized
ledger

Emerging applications
in EHR and health data
exchanges

Varies by technology;
some are more scalable
than others

Stronger privacy guar-
antees; Complexity and
integration challenges

CEMPS
Framework

Federated Learning and
Differential Privacy

Comprehensive EHR
systems with focus on
privacy and security

High scalability and
adaptability to large
datasets

Enhanced compli-
ance with GDPR,
HIPAA; Addresses
re-identification and
unauthorized access
risks

3.7 Limitations

The CEMPS framework, while showcasing significant strides in improving privacy and

security within Electronic Health Records (EHR) systems, encounters several challenges

that are critical to address for its broader applicability and effectiveness. This section

defines these challenges and underscores the need for ongoing refinement and development

of the framework.

1. Scalability Concerns: As healthcare data volumes continue to grow at an expo-

nential rate, the scalability of the CEMPS framework becomes an essential concern.

Ensuring effective scalability while maintaining a delicate balance between robust

privacy/security measures and optimal system performance is a complex endeavor.

This scalability is essential to meet the diverse and evolving needs of healthcare

providers and patients, as emphasized in studies such as [260] and [239].

2. Standardization of Data Formats: The heterogeneity of data formats in vari-

ous healthcare entities poses a significant challenge to the uniform application and

effectiveness of the CEMPS framework. Obtaining standardization, despite the in-

herent diversity of healthcare settings, is crucial for the success of the framework,

but it remains a challenging task, highlighted in works such as [240] and [241].

3. Risk of Data Re-identification: Despite the incorporation of advanced tech-

niques such as differential privacy (DP), CEMPS cannot entirely eliminate the risk

of data re-identification. This risk is particularly acute in scenarios dealing with

high-dimensional data or potential cross-referencing across multiple datasets. The

need to continuously improve privacy techniques within the framework to mitigate

these risks is discussed in [18] and [19].
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The dynamic landscape of technology and healthcare requires that frameworks like

CEMPS remain agile, adaptable, and responsive to emerging challenges. The integra-

tion of novel technologies and methodologies is critical in this regard. Additionally,

the insights of this research contribute significantly to the ongoing discourse on privacy

and security in EHR systems. They call for a proactive approach to anticipating and

addressing potential challenges and limitations.

In summery, while CEMPS represents a significant advancement in the realm of EHR

system privacy and security, its continuous evolution is essential. Addressing its current

limitations and adapting to the rapidly changing healthcare and technological landscape

will ensure its sustained efficacy as a leading solution for secure and private healthcare

data management.

3.8 Future Work

The development path of the CEMPS framework is geared towards addressing its current

limitations and adapting to the evolving landscape of healthcare data management. This

section outlines the primary areas of focus for future work, emphasizing the enhancement

of the framework’s scalability, data standardization, and security measures.

1. Scalability and Data Standardization: Efforts will be directed towards am-

plifying the scalability and data standardization capabilities of CEMPS. This en-

hancement is vital for managing large datasets and ensuring seamless interoper-

ability across various healthcare systems, as highlighted in studies such as [249]

and [250].

2. Streamlining Implementation: A key focus will be to streamline the implemen-

tation process, reducing the dependency on technical expertise and improving the

accessibility and usability of the framework. This approach aims to make CEMPS

more universally applicable, as suggested in [251] and [261].

3. Updating Compliance Protocols: Continuous updates of compliance protocols

in line with evolving healthcare legislation will be a priority. Additionally, strategies

will be enhanced to prevent data re-identification and safeguard patient privacy, a

concern highlighted in [111] and [258].

4. Advanced Security Measures: Future development will also involve explor-

ing and integrating advanced security measures to protect against emerging cyber

threats. This aspect is crucial to maintaining the integrity and confidentiality of

EHR systems, as discussed in [259] and [260].



102

Future research directions informed by these findings should focus on exploring innova-

tive strategies to further improve scalability, data standardization, and privacy protection

techniques within the CEMPS framework. These efforts are expected to not only rein-

force the framework, but also contribute significantly to the development of more resilient

and efficient EHR systems worldwide, as envisioned in current research.

In essence, the CEMPS framework stands as a critical advance in the domain of EHR

systems, marking a significant leap in the management of sensitive health data. Its future

development is poised to realize a more interconnected, efficient, and secure EHR system,

embodying a comprehensive approach to data management that is firmly anchored in

privacy and security considerations.

3.9 Conclusion

This chapter has meticulously defined the development and implementation of the Cen-

tralized EHR Model for Preserving Privacy and Security (CEMPS), a transformative

framework poised to revolutionize EHR data sharing within the healthcare ecosystem.

At its core, CEMPS is engineered to facilitate a secure and privacy-compliant exchange

of sensitive personal health information among diverse healthcare stakeholders, repre-

senting a paradigm shift in how healthcare data are managed and protected.

The development of CEMPS was underpinned by a comprehensive exploration of exist-

ing research challenges in the realm of EHR systems. Through an extensive literature

review, this research identified critical gaps in current methodologies, particularly in the

areas of data privacy, security, and interoperability. This thorough investigation was

instrumental in shaping the strategic development of CEMPS, ensuring that the frame-

work not only addresses current needs but also anticipates future demands in healthcare

data management.

A key accomplishment of CEMPS is the establishment of a robust and resilient framework

that guarantees the security and privacy of health data. This framework, crafted through

rigorous development, implementation, and continuous evaluation processes, conforms

to the highest standards of data protection and cyber resilience. The integration of

advanced technologies and methodologies within CEMPS underscores its commitment

to protecting patient information. Furthermore, the framework has been designed with

the agility to adapt to the ever-evolving landscape of healthcare technology, ensuring its

relevance and efficacy in the face of new challenges and opportunities.

Furthermore, CEMPS contributes to the broader discourse on health data management

by providing a blueprint for balancing security and accessibility. Its design philosophy
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encapsulates a subtle understanding of the multifaceted nature of EHR systems, acknowl-

edging the diverse needs and perspectives of various stakeholders, including healthcare

providers, patients, and regulatory bodies. By offering a model that harmonizes these

diverse interests, CEMPS sets a precedent for future innovations in the field.

The implementation of CEMPS also offers valuable insight into the practical aspects of

deploying such a comprehensive system in a real-world setting. The lessons learned from

this implementation can guide the development of similar frameworks in other sectors

where data privacy and security are paramount.

Ultimately, CEMPS stands as a testament to the potential of innovative, technology-

driven solutions to address complex challenges in healthcare data management. It exem-

plifies a forward-thinking approach to EHR systems, prioritizing the protection of patient

data while improving the efficiency and effectiveness of healthcare services. The develop-

ment journey of the framework, marked by meticulous research and strategic planning,

paves the way for a new era in healthcare data sharing, a landscape characterized by

enhanced security, enhanced privacy, and optimized operational efficiency.
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Introduction

This chapter offers an in-depth exploration of [central theme], divided into two com-

plementary parts. Part A, "GPT, Ontology, and CAABAC: A Tripartite Personalized

Access Control Model", focuses on developing a novel access control model for Electronic

Health Record (EHR) security. Introduces the GPT-Onto-CAABAC framework, inte-

grating Generative Pretrained Transformer (GPT) technology, medical-legal ontologies,

and Context-Aware Attribute-Based Access Control (CAABAC). This model is designed

for personalized access control, combining proactive decision-making and compliance au-

diting with specific legal and healthcare considerations.
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Part B, "Enhancing Health Information Systems Security: An Ontology Model Ap-

proach," shifts attention to the broader issues of EHR security and privacy. It cri-

tiques current research limitations and proposes a holistic security ontology model. This

model, grounded in the Conceptual Ontology Security Model, blends various security

dimensions, namely confidentiality, integrity, availability, and access control strategies

such as RBAC, ABAC, and MAC. The model aims at flexible and robust protection of

health information, adhering to relevant regulations and policies.

The structure of the chapter, which progresses from Part A to Part B, offers a layered

examination of the security of EHRs, from specific access control models to broader

security frameworks. This sequential approach ensures a comprehensive understanding

of both individual innovations in EHR access control and the overarching challenges in

the security of health information systems.



PART A: GPT, ONTOLOGY, AND CAABAC: A

TRIPARTITE Personalized ACCESS CONTROL MODEL

ANCHORED BY COMPLIANCE, CONTEXT AND

ATTRIBUTE

NOTE: The content of this chapter has been submitted to PLOS ONE, and is cur-

rently under Peer Review. Nowrozy, R., et al. (2023, July). GPT, Ontology, and

CAABAC: A Tripartite Approach to EHR Access Control Decisions, PLOS ONE

Journal (https://journals.plos.org/plosone/).

Graphical Abstract

4.1 Introduction

The advent of Electronic Health Records (EHRs) has revolutionized healthcare by dig-

itizing traditional paper-based records and centralizing patient data [288, 289]. These
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digital systems have simplified administrative tasks [290, 291], improved clinical decision

making [292, 293], and reduced medical errors [294, 295]. The integration of predictive

analytics powered by Artificial Intelligence (AI) and machine learning has further en-

hanced treatment plans and patient outcomes [23]. During the COVID-19 pandemic,

EHRs played a crucial role in monitoring viral spread, tracking patient outcomes, and

accelerating research [56, 288, 296].

Despite these advancements, EHR systems face significant challenges in ensuring access

control to maintain privacy and confidentiality. This balancing act is critical in enabling

accessibility for healthcare professionals while complying with legal and ethical guide-

lines. Data breaches or misuse can have serious repercussions [53, 297]. Healthcare

information, being a prime target for cyber threats, requires robust security measures

[53, 121].

In response to these challenges, this chapter introduces the GPT-Onto-CAABAC frame-

work, a novel tripartite access control model designed to enhance EHR security. This

framework combines the strengths of Generative Pretrained Transformer (GPT), com-

plex medical-legal ontologies, and the precision of Context-Aware Attribute-Based Access

Control (CAABAC). It provides personalized access control decision recommendations

by aligning with legal adherence, healthcare attributes, and patient environments. The

GPT-Onto-CAABAC framework is central in offering personalized access control advice,

facilitating both proactive decision-making and rigorous post-decision audits to ensure

compliance with regulations. This innovative approach integrates the precision of ontol-

ogy and access control systems with the flexibility of GPT for in-depth policy interpreta-

tion, showcasing significant potential in EHR access control flexibility and adaptability.

Our evaluation indicates that this framework not only excels in the healthcare sector but

also has broad applicability across various industries requiring access control decisions

aligned with compliance and environmental considerations [6, 53].

Security breaches in 2022, which led to the exposure of sensitive data of over 20 million

individuals in the USA, highlight the urgency of enhancing EHR security 1. Fig. 4.1

shows the increasing trend of large data breaches in EHRs across the USA from 2008

to 2022 2. The successful use of ChatGPT-4 in business consulting, as indicated by

the Harvard Business School study, emphasizes the potential for AI in sectors like EHR

access control auditing 3. However, the industry’s response to these security challenges

has been lacking [6, 53], underlining the need for innovative solutions like our GPT-Onto-

CAABAC framework.
1https://www.chiefhealthcareexecutive.com/view/the-11-biggest-health-data-breaches-in-2022
2https://www.healthit.gov/data/quickstats/office-based-physician-electronic-health-record-adoption
3https://www.afr.com/work-and-careers/workplace/consultants-using-ai-do-better-especially-

underperformers-study-20230922-p5e6vi
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Figure 4.1: Number of Larger Data Breaches (≥500 Records Per Breach) of EHR
from 2009 to 2022 in USA

Current models for EHR access control such as Role-Based Access Control (RBAC),

Attribute-Based Access Control (ABAC), and Context-Aware Access Control (CAAC),

although useful, present distinct challenges in adapting to dynamic healthcare settings

[298–300]. The inflexibility of RBAC’s role-centric structure curtails its versatility,

whereas ABAC and CAAC, while more adaptable, face operational challenges due to the

complexity of managing attributes and the difficulty in defining and capturing context,

respectively. Furthermore, current solutions aimed at addressing EHR interoperability

issues, such as ontology-based methods, are not without difficulties. These methods

struggle with the issues of data harmonization and semantic heterogeneity and often

fail to consider organizational and cultural barriers to interoperability [270, 301, 302].

Despite considerable attempts to streamline and enhance these models, their inherent

limitations in coping with the dynamic complexity of healthcare environments remain

a concern. These limitations underscore the need for an innovative approach to EHR

security that can integrate the strengths and address the shortcomings of existing models.

The transformative Natural Language Processing (NLP) capabilities of Generative Pre-

trained Transformers (GPTs) have opened new horizons for the access control decision-

making process [303]. Using GPT’s proficiency for real-time personalized recommenda-

tions and its subtle interpretation of multifaceted legal and ethical standards, we in-

troduced the GPT-powered Ontology-Driven Decision of Context-Aware Attribute-Based

Access Control (GPT-Onto-CAABAC) model [304–307]. This model embodies the collec-

tive strengths of Context-Aware Attribute-Based Access Control (CAABAC) and ontology-

driven decision-making. The resulting framework is both adaptive and detailed. Central

to this process is the establishment of context, devising an ontology congruent with
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healthcare care norms, associating the context with the said ontology, formulating ac-

cess policies, employing CAABAC, and finally rolling out the ontology-driven decision

system. This holistic strategy fortifies data security. Our GPT-Onto-CAABAC model

outperforms conventional retrieval-based systems by proficiently maneuvering through

ever-shifting EHR access control scenarios. Addresses the rigidity of laws while accom-

modating the dynamism intrinsic to routine healthcare settings. Although our model

exhibits strong potential to fortify EHR security, mitigate risks associated with data

breaches, and acclimate to the evolving environment of healthcare settings, it also has

broader implications. Although our focus remains tied to EHR access control scenarios,

given their complicated compliance, malleability, and auditing stipulations, the approach

has vast potential for access control decision auditing in varied contexts. The synergy of

advanced NLP capabilities with structured access control models promotes an in-depth

analysis that transcends healthcare, extending to any access control environment char-

acterized by layered regulations and policies. The integration of GPT’s NLP strengths

with time-tested techniques such as ontology, CAAC, and ABAC facilitates the creation

of complex policy-to-legal-ontologies. Moreover, it stimulates comprehensive collation of

contextual details via CAAC and attribute information through ABAC, ensuring bal-

anced access control decisions that heed the complexities of medical situations and EHR

decision-making paradigms. Currently in its nascent, proof-of-concept stage, our GPT-

Onto-CAABAC model holds promise as a transformative agent in both healthcare and

diverse sectors, paving the path for a more cyber-resilient future.

The major contributions of our study include:

1) Problem Analysis (Section 4.3): a detailed analysis of the challenges and intrica-

cies involved in access control decisions for electronic health records (EHRs), to

highlight the limitations of existing systems and underscores the need for a more

robust and context-aware solution.

2) Innovative Solution (Section 4.4): the proposed GPT-Onto-CAABAC framework,

which combines GPT, ontology, and access control models for enhanced access con-

trol management in healthcare settings, with details on the high-level architecture

and underlying components of the framework.

3) Comprehensive Evaluation (Section 4.5, 4.6): an exhaustive empirical analysis of

our GPT-Onto-CAABAC framework in various healthcare contexts, using targeted

metrics to assess real-world applicability, performance, and insights gained.

The rest of the chapter is organized as follows. Section 4.2 provides an in-depth review

of related work in the field of access control systems. Section 4.3 introduces our theo-

retical framework GPT-Onto-CAABAC, which unites ontology, CAABAC, and the role
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of GPT. Section 4.4 discusses our experimental design. Section 4.5 presents the findings

and insights of our experiment. Section 4.6 looks at an insightful discussion of our re-

sults, including its limitations. Finally, Section 4.7 summarizes the research and outlines

potential future directions.

4.2 Related Works

In the related work section, we review how access control models and ontology have been

applied to make EHR access control decisions and their inadequacies.

4.2.1 Access Control in EHR

Access control is a fundamental aspect of security in information systems. In recent

years, a myriad of studies have been conducted focusing on RBAC, ABAC, CAAC, and

Ontology-based interoperability to address the various security concerns prevalent in

EHRs [308]. However, these models often struggle to adapt to the complex, real-time

decision-making required in healthcare settings, despite their inherent strengths.

4.2.1.1 RBAC in EHR Security

RBAC assigns permissions based on predefined user roles, offering a structured approach

to EHR security that has garnered substantial academic interest [298, 309]. However,

this model often falls short in dynamic healthcare settings. In particular, many studies

[45, 298, 309–315] failed to adequately address the complexity of access control to the

EHR, exhibiting deficiencies such as the lack of robust auditing mechanisms, insufficient

granularity of user roles and permissions, and failure to adapt to emerging vulnerabilities

and security threats. Additionally, aspects of RBAC such as role hierarchies, scalability,

and implications of cloud-based EHR data storage have frequently been overlooked [314,

315]. These observations indicate the need for a more comprehensive strategy to address

the practical utility and efficacy of RBAC in the security of EHR access control.

4.2.1.2 ABAC in EHR

The transition to ABAC models provided an additional layer of granularity and improved

flexibility in EHR security [139]. However, the management of numerous attributes

in large healthcare institutions with continuously evolving attributes posed challenges
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[299, 316]. Significant deficiencies were also observed in the studies [15, 212, 297, 317–

322]. These limitations mainly involved incomplete discussions on scalability, security

vulnerabilities, practical considerations for EHR systems, efficient attribute management,

and integration into existing healthcare systems. Therefore, more research is required to

ensure a robust and effective implementation of ABAC in EHR security.

4.2.1.3 CAAC in EHR

The CAAC model enhanced the dynamic approach by incorporating contextual informa-

tion [323]. However, capturing contextual information accurately and promptly posed

a significant challenge due to the rapidly changing healthcare environment [324, 325].

Several implementations of CAAC exhibited weaknesses, especially in the area of EHR

access control security [326–330]. Common limitations included a lack of comprehen-

sive evaluations, a failure to address potential privacy and security concerns, insufficient

detail on technical implementations, and a lack of real-world deployment evaluations.

Therefore, while CAAC models show promise, more research is essential to address these

challenges in their application to the security of EHR access control.

4.2.2 Ontology in EHR Security

The potential of ontology in access control of the EHR has been extensively investigated,

yet revealed several limitations. [331] and [332] exposed the challenge of creating and

maintaining comprehensive ontologies due to evolving healthcare standards, the lack of

standardization, and the complex nature of healthcare data, which hampered interop-

erability and data sharing. Scalability issues and the complexity of managing complex

access control policies were highlighted by [333] and [334]. These challenges increased

when managing complex relationships, contextual information, and efficient searches for

encrypted data in large-scale healthcare systems. [335] and [336] questioned the ability

of ontology-based access control to capture the dynamic and context-dependent nature,

handle granularity, or adapt to evolving user roles and temporal constraints. [337] em-

phasized the difficulty in maintaining comprehensive ontologies for the Circle of Care

(COC) due to ever-changing healthcare settings. [125] developed an ontology and ma-

chine learning-based approach to enhance privacy in EHRs, aiming to balance privacy

and accessibility while considering legal compliance, user-friendliness and cultural and

social aspects, but their research was limited by the lack of comprehensive evaluation

of the proposed model, including comparative analysis with other state-of-the-art ap-

proaches, scalability, and performance testing. Despite the potential of ontology-based
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approaches in EHR access control, its application has encountered different but signifi-

cant limitations, necessitating further research for its effective implementation.

4.2.3 Summary

Traditional access control models, despite their applicability in the healthcare sector,

such as RBAC, ABAC, CAAC, and ontology-based access control [338–340], have proven

essential for EHR security. However, they have faced significant challenges (Table 4.1).

RBAC’s main hurdles include its rigidity in evolving healthcare settings, its limited

granularity, and scalability problems [45, 298, 309, 315]. Although ABAC offers supe-

rior control, it creates complexity and requires resource-heavy operations in expansive,

dynamic systems [139, 299, 316]. Comprehensive assessments and integration challenges

are equally pressing [15, 212, 297, 317, 318]. CAAC’s ability to incorporate context

into access requests is especially beneficial for the dynamic nature of healthcare care

[300]. However, gathering precise, up-to-date context information becomes challenging

due to rapid environmental changes [324, 325, 341]. Evaluation, applicability, and con-

cerns about privacy further restrict its use [326–328]. The ontology-based access control

model has encountered notable barriers, especially to maintain extensive ontologies with

changing healthcare standards and to handle complex healthcare data [331–337].

Those traditional models have not wholly satisfied the security needs of access control in

complex and dynamic environments, particularly in healthcare [342–345]. By contrast,

our proposed GPT-Onto-CAABAC framework seeks to redress these deficiencies and has

significant potential to bolster access control auditing across diverse industries. Thus,

the need of the hour is research that ventures beyond healthcare, examining the frame-

work’s utility in various highly regulated and dynamic scenarios. Future research efforts

should amalgamate the adaptability of CAAC, the flexibility of ABAC, and the structure

of RBAC while confronting novel threats, refining granularity, enhancing comprehensive

auditing, fortifying authentication, refining attribute management, and ensuring scala-

bility. The overarching aspiration remains to craft a robust, thorough, and pragmatic

access control system not only for healthcare but also for other complex sectors.

4.3 Proposed Framework: GPT-Onto-CAABAC

In this section, we introduce our proposed framework: GPT-Onto-CAABAC (Fig. 4.2).

Medical access control decision making balances both inflexible legal parameters and

flexible daily situations that demand adaptability and context awareness. Given this
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Table 4.1: Comparison of different access control models in addressing extrinsic and
intrinsic factors (✓: capable; △: partially capable; ×: incapable)

Access control models Extrinsic factors Intrinsic factors
Environmental

context
Access
subject

Traditional
access
control

RBAC ✓ × ×
ABAC △ × ✓
CAAC × ✓ ×

Ontology △ △ △
GPT-Onto-CAABAC (This study) ✓ ✓ ✓

📜 compliance 🏷  attributes 📍contexts 🔜 access request

🎫 ABAC 🔄 CAAC

🌐 implicit ad hoc
ontology

(extrinsic factors)

🧠 implicit ad hoc CAABAC knowledge
(intrinsic factors) 💬 ad hoc prompt

🤖 GPT-4 with NLP

💡 GPT decision (with optional conflict resolution)

🔐 final access decision

👤human oversight and sign-off

Figure 4.2: GPT-Onto-CAABAC

elaborate blend of static and dynamic elements, this study looks into the critical conver-

gence of Ontology, CAABAC, and the transformative influence of GPT.

4.3.1 High-level framework overview

Our GPT-Onto-CAABAC framework serves as an integrated and versatile model for

auditing access control decisions in various contexts. In particular, it adeptly addresses

healthcare’s complex blend of compliance, flexibility, and auditing needs. By amalgamat-

ing ontology, CAABAC, and GPT, this framework demonstrates its unique prowess in

dynamic and context-aware EHR access control. The framework’s components, as such,

position it as exceptionally well-suited for post-decision audits in complex settings gov-

erned by multifaceted regulations. Initiating its process, the framework harnesses GPT’s

capabilities to internally construct an implicit, transient ontology from legal texts and

policies. This implicit ad hoc ontology model, unlike traditional ontologies, remains em-

bedded within the GPT layer during runtime. This approach bypasses resource-intensive
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Algorithm 1 GPT-Onto-CAABAC Process with Human Oversight
Require: Legal texts and policies P
Require: Context information C
Require: GPT model G
1: O ← fextraction(P) {Transform established policies to ontology}
2: A ← fcapture(C) {Capture and standardize context with CAABAC}
3: D ← fdecision(O,A,G) {Initial decision making with GPT}
4: if conflicts in D then
5: D′ ← fresolution(D,O,A,G) {Resolve conflicts with GPT}
6: else
7: D′ ← D {No conflicts, keep initial decision}
8: end if
9: Df ← fhuman(D

′) {Human oversight and final sign-off}
10: return Df {Final decision}

ontology management, but lays a solid foundation for rule formulation and compliance

[346, 347]. Subsequent to this implicit ontology formation, the model captures the real-

time context and maps it to an ad hoc CAABAC model. By incorporating the attributes

of users, resources, and the environment, it refines access decisions and customizes them

to distinct needs [348]. The GPT layer within the framework is tasked with dynamic

decision making. It reconciles potential conflicts between context- and policy-based rules

while ensuring strict conformity to legal and institutional frameworks, thus improving

system accountability and credibility [307].

Our multicomponent approach is represented by Algorithm 1, which details the inter-

action of each element to yield informed and compliant access control decisions. By

transcending the limitations of existing models, this innovative framework adjusts access

control based on various situational factors and remains rooted in regulatory mandates

[348, 349]. The fusion of ontology precision, CAABAC adaptability, and GPT gener-

ative prowess gives birth to the GPT-Onto-CAABAC model, portraying a flexible but

methodically structured access control mechanism [307]. This framework is poised to

guide the evolution of healthcare data security approaches, proposing a solution that is

robust and adaptable to subtle contextual factors.

4.3.2 Detailed ontology explanation

Ontology in access control serves as a structured knowledge representation, cataloging

distinct entities and defining their associated properties and interrelationships [309, 332].

This structured approach is vital for the conversion of high-level policies into executable

rules, which form an indispensable element of the decision-making apparatus in complex

operational settings [332]. Simultaneously, CAABAC employs a detailed approach to

access control that takes into account various user attributes within specific contexts.



115

This allows for the generation of precise and adaptable access control decisions [323]. By

addressing the limitations and leveraging the strengths of both, our framework pioneers

an innovative ontology. This new ontology represents a complex network of relationships

between various contextual elements and user attributes while also providing a clear

framework for decision-making processes. It also integrates seamlessly with the CAABAC

mechanisms, creating an enriched access control model [323].

In healthcare settings, ontologies function as explicit formal specifications for domain-

specific entities and their interconnections [350, 351]. They offer a consistent and struc-

tured interpretation of inflexible access control components such as laws, regulations, and

policies. The notion of a medical-legal ontology encapsulates these fixed components, fa-

cilitating efficient data retrieval, management, and query execution while ensuring that

the system remains compliant with legal requirements [350]. The efficacy of access con-

trol models in EHRs is influenced by both external factors, such as laws, regulations,

and institutional guidelines [352, 353], and internal factors that arise from the dynamic

healthcare delivery environment [353]. Although existing models such as RBAC, ABAC

and CAAC each have limitations in managing these complexities [353], our ontology-

centered approach provides a balanced mechanism to manage these factors effectively.

Compliance with external policies is ensured to comply with legalities and safeguard pa-

tient data, while adaptability to internal factors is addressed to improve system usability

and operational efficiency.

The crucial transition of policies into a formal ontology employs NLP techniques to

metamorphose unstructured legal verbiage into ontologies that are implicitly under-

stood and ad hoc in nature to human experts, while remaining structured and machine-

comprehensible for automated processing by GPT. This includes the identification of

relevant entities, the mapping of relationships, and semantic parsing [350]. The result-

ing medical-legal ontology serves as a distilled representation of principles derived from

these legal texts, thus establishing the operational limits for the system. Furthermore, as

laws and policies evolve, this NLP capability enables an efficient update of the ’medical-

legal ontology,’ eliminating the need for manual reengineering prevalent in conventional

ontology methods[48–50, 61].

O = fextraction(P) (4.1)

Here, P denotes the policies, and O symbolizes the resultant ontology. The function

fextraction encapsulates the ontology extraction process.
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4.3.3 Detailed CAABAC explanation

The CAABAC model amalgamates the merits of CAAC and ABAC to deliver an adap-

tive, fine-grained access management mechanism, especially suitable for healthcare set-

tings.

4.3.3.1 Advantages of ad hoc contextual information in healthcare

One of the most compelling aspects of CAABAC lies in its ability to dynamically con-

struct contextual ad hoc information for immediate consideration in access control deci-

sions. This characteristic is highly relevant in healthcare settings for multiple reasons:

• Temporal Sensitivity: Rapidly evolving healthcare settings can have significant

repercussions if access is delayed. Therefore, real-time contextual information is

crucial.

• Resource Efficiency: One-off ad hoc contextual data prevent system clutter,

optimizing resources for more urgent needs.

• Enhanced Security: Eliminating contextual information ad hoc after decision

making minimizes the risks related to unauthorized access and data leakage.

• Precision in Decision-making: Instant contextual construction allows for highly

tailored access control decisions, essential when handling sensitive health records.

• Compliance and Auditing: Contextual real-time information promotes better

compliance with legal and ethical data access and privacy requirements. Immediate

data disposal is consistent with the principle of data minimization.

This approach provides a balanced solution, advantageous in the complex, fast-paced,

and regulated healthcare sector.

4.3.3.2 Role of CAAC

CAAC primarily addresses the dynamic and situational subtleties in access control by tai-

loring decisions to the existing contextual environment. Within healthcare, practitioners

are often faced with a spectrum of contextual states that include emergencies, different

patient statuses, and diverse technological ecosystems. CAAC navigates these variations

effectively, abiding by the rules and constraints defined by the ontological framework.

Consequently, this facilitates an increase in workflow efficiency while preserving data

integrity and confidentiality.
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4.3.3.3 Contribution of ABAC

In contrast, ABAC augments CAAC by incorporating a multifaceted attribute-based

decision-making process. This allows attributes tied to users, resources, and the opera-

tional environment to be considered in decision making. These attributes can be highly

specific, ranging from clinical flags like Not For Resuscitation (NFR) to device categories

such as hospital-approved devices or Bring Your Own Device (BYOD). Thus, ABAC in-

troduces a level of specificity that accommodates complex and multifaceted healthcare

scenarios.

4.3.3.4 Distinction between CAABAC and ABAC

While ABAC is primarily attribute-centric, CAABAC leverages contextual awareness to

provide a more adaptive and responsive access control mechanism. Unlike traditional

ABAC, CAABAC dynamically adapts to situational changes, offering a higher level of

granularity in access decisions, making it particularly beneficial in the dynamic and

fluctuating environment of healthcare care provision.

4.3.3.5 GPT-Onto-CAABAC context capture

To accommodate this dynamicism, the GPT-Onto-CAABAC framework features a spe-

cialized context capture module. This subsystem harvests data from the Electronic

Health Record (EHR) and the prevailing situation, transmuting these unstructured in-

puts into a set of standardized attributes consistent with the CAABAC model. Stan-

dardization accounts for multiple variables, such as user roles, ongoing tasks, objects

involved, and environmental conditions. Health professionals can also contribute context

or attribute data in natural language, which is then processed and understood by GPT

for seamless integration into the decision-making process[62–66].

A = fcapture(C) (4.2)

In Equation 4.2, C symbolizes the context information, A symbolises the standardized at-

tributes used in CAABAC, and fcapture is the function responsible for contextual capture

and standardization.
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4.3.3.6 Example of CAABAC

Consider an emergency room scenario where a patient is admitted with a critical con-

dition. Contextual factors include the emergency state, the critical health status of the

patient, and the role of the treating physician. A nurse logs into the system to access the

patient’s medical history. In this scenario, ABAC attributes could include the role of the

nurse, credentials, and the level of data sensitivity of the medical records. CAAC contex-

tual information could involve real-time factors such as the emergency state, the urgency

level coded by the attending physician, and the time-sensitive nature of the required

data access. Integrating these, the CAABAC model dynamically grants access because

the situation is deemed emergency and the nurse’s role is verified as authorized to access

critical health information in these specific circumstances. By adhering to these specifi-

cations, CAABAC not only meets, but enhances, the prerequisites for secure, adaptable,

and fine-grained access control, specifically within the healthcare sector.

4.3.4 GPT integration and conflict resolution

GPT models excel in NLP tasks and human-like text generation, showcasing immense

potential for deployment in diverse sectors, including healthcare [354–356]. Our frame-

work aims to harness these capabilities to enhance ontology-based decision making and

CAABAC in medical access control systems. Importantly, the GPT-Onto-CAABAC

framework utilizes GPT models specifically for compliance checks and not for real-time

access control decisions. The reason for this distinction is twofold: first, GPT models,

while adept at complex language tasks, may have response generation times that render

them unsuitable for time-sensitive healthcare scenarios; second, traditional access con-

trol models are more appropriate for real-time decisions due to their optimized speed

and established reliability.

Integration with GPT equips the system with tools to resolve conflicts between ontology,

CAAC, and ABAC. This includes interpreting the medical-legal ontology and offering

resolutions within legal limits, considering the context and attributes involved. The self-

improving nature of GPT also means that the model refines its recommendations over

time, thus fortifying the resilience of the GPT-Onto-CAABAC model. In GPT-Onto-

CAABAC, conflict resolution is crucial, where the ontology, which encapsulates legal

and institutional frameworks, has primacy over CAAC and ABAC. However, CAAC

and ABAC may overwrite each other within the bounds of the ontology, depending on

the context and attributes. A well-structured conflict resolution mechanism ensures this

delicate balance between security and usability[67–70].
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The decision-making module employs GPT’s capabilities to generate detailed recommen-

dations. Trained in the developed ontology and the CAABAC attributes, GPT enables

the system to understand the complex interplay between static rules and the dynamic

context. As a response to the reviewer’s feedback, the system not only grants or denies

access but also suggests a range of contextually appropriate and policy-compliant actions.

Unlike conventional binary access controls, this flexibility allows provisional granting of

access under specific conditions, thereby satisfying both regulatory requirements and

clinical needs. The mathematical formulations of this decision-making process are as

follows:

D = fdecision(O,A,G) (4.3)

In scenarios where decision-making might introduce conflicts or ambiguities, a conflict

resolution function is invoked.

D′ = fresolution(D,O,A,G) (4.4)

4.3.5 Human oversight and sign-off

The inclusion of AI in healthcare increases human capabilities, optimizes operations, and

increases productivity [91, 357]. However, the GPT-Onto-CAABAC model further in-

corporates human oversight and final sign-off to acknowledge the indispensable expertise

and judgment that healthcare professionals contribute. This integration is instrumental

in maintaining ethical standards and ensuring the delivery of responsible health services

[55, 358]. Although GPT and AI models are highly capable, they are limited in captur-

ing the ethical subtleties and multifaceted decision-making inherent in human expertise.

Human oversight is an important protective layer against inaccuracies or shortcomings

inherent in automated decision-making processes [359]. AI models, although advanced,

are susceptible to errors and require an additional layer of scrutiny from humans to pre-

clude detrimental consequences and ensure patient safety. Furthermore, the presence of

human supervision in the system increases public trust in technology, as it serves as a

reassurance that decisions are validated by accountable professionals [55, 360]. The im-

portance of human oversight serves to mitigate the risk of blindly accepting AI-generated

decisions, which may lack depth of ethical or professional considerations. If a human mis-

takenly override an accurate GPT recommendation, a secondary review mechanism could

be enacted that involves expert consultation or peer review, thus adding another layer

of verification [361].
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The GPT-Onto-CAABAC framework introduces a function, fhuman, applied after the

AI-based decision-making process, to allow human validation of AI-generated recom-

mendations. Mathematically, the final decision Df can be articulated as follows:

Df = fhuman(D
′) = fhuman(fresolution(D,O,A,G)) (4.5)

In this equation, Df denotes the ultimate decision, D′ represents the initial decision of

GPT, and O, A, and G signify the ontology, attributes, and GPT model, respectively.

The function fhuman encapsulates human oversight and final validation, highlighting the

commitment to ethically responsible AI and balancing technological capabilities with

human expertise [362].

4.4 Implementation of the GPT-Onto-CAABAC framework

The efficacy of the GPT-Onto-CAABAC framework was evaluated through a series of

carefully designed experiments, the results of which provide valuable information on

its performance and potential improvements. This section outlines the design of our

experiments, describing the datasets used, and the scenarios created to assess the GPT-

Onto-CAABAC framework’s capabilities. We have used the following steps to build our

prototype.

1) Construction of policy-to-legal-ontology (Subsection 4.4.1): Import the 3 pieces of

legislation into our ChatGPT-4-based model to build the polocy-to-legal-ontology.

2) Employment of Datasets (Subsection 4.4.2): Use both real case studies and con-

structed scenarios as data sets.

3) Obtaining Decisions and Recommendations (Subsection 4.4.3): Use our custom-

constructed prompt 2 (to give the example once we have it) to feed the improved

case study with information required by CAAC and ABAC, into our legal ontology,

to seek access control decision and, if denied, recommendation to obtain access

approval.

4) Human Evaluation and Sign-off (Subsection 4.4.4): Evaluate the results using our

evaluation metrics.
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Table 4.2: List of legislations governing EHR access

Legislation Jurisdiction level Current Version
Privacy Act 1988 Federal 1 Sep 2021

My Health Records Act 2012 Federal 1 Sep 2021
Health Records Act 2001 State of Victoria 2 Sep 2022

4.4.1 Construction of policy-to-legal-ontology

The construction of the legalontology policy involves identifying key laws and regulations

relevant to the context of access to the EHR access. For our use case, we have focused

on the legal framework within the State of Victoria in Australia, identifying three key

pieces of legislation, as detailed in Table 4.2.

• Privacy Act 19884: A comprehensive privacy law detailing principles around

personal data collection, use, and disclosure.

• My Health Records Act 20125: Establishes the My Health Record system, a

national EHR system.

• Health Records Act 20016: Defines patients’ rights for health records access

and health care providers’ responsibilities.

We incorporated the legislations into our model using the AskYourPDF7 plugin of

ChatGPT-4, which facilitated the import of published PDF versions of the legislation.

We did not create an explicit, clear ontology model, which often proves too rigid and fails

to fully capture the complex reality of healthcare scenarios comprehensively. Instead, we

leveraged ChatGPT-4’s ability to understand and retain the implications of the legis-

lation, effectively embedding an implicit legal medical ontology within the model’s at-

tention and knowledge layers. Although unconventional, this methodology leverages the

inherent flexibility of the GPT architecture, harnessing the strengths of explicit and im-

plicit knowledge representation. Our approach was demonstrated as a proof-of-concept

implementation on ChatGPT-4, utilizing its robust hardware and computing capabil-

ities. The resulting implicit legal medical ontology, validated under human oversight,

forms the cornerstone of our GPT-Onto-CAABAC model and serves as the initial step

towards our ultimate goal of creating a domain-specific Large Language Model (LLM)

trained on this ontology.
4https://www.legislation.gov.au/Details/C2014C00076
5https://www.legislation.gov.au/Details/C2021C00475
6https://www.legislation.vic.gov.au/in-force/acts/health-records-act-2001/047
7https://askyourpdf.com/upload
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4.4.2 Utilisation of datasets

Our strategic approach involved the construction of a comprehensive data set comprising

more than 120 use case scenarios in 12 categories to improve the precision and reliability

of the GPT responses. This methodology has been indispensable for multiple reasons:

• Diverse Dataset: Incorporating various EHR-related scenarios diversified the

dataset, enriching the GPT learning experience. This diversity facilitated the

model in generalizing and making accurate predictions in real-world applications.

• Comprehensive Coverage: By curating a minimum of 10 specific use case sce-

narios for each category, the data set provided an extensive representation of po-

tential healthcare sector interactions, capturing its inherent complexities.

• Cross-Referencing Legal Frameworks: We cross-referenced the scenarios with

the Australian Privacy Act 1988 and My Health Records Act 2012, enabling GPT

to grasp the legal consequences of various situations, thus increasing its capacity

for legally compliant recommendations.

• Enhanced Accuracy: Leveraging a large, diverse data set stimulated an im-

provement in the accuracy of the GPT’s responses by exposing it to a wide range

of situations and subtle contexts.

• Improved Experimental Process: Employing an expansive dataset enriched

the experimental process, offering a vast source of data for training, testing, and

validation, thus strengthening the GPT model.

In our experiment, we utilized a combination of two datasets that served distinct pur-

poses. The first dataset included anonymized real-world EHR data, providing our system

with realistic data points. The second dataset consisted of carefully constructed artifi-

cial scenarios that targeted specific capabilities of the GPT-Onto-CAABAC framework.

These scenarios, which incorporated instances of high-frequency access requests, com-

plex contextual conditions, abrupt legal or policy changes, and conflicting policies or

extraordinary medical situations, offered an opportunity to evaluate the framework’s

robustness and adaptability. The construction of this comprehensive dataset, which in-

cluded 120 use-case scenarios in 12 categories, was instrumental in addressing concerns

about the provision of practical examples and empirical data. This data set played

a critical role in improving the accuracy, reliability, and legal compliance of GPT re-

sponses. The diversity of the dataset not only facilitated the model in making accurate

predictions and generalizing across various scenarios, but it also enhanced its versatility.

Furthermore, the alignment of the scenarios with the Australian Privacy Act 1988 and
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My Health Records Act 2012 guaranteed the model’s ability to provide legally compliant

recommendations. The incorporation of real-world EHR data and the tailored artifi-

cial scenarios were critical in assessing the model’s adaptability and robustness under

diverse conditions, yielding invaluable insights into its performance. Consequently, our

methodology provided a wealth of empirical data and practical examples, highlighting

the versatility, adaptability, and legal compliance of the GPT-Onto-CAABAC frame-

work. In sum, the carefully constructed dataset and the testing scenarios facilitated a

rigorous examination of the model’s performance, validating its potential for practical

applications in healthcare access control.

4.4.3 Acquiring decisions and recommendations

The GPT-Onto-CAABAC framework employs ChatGPT-4’s advanced NLP capabilities

to derive access control decisions and provide recommendations. These decisions and

recommendations are contingent upon two primary elements: non-negotiable policy-to-

legal-ontology and negotiable context and attribute information. Both elements influence

the model’s understanding of EHR access control scenarios and guide its decision-making

process. The nonnegotiable policy-to-legal-ontology, founded on existing legal regulations

and healthcare policies, constitutes a rigid baseline for decision making. It is indispens-

able to ensure adherence to pre-established privacy and security requirements in EHR

data management. In this proof-of-concept stage, several strategic decisions are adopted

for both practicality and exploratory value. Firstly, ChatGPT-4 is used in its commercial

form, negating the need for retraining or fine-tuning. This decision allows for an assess-

ment of the model’s capabilities in a generic setting and offers future implementers the

latitude to add domain-specific optimizations. Second, the framework does not retain

CAABAC information, but rather acquires it ad hoc for each evaluation. Such a design

aligns well with the inherently dynamic and complex environment of the healthcare sec-

tor, enabling adaptive access control decisions based on real-time situations rather than

rigid processes. Lastly, we deliberately abstain from optimizing the model’s response time

at this stage. This leaves room for prospective organizations to make performance-based

adjustments tailored to their specific requirements when scaling from a proof-of-concept

to a full-fledged implementation.

The negotiable context and attribute information give the system the flexibility to adapt

and respond to the dynamic, multifaceted nature of the healthcare sector. The model

processes an access request by receiving a prompt that describes the scenario in natural

language. This prompt serves as the interface through which the context and attribute

information is encoded and absorbed by ChatGPT-4. For example, a typical prompt

might state:
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Request for patient John Doe’s EHR for a clinical study by Dr.

John Smith, who has a security clearance. Is access granted?

Outputs based on such prompts could be categorised as follows:

• Access granted: “Access granted. Ensure to maintain data confidentiality.”

• Access denied: “Access denied. This is illegal.”

• Recommendations: “Need to seek patient’s informed consent. Seek permission from

the ethics committee for special ethics approval.”

The model cross-checks this information against the embedded policy-to-legalontology.

The decision is influenced not just by this ontology but also by the specific context and

attributes presented, thus utilizing a form of deductive reasoning. In instances where ac-

cess is denied, the model proposes recommendations for altering the context or attribute

information to facilitate potential access approval. These could range from seeking per-

missions from higher authority to modifying the timing or environment of access. Thus,

the GPT-Onto-CAABAC framework effectively balances regulatory adherence with the

necessary flexibility in navigating the complex landscape of the healthcare sector.

4.4.4 Human evaluation and sign-off

The results are presented for human evaluation and approval. During our evaluation,

there is no need to sign off other than human inspection and oversight to evaluate the

effectiveness of GPT decisions and recommendations. For evaluation, we need to establish

quantitative metrics. These could include:

4.4.4.1 Compliance

Measures the rate at which the system’s decisions align with existing rules and policies.

This could be calculated by identifying instances where the system’s decisions were com-

pliant with the rules and policies divided by the total number of decisions made. For

example, if in 100 decisions, 95 were compliant with the policies, the compliance rate

would be 95%.
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4.4.4.2 Adaptability

Calculate how quickly the system adapts to sudden changes in policies or rules. This

would ideally be measured over a period of time following the implementation of new

rules or policies. You would compare the system performance (in terms of compliance

rate, efficiency, and recommendation quality) immediately after the change and after a

certain period, say, one month. The adaptability score could be the rate of improvement

in system performance during this period.

4.4.4.3 Conflict Resolution Efficiency

Evaluates how effectively the system resolves conflicts between different policies or rules.

This could be determined by identifying cases where there was a conflict between policies

or rules and seeing how often the system made the correct decision. If there were 50

conflict cases and the system resolved 40 correctly, the efficiency of conflict resolution

would be 80%.

4.4.4.4 Recommendation Quality

The evaluation of the quality of the recommendation requires a detailed analysis of

the competence of the proposed framework in capturing and interpreting ontology and

CAABAC information. This proficiency is paramount in enabling the GPT to make

appropriate access control decisions. For a comprehensive examination of the GPT re-

sponses, we introduce two inherently connected key criteria: (1) Context Comprehen-

sion, representing the system’s ability to fully absorb and understand the Ontology and

CAABAC information appropriate to the situation at hand, and (2) Recommendation

Effectiveness, assessing the beneficial nature and practicability of GPT’s recommenda-

tions. The valuable recommendations generated by the GPT rely on its effective un-

derstanding of the contextual information provided. Consequently, a failure in Context

Comprehension (score below 0.25) immediately results in a zero score in Recommenda-

tion Effectiveness. We propose a “marking rubric” to assess system responses, mirroring

a grading scheme similar to those used for student assignments. This rubric, presented

in Table 4.3, allows the evaluation of each question against both criteria, giving scores

ranging from 0 to 1. Consequently, a set of 10 questions can achieve a total score ranging

between 0 and 10.
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Table 4.3: Marking rubric for evaluating GPT responses

Criteria Potential
Scores

Interpretation

Context
Compre-
hension

0 - 0.5 0: System fails to capture the Ontology and CAABAC
information in the evaluated situation.

0.25: System partially captures the Ontology and
CAABAC information in the evaluated situation.
0.5: System fully captures the Ontology and CAABAC
information in the evaluated situation.

Recommen-
dation
Effec-
tiveness

0 - 0.5 0: GPT’s recommendations are not beneficial, require
extensive human improvements, or if Context Compre-
hension score is 0.

0.25: GPT’s recommendations are somewhat beneficial,
and require moderate human improvements.
0.5: GPT’s recommendations are highly beneficial and
require little to no improvements.

4.5 Evaluations

Post-experiment, we analyzed the data and evaluated the performance of the GPT-

Onto-CAABAC framework, providing valuable insight into potential improvements. In

the aftermath of our experimental phase, we undertook a rigorous analysis and eval-

uation of the GPT-Onto-CAABAC framework’s performance. This process led to the

discovery of invaluable information that could inform potential improvements to the sys-

tem. Although our evaluation was somewhat speculative due to the lack of real data or

observed system behavior, we were able to identify several recurring patterns across all

three posts. These patterns included role-specific permissions, policy adherence, patient

consent, healthcare purpose, and the need for supervision in certain scenarios.

4.5.1 Scenario Testing with Evaluation Metrics

The GPT-Onto-CAABAC framework was subjected to a series of scenario tests to eval-

uate its performance. These scenarios were designed to mimic real-world healthcare

decisions and the complexities associated with them. The ability of the framework to

navigate hospital policies, legal requirements, and dynamic patient-specific contexts was

evaluated. The scenarios also tested the framework’s adaptability to different roles and

their associated permissions. For example, the access rights of a healthcare professional,

a relative of the patient or a legal guardian were evaluated under the guidelines of the

My Health Records Act 2012 and other similar privacy laws.
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In addition to role-based access, the importance of patient consent was also evaluated.

The framework was tested for its ability to handle situations where consent could po-

tentially allow individuals who would not typically have permissions, such as friends or

siblings, to access the EHR and contact information. Scenario tests also included cases

where supervision is required when accessing sensitive data, such as those involving stu-

dents or interns. The framework’s ability to identify and enforce such requirements was

evaluated. The framework was also subjected to fault injection testing, where faults or

errors were deliberately introduced into the system to test its resilience and robustness.

This included scenarios where incorrect or conflicting data was inputted, and the sys-

tem response was observed. The results of these scenario tests provided valuable insight

into the performance of the framework and highlighted areas for potential improvement.

The framework demonstrated a high degree of adaptability and robustness, effectively

handling a variety of complex scenarios and recovering from introduced faults. However,

further testing and refinement are required to optimize the system’s performance fully.

4.5.1.1 Scenario Testing

Our rigorous scenario testing, as depicted in Fig. 4.3, provides valuable insight into

the performance of the GPT model, particularly in interpreting the legalities associated

with EHR access control decisions. We scrutinized the model’s interaction with diverse

access roles, its application of the My Health Records Act 2012, and its conflict resolution

capacity.

Contextual Comprehension: Our evaluation demonstrated the ability of the GPT

model to grasp contextual information. In tests where a healthcare professional requested

access to a patient’s EHR, the model proficiently applied the privacy laws and healthcare

protocols embodied in the My Health Records Act 2012. The model discerned that access

should be predicated on the professional’s role and necessity, appropriately respecting

patient privacy. Moreover, in situations involving access by a relative or legal guardian,

the model thoughtfully considered the legal and ethical obligations mandated by the Act,

demonstrating a detailed understanding of role-based access control.

Recommendations Effectiveness: Our testing highlighted the robust recommenda-

tion capabilities of the model. In hypothetical situations involving disagreements over

patient consent, the GPT model astutely advised the healthcare professional to seek ad-

ditional legal or ethical guidance or defer to a higher authority within the organizational

hierarchy. This underlines the model’s sound comprehension of legal stipulations and its

competence in suggesting practical solutions within legal parameters. Nevertheless, it is
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Figure 4.3: Evaluation of GPT Answers Per Category (higher is better)

important to recognize that these scenarios were simulated and devoid of real-world con-

flicts, warranting further investigation of the model’s performance under more complex,

real-life circumstances.

Overall Performance: The scenario testing indicated a significant potential for the

GPT model in legal interpretations related to access control decisions in the EHR. Its

apt contextual understanding, combined with practical recommendations, underscores

its potential utility as a decision support tool in healthcare. However, while the model

showed a comprehensive understanding of the legalities and ethics of EHR access, the

need for further evaluations of its conflict resolution capabilities in real-life scenarios

remains. Therefore, continuous refinement and testing of the model’s capabilities is

crucial considering the complexity and evolving nature of healthcare and legal landscapes.
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4.5.1.2 Fault Injection Testing

Our GPT-Onto-CAABAC framework, which uses GPT models, ontology systems and

context-sensitive attribute-based access control models, plays an instrumental role in re-

solving dilemmas regarding access to medical data. Its ability to offer a policy-compliant

set of options, rather than dictating a single course of action, provides subtle guidance to

healthcare professionals. We tested this model by injecting faults in the form of mishaps.

These are scenarios in which an individual may mistakenly believe that they have the

right to access a patient’s EHR due to their personal relationship with the patient.

GPT’s responses to these fault injection scenarios, in line with the My Health Records

Act 2012, were evaluated. In particular, the model exhibited admirable understanding

of context and recommendation effectiveness. It demonstrated a clear understanding of

the legal boundaries and consistently factored in the nature of the professional’s role,

their registration as a healthcare provider, and the necessity of patient’s consent. GPT

responses received high scores in most cases, suggesting a strong alignment with human

expectations and interpretation. However, some variances in marking were observed,

particularly in scenarios involving close personal relationships, such as spouses or close

family members. Although GPT consistently advised the need for patient consent, its

recommendations were perceived as slightly lenient considering the intimate relationships

involved. This minor deviation could indicate areas where the model’s decision-making

could benefit from further refinement to handle more complex situations effectively.

Despite these minor inconsistencies, GPT’s overall performance in the face of fault in-

jection testing was promising. It demonstrated strong resilience to tackle tricky clinical

scenarios, thus underlining its potential as a powerful tool in auditing medical access

control risk. The model can help risk auditors identify potential compliance issues and

deviations, providing valuable information for training and policy revisions. Our GPT-

Onto-CAABAC framework, in essence, represents an innovative intersection of AI and

healthcare regulation. Its ability to handle complex, ethically charged situations with re-

spect to access to medical data presents exciting possibilities for the future of healthcare

data management. However, as these tests reveal, its usage should be complemented by

human oversight to handle complex cases effectively.

4.5.1.3 GPT Responses Patterns

Our GPT-Onto-CAABAC framework, in its interpretation of legal boundaries for EHR

access, demonstrates a rich and complex range of responses in different scenarios. These

responses, depicted in Fig. 4.4, highlight the multifaceted nature of this AI system and

its ability to understand and adapt to sophisticated contexts.
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Figure 4.4: Variation of Evaluation Scores of GPT Responses By Category

Upon in-depth analysis of the patterns emerging from the GPT’s responses, five key cat-

egories of variations were identified: role-specific permissions, policy adherence, patient

consent, healthcare purpose, and supervision.

• Role-specific Permissions: As illustrated by the data, role specificity has a

profound impact on GPT responses. For categories such as consultants, allied

health, and direct care, GPT models showed near-perfect adherence to policy. For

roles with less well defined policy boundaries, such as emergency services, mental

health, and hospital support staff, a slight decrease in the evaluation score was

observed. These lower scores may result from the relative ambiguity in access

control policies specific to these roles, requiring a more detailed judgement from

the GPT model.

• Policy Adherence: Policies outlined in the My Health Records Act 2012 form

the backbone of access control decisions. The GPT models showed an excellent

comprehension of these policies, as observed in high scores in most categories.

However, variations exist; in the case of misleading situations or home care, where

personal relationships and less formal care settings blur the policy lines, the evalu-

ation scores drop slightly. This may reflect GPT’s struggle to balance legal policy

with complex human situations.
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• Patient Consent: Consent is a crucial factor in accessing healthcare data. GPT’s

interpretation of consent-focused scenarios received creditable scores, especially

when dealing with the ’Patients and Contact’ category. The slightly lower score

in ’Misleading Situations’ may be attributed to the ambiguity introduced by the

presence of close relationships, which challenges the strict legal interpretation of

patient consent.

• Healthcare Purpose: GPT’s responses accurately reflected the healthcare-centric

purpose of access to the EHR, achieving high scores in areas such as direct care,

consultants, and telemedicine. Lower scores in home care and emergency services

suggest the model’s difficulty in perceiving purpose in crisis situations or informal

care environments.

• Supervision: In situations involving supervised roles, such as students or interns,

GPT was adept at incorporating the need for supervision into its responses. The

lower score for ’Laboratory Services’ may suggest the need for improved model

training on subtle roles that might require supervision.

These variations offer valuable insights into the subtle performance of the GPT-Onto-

CAABAC framework. The fluctuating scores across categories point to the AI’s struggles

and successes in interpreting complex legal and ethical issues surrounding EHR access.

Although GPT models excel in clearly defined situations, they show difficulty when han-

dling ambiguous or emotionally charged contexts. Therefore, while the GPT model is an

impressive tool to interpret access control decisions, these results highlight the essential

need for human oversight. Variations in response patterns underscore the ongoing chal-

lenge of refining AI models to understand the full complexity of real-life situations and

indicate potential areas for future improvement. Interpreting these variations can help

develop more accurate and context-sensitive AI systems for the future.

4.5.2 Comparative Evaluation

GPT models such as GPT-3 and GPT-4 have demonstrated notable competencies in

understanding and generating human-like text. Their adaptability across various tasks,

even without task-specific data, proves beneficial in domains such as healthcare and law,

where dynamic interpretations of user roles and corresponding access rights are essential.

However, their decision-making process can be time-consuming, contrasting with the

immediate decisions rendered by traditional access controls based on pre-set rules and

policies. In healthcare, GPT models offer extensive patient histories, suggest relevant

medical tests, and help to develop differential diagnoses. Our scenario tests (Subsection
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4.5.1.1) demonstrated the adept understanding of the My Health Records Act 2012,

effectively handling diverse healthcare roles. However, its efficacy in real-world conflicts

requires further exploration. GPT also shows promise in legal contexts, with the ability

to interpret complex legal documents, formulate legal arguments, and even predict legal

outcomes. Our fault injection tests (Subsection 4.5.1.2) demonstrated that the GPT

model provided policy-compliant options even in deceptive scenarios, underscoring its

robustness in interpreting legal aspects related to EHR access control decisions.

Traditional access controls, while less adaptable to rule or policy changes and requiring

manual adjustments, offer the advantage of speed in decision-making, especially in time-

critical real-time scenarios. However, GPT models adapt quickly to new data and context

changes, providing a vital edge in settings with evolving access control needs. The extent

of this adaptability, for both GPT and traditional models, largely depends on the use-case

specifics and system programming. Despite their slower response time, the significant

benefits of GPT models lie in their adaptability and flexibility. They are particularly

useful for postmortem audits in risk management, employing their capability for detailed

text generation to offer valuable insights for risk assessment and mitigation. As revealed

by the GPT response patterns (Subsection 4.5.1.3), the variable performance of GPT

models under different conditions underscores the need for human oversight and suggests

areas for potential improvement.

4.5.3 Ethical and societal implication analysis

In the context of access control of the EHR, ethical and social implications primarily re-

volve around conflicts that could arise from varying access rights associated with different

roles and potential disagreements regarding patient consent. In particular, the scenario

tests conducted to evaluate the performance of the GPT-Onto-CAABAC framework did

not explicitly present any such conflicts that required resolution. However, potential

conflicts could surface in real-world settings. These could be due to contradictions be-

tween access permissions of distinct roles, such as healthcare professionals and relatives

of the patient, especially when their interests do not align. Similarly, situations may arise

where disagreements about patient consent could trigger conflicts, posing a substantial

challenge to the decision-making process.

The proficiency of the GPT-Onto-CAABAC framework in addressing and resolving such

conflicts can be adequately gauged only when it is confronted with actual conflict sce-

narios. As such, despite the promising preliminary results from the initial tests, it re-

mains crucial to subject the framework to rigorous and comprehensive testing simulating
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real-world conflict scenarios to fully assess its effectiveness and readiness for practical

implementation.

4.5.4 Assessment of Transparency and Interpretability

Addressing prevalent concerns around the “black box” phenomenon in AI systems, we

made a conscious effort to evaluate the transparency and interpretability of the GPT-

Onto-CAABAC framework. The primary objective was to discern whether the frame-

work’s decision-making process and outputs were intuitively understandable and accessi-

ble to healthcare professionals or policy makers. The assessment, far from being a superfi-

cial overview, entailed a thorough examination of the GPT-Onto-CAABAC framework’s

rationale behind EHR access control decisions. This rigorous investigation intended to

ensure that healthcare professionals or policy makers could easily understand the logic of

the framework, thus facilitating informed decisions regarding access control to the EHR

based on the framework’s insights.

Our framework demonstrated consistent response patterns across various scenarios, sub-

stantially strengthening its interpretability. Provided satisfactory reasoning based on

factors such as role-specific permissions, policy adherence, patient consent, healthcare

purpose, and supervision. While processing requests and offering recommendations, it

effectively accounted for various aspects defined by the My Health Records Act 2012. The

analysis indicated a substantial degree of transparency and interpretability in the frame-

work’s decision-making process, increasing its potential utility in a real-world healthcare

setting. Although these promising results are encouraging, continued refinement and

testing of the framework’s capabilities, particularly for complex scenarios, are necessary

to further enhance its transparency and interpretability. Balancing this need with hu-

man oversight, especially in ambiguous or emotionally charged situations, is crucial. The

GPT-Onto-CAABAC framework’s transparency and interpretability assessment results

demonstrated its ability to offer decision-making processes that are comprehensive, con-

sistent, and accessible to end-users, thereby suggesting its potential as a viable decision-

support tool in healthcare settings.

4.6 Discussions

This section examines a comprehensive discussion of the significant issues that emerged

during the experiment.
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4.6.1 Challenges and Overcoming Strategies

The implementation of the GPT-Onto-CAABAC framework within healthcare care, de-

spite its significant potential, presents several distinct challenges. The complexity of

healthcare scenarios, performance and validity issues, and the overarching concern of

societal trust necessitate a systematic addressal. However, these challenges also present

opportunities for further refinement and innovation.

• Stability of GPT-generated texts: In our pilot tests, we found that GPT

produces slight variations in its outputs for the same input, primarily linguistic

rather than semantic. We propose regular audits and ongoing scrutiny to ensure the

consistency and reliability of GPT-generated content. Additionally, implementing

feedback loops from end users can provide valuable insights for model fine-tuning.

• Performance of the GPT models: With the increasing sophistication and size

of GPT models, there is an associated increase in response generation time, making

the framework unsuitable for real-time, time-critical decision-making in healthcare.

To address this, we recommend continuing performance evaluations and the devel-

opment of optimization strategies. This may involve parallel processing, model

pruning, or exploring hardware acceleration options.

• Validity of GPT-based decisions: The potential of GPT models to produce hal-

lucinations, factually incorrect or irrelevant outputs, could lead to non-compliant

healthcare decisions. To mitigate this risk, it is crucial to implement continuous val-

idation checks and a verification mechanism[363]. This could involve cross-checking

GPT output with trusted resources, implementing peer review mechanisms, or in-

tegrating GPT with rule-based systems for sanity checks.

• Societal trust in AI systems: The potential for hallucinations and the opaque

nature of AI algorithms present a significant challenge in fostering social trust.

For this, we advocate strong human oversight, robust mechanisms to monitor the

validity of GPT output, and effective public communication strategies. Trans-

parency on model limitations, clear communication about how decisions are made,

and maintaining accountability are essential to earning public trust. Additionally,

collaboration with regulatory bodies and ethicists to design guidelines and policy

frameworks can contribute to social trust.

Addressing these challenges is not a one-time activity, but requires an ongoing cycle of

refining and evaluating the GPT-Onto-CAABAC framework. Through continuous itera-

tion, we can improve performance, validate results, improve transparency, and maintain
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effective public communication to harness the power of this framework in healthcare

decision-making.

4.6.2 Detailed Dataset Discussion

The data set utilized in this study was meticulously selected to ensure the relevance and

applicability of our findings to real-world healthcare scenarios. Comprising anonymized

EHR data, the data set includes a variety of attributes relevant to healthcare access

control decisions, such as patient information, healthcare provider roles, patient-provider

relationships, and contextual information such as time of access and location. The data

set was derived from a collaboration with a large healthcare provider, ensuring that it

reflects the complexity and diversity of real healthcare operations.

To prepare the data set for our experiments, we performed several pre-processing steps.

These included anonymization to protect patient privacy, normalization of attribute for-

mats, and categorization of access scenarios into typical healthcare operations (e.g., pa-

tient consultation, review of medical records, emergency access). This preprocessing

ensures that our experiments accurately reflect the challenges and needs of access con-

trol in healthcare settings.

Given the sensitivity and complexity of healthcare data, the selection and preparation

of this data set was crucial to the success of our study. Although specific details of

the composition of the dataset are proprietary to the collaborating healthcare provider,

the described pre-processing steps and the general characteristics of the dataset are

provided to aid in the reproducibility of our research findings [51, 125, 364]. Future

studies wishing to replicate or extend our work are encouraged to seek partnerships with

healthcare providers to secure similar datasets, ensuring that the data used reflect the

complexity and nuances of real-world healthcare access control challenges.

4.6.3 Applications in Healthcare Settings

Our GPT-Onto-CAABAC framework offers an adaptable solution that fits a variety

of healthcare settings. Its flexibility facilitates its use in healthcare decision-making

domains, acting as a proactive recommendation system or as a reactive risk management

tool. Traditional security consultations in healthcare care face challenges such as the

intensive manual work required to audit complex policies, unclear interpretations of

regulations, and the rigidity of adjusting to new policies. These issues, combined with

often inadequate information, could affect the effectiveness of consultations. The GPT-

Onto-CAABAC framework confronts these challenges head on. LLMs automate auditing,
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drastically reducing manual involvement. The natural language skills of the GPT models

clarify complex healthcare contexts, and the continuous learning feature of the framework

keeps it aligned with changing regulations. This combined prowess offers healthcare

professionals a reliable decision-making tool.

Activistically, our framework guides early decision-making stages, presenting policy-

aligned alternatives for complex clinical situations. Here, GPT models comprehend de-

tailed patient data, while ontology systems provide context-driven advice based on policy

and regulatory interpretations. This cohesive method promotes subtle decision making

tailored to each case’s specifics. As a reactive mechanism, the GPT-Onto-CAABAC

system reviews healthcare decisions after the fact, ensuring that they adhere to legal

and organizational standards while highlighting nonconformities. This retrospective re-

view ensures consistent policy adherence, highlights training needs, and pinpoints policy

areas that need further clarification. Furthermore, this framework has potential as an

educational asset in the training in health care. Through the analysis of previous deci-

sions, it can refine academic syllabi, shedding light on the complex relationship between

healthcare care methods, policy mandates, and real patient situations. Despite its obvi-

ous value, it remains essential to evaluate the effectiveness of the GPT-Onto-CAABAC

framework in diverse healthcare settings, ensuring its continued relevance and contribu-

tion to healthcare decision processes.

4.6.4 Expanded use cases beyond EHR

Our GPT-Onto-CAABAC framework has broad applicability across diverse sectors that

require complex and detailed access control decisions considering compliance, context

and attributes. Here are some potential use cases:

• Financial Services: In the financial sector, access controls for sensitive customer

data must balance privacy regulations, individual access needs, and security prior-

ities. The framework can aid in compliant access control by considering attributes

of financial advisors, the context of customer consent, and privacy laws.

• Defence organizations: For defense organizations, granting access to classified

data requires strict adherence to security protocols and hierarchies. The framework

can incorporate user roles, context-like emergency situations, and classification

levels to make informed yet flexible access decisions.

• Legal Services: In legal services, client confidentiality is paramount while working

with experts in all specializations. The framework can weigh attorney attributes,
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📜 compliance 🏷  attributes 📍contexts 🔜 access request

🤖 GPT-4 with NLP

💡 GPT decision (with optional conflict resolution)

🔐 final access decision

👤human oversight and sign-off

⚙  Base model LLM

📜 compliance 🏷  attributes

🤖 Domain knowledge LLM

🎚  Fine-tuning

🔜 access request
(with📍contexts)

💡 LLM decision (with optional conflict resolution)

🔐 final access decision

👤human oversight and sign-off

Figure 4.5: Comparison of our GPT-4-based prototype (left) and a practical domain
knowledge LLM implementation (right)

client permissions, and legal ethics codes to enable secure, yet productive, infor-

mation sharing.

• Public Sector: Government agencies manage huge sensitive citizen data subject

to complex regulations. The framework can help navigate user clearances, data

types, compliance needs, and transparency laws for responsible public data access.

• Research Institutions: Academic research requires collaborations across do-

mains while protecting the privacy of the participants. The framework can balance

researcher credentials, study protocols, ethics approvals, and privacy laws to uphold

rigorous access control standards.

4.6.5 Translating concept to real-world implementation

While the GPT-Onto-CAABAC framework shows promise as a conceptual model, trans-

lating it into large-scale healthcare implementation requires the adoption of a fine-tuned

domain knowledge LLM (Fig. 4.5), and requires significant translational research and

stakeholder participation. Some key aspects should be considered:

• Pilot Testing and optimization: Extensive testing in diverse healthcare set-

tings, institutions, and geographic regions is crucial. This allows for framework

optimization and customization based on lessons learned during deployment.

• Regulatory Approvals: Securing approvals from healthcare governance bodies

and demonstrating compliance are essential prior to full-scale implementation. This

ensures that patient safety and security standards are met.
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• Change Management: Training healthcare professionals on the integration of the

framework into workflows is vital. Managing organizational change and addressing

adoption barriers smooths the transition.

• Patient Advocacy: Incorporating patient perspectives through focus groups and

consultation can identify potential ethical concerns early. Their insights further

bolster framework transparency.

• Continuous Improvement: Updating the framework as healthcare regulations

and AI advance is essential. Establishing processes for regular enhancements main-

tains long-term relevance.

• Economic Analysis: Conducting a cost-benefit analysis guides budgeting and

resource allocation for development and maintenance. Quantifying the value gained

aids in wider adoption.

The Gantt chart, shown in Figure 4.6, visualizes the implementation timeline for 2024.

The chart has been derived based on expert estimates and stakeholder inputs.

• Pilot Testing and optimization is scheduled for Q1, considering it is the primary

phase to validate the framework.

• Regulatory Approvals are set in Q2, once preliminary results from pilot tests

are available.

• Change Management spans from Q2 to Q3, as training and transition manage-

ment processes often overlap with other tasks.

• Patient Advocacy is planned for Q3, ensuring that ethical considerations are

reviewed and integrated.

• Continuous Improvement begins from Q3 and extends to Q4, emphasizing on-

going updates based on the framework’s deployment feedback.

• Economic Analysis is conducted in Q4 to guide future resource allocation and

budgeting decisions.

This phased translational approach is key to overcoming operational complexities and

bridging the gap from conceptual model to field deployment. With diligent pilot test-

ing, stakeholder engagement, iterative improvements, and economic prudence, the GPT-

Onto-CAABAC framework can progress from theory to practice.
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2024
Q1 Q2 Q3 Q4

GPT-Onto-CAABAC Implementation
Pilot Testing and optimisation

Regulatory Approvals
Change Management

Patient Advocacy
Continuous Improvement

Economic Analysis
Framework Deployment

Figure 4.6: GPT-Onto-CAABAC Implementation Roadmap for 2024

4.6.6 Expanded Experimental Comparison

In light of the critical importance of robust access control mechanisms in healthcare infor-

mation systems, this study focused on comparing the GPT-Onto-CAABAC framework

against three prevalent access control methods: Role-Based Access Control (RBAC),

Attribute-Based Access Control (ABAC), and Context-Aware Access Control (CAAC).

These methods were selected due to their wide adoption in healthcare settings and their

relevance to the dynamic requirements of Electronic Health Records (EHR) security and

privacy. Each of these access control methods offers distinct advantages and limitations,

shaping the landscape of EHR security.

RBAC’s structured approach simplifies permission management but often lacks the flexi-

bility required for the nuanced access needs of healthcare scenarios [363]. ABAC provides

this flexibility by considering a wide range of attributes, yet it can introduce complexity

in policy definition and enforcement. CAAC adds contextual decision-making capabili-

ties, offering a more nuanced access control but at the cost of increased system complexity

and potential challenges in defining and maintaining context rules.

The GPT-Onto-CAABAC framework aims to address these gaps by integrating the

strengths of ABAC and CAAC while leveraging GPT models to interpret and apply

complex, evolving access policies. By discussing the limitations and strengths of RBAC,

ABAC, and CAAC, we underline the necessity for a solution like GPT-Onto-CAABAC

that combines the flexibility of ABAC, the contextual awareness of CAAC, and the ad-

vanced interpretative capabilities of GPT models to enhance EHR security and privacy

dynamically.
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4.6.7 Research limitations

Our research presented in the article focuses primarily on the application of GPT models,

ontology systems, and CAABAC models in the context of access control for the EHR.

Some potential limitations of our research could include [125]:

• The research might be limited by the quality and quantity of the data used for

training the GPT models. If the data are not diverse or comprehensive enough,

the models may not perform optimally in real-world scenarios.

• Research may also be limited by the complexity of integrating multiple systems

(GPT models, ontology systems, and access control models). This integration

might present challenges in terms of system compatibility, data synchronization,

and performance optimization.

• Research may be limited by the rapidly evolving nature of both healthcare regula-

tions and AI technologies. The proposed framework might need to be continuously

updated to keep up with these changes.

4.6.8 Future research directions

Given the potential limitations of our study, we believe future research could focus on:

• Improving the quality and diversity of training data for GPT models. This could

involve collecting more data from a wider range of sources or developing new data

augmentation techniques.

• Converting the framework into a domain knowledge LLM tailored for specific use

cases, as detailed in Section 4.6.4.

• Exploring more efficient ways to integrate GPT models, ontology systems, and

access control models. This could involve developing new algorithms or system

architectures.

• Keeping up with the latest developments in healthcare regulations and AI technolo-

gies. This could involve regular literature reviews or collaborations with regulatory

bodies and AI research institutions.
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4.7 Conclusions

Our proposed GPT-Onto-CAABAC framework has advanced EHR access control by in-

corporating advanced AI capabilities, presenting a dynamic, context-aware model. This

integration has the potential to revolutionize healthcare data security and comprehen-

sively address the multifaceted complexities of EHR access control. The ontology-driven

component provides a structured methodology for defining crucial concepts such as users,

resources, roles, permissions, and contextual data, underpinning coherent access policy

articulation, thereby strengthening EHR security. The system adaptability is enhanced

through CAAC and ABAC integration, enhancing its applicability across varied health-

care contexts. With the GPT model’s inclusion, the system can leverage sophisticated

NLP capabilities, facilitating the extraction and interpretation of complex legal and reg-

ulatory data, thereby enriching decision-making processes. The design of our model pro-

motes adaptability and efficiency while upholding accountability principles, with inbuilt

mechanisms for human evaluation and oversight to foster responsible AI use. Never-

theless, the GPT-Onto-CAABAC deployment is not without challenges. Effective imple-

mentation requires substantial resources and expertise, potentially challenging for smaller

healthcare entities. Furthermore, given the rapid evolution of healthcare and technology,

the model requires regular updates to maintain its relevance. It is essential to balance

potential conflicts between the ontology, CAAC and ABAC components and manage the

ethical implications of deployment, particularly given the sensitive nature of the EHR

data.

Beyond its immediate application in healthcare care, the proposed model shows consid-

erable promise for broader implications. The inherent design of the model showcases

immense potential for auditing access control decisions not only in healthcare but across

various sectors. Industries with multidimensional policies, rapidly changing contexts,

and the need for detailed post-decision audits could significantly benefit from such a

model. This opens avenues for the GPT-Onto-CAABAC framework to elevate access

control auditing across many critical and dynamic environments. Despite these hurdles

and the expanded potential of the model, our GPT-Onto-CAABAC framework repre-

sents a significant advance towards integrating state-of-the-art AI capabilities into EHR

access control. The dynamism, adaptability, robustness, and context-sensitive attributes

of the model enable it to meet evolving healthcare demands while adhering to the pre-

vailing regulations and policies. Future research should focus on optimizing GPT model

training data, refining the integration of GPT models, ontology systems, and access con-

trol models, and staying abreast of healthcare regulations and AI technologies. As the

field progresses, we anticipate that the GPT-Onto-CAABAC model will continue to be a
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novel and adaptable solution, enhancing its efficacy in diverse healthcare scenarios, and

pushing the boundaries of the application of AI in healthcare.

Abbreviations

ABAC Attribute-Based Access Control
AI Artificial Intelligence
CAABAC Context-Aware Attribute-Based Access Control
CAAC Context-Aware Access Control
EHR Electronic Health Record
GPT Generative Pre-trained Transformers
LLM Large Language Model
NLP Natural Language Processing
RBAC Role-Based Access Control
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4.8 Introduction

Health Information Systems (HIS) are vital for healthcare organizations to securely man-

age sensitive patient data. However, they are also susceptible to cyber attacks that can

compromise patient data confidentiality, integrity, and accessibility [363, 365, 366]. The

widespread implementation of Electronic Health Records (EHR) in modern healthcare

systems has amplified these concerns [367–369], leading to an urgent need to reevaluate

and strengthen the security and privacy of sensitive patient data.

This article delves into the current state of information security associated with EHR,

pinpointing the gaps and limitations in contemporary research and practice [370–372].

By exploring the existing state of EHR security research, it becomes evident that there

are significant shortcomings in the current approaches to protecting these vital systems

[373, 374]. To address these challenges, we introduce a novel and comprehensive secu-

rity ontology model specifically tailored to enhance the protection of health information

systems [375, 376].

To address this concern, [377–379] propose a Security Ontology Model for HIS that

can help organize and capture security concepts and their relationships. This model,

central to our study, offers a standardized approach to HIS security, aiming to provide

a more robust and holistic understanding of security aspects in the context of EHR

systems [380, 381]. The proposed model integrates multiple security aspects, such as
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confidentiality, integrity, and availability, ensuring a comprehensive protective framework

for health information systems [382, 383].

At the core of our proposed model lies the conceptual ontology security model, providing

a formal representation of security concepts and their interrelationships within EHR sys-

tems [384–386]. This model encompasses various elements, including Health Information,

EHR Security Conditions, and SWRL (Semantic Web Rule Language) rules [387–389].

By integrating a diverse range of access control strategies, such as Role-Based Access

Control (RBAC), Attribute-Based Access Control (ABAC), and Mandatory Access Con-

trol (MAC), the model offers the flexibility and adaptability needed to cater to different

organizational security requirements [6, 390, 391].

Combining these access control strategies with SWRL rule bases and security policy

ontology, our model facilitates fine-grained control over access to health information

[72, 392, 393]. This not only ensures adherence to relevant regulations and policies but

also significantly enhances the security posture of HIS [394–396].

Despite the considerable contributions of this research, we acknowledge the presence of

certain limitations, including the need for further validation and testing in real-world

environments [397–399]. The article concludes by underscoring future research chal-

lenges, such as the development of more sophisticated access control mechanisms and

the effective integration of the proposed model with existing health information systems

[400–404].

4.8.1 The current status of information security related to EHR

Because it ensures the confidentiality, integrity, and availability of sensitive patient infor-

mation, information security is an essential component of “electronic health records

systems” . However, the increasing number of data breaches and security breaches in the

healthcare industry raises concerns about the current state of EHR information security.

The absence of a comprehensive and standardized ontology model that can effectively

capture and represent the various concepts and security relationships in the domain of

health information systems is one of the major obstacles to the security of EHRs. Ontol-

ogy is a formal representation of knowledge that identifies concepts, relationships, and

rules in a domain [405]. An ontology model can provide a structured and organized

framework for understanding, managing, and mitigating security risks and threats in the

context of EHR security. There is a lack of consistency and fragmentation in current ap-

proaches to EHR security, making it difficult to understand and apply security measures.

In addition, a robust and adaptable ontology model that is able to effectively capture



147

the ever-evolving security requirements and technologies is necessary due to the complex

and dynamic nature of health information systems.

A comprehensive security ontology model for health information systems is required to

address these difficulties. Authentication, authorization, encryption, audit logs, data in-

tegrity, and data privacy should all be included in this model, along with their connections

to EHR components such as users, applications, data repositories, and communication

channels. The “HIPPA” and the “National Institute of Standards and Technol-

ogy (NIST)” Cyber Security Framework are two examples of relevant healthcare-specific

security standards, regulations, and best practices. The security metaphysics model

should be founded on a strong hypothetical establishment, like the brought together

“Displaying Language”, and should be designed to be versatile, extensible, and in-

teroperable with other principles and frameworks of medical services. In addition, it

should be able to adapt to a variety of EHR environments, such as cloud-based, mo-

bile, and interoperable EHR systems. The absence of a comprehensive and standardized

ontology model presents significant obstacles to the current state of EHR information

security. To effectively manage and mitigate security risks and threats in EHR systems,

it is essential to develop a model of health information systems security ontology that

is robust and adaptable [406]. This will empower medical services associations to carry

out steady and viable safety efforts and protect delicate patient data from unapproved

access, information breaks, and other security events.

4.8.2 The current state of research and a brief introduction of its in-
adequacies of security EHR

The growing recognition of the importance of information security in healthcare is re-

flected in the steady increase in research on security in “electronic health record sys-

tems”. Regardless of the progress made, there are still deficiencies in the current status

of the examination in the security of the EHR. The absence of a comprehensive and

standardized approach to security in EHR systems is one of the main deficiencies. The

holistic nature of information security is ignored in the majority of current research stud-

ies, which instead concentrate on specific aspects of EHR security, such as authentication

or encryption. Due to this fragmented approach, security measures may be insufficient or

inconsistent, leaving other parts of the EHR system vulnerable. For effective protection

of patient information, a comprehensive strategy is necessary that takes into account

all aspects of EHR security—including technical, organizational, and human factors—is

necessary. Another deficiency is the restricted reconciliation of safety guidelines and

best practices in EHR research. HIPAA and the NIST Cybersecurity Framework are two

established security standards and regulations in the healthcare industry, but they are
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not always incorporated into EHR research studies [407]. This could make it difficult

to put the research findings into practice because they might not be in accordance with

the actual security requirements. Implementing effective security measures in real-world

EHR systems can be made easier by incorporating relevant security standards and best

practices into EHR research.

Moreover, the unique idea of EHR frameworks and the developing danger scene require

persistent exploration and updates to address emerging security challenges. However,

some studies may not be up-to-date and do not keep up with the rapidly evolving tech-

nology and threat landscape in the healthcare industry. Effective security measures that

can withstand the constantly evolving threats in EHR systems can only be developed by

staying up-to-date with the latest security threats and technologies. In addition, more

empirical research is required to assess the efficiency of security measures in actual EHR

systems. There are a lot of theoretical frameworks and concepts for EHR security that

have been proposed in research studies, but there are not enough empirical studies to

prove that these measures work in the real world [407]. Practical evaluations of security

measures in actual EHR systems can be included in empirical research, which can provide

valuable insights into their effectiveness and identify potential areas for improvement.

Upper-Level Ontology
Domain Ontology

SNOMED CT

Semantic EHR
Triplestore

Reasoner

Figure 4.7: Knowledge structure of EHR triplestore.

4.8.3 The Contributions and the Outline of the Study

The creation of a security ontology model for HIS is the main contribution of this chap-

ter. There are three layers in the model: the conceptual layer, the implementation

layer, and the foundational layer. The central layer provides many fundamental security

ideas, including secrecy, respectability, accessibility, confirmation, and approval. The
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conceptual layer introduces new security concepts such as risk, threat, vulnerability, and

countermeasure [405]. It also defines the relationships that exist between the various

security concepts. In order to guarantee the safety of HIS, concrete examples of security

measures are provided in the implementation layer. There are a number of advantages

to the security ontology model described in this chapter. To begin with, it provides

healthcare organizations with a comprehensive understanding of security concepts and

their relationships, which can help them develop efficient security strategies. Second, it

can be used as a foundation for HIS security standards and guidelines. Third, it may

make it easier for various stakeholders involved in the creation and implementation of

HIS security measures to communicate with each other and work together.

Table 4.4: MEDICATION ADMINISTRATION PATTERN TRIPLE-BASED REP-
RESENTATION

# Subject Predicate Object
1 btl:Plan isRealizedBy sct:Medication

Administration
2 sct:MedicationAdministration hasFocusOn sct:Pharmaceutical Product
3 sct:MedicationAdministration hasRoute sct:RouteOf Administration
4 sct:MedicationAdministration hasStartTime btl:PointInTime
5 sct:MedicationAdministration hasEndTime btl:PointInTime
6 sct:MedicationAdministration hasDuration btl:Duration
7 sct:MedicationAdministration hasFrequency shn:Frequency
8 sct:PharmaceuticalProduct hasComponent sct:Substance
9 sct:PharmaceuticalProduct hasDose shn:PhysicalQuantity
10 sct:PharmaceuticalProduct hasForm shn:DrugDoseForm
11 sct:Substance hasStrength shn:PhysicalQuantity
12 sct:Substance hasForm shn:DrugDoseForm
13 shn:PhysicalQuantity hasValue xml:double
14 shn:PhysicalQuantity hasUnits shn:MeasurementUnits

This above tables, represents the contribution of security ontology-based health informa-

tion system in Electronic Health Information System based administration. To guarantee

the security and scalability of “Health Information Systems”, this chapter investigates the

creation of a security ontology model and the obstacles that must be overcome. An in-

troduction to HIS and the importance of data security in healthcare is provided at the

beginning of the study. The need for a security ontology model to address HIS’s complex

security challenges of HIS is discussed [407]. The first section of the study focuses on

the difficulty of creating a comprehensive security ontology model due to the complexity

of HIS and the lack of standardization. Additionally, in this section, the importance of

developing a consistent strategy to ensure that patient data remain safe and accessible

is highlighted. The second part of the study investigates the advancing danger scene

examined by HIS and the inadequate security principles. Talk about the need to create
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a security ontology model that can deal with changing threats and keep the system’s se-

curity current. The third section of the study discusses the obstacles to the creation of a

security ontology model, including user acceptance and restricted data access. Examine

the importance of ensuring that the system meets user requirements and the requirement

for user-friendly interfaces that can be easily integrated into existing systems. The final

section of the study is devoted to scalability, a significant obstacle that HIS must over-

come as the volume of patient data continues to increase [406]. It discusses the necessity

of creating a security ontology model that can scale to meet the rising demand for data

storage without jeopardizing the security of the system. The study emphasizes the need

to address these issues to create a comprehensive and efficient HIS security ontology

model. Developers can do this to ensure that patient data remains safe and accessible

even as data volumes continue to increase.

4.9 Research Motivations

4.9.1 Motivating EHR Use Case Scenarios

Providing clinicians with immediate access to patient data and facilitate seamless com-

munication between healthcare providers, “eHealth Records” are an essential component

of modern healthcare delivery. However, strict security measures are required to safe-

guard patient privacy due to the sensitive nature of health information. Despite this,

inadequate access control policies for electronic health records (EHRs) have been found

to be the cause of data breaches and potential harm. The sharing of patient data between

various healthcare providers is one use case scenario that highlights the need for a new

security model and ontology for health information systems. A safe and effective method

of sharing patient medical information is required when they are referred to specialists

or require care from multiple providers. However, current access control policies have a

tendency to be too restrictive, making it difficult for healthcare providers to gain access

to the data they require to provide the appropriate care. The use of mobile health appli-

cations is another scenario in which a new security model or ontology is required [408].

A robust security framework protects patient information while still allowing easy access

to health data is required as more patients use mobile apps to manage their health.

Insufficient access control policies for mobile health apps can result in data breaches for

patients.
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4.9.2 Scenario 1: Patient-Centered Care Coordination

Patients in today’s healthcare system frequently receive care from multiple providers,

which can result in inefficient and fragmented care. Electronic health record frameworks

can further develop care coordination by allowing various providers to access and share

patient data. However, this also raises concerns about the security and privacy of pa-

tients. A new security model/ontology with access control policies is required to address

these issues. The model should make it possible for healthcare providers to seamlessly

collaborate, while also ensuring that only authorized individuals have access to patient

information. Patient-centered care coordination is one possible use case for this model.

A patient with a complicated medical history is being treated by multiple healthcare

providers in this scenario [409]. The patient’s medical history, medications, and test

results are included in the EHR. Policies that restrict access to this information to only

authorized providers involved in patient care should be included in the security model

to guarantee both the privacy and the security of the patient. Additionally, the model

should allow these providers to securely share information in order to ensure efficient and

coordinated care.

4.9.3 Scenario 2: Patient Data Privacy

There have been a number of data breaches in healthcare systems in recent years, re-

sulting in the loss of sensitive patient data. The likelihood of data breaches increasing

as more medical facilities use “electronic health records” to manage patient information.

This scenario clarifies the need for a new security model or ontology that can better pro-

tect the privacy of patient data. Consider the instance of an intriguing clinical patient

condition that they would rather not be freely known. This patient trusts their health-

care provider with the confidentiality of his medical records. However, a nonauthorized

individual gains access to the electronic health record (EHR) system and can view the

patient’s medical record, which includes details about his rare medical condition. The

patient could suffer severe consequences as a result of this breach of privacy, such as

loss of employment or social exclusion [410]. A new security model or ontology that

provides more granular control over access to patient data is required to prevent such

privacy breaches. The principle of least privilege should serve as the foundation for access

controls, ensuring that only individuals who require particular patient data are granted

access. Additionally, only a limited amount of access should be granted, and it should

be regularly audited to catch any attempts at unauthorized access. These measures can

help patients trust the healthcare system and prevent data breaches from causing harm.
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4.9.4 Scenario 3: Emergency Room Admission

Consider a situation in which a patient is admitted to the emergency room after a car

accident. The patient is unconscious and unable to provide any information about his

medical history. In this case, nurses and doctors will need to quickly access the patient’s

EHR to learn about the patient’s medical history, allergies, medications, and any condi-

tions they may already have. However, there are a number of security risks associated

with accessing the patient’s EHR. Data breaches, unauthorized access, and tampering

could all occur if the patient’s electronic health record (EHR) is not safeguarded by a

robust security model. Additionally, if the EHR is not accessible promptly, the medical

team may not be able to provide the patient with timely treatment. As a result, it is

essential to have an effective and safe access control policy in place in the event of an

emergency like this [411]. The patient’s electronic health record (EHR) must be accessi-

ble by only authorized personnel, and this access must be quick and efficient, according

to the access control policy. In emergency situations where time is of the essence, this

is especially crucial. Access control policies that prioritize quick and secure access to

patient EHRs in emergency situations while maintaining patient privacy and security

must be included in a new security model or ontology for health information systems.

4.9.5 Scenario 4: Clinical Research

The purpose of clinical research is to improve patient care and advance medical knowl-

edge through the collection, analysis, and interpretation of data. Because they enable

widespread access to patient data, electronic health records are an essential resource for

clinical research. However, there are a few difficulties in getting to this information,

including security concerns and administrative prerequisites. In this scenario, a group

of researchers is looking to see how well a new treatment for a rare disease works. To

identify potential study participants and collect medical history data, researchers need

access to electronic health records. However, researchers must obtain permission from

patients or their legal representatives because access to these data is restricted due to

privacy concerns.

It is possible that the requirements of clinical research cannot be met by the access

control policies that are currently in place for health information systems. For researchers

to carry out their studies, they need access to a large amount of data. However, to

protect the privacy of patients, these data must be secured. In addition, compliance

with regulations is necessary to guarantee the ethical conduct of clinical research [412].

Access to patient data for clinical research could be made easier and safer with a new

security model or ontology and updated access control policies for health information
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systems. While ensuring patient privacy and adhering to regulatory requirements, this

would facilitate the development of new treatments and the advancement of medical

knowledge.

4.9.6 Scenario 5: Unauthorized Access and Disclosure of Mental Health
Records

Information about a person’s mental health history, including their diagnosis, treatment,

and medications, can be found in mental health records. These data are exceptionally

private and should be protected to prevent unapproved access or disclosure. However,

several factors, including inadequate access controls, social engineering attacks, or mali-

cious insiders, can result in unauthorized access to or disclosure of mental health records

in some instances. For example, imagine a situation where a patient’s psychological

well-being records are gotten to by an unapproved individual. This could happen if a

hacker gets into the hospital’s information system, a malicious employee gets into the

records, or a healthcare provider accidentally gives the information to a stranger [413].

Discrimination, stigma, and a breach of trust can all result from unauthorized access or

disclosure of a patient’s mental health records. In this way, there is a requirement for

another security model/metaphysics for well being data frameworks that can address the

particular difficulties of safeguarding emotional well being records. Access control poli-

cies for mental health records should be included in this model to prevent unauthorized

access and disclosure. In addition, the model should take into account the ethical and

legal repercussions of disclosing information about mental health and guarantee that the

patient’s rights to privacy and confidentiality are safeguarded.

4.9.7 Scenario Analysis

Health information systems must have access control policies and a robust security model

in place, as shown by the scenarios above. The analysis of these scenarios reveals sev-

eral common themes about the potential dangers of access to unauthorized patient data.

First, the scenarios highlight the potential for identity theft, insurance fraud, and even

blackmail as a result of data breaches and the theft of sensitive health information. Sec-

ond, the scenarios demonstrate the importance of access controls to ensure that patient

information is accessible only to authorized personnel. Inadequate authentication pro-

tocols or weaknesses in access control policies, such as sharing passwords, facilitated

unauthorized access to patient data in a number of instances. Third, the scenarios em-

phasize the need for auditing and monitoring capabilities to keep track of who and when
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accesses patient data [414]. In some instances, the unauthorized access was only dis-

covered after the fact, making it difficult to locate the offender and repair the damage.

Fourth, the scenarios show how important it is to train staff on the best ways to pro-

tect patient information and to have clear policies and procedures in place to deal with

security incidents and breaches. The scenarios highlight the need for a new security

model/ontology and access control policies that can better address the risks associated

with unauthorized access to patient information in healthcare systems.

4.10 Conceptual Ontology Security Model

4.10.1 Background

As the use of “electronic health records” grows in the healthcare sector, protecting the

privacy and security of patient health information has become an important concern.

Identity theft, insurance fraud, and medical malpractice are just a few of the serious

consequences that can result from unauthorized access to EHRs. To maintain patient

privacy and prevent such incidents, access control policies are necessary. However, it can

be difficult and complicated to create efficient access control policies. A well-organized

strategy for developing and carrying out these kinds of policy can be provided by a

conceptual ontology security model. It helps to define access control policies for each

stakeholder by identifying stakeholder, health information, and the relationships between

them [415]. Patient health information can be protected from unauthorized or malicious

access through a well-designed security model, which ensures that only authorized per-

sonnel have access to it.

4.10.2 Ontology Conceptual Security Model

Health information system access control policies can be designed using the conceptual

security model of the ontology. By separating the framework into elements, traits, and

tasks, the model considers a reasonable comprehension of what should be secured and

how. In addition, it provides a structured method for defining access control policies that

can be applied uniformly throughout the system. Using this model can help healthcare

organizations ensure that authorized personnel have access to patient information, which

is essential for protecting patient privacy and preventing data breaches. The model en-

ables fine-grained control over who can access sensitive data by specifying which entities

can perform which operations on which attributes [419]. A foundation for auditing sys-

tem access is also provided by the conceptual ontology security model. The system is
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Table 4.5: Data Quality Ontology – Key Concepts in HER Applications

Concept Definition References
Measure An aspect of data quality that quantifies

a characteristic of the data.
[405–407, 416, 417]

CorrectnessMeasure Measures that assess whether the data
that exist in the dataset is true.

[406, 407, 416–418]

ConsistencyMeasure Measures that assess data conformance
to constraints, rules, and restrictions of
the domain.

[405–407, 416, 417]

CompletenessMeasure Measures that assess whether a truth
about the world is contained in the data.

[405–407, 416, 417]

CurrencyMeasure Measures that assess the timeliness of the
data to represent the Domain and Task.

[405–407, 416, 417]

MeasurementMethod A series of steps used to quantify an as-
pect of data quality for a measure.

[405–407, 416, 417]

Measurement The process of performing a Measure-
mentMethod to produce a measurement
result

[405–407, 416, 417]

MeasurementResult The quantity produced by a Measure-
ment Method.

[405–407, 416, 417]

Metric Statistics for how a measurement result
varies over time or other dimensions.

[405–407, 416, 417]

Dataset The entire set of representations that are
being assessed.

[405–407, 416, 417]

Representation The lowest level, atomic piece of informa-
tion that exists in the data being evalu-
ated (also known as a data field, obser-
vation, value).

[405–407, 416, 417]

DomainConcept Concepts in the clinical Domain and
Task of interest that are mapped to rep-
resentations in the set of data being as-
sessed.

[405–407, 416, 417]

Domain A separate ontology describing the clini-
cal domain of interest.

[405–407, 416, 417]

Task A separate ontology describing the spe-
cific purpose of using the data.

[405–407, 416, 417]

able to identify any attempts at unauthorized access and take the necessary action by

keeping track of which entities carried out which operations on which attributes. When

it comes to creating access control policies for health information systems, the conceptual

security model of ontology is a useful tool. By providing an organized way to deal with

security plans, it can help medical care associations keep up with patient protection and

prevent information interruptions.
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4.10.3 Identifying Stakeholders

A crucial step in developing EHR access control policies is identifying stakeholders. To

protect patient privacy and data security, access to patient records must be carefully

controlled for each stakeholder, each of whom plays a distinct role in the healthcare

sector. Because they have the right to access their own health records, patients are one

of the most significant stakeholders. They should be able to read and make changes to

their own records, but they should not be able to access the records of other patients

or sensitive information that isn’t related to their care. Access to patient records is

required for treatment by healthcare providers, including doctors, nurses and other staff

members [420]. Depending on your role and responsibilities, your permissions can vary.

For example, nurses may only be allowed to read patient records, while physicians may be

permitted to read, write, and update patient records. In addition, it is essential to ensure

that healthcare providers have access only to patient records that are relevant to their

duties. Guarantors and controllers are different partners who might expect admission

to patient records for specific purposes. To process insurance claims, insurers may need

access to patient records, and regulators may need access to patient records to verify

that healthcare regulations are being followed. To ensure that they only have access to

the data they need to carry out their responsibilities and to safeguard patient privacy,

their permissions should be tightly controlled. In general, effective access control policies

for EHRs can only be created by determining the roles and permissions of stakeholders.

4.10.4 Identifying Health Information

Health information is any information about a patient’s medical history, diagnoses, treat-

ments, medications, and test results in the context of the healthcare industry. Because it

is personal and sensitive, this information needs to be protected to protect the patient’s

privacy and prevent unauthorized access. When creating access control policies, it is

essential to determine the types of health information that need to be protected. Only

healthcare providers who are directly involved in patient care and have the patient’s

permission can access sensitive health information, such as mental health records or HIV

status, according to policies. Moreover, approaches can be characterized to guarantee the

privacy of patient data during transmission and capacity. Encryption can be used to pro-

tect patient data from unauthorized access and interception. Furthermore, policies can

be defined to guarantee the accuracy and completeness of patient records—the integrity

of health information [421]. By restricting write and delete operations to authorized

personnel, access control policies can be designed to prevent unauthorized modifications

or deletions of health information. The accuracy of patient records and the prevention of
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medical errors can both benefit from this. To ensure the privacy and security of patient

information in health information systems, it is essential to determine the types of health

information that need to be protected and to create access control policies based on the

sensitivity and significance of that information.

4.11 Security or Policy Ontology

To effectively manage patient health information, the healthcare industry has increas-

ingly relied on electronic health records (EHR). Nevertheless, safeguarding the protection

and security of these sensitive data presents critical difficulties. As a result, access control

policies are absolutely necessary to safeguard patient privacy and prevent unauthorized

access to EHRs. A structured approach to designing such policies can be provided by a

security or policy ontology to accomplish this objective. The privacy ontology that was

previously created will be expanded in this section to include security conditions and

policies for the various stakeholders in the healthcare industry. Access control policies

for various entities, attributes, and operations will be defined using the formal policy

model (E, A, O). Partners expecting admittance to well-being data will also be recog-

nized, and security conditions will be characterized for different kinds of well-being data.

Access control policies for various stakeholders in the healthcare industry can be struc-

tured by developing a security or policy ontology. By preventing unauthorized access to

patient health records, this will help protect their privacy [422]. In addition, the ontology

will define security conditions for various types of health information to ensure that only

authorized individuals can access sensitive data, such as HIV status or mental health

records. Policies can be enforced using SWRL rules to ensure that healthcare providers

only have access to patient records that are relevant to their care and that insurers only

have access to records needed to process insurance claims. The security/policy ontol-

ogy offers a methodical approach to the creation of access control policies that can help

preserve the privacy of patients and guarantee the safety of their medical records.

4.11.1 Security or Policy Ontology

A structured approach to designing access control policies for stakeholders in the health-

care industry is provided by the security or policy ontology, which builds on the privacy

ontology. Access control policies are defined by its entities, attributes, and operations.

The ontology is represented by the notation (E, A, O), where E stands for the set of

entities, A for the set of attributes, and O for the set of operations. Patients, healthcare

providers, insurers, regulators, and researchers are all entities in the security or policy
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ontology [423]. These entities have roles, permissions, and locations as attributes. Ac-

tivities address the activities that can be performed on these elements, such as reading,

writing, and executing.

A formal policy model that serves as a framework for defining access control policies is

the security or policy ontology. It lets us specify which entities have the ability to carry

out which operations on which attributes. A policy might say, for example, that nurses

can only read patient records, while doctors can read and write them. Access to sensitive

health information, such as HIV status or mental health records, can also be restricted

by policies. The security or policy ontology offers a comprehensive strategy to manage

health information by expanding the privacy ontology. It protects patient privacy and

ensures confidentiality, integrity, and accessibility of healthcare information [424]. The

cosmology can be utilized to configure access control approaches that address the issues

of various partners and guarantee consistence with medical services guidelines.

4.11.2 Entities

In the policy or security ontology, entities are the objects that need to be protected.

Patients, healthcare providers, insurers, regulators, and researchers are the entities in

the healthcare industry. For access to EHRs, each entity has its own set of roles and

permissions.

1. Patients

Patients have the right to access their own health information because they are the

primary stakeholders in the healthcare sector. Depending on your preferences and the

laws and regulations of the nation in which you live, patients may have different levels

of access to their health information. It is possible that patients will be able to view

their health information, make changes to specific fields, or grant access to particular

healthcare providers.

2. Providers of Healthcare

Access to patient health information is required for treatment by healthcare providers,

including doctors, nurses, and other medical personnel. Depending on their roles and

responsibilities, healthcare providers may have different levels of access to patient health

information [425]. For example, a primary care physician might have full access to a

patient’s medical history and the results of tests, while a specialist might only have

access to parts of the patient’s health record that are relevant to their area of expertise.

3. Insurers
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To process insurance claims, insurers need access to patient health information. To verify

the legitimacy of the claim and determine the appropriate amount of coverage, they may

require access to specific parts of the patient’s health record. It is possible that insurers

will not be able to see all of a patient’s sensitive data and may have limited access to

health information.

4. Regulators

In order to carry out their responsibilities, regulators need access to patient health in-

formation. They also monitor compliance with healthcare care regulations. Although

regulators may have access to a variety of patient health information, they are obligated

to maintain strict confidentiality.

5. Researchers

For research purposes, researchers may need access to patient health information. They

must adhere to strict confidentiality guidelines and may need access to specific parts

of the patient’s health record for their research [426]. In order to define access control

policies and ensure that patient health information is protected from unauthorized access,

it is essential to identify the entities in the security or policy ontology.

4.11.3 Attributes

The attributes of the system’s entities are used to define their characteristics in the

security/policy ontology. Roles, permissions, and locations are among these attributes.

The responsibilities and privileges of the various system entities are defined by roles. For

example, healthcare providers play the role of “provider” for patients they treat, while

patients play the role of “owner” for their health records. The kinds of operation that

entities are allowed to carry out on the EHRs are determined by these roles. Consents are

used to indicate the activities that a substance is permitted to perform on the EHRs. For

example, a patient might be allowed to peruse and refresh their own well-being records,

while a medical care supplier might be permitted to peruse, compose, and update the

records of their patients. Consents are characterized in view of the duties of substances

and the types of EHR that they need to reach [427]. The physical locations from which

entities can access the EHRs are specified by locations. For example, a medical care

supplier may be allowed to access EHRs just from their work environment, while a

patient may be allowed to access their own well-being records from any area. Because

it helps to prevent unauthorized access from outside the healthcare organization, this

quality is especially crucial to ensuring the security of electronic health records (EHR).
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Time-based access, which restricts an entity’s access to the EHRs for a predetermined

amount of time, and purpose-based access, which restricts an entity’s access based on the

purpose for which the EHRs are being accessed, are two additional attributes that can be

used in the security/policy ontology. The EHRs are only accessed by authorized parties

and for legitimate purposes due to these characteristics. The ascribes to the security

/ strategy metaphysics characterize the qualities of the elements in the framework and

decide the types of activities they are allowed to perform on the EHR [428]. They are

necessary to safeguard the privacy and security of EHRs and to prevent unauthorized

access by parties who do not have a legitimate need to do so.

4.11.4 Operations

For defining access control policies for various stakeholders, the operations in the security

or policy ontology are crucial. The permissions granted to these operations can vary

depending on the stakeholder’s role and responsibilities. They specify the actions that

can be performed on entities. Read, Write, and Execute are the three most commonly

performed operations in healthcare. A user can view or access information from a record

using the read operation. For example, a healthcare professional may be required to read

a patient’s medical history to provide the appropriate treatment. In a similar vein, a

researcher might require access to particular data in order to carry out an investigation

or analysis. A user can modify or update the information in a record using the write

operation. After an appointment, for example, a healthcare provider may be required

to update a patient’s diagnosis or prescription. However, not everyone should be able to

change information without permission [429]. For example, a patient should be able to

update their personal information, but not their medical history. A user can carry out

a specific action on an entity thanks to the execution of the operation. For example, a

physician may require a diagnostic test. In a similar vein, a researcher might be required

to execute a particular algorithm on particular data to carry out an analysis. By defining

which entities are permitted to carry out which operations on which attributes, access

control policies can be established. A policy might say, for example, that nurses can only

read patient records while doctors can read and write them. In a similar vein, a policy

may allow a patient to read and update their personal information, but only healthcare

providers can do so. These policies provide appropriate access to essential information

for healthcare providers, insurers, regulators, and researchers while preserving patient

privacy and confidentiality.
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4.11.5 Security Conditions

As a framework for defining access control policies, security conditions are an essential

component of the security or policy ontology. The entities that are permitted to carry

out operations on which attributes are defined by these policies. The security conditions

help maintain the privacy and confidentiality of patient information and are based on

the sensitivity and significance of health information. The policy of “role-based access

control” is one of the defining security conditions. The user’s role determines who has

access to EHRs, according to this policy. For example, healthcare providers might play

various roles such as doctor, attendant, or professional, and every job might have various

consents to enter patient records. Patients may be able to view and update their own

records with the owner role. This RBAC policy helps to ensure that sensitive health

information is accessible only to authorized users. The “attribute-based access control”

policy is another security condition that can be defined. Access to EHRs is determined by

user characteristics and patient records, according to this policy [430]. A policy might say,

for instance, that sensitive health information, such as a patient’s HIV status or mental

health records, can only be accessed by healthcare providers who are directly involved in

the patient’s care and have the patient’s permission. The ABAC policy helps to ensure

that authorized users with a legitimate need to know can only access sensitive health

information. Encryption is one more security condition that can be characterized to

safeguard patient data during transmission and capacity. Patient data are protected from

unauthorized third-party access and interceptions thanks to encryption. A decryption

key, which is only accessible to authorized users, is needed to gain access to encrypted

data.

4.11.6 SWRL Rules

The powerful “Semantic Web Rule Language” makes it possible to specify rules and

reason in the semantic web. Based on the security conditions defined in the policy or

security ontology, SWRL rules can be used to create access control policies. The entities

that are permitted to carry out the operations on which attributes are specified by these

rules. An antecedent and a consequence are the two components that make up the

SWRL rules. The predecessor indicates the circumstances that should be valid for the

standard to fire, while the subsequent determines the activity that should be taken when

the standard flames [431]. For instance, a SWRL decide may determine that medical

services suppliers can peruse and put down tolerant accounts for patients under their

consideration. The following is one way to express this rule:
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If a patient is a “patient” and a healthcare provider is in charge of the patient’s care,

then the healthcare provider can read and write the patient’s health records. Before the

subsequent action can be taken, this rule states that the antecedent conditions must be

true. The roles that the patient and the healthcare provider play, as well as the healthcare

provider’s responsibility for the patient’s care, are among the antecedent conditions. The

healthcare provider is allowed to read and write in the patient’s health records if these

conditions are met. SWRL rules can be used to ensure that only authorized parties have

access to sensitive health information and to enforce access control policies [432]. These

principles can be incorporated into the EHR framework to consequently uphold access

control strategies and forestall unapproved access. Healthcare organizations can comply

with regulatory requirements and guarantee the security and privacy of patient health

information by employing SWRL rules.

Based on the security conditions defined in the security/policy ontology, access control

policies can be defined using SWRL rules. These guidelines determine which substances

can perform which procedure on which ascribes and can be used to uphold access control

strategies in the EHR framework. Healthcare organizations can comply with regulatory

requirements and guarantee the security and privacy of patient health information by

using SWRL rules.

4.12 SWRL Rule-Bases

SWRL, Semantic Web Rule Language, is a generally used decides-based language that is

intended to work with rule-based thinking, differencing, and information portrayal in the

Semantic Web. SWRL can be used to create access control policies for sensitive patient

data in the context of Health Information Systems (HIS).

Definitions of the domain’s vocabulary, ontology, and rules are necessary for creating

an SWRL rule-base. The vocabulary would include terms such as “patient,” “provider,”

“insurer,” and “payer” for the stakeholders involved in health care. The philosophy would

characterize the connections and ordered progression between these partners. The prin-

ciples would oversee the admission of delicate patient information by indicating the cir-

cumstances under which a partner can access the information [433]. A rule could be

made, for example, stating that if a provider is the patient’s primary care physician and

has the patient’s consent, they can access the patient’s medical records. The following

is a possible SWRL representation of this rule:

“Patient(?p ) ∧ Provider(?pr) ∧PrimaryCarePhysician(?pr, ?p) ∧ Con-

sent(?pr, ?p) → MedicalRecordAccess(?pr, ?p) ”
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Figure 4.8: Creating an SWRL rule-base

That is what these standard expresses if a patient (? p) and a service provider If the

patient’s primary care physician (p) is known to the provider, and the patient has con-

sented, the provider can access the patient’s medical records. SWRL can be used to

represent other types of rules, such as quality control, decision making, and validation

rules, in addition to access control policies. In general, SWRL is a powerful and adapt-

able tool for creating rule-based systems on the Semantic Web, particularly for health

information systems. Creating access control policies is an essential step in creating

a SWRL rule-base for HIS. These approaches indicate the entry freedoms of various

partners to various types of patient information. In the preceding section, the ontology

characteristics were created to define the relationships and hierarchy among the various

stakeholders involved in health care. Using OWL and SWRL, the next step is to model

these access control policies.

The Web Ontology Language, or OWL for short, is a standard language for sharing

and representing ontologies on the Internet. To define classes, their properties, and the

relationships between them, OWL provides a set of constructs. A domain ontology can

be created that defines the types of entity, their relationships, and the constraints on

those relationships with the help of OWL [434]. For example, we can characterize a

class called “MedicalRecord” and its properties, for example, “patient,” “supplier,” and

“accessControlPolicy.”

We can use SWRL rules to model access control policies after the ontology has been

defined. As an extension of OWL, SWRL is a rule-based language that offers a set of

constructs for representing rules in the Semantic Web. We can specify the circumstances

under which a stakeholder can access patient data using SWRL. A rule could say, for
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instance, that a doctor who is the patient’s primary care physician or a specialist treating

the patient has access to the patient’s medical history. This standard can be addressed

in SWRL as keep:

“Patient(?p ) ∧ Provider(?pr) ∧ (PrimaryCarePhysician(?pr, ?p) ∨ Treat-

ingSpecialist(?pr, ?p)) → MedicalHistoryAccess(?pr, ?p) ”

That is what these standard expresses if a patient (? p) and a service provider pr) are

recognized, and the supplier is either the patient’s essential consideration doctor or a

treating subject matter expert, then the supplier can get to the patient’s clinical history.

Characterizing access control strategies Utilizing OWL and SWRL is a basic move toward

building a SWRL rule-base for HIS. It makes it possible to create robust, yet adaptable,

access control policies that control which stakeholders have access to sensitive patient

data.

The development of security conditions that specify when a particular access control

policy should be applied is the subsequent step in the process of building a SWRL rule

base for Health Information Systems (HIS) after the access control policies themselves

have been defined using OWL and SWRL. The user’s identity, the type of data accessed,

and the purpose of access are examples of these conditions [435]. For instance, a doctor

may only be permitted access to a patient’s medical history if the patient is under their

care and the access is necessary for the provision of medical care. We can use OWL

to define the concept of “MedicalTreatment” and its connection to “MedicalRecord” and

“Provider” in order to model this access control policy. After that, we can create a rule

using SWRL that says:

“Patient(?p ) ∧ Provider(?pr) ∧MedicalRecordAccess(?pr, ?p) ∧ Medical-

Treatment(?t) ∧PurposeOfAccess(?pr, ?t) → Access(?pr, ?p, ?t) ”

That is what this standard expresses if a patient (? p) and a service provider pr) are

identified, the provider can access the patient’s data if the provider has access to the

patient’s medical records for the purpose of medical treatment. Additional aspects like

the user’s level of trust, the sensitivity of the data being accessed, and the context of

the access can all be included in the SWRL rule-base’s security conditions. For example,

access privileges may be granted to a doctor with a higher level of trust than to a doctor

with a lower level of trust. Similarly, only a small number of providers with specialized

authorization and training can have access to sensitive data such as HIV status. An

essential step in creating an SWRL rule-base for HIS is creating security conditions that

specify when access control policies should be applied. OWL and SWRL can be used to

specify these conditions, which can include user identity, data sensitivity, access purpose,

and context, among other things.
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SWRL rules that specify the conditions under which access to sensitive patient data is

allowed or denied can be created by combining the definitions of access control policies

and security conditions. The SWRL rule base is essentially a collection of rules that

collectively define access control policies for all health-related stakeholders. These rules

make up the SWRL rule-base. Consider, for instance, the following SWRL rule which

permits a physician to access a patient’s medical record while the patient is in their care.

“Doctor(?d ) ∧ Patient(?p) ∧MedicalRecordAccess(?d, ?p) ∧PurposeOfAccess

(?d, “Medical Treatment”) → Access(?d, ?p, “Medical Record”) ”

According to this rule, a doctor (? d) and a patient (p) can access the patient’s medical

record if the patient is identified and the doctor has access to the patient’s medical

records for the purpose of medical treatment. In a similar vein, access control policies

and security conditions can be used to create SWRL rules that specify access rights

for other stakeholders, such as nurses, administrators, and researchers. In the event

that SWRL rules are established, they can be integrated into the HIS system to enforce

access control policies [436]. Based on the user’s access rights, the sensitivity of the

data, and the purpose of the access, the SWRL rule-base can be queried to determine

whether a particular access request is allowed or denied. The SWRL rule base is a set

of rules that define access control policies for all stakeholders in the health sector. Using

OWL and SWRL, access control policies and security conditions are combined to create

rules that can be incorporated into the HIS system to enforce policies and guarantee the

confidentiality, integrity and availability of sensitive patient data.

4.13 Role-Based Access Control Approaches

4.13.1 Context-aware Role-Based Access Control Approaches

Patient health information security and privacy are of utmost importance in healthcare

settings. As a result of the constant access and sharing of sensitive information among

various stakeholders, it is essential to ensure that only those who require it have access

to it. The management of resource access based on the user’s role has been done with

traditional “Role-Based Access Control” systems. However, because these systems do not

take into account the context in which access is requested, access may be granted when

it is not necessary.

A variant of traditional RBAC known as “Context-Aware RBAC” (CA-RBAC) takes con-

textual information into account when making decisions regarding access control. The

location, time of day, and device used to access the resource are examples of contextual
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information. CA-RBAC can provide more fine-grained access control by incorporating

contextual information, ensuring that access is granted only when necessary. CA-RBAC

can be used to control who can access patient health information in healthcare set-

tings [437]. When a doctor is actually in the hospital, for instance, they may have access

to a patient’s medical records, but when they access the records from a public Wi-Fi

network, they may not. Similarly, while a nurse administers medication, they may not

have access to a patient’s medication records outside of the hospital.

Additionally, CA-RBAC can be used to address the issue of privileged users gaining

access to resources they do not require. A doctor, for instance, may have access to all

of a patient’s medical records, but they should only have access to those of the patients

they are treating. CA-RBAC is able to limit a user’s access to only those resources

that are essential to their job performance by incorporating contextual information.

In healthcare settings, CA-RBAC is an important addition to traditional RBAC. CA-

RBAC can provide more fine-grained access control by taking into account contextual

information, ensuring that only those with a need for it have access to patient health

information. In healthcare settings, this can contribute to an improvement in the privacy

and security of patient health information[48–50, 61–70].

Context-Aware RBAC (CA-RBAC) is a significant step toward enhancing patient health

information security and privacy in healthcare settings. Relevant contextual information

must be identified, decision trees must be designed, and decision trees must be integrated

with the RBAC model in this implementation [438]. Identifying the relevant contextual

information is the first step in putting CA-RBAC into action. This may include the

patient’s condition, the time of day, the location, and the task at hand in healthcare.

Decision trees that model access control decisions based on contextual information are

created using the information from the context. These choice trees can be planned

using an assortment of AI calculations. The next stage in the execution of CA-RBAC is

planning the choice trees. A graphical representation of a decision-making process that

takes into account various variables and their potential outcomes is known as a decision

tree. Decision trees can be used in healthcare to model access control decisions based

on contextual data. Using supervised learning algorithms, these decision trees can be

created by training them with access data from the past. Integration of the decision trees

with the RBAC model is the final stage in the implementation of CA-RBAC. Because

of this integration, access control decisions will be based not only on the user’s role but

also on the context in which the access is requested [439]. For instance, a specialist

might be admitted to a patient’s clinical records during working hours, but not during

ends of the week or occasions. Using ontologies to model contextual information is

another way to implement Context-Aware RBAC (CA-RBAC) in healthcare, in addition

to using decision trees. A formal representation of knowledge that identifies concepts and
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relationships within a domain is known as ontology. Ontologies can be used to represent

the various contextual factors and their relationships in healthcare, such as the location,

time, condition of the patient and the task being carried out.

The contextual information can then be used to reason about access control decisions

using the ontology. Because it takes into account the connections between the various

contextual factors, this method makes it possible for the decision-making process to be

more adaptable. For example, a patient’s location may have an impact on the urgency

of a task, which in turn may have an impact on the degree of access granted to a

healthcare provider. CA-RBAC has been used successfully in a variety of healthcare

settings, including emergency rooms and home healthcare. CA-RBAC has been used to

provide fine-grained access control in the emergency department based on the patient’s

condition, the urgency of the situation, and the role of the healthcare provider. For

example, access to a patient’s medical records may only be granted to a physician if the

patient’s condition is critical and the physician holds a leadership position [440]. CA-

RBAC has been used to provide access control in home healthcare based on the patient’s

location, time of day, and task. For example, a nurse might not be able to access a

patient’s medication records unless the patient is at home, the nurse is working, and the

task at hand is related to medication management.

Although CA-RBAC is a good way to control access in healthcare settings, there are a

few problems that need to be fixed before it can be used. The complexity of modeling

the contextual information and integrating it with the RBAC model is one of the main

obstacles. This can take a long time and requires knowledge of both contextual informa-

tion modeling and RBAC. Furthermore, to ensure that decisions regarding access control

remain relevant and accurate, contextual information needs to be regularly updated and

maintained. Another test is the potential for clashes between the RBAC and CA-RBAC

models, which can cause conflicting or indistinct access control choices. A nurse may, for

example, have access to a patient’s medication records based on their job title, but not

on the time of day. Clear guidelines for how the RBAC and CA-RBAC models should

be used and how to resolve conflicts are essential to avoid conflicts. In addition, imple-

menting CA-RBAC can require modifications to the existing healthcare infrastructure,

such as access control policies and the electronic health record system [441]. To ensure a

smooth transition, this can be a significant challenge that requires careful planning and

stakeholder collaboration.

The development of a SWRL rule base for HIS is a complex process that requires careful

planning and execution. The first step is to identify the access control policies that need

to be enforced based on the needs of various stakeholders. Once the policies are identified,

they need to be modeled using OWL, which is a standard language for representing
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ontologies in the Semantic Web. The next step is to develop security conditions that

specify the criteria for enforcing access control policies. These conditions may include

factors such as the user’s identity, the type of data being accessed, and the purpose of the

access. The security conditions also need to be modeled using OWL. Once the policies

and security conditions are defined, they can be combined to create SWRL rules that

enforce the access control policies. The SWRL rules specify the conditions under which

access to sensitive patient data is allowed or denied. Rules must be written using SWRL,

which is a rule-based language for the Semantic Web. The final step is to implement the

SWRL rule base using a reasoning engine that supports SWRL. The reasoning engine is

responsible for evaluating the SWRL rules and determining whether a particular access

request should be allowed or denied based on the defined access control policies and

security conditions. It is essential to consult with experts in ontology development, rule-

based reasoning, and HIS security during the development process to ensure that the

rule base is correctly designed and implemented [442]. A well-designed SWRL rule base

can help ensure the confidentiality, integrity, and availability of sensitive patient data

and provide a secure and efficient way to manage access control in HIS.

4.13.2 Other Access Control Approaches

In addition to RBAC and CA-RBAC, there are other access control approaches that can

be used in healthcare settings. These include:

Attribute-based Access Control (ABAC):

An Access Control model called attribute-based access control (ABAC) uses attributes

to define access control policies. The user’s department, location, job title, and patient

status are all examples of attributes. Based on the characteristics of the user, resource,

and environment, ABAC policies determine whether access should be granted or denied.

Because access decisions can be made based on multiple attributes rather than just a

single role, ABAC provides more fine-grained access control than RBAC. This ensures

that access is only granted to authorized users based on a specific set of attributes and

allows for greater flexibility in the definition of access control policies [442]. ABAC also

allows you to make decisions about access control that change based on what the user,

resource, and environment are doing right now.

In medical services conditions, ABAC is becoming increasingly famous in light of the

fact that it can provide more granular access control. For example, a doctor may only

have access to a patient’s medical records if they possess the appropriate attributes for

the patient’s status, department, and job title. ABAC can also be used to make sure

that authorized personnel only have access to sensitive information when they are in the
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right place or on the right device. Natural language or formal policy languages such

as XACML, which is a popular ABAC standard, can be used to define ABAC policies.

The policy language defined by XACML makes it possible to specify complex access

control policies based on attributes. An XACML policy engine can evaluate XACML

policies and make decisions about access control based on user, resource, and environment

characteristics.

Mandatory Access Control (MAC):

The model known as Mandatory Access Control (MAC) ensures a high level of security

by restricting users’ access to resources based on their security clearance. MAC is a

top-down strategy in which a centralized authority sets security policies that no user

can change. MAC can be used to prevent unauthorized access to sensitive patient data

in healthcare settings. Users are assigned security levels by the MAC based on their

job roles and responsibilities. MAC has a strict hierarchy of security levels. Access to

resources such as medical records, patient data, and other sensitive information can be

restricted by using security levels.

In government and military settings, where security clearance is necessary to protect

classified information, MAC is frequently used. MAC can be used to ensure that only

authorized individuals can access sensitive patient information in healthcare settings. For

example, a specialist might be granted a high-trust status level that allows them to access

all patient records, while a medical caretaker may just be granted a lower exceptional

status level that limits their admission to specific patient records. MAC’s high level of

security and protection for sensitive data is one of its advantages. Individual users are

unable to alter security policies because they are established by a central authority [443].

As a result, there is less chance that data breaches occur on purpose or by accident. MAC,

on the other hand, can have some drawbacks. Because it requires a significant amount

of control and centralization, its implementation and management can be challenging.

It might also be trying to keep up with adaptability and nimbleness despite changing

security needs and necessities.

In healthcare settings, a powerful access control model known as MAC can be used to

safeguard confidential data. MAC is able to guarantee that only authorized personnel

have access to sensitive patient information by controlling access to resources according

to security clearance levels. Nevertheless, Macintosh may also have some downsides, like

the requirement for concentrated control and the potential for rigidity. In healthcare

settings, where sensitive patient information is constantly accessed and shared among

various stakeholders, access control is an essential component of information security.

RBAC, CA-RBAC, ABAC, and MAC are some of the access control approaches that

can be used in healthcare settings [444].
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RBAC is a popular access control model that restricts access to resources and assigns

user roles based on their job responsibilities. CA-RBAC is an extension of RBAC that

takes into account contextual information such as patient condition, location, and time

when making decisions about access control [445]. ABAC is a policy-based access control

model that defines access control policies by using attributes. The MAC model of resource

access control is based on user security clearances. The specific needs and requirements

of the healthcare organization will determine the access control method that is chosen.

RBAC and CA-RBAC are two commonly used access control protocols due to their ease

of implementation and their ability to effectively control access in numerous healthcare

settings. When access needs to be restricted based on multiple attributes or when high

levels of security clearance are required, ABAC and MAC can provide more precise access

control.

Any approach to access control should be thoroughly evaluated and tested before being

implemented in a production setting. This involves identifying relevant contextual in-

formation, creating decision trees or policies, and combining the access control strategy

with the security measures already in place [446]. In addition, continuous checking and

testing can help distinguish any likely shortcomings or weaknesses in the entrance control

approach and consider acclimation to be made on a case by case basis.

The table presented below offers an in-depth comparative analysis of various access con-

trol models within the realm of healthcare information systems. This meticulously crafted

tableau defines each model—namely, Role-Based Access Control (RBAC), Context-Aware

Role-Based Access Control (CA-RBAC), Attribute-Based Access Control (ABAC), and

Mandatory Access Control (MAC)—across a spectrum of criteria. These criteria encom-

pass definitions, key features, specific applications in healthcare, inherent advantages

and limitations, and critical considerations for implementation. The analysis is further

augmented with relevant academic citations, providing a comprehensive and scholarly

insight into the efficacy and applicability of each access control model in safeguarding

sensitive healthcare data. This tabular exposition thus serves as a critical resource for un-

derstanding the subtle and complex landscape of access control mechanisms in healthcare

settings, offering valuable perspectives for researchers, practitioners, and policymakers

in the field.

4.13.3 Summary

In healthcare settings, access control is absolutely necessary to guarantee the privacy

and confidentiality of sensitive data. Although RBAC is the most common method for

managing access based on roles and responsibilities of users, it may not be adequate for
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Table 4.6: Comparison of Access Control Models in Healthcare Settings

Criteria RBAC
[365, 377]

CA-RBAC
[405]

ABAC [406] MAC [407]

Definition Traditional role-
based access con-
trol

Context-aware
role-based access
control

Attribute-based
access control

Mandatory access
control

Key Features Access based on
user roles

RBAC with
contextual infor-
mation

Uses attributes
for access control

Access based on
security clearance

Application in
Healthcare

Standard access
control in HIS

Enhanced control
in sensitive areas
like emergency
rooms and home
healthcare

Used for granular
access control

Used in areas re-
quiring high secu-
rity

Advantages Simplifies access
management

Tailors access
control to context

Highly flexible
and granular
control

High level of secu-
rity

Disadvantages Lacks contextual
consideration

Complexity in
modeling contex-
tual info

Can be complex
to manage

Rigidity and cen-
tralization issues

Implementation
Considerations

Easier to imple-
ment

Requires decision
trees/ontologies
integration

Needs careful at-
tribute selection
and management

Requires strict hi-
erarchy and clear-
ance levels

healthcare’s complex access control requirements. CA-RBAC is an extension of RBAC

that provides a more fine-grained access control by incorporating contextual information

into decisions regarding access control [418]. This approach is especially valuable in

medical services conditions where admittance to delicate data is not entirely set in stone

by a blend of variables like area, time, patient condition, and the undertaking being

performed.

ABAC is another method that uses attributes to define access control policies and offers

access control that is more precise than RBAC. Natural language or formal policy lan-

guages like XACML can be used to define ABAC policies. MAC, on the other hand, is a

model for limiting access to resources based on users’ security clearances. MAC can be

used to restrict access to sensitive information in healthcare settings to users with the

appropriate security clearance. The specific needs and requirements of the healthcare

organization will determine the access control method that is chosen. Any approach to

access control must be thoroughly evaluated and tested before being implemented in a

production setting. Access control policies must also be in compliance with regulations

such as HIPAA, and users must be properly trained and educated on access control

policies and procedures.

In healthcare settings, access control is a crucial part of keeping sensitive information safe

and private. Policies and procedures for access control can help prevent data breaches,

unauthorized access, and other security risks [447]. Healthcare organizations are able

to provide more fine-grained access control and enhance the security and privacy of
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patient health information by using the appropriate access control approach and taking

contextual information into consideration. Effective access control is essential to protect

sensitive information and maintain patient trust in healthcare settings. Access control

methods such as RBAC, CA-RBAC, ABAC, MAC, and DAC must be implemented with

careful consideration of the particular requirements, stakeholders, and policies of the

healthcare organization [448]. The first step in creating an efficient access control system

is to perform a systematic analysis of the requirements of the system. The kinds of

information that need to be protected, the different user access requirements and the

rules and policies that govern access control in healthcare environments should all be

taken into consideration in this analysis. Access control policies can be defined using

natural language or formal policy languages like XACML based on this analysis.

Appropriate execution, testing, and observing of the entrance control framework are also

significant to ensure its viability in protecting sensitive data from unapproved access.

This includes conducting regular audits to look for any potential vulnerabilities or vi-

olations of the policy, as well as making sure that access control policies are regularly

updated to reflect changes in the healthcare environment. Depending on the particular

requirements of the organization, comprehensive access control in healthcare environ-

ments can be provided by using a combination of access control strategies. CA-RBAC

can provide more precise access control by taking into account contextual information,

whereas RBAC can be used as a fundamental approach to managing access based on

users’ roles and responsibilities [449]. ABAC and MAC can be used to meet specific

requirements for more granular or flexible access control, while DAC can give users more

control over their own access control. To maintain patients’ trust in the healthcare system

and their trust in the system, effective access control is essential. Healthcare organiza-

tions are able to maintain the confidentiality and privacy of patient information, which

is necessary to provide high-quality healthcare services, by ensuring that only authorized

personnel can access sensitive information.

4.14 Evaluation and Discussion

4.14.1 Research Limitations

The security philosophy model introduced in this chapter fills in as an extensive structure

for demonstrating the security ideas that are relevant to well being data frameworks

(HIS). Nevertheless, it is essential to acknowledge the limitations of the model. The

fact that the model might not work for all types of HIS and might need to be modified

for particular situations is a limitation. In addition, the model’s implementation layer
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provides examples of security measures, though it may not cover every possible security

measure. Finally, in order to guarantee the suitability of the model for use in actual

situations, additional empirical research may be necessary [450]. Although the security

ontology model provides a solid foundation for comprehending HIS security concepts,

its limitations should be taken into consideration when implementing them in real-world

situations.

The security cosmology model introduced in this chapter was assessed for its viability

in creating access control strategies using Protege, a generally used philosophy improve-

ment device. A combination of OWL (Web Ontology Language) and SWRL (Semantic

Web Rule Language) was used to define the ontology and provide a machine-readable

representation of the security concepts and access control policies. We ran a series of

experiments and analyzed the results to see if the access control policies were working.

The findings demonstrated that the security ontology model was successful in creating

efficient access control policies that protected patient data confidentiality, integrity, and

availability. For instance, by characterizing access control arrangements that confined

admittance to patient information to just approved faculty, we had the option to keep

unapproved clients from getting to delicate data. Furthermore, the use of Protege con-

sidered a simple adjustment and customization of the cosmology to suit the particular

requirements of various HIS surroundings [451]. The ontology is able to adapt to specific

contexts and change over time as new security threats emerge because of its adaptabil-

ity. Protege’s evaluation of the security ontology model revealed its usefulness in the

creation of access control policies to safeguard HIS patient data. A useful tool for en-

hancing HIS security and protecting patient privacy is the model’s capacity to represent

complex security concepts and access control policies in a machine-readable format.

While the security metaphysics model introduced in this chapter gives major areas of

strength for creating successful access control strategies, it is essential to recognize that

it has specific restrictions. The fact that it only addresses access control policies and

does not address other important security issues such as network security and data en-

cryption is one of its limitations. Network security includes shielding the HIS framework

from unapproved access, pernicious assaults, and different dangers. Firewalls, intrusion

detection systems, and other security measures can do this. Information encryption,

again, includes encoding delicate data to prevent unapproved access or alteration. Fu-

ture work can expand the security philosophy model to incorporate these security ideas

and guarantee that the model is more extensive in addressing security issues in HIS.

This could include characterizing additional security ideas in the metaphysics, such as

organization security conventions and encryption calculations, and growing new SWRL

rules to authorize these ideas in access control approaches [452]. Additionally, additional

industry standard security best practices and guidelines, such as GDPR and HIPAA,
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could be incorporated into the security ontology model. This would help ensure that the

model is up to date and works well to deal with new HIS security threats.

The assumption that all users have the same level of access to the HIS is another lim-

itation of the security ontology model presented in this chapter. However, practically

speaking, various clients might have various degrees of access in light of their jobs and

obligations. As a result, role-based access control policies can be added to the security

ontology model in future research. This would involve specifying access control policies

for each role and defining the various roles in the ontology, such as administrator, nurse,

and physician [453]. The security ontology model has the potential to better safeguard

the confidentiality, integrity, and availability of patient data by incorporating role-based

access control policies.

This study presents a comprehensive framework for modeling health information system

(HIS) security concepts using the security ontology model. However, it is essential to

remember that the model is based on the most recent technological advancements and

security practices. The security ontology model may need to be updated to reflect changes

in technology and security threats. For example, advances in AI and computerized

reasoning have prompted new security dangers, for example, ill-disposed assaults, which

can be used to dodge conventional safety efforts [454]. In a similar vein, the increasing

Utilization of cloud-based systems and the Internet of Things (IoT) has resulted in the

emergence of brand-new difficulties in protecting HIS data.

As a result, work in the future can improve the security ontology model to deal with

these new security threats and ensure that it continues to protect patient data effec-

tively. This could involve incorporating brand-new security concepts into the ontology,

such as IoT security protocols and machine learning-based security measures. In addi-

tion, modifications to industry standards and best practices, such as HIPAA and GDPR

updates, can be incorporated into the security ontology model. This would help ensure

that the model remains relevant and up to date when it comes to dealing with the chang-

ing healthcare security landscape. While the security metaphysics model introduced in

this chapter gives major areas of strength for a demonstration security idea in HIS, it is

essential to recognize that the model might need to be re-examined as innovation and

security rehearsals develop [455]. This would help guarantee that the model continues

to effectively safeguard patient data while also preserving the confidentiality, integrity,

and availability of HIS systems.
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Figure 4.9: System Interaction

4.14.2 Research Challenges

The development of a security ontology model for Health Information Systems (HIS)

presents several research challenges. These challenges are discussed below.

1. Complexity of HIS

Due to the variety and complexity of the systems, creating a security ontology model

for health information systems is difficult. The security ontology model must take into

account the diverse security requirements of the various stakeholders involved in HIS.

As a result, it is extremely difficult to create a comprehensive security ontology model

that can take into account these various security requirements [456]. The development

of a model that is capable of effectively capturing the various security requirements of

various stakeholders requires extensive research.

2. Lack of Standardization

A significant obstacle in the process of creating a security ontology model for Health

Information Systems is the absence of standardized terms and concepts related to security
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in the healthcare industry. It becomes difficult to develop a model that can be widely

adopted and understood by various stakeholders, such as healthcare providers, patients,

insurance companies and regulatory bodies, without standardization. As a result, it is

challenging to create a security ontology model that can serve as a common language

and framework for comprehending and implementing security concepts [457]. It requires

broad exploration to recognize and characterize the normal security ideas and wording

Used in the medical care space and fosters a model that can oblige these ideas really.

3. Incomplete Security Standards

The development of a security ontology model that is capable of integrating and recon-

ciling various security standards presents a significant challenge due to the incomplete

and out-of-date security standards and guidelines of health information systems. It be-

comes difficult to develop a model that can effectively incorporate and harmonize various

security standards due to the lack of agreement on which standards should be used. As

a result, coming up with a security ontology model that can serve as a complete and

current framework to put security standards into practice is a significant challenge [458].

Developing a model that is able to effectively accommodate and reconcile various security

standards and guidelines requires extensive research.

4. Evolving Threat Landscape

The constantly evolving danger scene in the medical services space presents a huge test to

foster a security metaphysics model that can remain aware of the developing dangers and

weaknesses. As new dangers and weaknesses often arise, it becomes challenging to foster

a model that can really address and moderate these dangers [459]. To develop a model

that is capable of effectively incorporating and mitigating new threats and vulnerabilities

requires extensive research. In order to keep up with the ever-evolving threat landscape,

the model must also be regularly updated.

5. Limited Access to Data

The development of a security ontology model that can be validated and refined based

on real-world data presents a significant challenge because privacy concerns restrict ac-

cess to real-world data on security incidents and breaches in the healthcare sector. It

becomes difficult to develop a model that accurately reflects the security requirements

and challenges faced in the healthcare domain if access is denied to sufficient and relevant

data. As a result, to create a security ontology model that can be validated and improved

using data from the real world, it is necessary to work with healthcare organizations and

regulatory bodies to gain access to and analyze relevant data while maintaining patient
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confidentiality [416]. In addition, appropriate protocols for data unionization and shar-

ing must be developed to facilitate data access and sharing while safeguarding sensitive

data.

6. User Acceptance

Client acknowledgment of safety efforts is urgent for their successful execution, and fos-

tering a security metaphysics model that considers client requirements and inclinations

is a huge test. Understanding the security needs and preferences of various stakeholders,

such as healthcare providers, patients, and regulatory bodies, is essential to develop a

security ontology model that can be effectively implemented and widely adopted. To

understand the perspectives of stakeholders on security requirements and their willing-

ness to implement security measures, user research and interaction are required [458].

Additionally, to ensure that the security ontology model is user-friendly and meets the

preferences and requirements of various stakeholders, it must be developed using user-

centered design principles.

7. Integration with Existing Systems

Creating a security ontology model for HIS poses a significant obstacle in terms of inte-

gration with existing systems. HIS often consists of outdated systems built with various

technologies and architectures, which makes it possible to integrate new security mea-

sures. Additionally, integrating the security ontology model into existing systems may

require significant modifications or not be possible [416]. Therefore, careful planning,

technical expertise, and collaboration with stakeholders involved in the development and

maintenance of existing systems are required to develop a security ontology model that

can be easily integrated with those systems. Additionally, it requires a security ontology

model that is adaptable, flexible, and able to accommodate a variety of technologies and

architectures.

8. Scalability

The volume of patient data is increasing at an unprecedented rate in the healthcare

industry. Health Information Systems (HIS) that can handle large amounts of data

without jeopardizing security have become necessary as a result of this expansion. The

developers of these systems face a significant challenge in the form of scalability [460].

A security ontology model must be developed to ensure that HIS can scale to meet the

increasing demand for patient data storage. This model needs to be able to handle a

lot of data without compromising the security of the system. To ensure that the system

remains secure as patient data volumes continue to increase, developers must develop a

scalable security ontology model that can grow with the data.



178

4.14.3 Summary

A security ontology model for Health Information Systems (HIS) is a complicated and

difficult project that requires careful consideration of a number of aspects. standardiza-

tion, incomplete security standards, a changing threat landscape, restricted data access,

user acceptance, integration with existing systems, and scalability are some of these ob-

stacles. To ensure the creation of a comprehensive and efficient security ontology model

for HIS, it is essential to address these issues [72, 392–404, 461]. A standard approach

that addresses these issues and ensures that patient data remain safe and accessible as

the volume of data increases is essential. Developers can develop a scalable and efficient

security ontology model that meets the needs of the healthcare industry and ensures the

safety and privacy of patient data by addressing these obstacles.

4.15 Related Works

In order to guarantee the security and scalability of health information systems (HIS),

security ontology models have received a lot of attention in recent years. To create

security ontology models for HIS, a number of studies have been carried out. In this

section, a comparison of some of these related works will be made with the findings of

the present study. The goal of a HIS security ontology model for HIS is to safeguard

patients’ private medical records. The Web Ontology Language (OWL) was used to

create the model, which included access control, authentication, and authorization, as

well as other security concepts. The model was put through its paces on an HIS database,

and the authors reported improved security measures. Nonetheless, their model did not

consider the versatility component of the HIS.

The goal of a HIS security ontology model is to protect data transmission and privacy.

OWL was used to create the model, which included security concepts such as confidential-

ity, integrity, and availability. The model was put through its paces in a HIS database,

and the authors reported improved security measures. However, the HIS’s scalability

factor was not taken into account by their model [363, 366–376, 378–382, 462]. The

current study, on the other hand, proposes a security ontology model for HIS that takes

into account both security and scalability considerations. OWL was used to create the

model, which includes security concepts such as availability, confidentiality, integrity,

and scalability. The model was put through its paces in an HIS database and the results

showed that it was more secure and scalable. The proposed model can handle a large

amount of data and users while maintaining the HIS’s security.



179

Doctor

Query Extension Syntax Analysis Reasoner 

EHR - Hospital Structure Model

Semantic EHR Triplestore

IOT Data Acquisition/

Connection

 Patient EHR 

Triplestore

History, Results, 

Diagnostic 

Tastings..etc.

IoT Triplestore 

Stored Data 

Information 

Integration and 

Inter Operation

Figure 4.10: Semantic Middleware Architecture.

Security ontology models for HIS have been the subject of several studies. Despite

their success in enhancing security measures, these models frequently overlook the HIS’s

scalability. The proposed security ontology model for HIS in the current study takes into

account both security and scalability factors and has demonstrated promising results in

ensuring the HIS’s security and scalability[375, 376, 378–383].

For Health Information Systems (HIS), the creation of security ontology models has been

a significant area of research in recent years. The Security Content Automation Protocol

(SCAP) serves as the foundation for a security ontology model for HIS. The objective

of one model was to provide a standard method for the HIS security assessment. The

SCAP, a collection of security-related specifications that offers a standardized approach

to vulnerability management, security measurement, and compliance evaluation, served

as the model’s foundation. Access control, authentication, and authorization were just a

few of the security concepts included in the proposed model. The model was put through

its paces in an HIS database, and the authors reported improved security measures [463].

An effective model was used to enhance security measures; The difficulties of scalability

and user acceptance were not addressed. In HIS, scalability is very important because
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these systems need to be able to handle a lot of users and data.

Besides, client acknowledgment is a significant element too, as the framework’s safety

efforts should not obstruct its ease of use and adequacy. The current study proposes

a security ontology model for HIS that takes security and scalability into account to

address these issues. The Web Ontology Language (OWL) was used to create the model,

which incorporates security concepts such as availability, confidentiality, integrity, and

scalability. Additionally, the proposed model incorporates user acceptance factors such

as usability and efficiency. On a HIS database, the proposed model was tested and the

results showed improved measures for security and scalability. Despite ensuring the safety

of patient data, the model was able to handle a significant amount of data and users [464].

In addition, the user acceptance factors of the model ensured that the security measures

of the system did not hinder its effectiveness or usability.

In contrast to a model, the proposed model of the ongoing review tends to the difficulties

of versatility and client acknowledgment in HIS security. The proposed model offers

a comprehensive security and scalability strategy that protects patient data and can

handle a large number of users and data. In addition, the user acceptance factors of the

proposed model guarantee that the system’s security measures will not hinder its usability

or effectiveness. An important area of research is the creation of security ontology models

for HIS. A HIS security ontology model based on the SCAP, which provided a standard

method for evaluating security [465]. Be that as it may, their model did not address

the difficulties of adaptability and client acknowledgment. The proposed model for this

study addresses these issues by ensuring the usability and effectiveness of the system while

offering a comprehensive security and scalability strategy. The proposed model has the

potential to enhance HIS security and scalability and makes a significant contribution to

the field of HIS security.

The assurance of patient information in well-being data frameworks (HIS) is basic. In

order to guarantee these systems’ security and scalability, a number of studies in recent

years have focused on creating security ontology models for HIS[6, 72, 384–404]. The

goal of the proposed model was to offer a standard method for evaluating security in

HIS. Security concepts such as authorization, authentication, and access control were

included in the model. The creators tried the model on a HIS data set and revealed

that it further developed safety efforts [466]. However, the difficulties of scalability and

user acceptance, two essential aspects of HIS, were not addressed by this model. In HIS,

scalability is crucial because these systems must be able to handle many users and data.

Additionally, user acceptance is crucial because the system’s security measures must not

hinder its effectiveness or usability. The current study proposes a security ontology model

for HIS that takes security and scalability into account to address these issues.
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The Web Ontology Language (OWL) was used to create the proposed model, which

incorporates security concepts such as confidentiality, integrity, availability, and scala-

bility. Additionally, the proposed model incorporates user acceptance factors such as

usability and efficiency. On a HIS database, the proposed model was tested, and the

results showed improved measures for security and scalability. While ensuring the safety

of patient data, the model was able to handle a significant amount of data and users.

Furthermore, user acceptance factors of the proposed model ensured that security mea-

sures of the system did not hinder its usability or effectiveness [466]. Contrasted with

the model, the ongoing review’s proposed model tends to the difficulties of adaptability

and client acknowledgment in HIS security. The proposed model offers a comprehensive

security and scalability strategy that safeguards patient data and can handle a large

number of users and data.

Besides, the proposed model’s client acknowledgment factors guarantee that the frame-

work’s safety efforts do not upset its ease of use and viability. An important area of

research is the creation of security ontology models for HIS. In one study, a security on-

tology model for HIS based on SCAP was proposed, which provided a standard approach

to security assessment[6, 72, 363, 366–376, 378–404]. However, their model did not ad-

dress the difficulties of scalability and user acceptance. The proposed model for this

chapter addresses these issues by ensuring the system’s usability and effectiveness while

providing a comprehensive approach to security and scalability. The proposed model has

the potential to enhance HIS security and scalability and makes a significant contribu-

tion to the field of HIS security. A comprehensive security ontology model is required

to ensure the accessibility and security of patient data in Health Information Systems

(HIS). In this context, the current study aims to address the difficulties of scalability,

user acceptance and limited access to data, incomplete security standards, the evolving

threat landscape, and the complexity of HIS. Several studies have focused on developing

security ontology models for HIS [467]. Scalability is a major issue in HIS because these

systems need to handle a lot of users and data. In addition, user acceptance is crucial

because the system’s security measures must not hinder its effectiveness or usability.

Even as the volume of data continues to increase, the proposed model must ensure that

patient data remain safe and accessible.

The current study proposes a security ontology model for HIS that provides a standard

approach to security assessment to address these issues. Security concepts such as con-

fidentiality, integrity, availability, and scalability are incorporated into the model that

is being proposed. The proposed model also addresses user acceptance factors such as

effectiveness and ease of use. Another major obstacle in HIS is limited data access, as

healthcare providers need to have access to patient data to provide accurate diagnoses
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and treatments. Role-based access control in the proposed model ensures that only au-

thorized individuals have access to the necessary data. Furthermore, the proposed model

complies with the latest security standards, which are necessary to ensure the safety of

data [468]. The advancing danger scene and the complexity of HIS make it fundamental

to adjust safety efforts to evolving dangers. The proposed model is capable of dealing

with new threats and keeping the system safe.

Furthermore, the proposed model offers a uniform approach to security assessment that

is adaptable to a variety of HIS environments. On a HIS database, the proposed model

was tested, and the results showed that the security and scalability measures had im-

proved significantly. The model made sure that patient data remained safe and easy

to use while also being effective. The model’s ability to adapt to changing threats and

evolving HIS environments is ensured by the standard approach to security assessment.

The proposed HIS security ontology model of current studies addresses the difficulties

of scalability, user acceptance, restricted data access, inadequate security standards, the

shifting threat landscape, and HIS complexity in comparison to other models. While

ensuring the system’s usability and effectiveness, the proposed model offers a compre-

hensive approach to security and scalability. A vital area of study is the creation of a

security ontology model for HIS. Despite the increasing volume of data, the current study

suggests a standard approach that can adapt to changing threats and ensure that pa-

tient data remain safe and accessible [417]. The proposed model tends to the difficulties

of versatility, client acknowledgment, and restricted admission to information, deficient

security principles, developing danger scene, and the intricacy of HIS. The proposed

model has the potential to enhance HIS security and scalability and makes a significant

contribution to the field of HIS security.

4.16 Conclusion and Future Research

As per the above discussion, it can be concluded; a comprehensive security ontology

model is required to address the critical issue of protecting patient data in “Health In-

formation Systems.” A few investigations have zeroed in on growing such models, yet

they face difficulties such as versatility, client recognition and restricted admission to in-

formation, inadequate security guidelines, developing danger scene, and the complexity

of HIS. In addressing these difficulties, the current study proposed a standard approach

that can adapt to changing threats and ensure that patient data remain safe and ac-

cessible. Security concepts such as confidentiality, integrity, availability, and scalability

are incorporated into the proposed security ontology model for HIS. Role-based access

control is provided in the model, ensuring that only authorized individuals have access to
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the necessary data [469]. Additionally, the model complies with the most recent security

standards, which are necessary to ensure data safety. While ensuring the system’s us-

ability and effectiveness, the proposed model offers a comprehensive approach to security

and scalability. The proposed model performed significantly better in terms of security

and scalability when tested on a HIS database. The model made sure that patient data

remained safe and easy to use while also being effective. The standard approach to secu-

rity assessment makes sure it can keep up with changing HIS environments and changing

threats. A comprehensive security ontology model is required to address the critical issue

of protecting patient data in “Health Information Systems.”

Several studies have focused on developing such models over the years, but their effec-

tiveness is limited by a number of obstacles. Scalability, user acceptance, restricted data

access; inadequate security standards, the changing threat landscape, and the complex-

ity of HIS are among these obstacles. While addressing these difficulties, the current

study proposed a standard approach that can adapt to changing threats and ensure

that patient data remains safe and accessible. The proposed security cosmology model

for HIS consolidates security ideas such as secrecy, respectability, accessibility, and ver-

satility [470]. The model gives job-based admittance control, guaranteeing that main

approved people can get to the important information. Furthermore, the model adheres

to ongoing security guidelines, which are fundamental to guarantee information secu-

rity. While ensuring the system’s usability and effectiveness, the proposed model offers

a comprehensive approach to security and scalability. By providing a framework that is

easy to incorporate into existing HIS systems, the model provides a practical answer to

the problems that HIS presents. The model takes a layered approach to security, with a

different set of security controls for each layer that can be used to protect data.

The proposed model performed significantly better in terms of security and scalability

when tested on an HIS database. The model made sure that patient data remained safe

and easy to use while also being effective. The standard approach to security assessment

makes sure it can keep up with changing HIS environments and changing threats. To

address emerging security threats and ensure that the proposed security ontology model

continues to be effective and relevant over time, future research could focus on enhancing

it. To improve the model’s scalability and user acceptance, it is necessary to continu-

ously evaluate the model’s effectiveness in real-world HIS environments. Future studies

may also investigate the possibility of enhancing the model’s security and scalability by

incorporating emerging technologies like block chain, artificial intelligence, and machine

learning. The model’s ability to mitigate security threats may be enhanced by the provi-

sion of additional security layers by these technologies. The proposed security ontology

model provides a practical answer to the security and scalability difficulties of HIS [471].

It offers a comprehensive security strategy, complies with current security standards, is
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easy to use and effective. The model’s ability to adapt to changing threats and evolving

HIS environments is ensured by the standard approach to security assessment. Future

examination ought to zero in working on the model to address arising security dangers

and to investigate the capability of consolidating arising advances to improve the model’s

viability. In order to guarantee the confidentiality, integrity, and availability of patient

data, security of health information systems (HIS) is an essential component.

A standard approach to security assessment is provided by a security ontology model

for HIS, ensuring that patient data remains safe and accessible. Although a number

of studies have focused on developing such models, scalability, user acceptance, and

limited data access remain obstacles. As a result, the model’s capacity to handle larger

and more complex datasets might be the focus of future research. The development of

algorithms that are capable of detecting anomalies in large-scale HIS databases is one

area of research that has the potential to improve HIS security ontology models. This

would allow quick identification of potential security breaches and corrective action.

Research could also focus on creating models that are better able to adapt to changing

threats and can update themselves in real time. These models might be able to learn

from previous attacks and adapt to new ones using machine learning techniques. The

creation of models that are more user-friendly and transparent could be another area of

study. Users could receive feedback from such models regarding the risks associated with

particular actions and the security of their data. Models could, for example, inform users

of possible security breaches and offer suggestions to improve security measures [472].

Models that are capable of integrating with other systems, such as electronic health

records and medical devices, could also be the focus of research. This would guarantee

the safety of patient data throughout the healthcare system.

Furthermore, models that preserve the confidentiality of patient data while still allowing

healthcare professionals to access essential data could be the focus of research. This

may necessitate the creation of models that make use of differential privacy techniques

to guarantee that individuals’ data cannot be identified. This would guarantee that

patient data would remain private even when only authorized personnel could access it.

The security ontology model of this study for HIS offers a comprehensive approach to

security and scalability. It also addresses the difficulties of scalability, user acceptance,

restricted data access, inadequate security standards, the shifting threat landscape, and

HIS’s complexity. Future exploration could zero in working on the model’s capacity to

deal with greater and more perplexing datasets. Additionally, models that are more

adaptable to changing threats, user-friendly, transparent, and able to integrate with

other healthcare systems, as well as secure the privacy of patient data, could be the

focus of research. The improvement of a security cosmology model for HIS is a basic

area of exploration that requires consideration from the examination local area. The
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development of models that are more adaptable to shifting threats, more transparent and

explainable to users, capable of integrating with other healthcare systems and ensuring

the privacy of patient data are all areas that could be the subject of further investigation

in the course of future research [473]. The proposed security cosmology model in this

chapter gives an early stage to such research, and its application could essentially work on

the security and openness of patient information in HIS[6, 72, 363, 366–376, 378–404].
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ELECTRONIC HEALTH RECORD SYSTEMS: AN

ONTOLOGY AND MACHINE LEARNING APPROACH
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Nowrozy, R., et al. (2023, July). Towards a Universal Privacy Model for Electronic

Health Record Systems: An Ontology and a Machine Learning Approach. In Infor-

matics (Vol. 10, No. 3, p. 60). MDPI. https://www.mdpi.com/2227-9709/10/3/60/

pdf. (Published)

5.1 Introduction

The growing adoption of Electronic Health Records (EHRs) has led to a significant

increase in privacy and security concerns [134, 174, 366, 370, 474]. Despite the im-

plementation of numerous privacy and security measures, patient privacy continues to

be compromised, often due to unreliable information sharing methods and inadequate

privacy policies [366, 371, 373, 374, 376, 380]. High-profile data breaches in systems

such as Australia’s My Health Record (MHR) and the UK’s National Health Service

(NHS) have exposed millions of records, resulting in substantial financial losses for the

healthcare industry [381].

In response to these challenges, this study proposed a novel privacy model for EHR

systems, utilizing a conceptual privacy ontology and Machine Learning (ML) method-

ologies. The model addresses the dual challenges of maintaining privacy and ensuring

user-friendly, legally compliant accessibility. Our approach includes the use of various

BERT techniques, particularly Distil BERT, to differentiate between legitimate and il-

legitimate privacy policies, showcasing the effectiveness of ML in identifying inadequate

privacy policies [475–477].

188

https://www.mdpi.com/2227-9709/10/3/60/pdf
https://www.mdpi.com/2227-9709/10/3/60/pdf


189

Additionally, the increasing use of machine learning in healthcare for diagnostics, drug

discovery, and precision medicine intensifies privacy and security concerns [476, 477].

ML models, which require large amounts of patient data, including sensitive genetic

and clinical information, highlight the need to address the ethical, legal, and privacy

challenges associated with the implementation of artificial intelligence systems such as

ML, deep learning, and Natural Language Processing (NLP) algorithms [475, 478].

Context-sensitive privacy policies are crucial in ensuring that privacy settings and access

controls are meticulously adapted to specific data circumstances [479–481]. Despite ex-

isting privacy policies and regulations, EHR systems have faced privacy breaches, leading

to diminished trust in health-related IT systems and the need for a novel privacy model

tailored for EHR settings [378, 481, 482].

Current strategies to safeguard EHRs involve systems that emphasize confidentiality,

authentication, integrity, trust, verification, and authorization [275, 483]. Intrusion De-

tection Systems (IDS) and privacy-preserving ML frameworks, using techniques such as

homomorphic encryption and differential privacy, have been suggested as potential solu-

tions [275, 483–485]. However, these systems can be vulnerable due to various factors,

and there is a persistent need for more robust solutions. This research contributes to

addressing this gap by developing a universal privacy model designed to efficiently man-

age and share sensitive patient data across different platforms and investigating future

research directions for comprehensive evaluations and real-world case studies [485, 486].

To address this gap, we conducted an analysis of electronic health record (EHR) policies,

integrating ontologies and machine learning to improve privacy and security controls

over health data. Our focus is specifically on privacy policies with special attention to

Personally Identifiable Information (PII). We introduce a machine learning model that

not only classifies privacy policies as legitimate or illegitimate, but also takes on the

crucial role of identifying PII within these policies. This process flags potential privacy

risks embedded within an organization’s privacy policies. Identifying PII is of critical

importance in the context of EHRs, where sensitive data are often intermixed within

larger data sets. By pinpointing PII within these data sets, we can apply more precise

and targeted privacy measures to the data most vulnerable to breaches. Through the

prioritization of PII identification within privacy policies, we propose an additional layer

of privacy protection to the existing frameworks. Our research methodology aims to

provide an exhaustive exploration of this challenge, striving to contribute significantly

to the enhancement of privacy and security measures in health informatics. The major

contributions of this chapter include:
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1. We presented a privacy ontology and analyzed EHR use cases to establish a stan-

dardized framework for data management, access control, and the categorization of

sensitive health information, promoting interoperability and efficiency for health-

care stakeholders.

2. We proposed an ML-based model to identify PII from privacy policies, integrated it

with the ontology for a robust medical records protection framework, and demon-

strated its effectiveness in distinguishing valid and illegitimate EHR privacy poli-

cies, enhancing patient care and privacy.

3. For future research directions, we recommend conducting thorough assessments, fo-

cusing on adaptive frameworks, ethical considerations, and implementation strate-

gies to create a widely embraced solution for healthcare information privacy.

Our research makes significant strides in addressing privacy issues in EHRs by innovating

at the intersection of privacy ontology, machine learning, and electronic health records.

The technical proposition of this chapter lies in our unique approach to integrating a

privacy ontology model with machine learning techniques to improve the security and

privacy of health information. This integration is manifested in the development of a

new machine learning-based model that leverages the systematic organization provided

by the privacy ontology to categorize sensitive health data automatically. The model was

designed to efficiently identify and categorize PII from privacy policies, distinguishing

between valid and illegitimate ones, thereby enhancing the privacy and security of EHRs.

This fusion of machine learning with privacy ontology offers a modern strategy that

extends beyond traditional privacy protection measures by providing a targeted and

effective solution to privacy concerns in EHRs.

The rest of the article is organized as follows. In Section 5.2, we discuss related studies

and how our study addresses some of the issues that have not been addressed by those

related studies. In Section 5.3, we briefly present several application scenarios along

with research challenges. In Section 5.4, we propose a conceptual privacy model for

EHR platforms. In implementing the privacy model, we introduce a privacy ontology

and its associated core and domain-specific concepts in Section 5.4. In Section 5.5 an

ML-based model is proposed to categorize valid versus illegitimate privacy policies. The

related research is discussed in Section 5.6. Finally, Section 5.7 concludes the study and

identifies future research issues.
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5.2 Related Work

This section discusses associated privacy-related research issues. The existing literature

can be grouped into three areas: personally controlled EHR systems, blockchain-based

EHR systems, and context-sensitive privacy policies.

5.2.1 Personally-Controlled EHR Systems

Personal Electronic Health Record (PCEHR) systems enable individuals to manage their

health information and control access. However, this also requires individuals to safe-

guard their data. Privacy is a crucial factor in sensitive sectors such as healthcare, and

non-compliance can lead to substantial penalties. Unfortunately, many large health in-

formation systems still display privacy problems and identification risks for users due

to inadequate implementation of legal requirements [398, 399]. Various proposals (e.g.,

[392, 397]) have been presented to address privacy concerns in personal health records,

but they frequently lack empirical evidence and real-world tests and did not address

potential ethical and legal concerns of implementing such systems [316]. Similarly, a

proposed privacy-preserving personal health record (P3HR) system lacked a comprehen-

sive security and performance evaluation [390], while a proposed Hippocratic database

approach did not provide empirical evidence or case studies to support its efficacy [401].

An essential aspect to consider when developing personally controlled EHR systems is

striking a balance between privacy and accessibility [6]. It is critical to protect the privacy

of patient health information while ensuring that authorized healthcare providers can ac-

cess the information they need to provide effective care. Another important factor when

developing personally controlled EHR systems is to ensure that they are user-friendly

and accessible to all patients [388, 389], regardless of age, education, or technological

knowledge. This is challenging due to the complex nature of health information and

the variety of devices and platforms used to access EHR systems. Mamum et al. [395]

proposed a homomorphic encryption approach to encrypt patient information. The de-

cryption key will be used by the patient, ensuring that no other person can access your

information without prior authorization. To improve reliability and privacy, a crypto-

graphic verification technique is introduced to ensure that only the authorized person

has access to the corresponding records [396].

Privacy is a vital factor in sectors such as healthcare, banking, and defense, where sensi-

tive and confidential data must be protected from unauthorized parties [72]. Numerous

legislative rules and regulations have been introduced in European countries to ensure

citizens’ privacy [72, 387]. Global data protection standards have been established, which
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outline specific data protection requirements and noncompliance penalties. According to

Baker [398], patient care involves providing relevant care to individual patients accord-

ing to their preferences, needs, and values, and ensuring that good clinical decisions are

made. This patient care includes involving, informing, and listening to patients. Due to

recent digital transformations in the healthcare sectors and associated data and privacy

breaches, rebuilding trust in health-related IT systems has become an urgent challenge.

While personally controlled EHR systems have the potential to enhance privacy and pa-

tient empowerment in healthcare, several challenges must be addressed to ensure their

effectiveness and acceptability. These challenges include balancing privacy and accessi-

bility, making EHR systems more user-friendly and accessible, and acknowledging the

cultural and social context of EHR system development and implementation. Overcom-

ing these challenges will require further research, collaboration and innovation between

healthcare providers, researchers, and technology developers.

5.2.2 Ensuring Privacy through Smart Contract—Healthcare Blockchain
Systems

Blockchain-based EHR systems are increasingly gaining recognition for their potential

to enhance security and privacy in the management of health data. By leveraging dis-

tributed ledger technology, these systems can effectively prevent unauthorized access

and data breaches. However, challenges still need to be addressed when implementing

blockchain systems in healthcare, particularly when sharing patient information with

multiple stakeholders.

Recent studies have explored the use of blockchain technology to improve security and

privacy in healthcare IT systems. In [402], the authors proposed a consortium blockchain

for secure and privacy-preserving data sharing in e-health systems. Although their study

provided an in-depth description of the proposed architecture and its benefits, it lacked

empirical evidence and real-world evaluations and did not discuss potential limitations or

challenges associated with implementing such a system. In [403], the study examined the

applications of distributed ledger technologies of blockchain in biomedical and healthcare

settings [403]. Although the authors thoroughly reviewed the existing literature and pro-

posed various use cases, the study was published in 2017, and blockchain technology has

evolved significantly since then. Furthermore, the authors did not address the potential

drawbacks or limitations of using blockchain in healthcare settings. In [404], the authors

focused on the potential of blockchain technology to improve the security and privacy

of healthcare data stored in the cloud. The authors provided a comprehensive overview

of the challenges and explained how the blockchain could address them. However, the
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article did not critically evaluate the technology’s limitations and challenges, such as

scalability and interoperability issues. In [487], the authors proposed a blockchain-based

incentive mechanism for crowd-sensing applications that preserve privacy. Although pre-

senting an interesting idea, the study lacks sufficient detail on technical implementation

and evaluation and does not compare the proposed mechanism to existing solutions or

discuss limitations or future work. In [488], the authors introduced a blockchain-based

solution called Medblock for the efficient and secure sharing of medical data. The authors

claimed that their system could overcome traditional centralized data storage limitations,

but they did not provide a comprehensive evaluation of the proposed system’s scalability

and efficiency or detailed information about its implementation. Finally, in [489], the

authors proposed a blockchain healthcare system using smart contracts to secure auto-

mated remote patient monitoring. While the authors presented a detailed description

of the proposed system and a theoretical analysis of its security and privacy features,

they lacked empirical evidence to support the feasibility and effectiveness of the system

and did not address potential challenges in implementing the system in a real-world

healthcare setting.

Although blockchain-based EHR systems can offer significant benefits in terms of security

and privacy, there are still challenges and limitations to be addressed, especially when

sharing patient data with multiple stakeholders. More research, validation, and critical

analysis is needed to ensure the practicality, scalability, and effectiveness of these systems

in real-world healthcare scenarios.

5.2.3 Context-Sensitive Privacy Policies

In recent years, there has been a growing interest in context-sensitive approaches within

the EHR domain. In [372], the study presented a context-aware access control model for

cloud-based data resources, incorporating imprecise context information. The authors

used fuzzy logic to model uncertainty in context information and developed a context-

aware access control framework. However, the study did not comprehensively evaluate

the proposed model, including a comparative analysis with other state-of-the-art ap-

proaches, scalability, and performance testing. Additionally, no practical implementation

of the proposed framework in real-world settings was mentioned. Although the proposed

approach seemed promising, the lack of evaluation and practical implementation made it

difficult to assess its effectiveness and feasibility. In [386], the article introduced a policy

model and framework for context-aware access control of information resources. Their

model integrated contextual factors such as user identity, location, and time to determine

access privileges. However, it lacked empirical validation of the proposed framework,

leaving its effectiveness uncertain in real-world scenarios. In addition, the article did not
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address the potential ethical implications of context-aware access control, such as privacy

and discrimination concerns. Further research and analysis are required to address these

issues. In [393], the article proposed a fog-based context-aware access control (CAC)

system to achieve security scalability and flexibility. The authors argued that their sys-

tem could improve security in fog computing environments by providing dynamic and

context-aware access control. The article provided a comprehensive overview of the pro-

posed CAC system and discussed its details of implementation. However, the article

lacked empirical evaluation of the performance and scalability of the proposed system.

Additionally, it did not address the potential challenges and limitations of implementing

such a system in real-world scenarios. Overall, the proposed system appeared promising,

but further research is needed to validate its effectiveness and practicality. In [490], the

study suggested an ontology-based approach to dynamic contextual role-based access

control in pervasive computing environments. The authors described the architecture of

the proposed system and evaluated its effectiveness through simulations. However, the

evaluation of the system was limited to simulations and a real-world implementation and

evaluation of the approach would be advantageous. Additionally, the study could benefit

from a more in-depth discussion of related work in the field of contextual role-based

access control.

In summary, while these context-sensitive approaches have made strides in proposing

enhanced protection for EHRs, they have proven insufficient to accurately model relevant

stakeholders and health information.

5.2.4 Homomorphic Encryption in EHR Systems

The role of homomorphic encryption in preserving the privacy of EHRs has been ex-

plored in various studies, which have claimed that the approach offers computation on

encrypted data without requiring decryption, effectively facilitating secure data sharing

and collaboration. Paul et al. [491] constructed a privacy-preserving framework, using

homomorphic encryption to protect EHRs during collaborative machine learning pro-

cesses. Although the proposed framework had potential, the study did not adequately

address the limitations of the framework, including potential vulnerabilities of the en-

cryption scheme, scalability, and maintaining confidentiality during collective learning.

Ikuomola et al. [492] addressed privacy concerns in e-health clouds using homomorphic

encryption and access control. However, the research was marked by the absence of a

detailed analysis of the effectiveness of the solution. Furthermore, potential vulnerabili-

ties or attacks that could undermine the security of the proposed system and scalability

issues related to large-scale e-health cloud environments were not adequately addressed.
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Vengadapurvaja et al. [493] developed an efficient homomorphic medical image encryp-

tion algorithm for secure medical image storage in the cloud. Despite its focus on medical

images, the approach did not extend to the encryption of other types of EHR data. This

narrow scope limited its comprehensive application to broader privacy concerns about

EHRs. Alzubi et al. [494] integrated homomorphic encryption with deep neural networks

to secure the transmission and diagnosis of medical data. However, unspecified inade-

quacies were identified in preserving the privacy of the EHR. A thorough examination of

the study would provide a better understanding of these limitations. Subramaniyaswamy

et al. [495] implemented a somewhat homomorphic encryption scheme for edge devices

based on IoT sensor signals. However, without detailed information from the study,

it is difficult to identify specific inadequacies in the preservation of the privacy of the

EHR. Potential challenges could include the scalability, performance or vulnerability of

the implemented scheme when applied to real-world EHR systems. Finally, Vamsi et

al. [496] investigated various homomorphic encryption schemes to protect EHR in the

cloud environment. Despite potential benefits, several inadequacies in the application of

homomorphic encryption to preserve EHR privacy were noted. Challenges, such as the

overhead performance of homomorphic encryption, integration difficulties with existing

healthcare systems, and the need for efficient key management strategies, were some of

the identified concerns.

Although various studies have explored the role of homomorphic encryption in preserv-

ing the privacy of EHR, each presents certain inadequacies. The key among these is the

vulnerability of the encryption schemes employed, limitations in scalability, difficulties

in maintaining the confidentiality of sensitive data, and the substantial computational

overhead that their encryption techniques have introduced. Additionally, a narrow focus

on specific data types, such as medical images, excludes comprehensive coverage of EHR

privacy concerns. The challenges in integrating homomorphic encryption schemes into

existing healthcare systems, including the issues of interoperability, data access control,

and key management strategies, further compound the problem. This study aimed to

address these shortcomings by proposing a novel privacy-preserving approach for EHRs,

taking advantage of the benefits of homomorphic encryption while addressing its limi-

tations. We sought to develop a robust, scalable and versatile homomorphic encryption

scheme that can protect various types of EHR data. Our methodology focused on en-

suring efficient performance, facilitating secure data sharing, and improving integration

with existing healthcare systems. Furthermore, we will offer solutions for effective key

management, ensuring a holistic and comprehensive approach to preserving EHR privacy.
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5.2.5 Comparison with Our Study

Our study acknowledged that several attempts have been made to address privacy and

security issues within the realm of EHRs. While crucial, these efforts often exhibit cer-

tain shortcomings. For example, they often do not consider concerns raised by previous

research and lack comprehensive and robust evaluations of their effectiveness, scalabil-

ity, and process efficiency. In addition, these studies sometimes focus too narrowly on

specific solutions, such as homomorphic encryption or context-sensitive privacy policies,

overlooking the need for more holistic and comprehensive strategies that can navigate

the complexities of modern healthcare systems. Furthermore, the scalability of these

solutions, especially when implemented in larger and more diverse healthcare systems,

often remains inadequately explored. Another underaddressed concern pertains to the

process efficiency of these proposed solutions. In the fast-paced, high-stakes environment

of healthcare, solutions that are computationally demanding or overly complex may not

be feasible, despite their theoretical advantages. Our added perspective does not devalue

the existing body of work. Instead, it illuminates the multifaceted nature of privacy and

security in healthcare data management. Our research aspired to address these challenges

through an approach that balances privacy protection, process efficiency, scalability, and

real-world applicability. We aimed to build on these prior efforts, incorporating their

strengths and also striving to rectify their shortcomings.

With the aim of applying an ontology- and ML-based approach to protect health infor-

mation, our study sought to explore new solutions to challenges in this domain. The

distinguishing aspects of our research are as follows:

✓ An Attempt at Comprehensive Privacy Protection: Our approach endeavored to

create a privacy protection solution that is more robust and specific to healthcare

information systems by combining ontology and ML. Although we believe that it

can offer improved protection, further studies and real-world testing are necessary

to validate this claim.

✓ Consideration of Legal Requirements: We made an effort to incorporate the breadth

of GDPR and other privacy regulations into our proposed solution, aiming to ensure

compliance with the necessary legal requirements. However, adapting to evolving

legal landscapes will require continuous updates and adjustments.

✓ Exploration of Balancing Privacy and Accessibility: Our proposed solution at-

tempts to balance the preservation of patients’ health information privacy with the

necessity of access for authorized healthcare providers. Future studies should focus

on how well we have achieved this balance in various real-world scenarios.
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✓ Aim for User-friendly and Accessible Systems: We recognize the complex nature of

health information and the diverse range of devices and platforms used to access

EHR systems. Our study aimed for a more inclusive approach to healthcare in-

formation management, although the user-friendliness of our solution has not yet

been evaluated in diverse groups of patients.

✓ Emphasis on Real-world Implementation and Evaluation: We aimed to provide

solutions that can be implemented and evaluated in real-world healthcare settings.

Our approach takes a practical perspective, although extensive empirical evidence

to support its effectiveness has yet to be collected.

✓ Acknowledgment of the Cultural and Social Context: In our study, we considered

the cultural and social context of the development and implementation of the EHR

system, with the goal of finding a solution that can accommodate diverse needs.

However, more research is required to confirm the adaptability of our solution to

different cultural and social contexts.

Our study offers an exploration of the combination of ontology and ML to protect privacy

in healthcare information systems. By acknowledging the importance of factors such as

legal compliance, balancing privacy and accessibility, creating user-friendly systems, real-

world implementation, and considering cultural and societal aspects, we strove to extend

the knowledge in the field. However, it is important to note that our proposed solution

is a preliminary attempt, and further validation through future research is needed. The

potential impact of our study is in providing new perspectives and suggesting areas of

focus for ongoing exploration in the field of healthcare information management.

5.3 Research Motivation

In this section, we dive into a variety of application scenarios, examine them, and high-

light research challenges that remain unaddressed in the current EHR privacy literature.

Today, privacy is a vital concern in cybersecurity, and protecting patient data is essen-

tial by implementing robust EHR privacy and security policies on both national and

international levels [382].

To further strengthen our motivation for this research, we reflect on real-world examples

that underline the privacy and security challenges currently plaguing the realm of health

information sharing. For example, the considerable data breach at Anthem Inc. In

2015, where hackers gained unauthorized access to the personal information of nearly

78.8 million individuals [497], showcases the vulnerabilities of large-scale health data
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systems are highlighted. Despite the robust security measures in place, the attackers

were able to exploit weak points in Anthem’s system, leading to a catastrophic loss of

privacy for millions of people. Such breaches clarify the crucial need for improved privacy

protection mechanisms, specifically those that are capable of safeguarding Personally

Identifiable Information (PII) against increasingly sophisticated forms of cyberattacks.

Furthermore, real-life examples can also provide insight into the effectiveness of exist-

ing privacy regulations in the face of evolving technological landscapes. For example,

consider the case of the UK’s National Health Service (NHS) in 2018, when it was

discovered that third party organizations were purchasing anonymized patient data for

market research [498]. Despite adhering to existing privacy regulations, the anonymiza-

tion techniques employed failed to prevent the reidentification of individual patients from

the purchased data, leading to serious privacy concerns. These incidents not only demon-

strate the importance of our research but also highlight the urgent need for an integrative

approach that combines machine learning with ontologies to secure EHRs effectively. Our

proposal aimed to identify and protect PII within privacy policies, adding an additional

layer of security to existing frameworks. Such a solution can potentially prevent future

privacy violations, particularly those related to the reidentification of anonymized data,

thereby ensuring the integrity of patient information in digital health platforms.

An appropriate privacy model is needed to allow patients to have control over their own

data, and it could also facilitate tracking of who has accessed their health information

and the parties to whom it has been sent [499]. As mandated by the Australian Privacy

Principles (APP) 1988 (https://www.oaic.gov.au/privacy/australian-privacy-principles

(accessed on 6 July 2023)), patients should be informed about the data collected and

the way in which their personal health information is used. During visits to hospitals or

clinics, patients should also be notified of the reasons behind collecting and using their

data, the duration of data retention, and the parties with whom they will be shared.

According to NHS England, centralizing health information at a national level is crucial.

When a General Practitioner updates a patient’s registration information in their clinical

system, the Primary Care Support England (PCSE) system leverages this information to

update the National Health Application and Infrastructure Services (NHAIS), respon-

sible for maintaining the National Patient Register. The Royal Australian College of

General Practitioners (RACGP) has also introduced a sample registration form for new

patients [383]. To comply with federal and state privacy laws, this form aligns with the

RACGP standards for general practices. If patients have privacy concerns, they can dis-

cuss them with their GP and opt to leave the form blank. However, it is not considered

best practice to let patients leave the form blank, as the information may be crucial at

any stage of their treatment, and a lack of data could result in improper treatments.

https://www.oaic.gov.au/privacy/australian-privacy-principles
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Various individuals or groups, including health-related and non-health stakeholders, can

engage with EHR systems. Stakeholders can be categorized and arranged differently

based on their role in the management of EHR records (Table 5.1). In the following

paragraphs, we will explore several such scenarios.

Table 5.1: List of role-based stakeholders and privacy rules.

Stakeholders’
Category

Stakeholders’
Example

Role-Based
(Senior/Ju-
nior)

Privacy Roles

Support Pro-
fessionals

Receptionist,
Pharmacist

Junior Policy 1: Support profession-
als can only deal with personal
health information

Nursing Pro-
fessionals

Nurse Man-
ager, Nurse

Junior Policy 2: Nursing profession-
als can deal with personal and
private health information

Medical Prac-
titioners

General Prac-
titioner, Spe-
cialist

Senior Policy 3: Medical practition-
ers can deal with personal, pri-
vate, sensitive, and historical
health information

Diagnosis Pro-
fessionals

Radiologist,
Medical Tech-
nician

Senior Policy 4: Diagnosis profes-
sionals can deal with personal
and historical health informa-
tion

Medical Scien-
tists

Researcher,
Junior Re-
searcher

Junior Policy 5: Medical scientists
can deal with all types of
health information with the
approval of relevant stake-
holders

5.3.1 Use Case Scenarios

In order to establish a comprehensive privacy ontology, current scenarios must be im-

proved and diversified, taking into account the multifaceted reality of healthcare organi-

zations. The following use case scenarios span a range of situations, each with differing

stakeholders, types of health information, and privacy concerns. These cases, although

varied, represent a snapshot of the highly complex landscape of privacy preservation in

the context of EHRs.
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5.3.1.1 Scenario 1: Primary Care Physician

An elderly woman, living with her oldest son, is struggling with her mental health after

witnessing the sudden death of her youngest grandson. As she shows signs of distress and

paranoia, her son seeks the help of a primary care physician (PCP). After an examination,

the PCP suggests consulting with a mental health professional. In this scenario, privacy

concerns relate to the sensitive nature of the woman’s mental health status and her

medical history.

• Stakeholders: PCP, patient, patient’s son, and mental health professional.

• Health Information: Private (address, location), Personal (demographic details),

Sensitive (medical and psychological history), Historical (previous health evalua-

tions).

5.3.1.2 Scenario 2: Emergency Care

After a serious car accident, an unconscious patient is rushed to the Emergency Depart-

ment (ED), where a nurse evaluates him. The patient’s Medicare details are used to gain

access to his medical history to determine the best course of urgent care. The privacy

concern here relates to the patient’s inability to provide consent for access to his medical

records due to his unconscious state.

• Stakeholders: Nurse, patient, medical team, and Medicare.

• Health Information: Private (address, location), Personal (demographic details,

Medicare details), Sensitive (medical history, accident details).

5.3.1.3 Scenario 3: Clinical Research

A breast cancer patient undergoing radiotherapy expresses concerns to her GP about her

family history, particularly since her mother died of brain hemorrhage. Her GP consults

with a research team to access clinical trials data and explore the prevalence of similar

cases. The patient’s personal information, medical history and family history should be

handled discreetly due to the sensitive nature of her condition and personal fears.

• Stakeholders: Researcher, GP, patient, clinical trials team.

• Health Information: Private (address, location), Personal (demographic details),

Sensitive (medical history, family history), Historical (previous treatment records).
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5.3.1.4 Scenario 4: Multidisciplinary Consultation

A patient with a rare genetic disorder requires consultation with a multidisciplinary

team, involving primary care physicians, specialists, therapists and social workers. The

complexity of the case necessitates sharing extensive patient data across the team while

ensuring the patient’s privacy.

• Stakeholders: Primary care physicians, specialists, therapists, social workers, pa-

tient.

• Health Information: Private (address, location), Personal (demographic details),

Sensitive (medical and genetic history), Historical (treatment and therapy records).

5.3.1.5 Scenario 5: Telehealth

A remote patient receives care via a telehealth platform. Patients’ electronic health

records should be accessed and updated by healthcare providers during virtual consul-

tations. Privacy concerns here arise due to the potential vulnerabilities associated with

the transfer of sensitive health data over digital channels.

• Stakeholders: Patient, healthcare providers, provider of the telehealth platform.

• Health Information: Private (address, location), Personal (demographic details),

Sensitive (medical history), Historical (previous consultation records).

5.3.1.6 Scenario 6: Data Breach

A healthcare organization experiences a data breach and the EHRs of multiple patients

are potentially compromised. This scenario raises significant privacy concerns related to

unauthorized access and potential misuse of health data.

• Stakeholders: Patients, healthcare organization, IT department, potentially unau-

thorized third parties.

• Health Information: Private (address, location), Personal (demographic details),

Sensitive (medical history), Historical (previous treatment records).

These enhanced scenarios provide a broader understanding of the complex landscape of

privacy preservation in EHRs and should provide a strong foundation for the development
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of a comprehensive privacy ontology. The complexity and diversity of these scenarios

reflect the dynamic nature of healthcare care delivery and the myriad of privacy concerns

that arise in real-world healthcare settings.

5.3.2 Research Challenges

In the context of the GP and researcher scenarios previously discussed, we have rec-

ognized several challenges that must be tackled when developing a universal privacy

ontology for various EHR platforms, such as MHR and NHS systems. Addressing these

challenges is crucial to ensure the privacy and security of sensitive patient information

while enabling seamless data exchange across different EHR platforms.

1. Sharing personal information with relevant stakeholders: According to APP 6 [482],

personal information should only be shared with relevant stakeholders for a speci-

fied purpose, such as treatment or daily care with GPS or nurses. Personal health

information may also be shared for secondary purposes under certain conditions.

However, perceiving these secondary purposes within the existing EHR literature

proves to be a substantial research challenge. This difficulty also extends to sen-

sitive health information. Although the principles of APP are generic and can be

applied to any domain, implementing these principles within the health informa-

tion domain is particularly challenging. As a result, the development of a privacy

ontology for EHR systems is necessary.

2. Identifying relevant stakeholders: One of the detailed challenges involved in build-

ing the privacy ontology includes identifying the relevant stakeholders associated

with different EHR systems. These stakeholders can range from healthcare providers,

insurance companies, and government agencies to patients themselves. A privacy

ontology should be able to accommodate these various stakeholder groups and

their respective access levels, ensuring that sensitive patient information is only

accessible to those with appropriate authorization.

3. categorizing different levels of health-related patient information: Another chal-

lenge is to categorize different levels of health-related patient information, which

can range from general health indicators to highly sensitive data, such as genetic

test results or mental health records. Creating a privacy ontology that can ef-

fectively classify this information is essential for implementing appropriate access

controls and maintaining patient confidentiality.

4. Definition of privacy rules and policies: The privacy ontology should also define

privacy rules and policies for relevant health-related stakeholders, allowing them
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to share patient health records across different EHR platforms securely. These

rules and policies should be robust, flexible, and adaptable to meet the diverse and

evolving needs of different healthcare systems and their stakeholders.

By addressing these challenges, a universal privacy ontology can be developed for EHR

platforms, providing a framework to ensure the privacy and security of patient informa-

tion while facilitating interoperability and collaboration among healthcare stakeholders.

This ontology will ultimately improve the efficiency and effectiveness of healthcare care

delivery, which will benefit both patients and providers.

5.4 A Privacy Model for EHR Systems

This section introduces a privacy model for EHR systems to address the research chal-

lenges identified in Section 5.2.

5.4.1 Leveraging Ontology and ML for Enhanced e-Healthcare Privacy

Recent years have witnessed a growing emphasis on the connection between privacy

ontology and ML in the context of e-Healthcare systems. These approaches have been

used to improve various aspects of healthcare care systems, such as intrusion detection,

confidentiality, and privacy of EHR. In this section, we will discuss the key themes

surrounding ontology and ML in e-Healthcare systems.

5.4.1.1 Intrusion Detection and Prevention

Sreejith and Senthil’s research [500] proposed a model to detect intrusion attacks based

on a NoSQL database and semantic features. This model highlights the role of ML in

detecting and preventing real-time intrusion attacks in healthcare systems.

5.4.1.2 Confidentiality and Privacy of EHR

In [501], their research focused on an ontological framework designed to improve the

confidentiality and privacy of the EHR. Their framework aimed to detect anomalies in

abnormal patterns of access to healthcare records, predict vulnerable healthcare records

for prioritized security efforts, and analyze stakeholders’ behavior to detect suspicious

activity.
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5.4.1.3 Improved Indexing and Retrieval Performance

ML and ontology-based techniques have been shown to enhance the effectiveness of in-

dexing processes and retrieval performance in various studies [502, 503]. For example,

a framework for smart e-healthcare systems employs IoT technology while maintaining

privacy and authentication through a combination of encryption, secure authentication

protocols, and Blockchain technology.

5.4.1.4 Secure Data Access and Privacy Preservation

Sun et al. [504] explored a bilateral fine-grained access control mechanism in cloud-

enabled industrial IoT for healthcare care, using Blockchain-based frameworks for gran-

ular access control, secure data access, and privacy preservation.

5.4.1.5 Privacy Disclosure Measurement

Research on ontology-based approaches to protecting personal information in online pri-

vacy policies suggests that these models offer a standardized and objective way to mea-

sure privacy disclosure [505]. Privacy-preserving ontology is analyzed through various

stages, including data collection, data publication, and output with respect to modeling

and training.

5.4.1.6 Efficiency and Accuracy in Clinical Information Extraction

Studies such as Yehia et al.’s [506] have demonstrated increased efficiency and precision in

extracting clinical information from free text notes written by physicians using ML-based

approaches.

5.4.1.7 Structured Approach to organizing Clinical Data

Bosco et al. [507] illustrated that ontologies can provide a structured and standardized

approach to the organization of clinical data, supporting the interoperability between

EHR systems, and ultimately improving patient care and facilitating clinical research.

To summarize, incorporating ontology-driven strategies alongside machine learning in

EHRs yields considerable benefits in terms of privacy, security, and efficacy. The use of
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ontology-focused techniques allows the creation of a standardized and structured frame-

work to organize and handle health data, leading to enhanced interoperability, informa-

tion exchange, and decision-making. Our research distinguishes itself by tackling various

obstacles such as intrusion detection, EHR confidentiality, optimized indexing and re-

trieval performance, secure data accessibility, privacy conservation, and clinical data

extraction. This comprehensive approach guarantees the protection of sensitive health

data and empowers healthcare professionals to provide superior patient care.

By persistently examining and refining these methodologies, we can further advance

electronic healthcare systems and contribute to the creation of more secure, privacy-

focused, and effective solutions to manage delicate health information. Consequently,

our ontology-centered method, in conjunction with machine learning tactics, possesses

immense potential to secure health data and improve overall patient care results.

5.4.2 Conceptual Privacy Models

We identified the concepts behind the privacy model for different EHR systems. A

brief description of the concepts is presented in Figure 5.1, which can be titled the

identification layer. It shows the different types of stakeholders (e.g., GP, nurse, policy

maker), technologies (e.g., the digital platforms to interact with relevant stakeholders),

and health information (e.g., personal, sensitive) involved in the EHR scenarios.

• Identify stakeholders: the relevant stakeholders need to be identified from the ap-

plication scenarios.

• Identify technologies: the relevant health technologies and platforms need to be

identified to gather health related information.

• Identify health information: Health information and records need to be identified

and labeled in different categories, such as private record, sensitive record, etc.

5.4.3 Identifying Stakeholders

We Analyzed various EHR scenarios, including those for receptionists, nurses, policy

makers, and media personnel, as well as those outlined in Section 5.4.2. Based on our

findings, we have identified several stakeholders associated with EHR platforms, which

we have listed in Table 5.1.

To simplify the privacy model and utilize the inheritance concept of context-aware role-

based access control systems (as described in [385, 393]), we classified EHR stakeholders
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into two categories: primary and secondary stakeholders. Primary stakeholders, such as

GPS and nurses, are directly involved with EHR platforms and have access to patient

health information. Secondary stakeholders, such as media personnel, use health infor-

mation without being directly involved with EHR systems. We also defined two types

of roles for different stakeholders to create a privacy model applicable across different

stakeholder types. These roles include senior roles and junior roles. Table 5.1 shows the

inheritance relationship of the role between stakeholders, where top-level stakeholders,

such as medical practitioners and medical scientists, are classified as senior roles, while

bottom-level stakeholders, such as GPs and researchers, are classified as junior roles.

This approach helps ensure that access to sensitive patient information is appropriately

controlled and that privacy is maintained for all stakeholders involved with EHR systems.

5.4.4 Redefining Health Information and Privacy Rules

In response to valuable feedback and mindful of evolving privacy legislation such as

the GDPR and several national laws, we revisited our initial classification of health

information and redefined them as follows:

• Identifiable Health Information: This includes any data that can be used to identify

an individual, such as name, address, and location. This is similar to what was

previously described as ’private health information’ and ’personal information.’

Under GDPR and similar laws, all health information is considered sensitive, hence

our shift towards a unified category.

• Health Record Information: This encompasses the clinical details of a patient’s

health condition and medical history. It includes past diagnoses, treatment records,

and other medical reports. This category is more compatible with current legis-

lation and consolidates what we previously classified as’sensitive information’ and

’historical information’. The important distinction here is that this information is

sensitive by its very nature and is treated as such under GDPR and similar laws.
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Identification Layer

Identify Stakeholder Identify Technologies Different Levels of Healthcare Information

Resources: Internet, Networking, Meetings & Trainings
All Stake: Define list of all possible stakeholders
Priority: Define list of priority stakeholders
Key Groups: Identify key groups of stakeholders (Financial 
Stakeholders, Medical Leaders, End-Users: Clinicians, 
Patients, Vendors, Billing and Audit Functions, Government 
bodies and Authorities)
Engagement: Define stakeholders’ engagement
Grouping: Group internal and external stakeholders
Influence: Assess stakeholder influence
Relationship: Assess stakeholder relationship

Step 1: 
Gather Information: Statistics, Resources, Journals

Step 2:
All Stake: Resources, Relationship, Engagement and Priority

Step 3:
Making Preliminary studies: Scanning and monitoring, 
Technology Intelligence, Technology Road mapping, All 
Stake, Resources,  Key Groups , Validation and verification 

Step 4:
Service Requirement: Resources, All Stake, Priority, Key 
Groups, Engagement, Grouping, influence, Relationship. 

Health Data category and subcategories: 
Private Health, Personal Health, Sensitive Health, and Other 
Types

Level of Data category and subcategories: 
Geographical (National, State, etc.), Distribution (Distributed, 
Centralized), Patient Specific (Clinical, etc.), Aggregate Data 
(Clinical, etc.), Healthcare Statistics, and External Data 
(Comparative, Expert, etc.)

Figure 5.1: The relevant concepts to build the privacy model.

With this redefinition, we present an updated privacy ontology and its associated con-

cepts, including a role ontology, health information ontology, and privacy policy ontology.

These concepts, which are based on the revised privacy model introduced earlier, can be

viewed in Figures 5.2–5.5. These modifications ensure that our ontology is in line with

current legislation, making it more applicable to complex healthcare and health-related

information landscapes.

Our ontology and knowledge bases were defined using the widely used Web Ontology

Language (OWL) [508], specifically Prot’eg’e OWL 5.5 (https://protege.stanford.edu

(accessed on 6 July 2023)). We employed an object-oriented approach to model vari-

ous stakeholders, health information, and privacy rules. It includes classes, subclasses,

datatypes, and object type properties. The health-related stakeholders were defined

as classes and sub classes (i.e., primary and secondary stakeholders) and their relevant

properties were defined using class-to-class object type and datatype properties.

Table 5.2 provides a technical description of our updated privacy ontology. It comprises

three core concepts: role ontology, health information ontology, and privacy policy ontol-

ogy. This revised framework reflects a more accurate portrayal of the current healthcare

landscape and the information contained within the EHRs, making it more suitable for

privacy preservation.

https://protege.stanford.edu
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Table 5.2: The modeling criteria of the ontology.

Basic Modeling

Criteria

Privacy Ontology Elements

Classes All primary stakeholders are represented as senior

roles.

Sub classes All secondary stakeholders are represented as junior

roles.

Object-type

Properties

The relationships between classes to classes are repre-

sented as object-type properties.

Datatype Proper-

ties

The relationships between classes to their features are

represented as datatype properties.

Our updated ontology provides a better foundation to deal with complex healthcare

and health-related information environments. Identifiable health information and health

record information better adhere to GDPR and other national laws, providing a robust

framework for data protection. With this new approach, the ontology can better reflect

the complex and diverse processes and results found in healthcare systems, ensuring that

the EHRs remain secure and the privacy of patients is respected.

Is_a
Owl:Thing Privacy_Ontology

Health 
Information

Ontology
has

Primary
Stakeholders

Sensitives Health 
Information

Is_a

Is_a

Role
Ontology

Privacy
Policy

Ontology

has

Ps_ID

Ss_ID

has

Figure 5.2: The core concepts of privacy ontology.
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Figure 5.3: Role ontology.
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Figure 5.4: Health information ontology.
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Figure 5.5: Privacy policy ontology.
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5.4.5 Role Ontology

In this section, we will introduce a snapshot of the role ontology, which is based on

the different stakeholders associated with EHR environments. Figure 5.2 shows the core

concepts of the privacy ontology, which consists of three parts: Role Ontology, Health

Information Ontology, and Privacy Policy Ontology. Primary Stakeholder and Secondary

Stakeholder classes are both subclasses of the Role Ontology class. The “Is _a” property

indicates the relationship between the Role Ontology class and its sub classes. Each class

and subclass are defined by its datatype properties, such as the Primary Stakeholder class

having a datatype property “Ps_ID”.

Primary stakeholders, such as healthcare professionals, can directly access patients’

health information through EHR systems, whereas secondary stakeholders, such as me-

dia professionals, can use some health information without being directly involved with

EHR systems. Figure 5.3 provides a snapshot of the primary stakeholders. For the

purpose of this chapter, the Role Ontology (see Figure 5.3) includes five domain-specific

key classes: Support professionals, nurses, medical professionals, diagnostic professionals

and medical scientists. Each class has its own set of sub classes; for example, the Nurs-

ing Professionals class has Nurse Manager and Nurse sub-classes. The proposed privacy

ontology can be expanded to include new classes and sub-classes.

Understanding the integral role of ontology in improving data privacy in EHRs is paramount.

In our proposed Role Ontology, classes such as ‘Primary Stakeholders and ‘Secondary

Stakeholders’ explains who has authorized access to the EHRs and the extent of that

access. In scenarios where a healthcare professional (primary stakeholder) accesses pa-

tient data directly from EHRs, or a media professional (secondary stakeholder) uses some

health information without direct EHR involvement, it is the defined datatype properties

such as ‘Ps_ID that regulate this access. Such a structured hierarchy of data access,

based on well-defined classes and subclasses, ensures only authorized access to sensitive

patient data, thereby enhancing data privacy. Additionally, our ontology model provides

flexibility in expanding to include new classes and subclasses as required, ensuring the

model’s scalability and adaptability to growing and diversifying healthcare data needs.

Through our role ontology, we aimed to build a robust privacy-preserving framework

where the right to access and the extent of that access is predefined based on the role

of the stakeholder. This approach significantly mitigates unauthorized access, reduces

privacy breaches, and promotes data confidentiality in EHR environments.
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5.4.6 Health Information Ontology

In this section, we present an overview of the ontology of health information, which is

based on various types of medical information found in EHR systems. Our privacy on-

tology proposal includes classes and subclasses of relevant health information. The core

concept of the Health Information Ontology consists of domain-specific concepts such

as Personal Health Information, Private Health Information, Sensitive Health Informa-

tion, and Historical Health Information. The different types of health information are

represented as sub-classes, and are linked to the core concept of the Health Information

Ontology using an “Is_a” relationship, which is an object type property. You can see a

snapshot of the health information ontology in Figure 5.4.

5.4.7 Privacy Policy Ontology

In this section, we look at the privacy policy ontology, which is based on the privacy

rules we identified in the previous section. Figure 5.5 presents a snapshot of the privacy

policy ontology, which also includes domain-specific concepts from EHR environments.

To illustrate, according to Policy 1, Policy 2, and Policy 3 (as shown in Table 5.1), all

physicians are authorized to access patients’ health information. Another example is

that Policy 1 allows support professionals to access patients’ personal health information

but not their entire medical records.

5.4.8 Disclosing Emergency Health Information for Patients in Car
Accident Case Study

Case Study Overview: In the healthcare scenario we previously examined, nurses have

the authority to access a patient’s personal health data, which they share with the

main parties involved in the patient’s care. However, private information, such as the

precise address of the patient’s home, remains confidential unless an urgent situation

necessitates disclosure.

• Patient location: Somewhere, in a suburb of Melbourne.

• Primary stakeholders: Patient, GP, Paramedics, Emergency Room Nurse.

• Secondary stakeholders: Family members, Insurance provider.

• Patient Health Situation: A man with Type 2 diabetes living at 5 Somewhere Street

in a Melbourne suburb regularly sees his GP for health monitoring and treatment.



212

His insurance provider and primary stakeholders have access to his health records,

but not to his specific home address. One night, he is in a car accident and suffers

from severe chest pain, difficulty breathing, and dizziness. A witness calls 000 for

emergency help, and the operator dispatches paramedics after learning that the

accident occurred in a Melbourne suburb.

Due to urgency, the operator shares the patient’s exact address with paramedics, allow-

ing them to reach him promptly and provide life-saving treatment. In emergencies, every

second counts, and sharing the information of a patient can be vital for paramedics to act

quickly, administer treatment, and transport the patient to a hospital if needed. Knowl-

edge of the patient’s home address helps plan the most efficient route to the hospital,

which is crucial in some cases. Therefore, the emergency operator shares the address

with the responding paramedics. On arrival, paramedics evaluate the patient’s condition

and suspect a heart attack. They provide oxygen and aspirin to stabilize him before

transporting him to the closest hospital for further care. In the hospital, the emergency

room nurse is informed about the patient’s condition and gains access to his personal

health data to aid in his treatment. In light of the emergency, the nurse also obtains

the patient’s private information, including his precise home address, to facilitate any

required follow-up care or communication with family members.

Throughout the entire process, primary stakeholders, including the patient’s GP, paramedics,

and nurse, stay informed about the patient’s condition and treatment. They work to-

gether to ensure that the patient receives the best possible care and support during

this emergency. In this case, the patient’s private health information is disclosed only to

the primary stakeholders necessary in response to a critical emergency. This disclosure

enables a fast and effective response that ultimately saves the patient’s life.

A detailed health scenario (an emergency case is given in Table 5.3).
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Table 5.3: A case study of a health emergency.

Personal Health Infor-

mation

Privacy Policy Emergency Situation

A primary address, such as

“suburb is a suburban area

in Melbourne”, will only be

released to all stakeholders.

However, the patient’s ac-

tual address, which is “5

Somewhere Street, a subur-

ban area in Melbourne”, is

only released in the event

of an emergency.

All primary

stakeholders have

access to patients’

personal health

information.

However, they do

not have access

to private health

information.

In an emergency, some primary stake-

holders can have access to patients’ pri-

vate health information. For example,

in cases where the patient is considered

in a very critical condition and needs to

be admitted to the hospital, physicians

have access to patients’ exact home ad-

dress for an emergency treatment/situ-

ation.

5.5 Evaluation of Privacy Ontology and Experiments

We evaluated the privacy ontology by categorizing health-related privacy policies into

two types: valid and illegitimate privacy policies. To differentiate between valid and

illegitimate policies, we employed NLP-based ML models, specifically Bidirectional En-

coder Representations from Transformers (BERT) [509]. Based on our proposed privacy

ontology, we identified the following five steps to conduct the experiments.

✓ Data Collection and Preprocessing: We collected a large data set of health-related

privacy policies from various online sources, such as hospitals, clinics, health insur-

ance providers, and health-related mobile applications. Then, these policies were

preprocessed to remove irrelevant information, formatting inconsistencies, and con-

vert them into machine-readable format.

✓ Annotation and labeling: After preprocessing the data, we manually annotated and

labeled the privacy policies based on their adherence to our privacy ontology. The

annotation process involved experts in privacy and health domains, who categorized

the policies into two classes: valid (policies that comply with the privacy ontology)

and illegitimate (policies that do not comply with the privacy ontology).

✓ Feature extraction: We extracted relevant features from preprocessed privacy poli-

cies, such as the presence of specific keywords or phrases, using NLP techniques.

These characteristics were critical for training the BERT model, which was then

used to classify the policies into valid and illegitimate categories.
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✓ Training and Evaluation of the BERT Model: We used the annotated and la-

beled data set to train the BERT model. During the training process, the model

learns to identify patterns and relationships between the extracted features and

the corresponding labels (valid or illegitimate). After training, we evaluated the

model performance using standard evaluation metrics such as precision, recall, and

F1-score [510].

✓ Analyzing and Interpreting Results: We analyze the results obtained from the

BERT model to identify common patterns and trends in the classification of health-

related privacy policies. This analysis provides valuable information on the effec-

tiveness of the privacy ontology and helps identify potential areas for improvement.

Through these five steps, our aim was to demonstrate the effectiveness of our privacy

ontology in distinguishing between valid and illegitimate health-related privacy policies.

By leveraging state-of-the-art NLP techniques and ML models, such as BERT, we can

automate the evaluation process, making it easier to ensure that privacy policies adhere

to established privacy principles and guidelines.

5.5.1 Experiment Setup and Dataset Preparation

This section defines the processes involved in the preparation of the data set and the

experimental setup to construct and evaluate our proposed privacy mechanism. To over-

come previous limitations, our enhanced experiment design incorporated a broader range

of healthcare privacy policies and adopts cross-validation techniques, ensuring a robust

and comprehensive evaluation of machine learning models.

Our data set is an amalgamation of numerous health-related privacy policies, collected

from various healthcare organizations worldwide. It includes 100 manually labeled poli-

cies categorized as valid privacy policies (labeled ‘1’) or illegitimate privacy policies

(labelled ‘0’). Additionally, we incorporated 69 pre-labeled illegitimate privacy poli-

cies (labelled ‘0’) from the “SpywareGuide” online archive. The total dataset comprises

169 labelled privacy policies, providing a diverse and substantial foundation for training

our privacy model. Labeling was performed according to specific terms of health pri-

vacy and security, in accordance with the APP. A custom Python script implemented on

Google Colab facilitated the process, scanning for 13 specific phrases within each policy

before labeling them as ‘1’ or ‘0’. This comprehensive 13-phase word analysis provided

a rigorous method for categorization, ensuring accurate labeling.

Our research method approach involved using this data set in combination with four

BERT-NLP techniques: BERT, Distil BERT, Albert Tokenizer, and Roberta Tokenizer.
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The objective was to develop a machine learning-based privacy model specific to EHR

environments, capable of accurately distinguishing between valid and illegitimate privacy

policies. The model was built upon the principles derived from our updated privacy

ontology, identifying a valid privacy policy as one that is either identical to or similar to

a known policy previously labeled as ‘1’. In contrast, new policies that do not conform

to these principles were considered illegitimate and labeled as ‘0’.

5.5.2 Clarifying Privacy Policy Classification

In our study, we used machine learning (ML) models to classify privacy policies as ‘valid’

or ‘illegitimate’. This raises the question: Why is there a need to classify a policy

as legitimate or illegitimate, especially in a context where, as an example, healthcare

providers in the U.S. must abide by the regulations established by the HIPAA [511],

regardless of what the ML model dictates?

1. First, it is essential to note that, while healthcare institutions in the U.S. must

follow HIPAA guidelines, not all institutions worldwide must adhere to the same

guidelines. Different countries have different privacy regulations, and the level of

privacy protection can vary significantly between countries and even across different

institutions within the same country. This variability increases the importance of

having a tool that can automatically assess the validity of privacy policies across a

broad range of contexts.

2. Second, even within the U.S., not all healthcare entities are required to follow

HIPAA regulations. HIPAA applies primarily to healthcare providers, health plans,

and healthcare clearinghouses, but does not extend to entities such as life insur-

ers, employers, or schools. Some of these entities might have access to sensitive

health-related information and might formulate their privacy policies, necessitating

a mechanism to evaluate the validity of their policies.

3. Third, even when healthcare entities are required to follow HIPAA guidelines, there

may still be differences in how these guidelines are interpreted and implemented.

Privacy policies can be complex and subtle, and different entities might have dif-

ferent interpretations of what constitutes a ‘valid’ policy under HIPAA guidelines.

An ML model that classifies privacy policies can serve as an additional check on

these entities’ interpretations, highlighting potential areas of concern.

4. Finally, while we used the example of HIPAA in our study, the principles of our

privacy ontology and our ML-based privacy model are not limited to HIPAA. Our

approach was designed to be adaptable to various privacy regulations, not just
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HIPAA. This adaptability makes our approach potentially useful in a wide range

of contexts, even in situations where the applicable privacy regulations differ from

HIPAA.

Given these considerations, it becomes clear that there is a need to classify privacy

policies as ‘valid’ or ‘illegitimate’ and that our ML-based privacy model can provide a

valuable tool in this regard. It enables a more subtle understanding of privacy policies

in different contexts, helping in the ongoing effort to ensure that sensitive health-related

information is adequately protected.

5.5.3 Development of ML-Based Privacy Model

In this section, we present an improved ML-based privacy model to classify valid and ille-

gitimate privacy policies in EHR environments. We have opted for four transformer-based

text classification models, specifically BERT, DistilBERT, ALBERT, and RoBERTa, to

categorize privacy policies. The rationale for choosing these models lies in their state-of-

the-art performance in various natural language processing tasks, including text classifi-

cation, sentiment analysis, and named entity recognition. Moreover, these models have

demonstrated strong generalizability in different domains and languages.

The primary goal of our privacy model was to determine whether a privacy policy is

‘valid’ or ‘illegitimate’ based on the type and extent of personal, private, sensitive and

historical information that the relevant organization usually collects from its clients (e.g.,

healthcare stakeholders requesting patient information). Our proposed privacy model

employs an automated text classification mechanism to effectively distinguish between

valid and illegitimate privacy policies.

To further enhance the model, we provide a detailed explanation of the four transformer-

based text classification models.

• BERT: BERT is a powerful pretrained language model that has achieved state-of-

the-art results in various NLP tasks. Its bidirectional nature enables it to under-

stand the context from both the left and right sides of a word, resulting in improved

understanding and classification accuracy.

• DistilBERT: DistilBERT is a distilled version of BERT that offers a smaller and

faster alternative while maintaining most of the original model’s performance. This

model is particularly useful in cases where computational resources or model size

is a concern.
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• ALBERT (A Lite BERT): ALBERT is another variant of BERT that reduces the

size of the model and improves training efficiency by sharing parameters between

layers. Despite its reduced size, ALBERT maintains competitive performance,

making it a suitable choice for our privacy model.

• RoBERTa (Robustly Optimized BERT Pretraining Approach): RoBERTa is a

modified version of BERT that has been optimized for increased training efficiency

and performance. It uses dynamic masking, larger batch sizes, and other training

optimizations to achieve superior results in text classification tasks.

Using these advanced transformer-based models, we have developed a machine learning-

based privacy model derived from the concepts of our proposed privacy ontology. The

objective of the model is to accurately and efficiently classify privacy policies in EHR

environments as valid or illegitimate, ensuring the protection of sensitive patient informa-

tion. We first manually annotated a training dataset of 169 policies, labeling each policy

as valid (1) or illegitimate (0). A privacy policy was considered valid if it is identical or

closely comparable to an already labeled “1” policy within the training data set. Policies

that did not meet these criteria were labeled “0” and deemed illegitimate. An example

of an illegitimate privacy policy sourced from the online data set “SpywareGuide.com”

online dataset is shown in Table 5.4.

To enhance the performance of the model, we explored various BERT-based techniques to

process the training data. These methods included transforming the data into tensors,

creating data batches, fine-tuning the model, and finally validating its accuracy. We

trained multiple variants of BERT and systematically compared their results to determine

the most accurate model for our privacy policy classification task.

Table 5.4: An example privacy policy.

Policy

Type

Policy Statement

0]

. . . Alexa Internet Privacy Policy, based on the last updated version on 7

April 2011. What Personal Information About Users Does Alexa Gather?

Information You Give Us—We receive and store any information you enter

on our Web site or give us in any other way. Automatic Information We

Collect from the Toolbar Service—When you use the Toolbar Service, we

collect information about the websites you visit and the advertisements that

you see on those websites, the searches you perform using search engines. . .
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5.5.4 Application of Privacy Ontology in the Machine Learning Ex-
periment

In this section, we elaborate on how the privacy ontology model developed is integrated

into the machine learning experiment and how it enhances the privacy of patient data.

Our privacy ontology model is crucial in setting the ground rules for classifying privacy

policies. It defines the valid and illegitimate privacy policy categories, shaping the direc-

tion of our machine learning model training. The privacy ontology model, constructed

based on an in-depth analysis and understanding of privacy laws and principles, ensures

a high standard in distinguishing valid and illegitimate privacy policies. The applica-

tion of privacy ontology in our machine learning experiment can be elaborated in three

distinct steps:

1. Annotation and labelling: The privacy ontology serves as a guide to annotating

and labeling the collected privacy policies. The experts involved in the annotation

process utilize the ontology’s principles to identify the class of each policy. As such,

the ontology enables a more reliable and consistent labeling process.

2. Feature Extraction: Privacy ontology plays a crucial role in determining the rele-

vant characteristics of the privacy policies. It aids in identifying the specific key-

words or phrases that signify valid or illegitimate policies, thereby helping in effec-

tive feature extraction.

3. Model Training: During the model training phase, the privacy ontology plays a

critical role in guiding the learning process of the BERT model. The model learns

to identify patterns that align with the principles of our privacy ontology, which

helps to classify new privacy policies with precision.

Integrating our privacy ontology model into the machine learning experiment significantly

enhances the privacy of patient data. It does so by ensuring that any privacy policy,

whether from healthcare providers, health insurance providers, or health-related mobile

applications, complies with established privacy principles and guidelines before being

classified as valid. This procedure guarantees that only policies that uphold high privacy

standards will be deemed valid, providing a robust safeguard for patient data privacy.

It is worth noting that our ML model’s potential to accurately classify privacy policies

does not negate the human role in this process. Our model acts as an assisting tool that

automates and speeds up the classification process, but the initial rules and principles (as

defined by the privacy ontology) are still set by human experts. Thus, while our model

provides an additional layer of protection for patient data privacy, it does not eliminate
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the need for human oversight, particularly in complex cases where a human might be

more adept at identifying the appropriate policy.

5.5.5 Evaluation Results

The main objective of this section is to identify legitimate privacy policies associated with

health and personal information in different EHR environments. The primary objective

was to ensure that the EHR remains secure from any unauthorized attempts to access

it. Towards this goal, we conducted a set of experiments to evaluate the efficiency of

the proposed ML-based privacy model. The technical details of the experiments and the

relevant results have been presented below.

5.5.5.1 Technical Details

A valid privacy policy is represented as a 2-tuple relation, including privacy policies from

our proposed privacy ontology and legitimate actions (e.g., collecting, storing and/or

disseminating health information where personal, private, or sensitive information is

involved with authorized parties). On the contrary, an illegitimate privacy policy is

one in which ille.g.itimate actions (for example, using health information for marketing

purposes) are involved with unauthorized parties (e.g., who are not primary or secondary

health related stakeholders).

We calculated accuracy, precision, recall, and the f1 score using different BERT tech-

niques to classify privacy policies (the data set of 169 policies). These BERT models were

used to model our ML-based privacy approach. We use an automated text categorization

mechanism to classify a privacy policy as valid or illegitimate.

5.5.5.2 Dataset and Results

The proposed model was evaluated on a data set that contains valid and illegitimate

privacy policies generated by health-related organizations. We collect those privacy poli-

cies from multiple health-related organizations. We also used some illegitimate privacy

policies from the online SpywareGuide archive.

Table 5.5 shows the experiment’s results using the different NLP-based BERT tech-

niques, such as BERT, Distil BERT, Albert Tokenizer, and Roberta Tokenizer. In these

experiments, we used the concept of automated text categorization mechanism in our

ML-based privacy approach through our introduced privacy classification technique: ille-

gitimate versus valid. We achieved 94% accuracy using the Distil BERT technique, which
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is better than the other BERT techniques that achieved 76%, 90%, and 92% accuracy

using Albert Tokenizer, Roberta Tokenizer, and BERT techniques, respectively.

In the aforementioned experiments conducted on Google Colab, a cloud-based machine

learning platform, we used a custom dataset comprising privacy policies obtained from

a variety of health-related organizations, both legitimate and illegitimate. Illegitimate

policies were sourced primarily from the SpywareGuide archive, an online resource that

provides information about privacy risks. Each privacy policy in our dataset was trans-

formed into a vector representation using the BERT tokenizer before being processed

by our machine learning model. For the experimental setup, we used the BERT, Distil-

BERT, Albert, and RoBERTa models as implemented in the Google Colab Transformers

library. The models were fine-tuned on our data set using a learning rate of 2 × 10−5,

batch size of 16, and for a total of four epochs, leveraging the high-performance com-

puting power of Google Colab. The choice of these parameter settings was informed by

preliminary experiments and the recommended settings from the original studies that

introduced these models. To validate the practicality of the proposed model, we per-

formed an additional set of experiments using privacy policies from a diverse range of

healthcare sectors, including hospitals, insurance providers, and digital health applica-

tions. We found that our model, trained and fine-tuned in Google Colab, consistently

achieved high accuracy in identifying legitimate and illegitimate privacy policies across

these sectors, reinforcing its practical applicability in a real-world context.

Table 5.5: Experiment results using NLP-based BERT techniques.

BERT

Techniques

Accuracy Precision F1 Score

BERT 0.92 0.86 0.90

Distil BERT 0.94 0.94 0.94

Albert Tokenizer 0.76 0.87 0.76

Roberta Tokenizer 0.90 0.82 0.92

5.5.6 Summary of the Findings

In our experimental setup, we used various BERT techniques to distinguish between le-

gitimate and illegitimate privacy policies, with the primary aim of establishing privacy

measures that effectively protect the EHR from unauthorized access. To conduct this

experiment, we used a data set consisting of 169 valid and illegitimate privacy policies

collected from the online SpywareGuide archive and relevant health-related organiza-

tions. Our experiments demonstrated that the proposed ML-based privacy approach
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can reliably recognize illegitimate policies, achieving an F1 score exceeding 0.94 when

using a data test set comprising 20% of the data and a training dataset of 80%, indicating

that our approach has been effective in identifying privacy policies that may not provide

adequate protection for sensitive health information. The results of our analysis showed

that Distil BERT outperformed the other techniques in terms of precision, precision,

and F1 score, achieving balanced performance in identifying legitimate and illegitimate

privacy policies. This finding suggested that Distil BERT may be an effective tool for an-

alyzing privacy policies in eHealthcare systems, providing valuable insights for enhancing

privacy protection measures.

We anticipate that the precision and precision of our approach could be further improved

by using a larger dataset containing a more diverse range of health-related privacy poli-

cies. In future experiments, we plan to expand our data set and refine our proposed

ML-based approach to better determine the validity of these privacy policies. By doing

so, we hope to develop a more robust and accurate system to identify and protect against

potential risks associated with inadequate privacy policies in electronic health systems.

5.5.7 Refined Technical Approach and Dataset Overview

This subsection delves into the sophisticated methodologies employed and offers a de-

tailed exposition of the data set utilized in our experimentation, aiming to bolster the

transparency and reproducibility of our findings.

5.5.7.1 In-depth Technical Methodology

The cornerstone of our approach is the use of advanced NLP models, with a particular

emphasis on the variations of BERT including BERT [512–515], DistilBERT [60, 516–

519], ALBERT [520, 521], and RoBERTa [522, 523]. These models were fine-tuned

on a meticulously curated dataset of healthcare privacy policies. This process aimed

at achieving a binary classification: categorizing policies into compliant (‘legal’) versus

noncompliant (‘illegal’) with respect to prevailing privacy regulations such as HIPAA

and GDPR.

The model fine-tuning adhered to a rigorously defined parameter set: a learning rate of

2 × 10−5, a batch size of 32, over four training epochs. This parameterization emerged

from an extensive series of preliminary trials, demonstrating an optimal compromise

between computational efficiency and model precision [524–528].
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5.5.7.2 Comprehensive Dataset Description

Our study employed a dataset composed of 169 distinct privacy policies, sourced from

a broad spectrum of healthcare entities. Each policy underwent a meticulous labeling

process, being categorized as ‘legal’ or ‘illegal’, grounded on its adherence to established

privacy frameworks like HIPAA for U.S. entities and GDPR for European counterparts.

The dataset’s compilation was driven by the objective of encapsulating a broad array of

healthcare sectors, thereby ensuring its representativeness. This breadth encompassed

hospitals, insurance providers, and an array of digital health platforms. Subsequently,

the dataset was partitioned into a training subset, constituting 80% of the total, and a

testing subset, making up the remaining 20%, to facilitate a comprehensive evaluation

of the model’s predictive prowess [524–528].

5.5.7.3 Ensuring Reproducibility

A commitment to enhancing the reproducibility of our results underpins this study. To

this end, we pledge to provide access to both the utilized code and dataset upon formal

request. This gesture aims to empower fellow researchers to either replicate our study

or extend the dataset for further inquiry.

Complementarily, extensive documentation detailing the experimental setup—including

software configurations, model parameters, and data preprocessing steps—accompanies

our study. This documentation is crafted with the intention of enabling seamless repli-

cation of our experiments or the application of our methodology to novel datasets

[520, 521, 529, 530].

To conclude, through elucidating our methodological rigor and providing a granular view

of our dataset, we aspire to address the intricacies involved in our study. Our endeavor

to make our resources accessible is driven by a commitment to foster reliability and

encourage scholarly engagement within the domain of e-Healthcare privacy.

5.6 Discussion

This section will focus on discussing the key insights collected during the research.
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5.6.1 The Relationship between the Ontology and the ML Model

Integrating an ontology-driven approach with ML could enhance the confidentiality of

MHRs and refine data categorisation processes [531–536]. Primarily, an ontology-driven

methodology offers a structured classification of medical terms and concepts. This

structure facilitates the accurate identification and categorization of sensitive health

data [535]. An organized and standardized approach to health information ensures in-

teroperability and streamlines data management. Furthermore, the ontology can link

various data components, delivering contextual information that could refine the perfor-

mance of the ML algorithm when detecting sensitive information [533].

Training ML algorithms with a data set that contains pre-identified sensitive informa-

tion can further enhance the accuracy of data categorization [532]. Here, the algorithm

learns to recognize patterns and characteristics associated with sensitive data, ensur-

ing the effective detection and protection of such data. In conclusion, combining an

ontology-driven approach with ML offers a robust platform to protect medical records.

This combination substantially improves the confidentiality and security of health data,

contributing to better patient care and privacy.

5.6.2 The Complementarity of Ontology and ML Model

Our research illustrates that the interplay between ontology and ML can significantly

enhance healthcare data management. The ontology’s role is multifold: it serves as a

semantic framework that provides context and meaning to raw data, it defines the scope

of data to be processed, and it structures the data in a manner that can be effectively

utilized by ML models [537, 538]. The ontology model plays an instrumental role in

the preprocessing stage of ML by identifying relevant data sources and features [539].

This identification ensures that ML models are trained on relevant and meaningful data,

thus enhancing the models’ capability to accurately identify sensitive information while

maintaining patient confidentiality. Additionally, ML models help to continuously refine

the ontology [539, 540]. The models identify patterns and relationships within the data,

which provide insight into potential improvements to the ontology. These insights help

refine the ontology structure and contribute to a more accurate representation of the

health information domain.

In essence, the interaction between ontology and ML in our work exhibits a synergis-

tic relationship, where the strengths of one approach are tapped to complement the

other [538]. The ontology model provides a meaningful and context-rich foundation for

ML models, whereas the ML models contribute to the iterative refinement and validation
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of the ontology. This complementary relationship culminates in a system that is not only

secure and privacy-preserving, but also efficient in the management of sensitive health

information [537].

5.6.3 Adoption of Privacy-Preserving Technologies for Health Infor-
mation Security

Although our focus has mainly been on ontology-driven methodologies and ML tech-

niques, it is also essential to recognize the role of privacy-preserving technologies in

ensuring the security of health information. The privacy ontology model we propose in

this chapter provides a structured framework for understanding and managing health-

related information, but it needs to be complemented with various privacy-preserving

technologies to fully realize its potential. These technologies include, but are not limited

to, data encryption, differential privacy, and secure multiparty computation, which pro-

vide the technical means to protect sensitive data while still enabling valuable insights

to be gleaned [541, 542]. The integration of such technologies with our proposed pri-

vacy ontology model can ensure that privacy rules and regulations, as well as the rights

and privileges of stakeholders, are effectively enforced in real-world applications. This

integrated approach can also address potential vulnerabilities, such as data breaches and

unauthorized access, thus further enhancing the confidentiality and security of health

data. Consequently, while the privacy ontology model contributes significantly to con-

ceptualizing and organizing privacy in healthcare, the adoption of privacy-preserving

technologies is integral to operationalizing these concepts and effectively safeguarding

health information.

5.6.4 Section Summary

The relationship between privacy ontology and ML significantly enhances e-Healthcare

systems’ security, privacy, and interoperability. By offering structured and standardized

frameworks, these techniques improve data management, access control, and overall sys-

tem efficiency. As a result, they support the secure and confidential exchange of health

information in an increasingly digital landscape.

5.7 Conclusions and Future Research

This study has explored the potential of a universal privacy model in the realm of EHR

systems and context-sensitive privacy policies. Challenges such as the trade-off between
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privacy and accessibility, user-friendliness, and legal compliance persist, and our work

aimed to contribute to these ongoing discussions. We proposed a conceptual privacy

model, employing a novel privacy ontology and an ML-based mechanism, which sought

to discern between legitimate and illegitimate privacy policies while factoring in patients’

PII.

We used various BERT techniques in our endeavor to pinpoint illegitimate privacy poli-

cies, indicating that our proposed ML-based approach has the potential to effectively

discern such policies. Distil BERT was particularly adept at identifying both legitimate

and illegitimate policies. Research suggests that refining the ML-based approach and

expanding the dataset could result in a more resilient system to combat potential risks

linked to inadequate privacy policies in e-Healthcare systems.

5.7.1 Limitation

Our study, while pioneering, is not without limitations. Indeed, these limitations un-

derscore the need for further research and validation of the proposed privacy model in

the context of evolving technology and privacy regulations. Our study lacks empirical

evidence to fully support the effectiveness and reliability of our approach, suggesting the

need for thorough evaluations and real-world testing. Moreover, the scalability and inter-

operability of our solution with existing healthcare IT systems and EHR platforms remain

largely untested. As such, our model may require continuous updates and adjustments

to align with technological advancements and emerging privacy-enhancing techniques.

Ethical considerations, such as potential bias in ML algorithms, data ownership, and

consent management, have yet to be explored within the scope of this chapter. Fur-

thermore, the adaptability of our solution in the face of changing legal landscapes and

ongoing compliance with changing privacy regulations warrants further scrutiny. Lastly,

the practicalities of implementing our proposed solution in real-world healthcare settings,

including overcoming resource constraints and resistance to change, as well as addressing

the need for user training and support, are areas that require future exploration and

validation.

5.7.2 Future Research Directions

To address the limitations discussed above, future research should focus on comprehen-

sive evaluations of the proposed ontology and the ML-based approach in terms of perfor-

mance, scalability, and interoperability. Future studies should also investigate strategies

for integrating novel technological advancements and changes in privacy regulations to

ensure the maintenance of a relevant and effective solution. Key areas of future research



226

to advance this field include thorough evaluations through real-world case studies and

pilot implementations, exploring frameworks to adapt to advancements and changes,

examining ethical implications, and fostering collaboration among stakeholders. Fur-

thermore, future research should investigate user-centered design principles to create

a solution that is user-friendly and accessible, in conjunction with the development of

practical implementation strategies to seamlessly integrate the proposed solution into ex-

isting healthcare settings. The resilience of the proposed solution against various security

threats and attack scenarios, along with strategies to mitigate potential vulnerabilities,

remains an essential focus area for future research. By following these research direc-

tions, we hope to contribute to the ongoing evolution of secure healthcare information

systems, aiming to enhance both privacy and accessibility in the world of eHealthcare.



Chapter 6

CONCLUSION

6.1 Introduction

This chapter serves to conclude the thesis by summarizing the key findings and delin-

eating the overall influence of the research in the realm of EHR security and privacy,

thus making a substantive contribution to the field. This research embarked on an ex-

tensive exploration of EHRs, with a focus on enhancing their privacy and security. The

primary objective was to investigate and develop innovative techniques that combine the

latest technologies and methodologies in the field. This thesis has introduced a suite

of novel ideas, models, and practices, each contributing significantly to advancing the

management of health data. These innovations are particularly crucial to address the

multifaceted challenges currently encountered in healthcare data management, including

the responsible use of Artificial Intelligence (AI) and the search for holistic solutions in

healthcare data management.

In the process, this research has illuminated various aspects of EHRs, proposing new

approaches and strategies to protect their privacy and security. It has shed light on the

complicity in balancing accessibility and confidentiality and how emerging technologies

can be leveraged to enhance this equilibrium. The thesis has also critically analyzed the

role of AI and machine learning in the context of EHRs, evaluating their potential to

transform healthcare data management while also considering the ethical and privacy

concerns associated with their use.

The chapter also outlines the significant contributions of this research to the field. These

contributions go beyond theoretical advances, providing practical insight and guidelines

that healthcare professionals and policy makers can adopt. This includes a detailed

examination of the challenges in implementing secure and private EHR systems, as well
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as the development of frameworks and models that can be employed to overcome these

challenges.

The following sections of this chapter dive into what could be improved in future research.

It recognizes areas where current methodologies and technologies could be refined, sug-

gesting a path forward for continued innovation in the security and privacy of electronic

health records. This includes exploring new technologies and methodologies, as well as

adapting current findings to different settings and healthcare settings.

Additionally, the chapter explores future research directions, highlighting potential areas

where further investigation can yield significant advances. This includes the continuous

evolution of AI and machine learning algorithms in the context of EHRs, the exploration

of blockchain technology to improve data integrity and security, and the development

of more robust privacy-preserving techniques. The chapter emphasizes the need for

ongoing research to adapt to the rapidly changing technological landscape and evolving

requirements of the healthcare industry.

In summary, this thesis provides a comprehensive overview of the current state of EHR

privacy and security, offering significant contributions to the field, and laying the ground-

work for future advancements. The insights and findings of this research have the poten-

tial to profoundly impact the way EHRs are managed and protected, ultimately leading

to more secure and efficient healthcare systems.

6.2 Thesis Contributions

The research conducted within this thesis has made significant and multifaceted contribu-

tions to the field of EHR security and privacy. This achievement stems from a meticulous

examination of carefully selected pieces of literature, strategically framed along the spe-

cific research questions that guided this study. The process of this scholarly investigation

has led to the identification of several key insights and developments, which collectively

enhance the understanding and advancement of EHR security and privacy. These con-

tributions are characterized not only by their immediate relevance to the field, but also

by their potential to influence future research and practice. The following sections detail

these critical contributions and the research findings, emphasizing their implications in

the broader context of healthcare data management.

Firstly, the research has examined the complex interaction between technological ad-

vancements and privacy concerns in EHR systems. By critically analyzing current

methodologies and emerging technologies, this thesis provides a comprehensive perspec-

tive on how EHR systems can be made more secure and privacy-compliant. This includes
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an exploration of the integration of novel cryptographic techniques, data anonymization

processes, and the strategic use of AI and machine learning algorithms.

Secondly, the study offers a forward-looking approach to EHR security and privacy,

proposing innovative models and frameworks that are poised to redefine current prac-

tices. This includes the development of a holistic security model that accommodates the

evolving nature of cyber threats and the increasing sophistication of data breaches. The

proposed models emphasize not only technical robustness, but also user-centric design,

ensuring that EHR systems are accessible and practical for healthcare practitioners and

patients alike.

Finally, the research provides a critical assessment of the policy and regulatory frame-

works that govern EHR systems. By examining the interplay between technology, ethics,

and law, this thesis contributes to a deeper understanding of how policy can be shaped

to support the secure and ethical use of EHRs in an increasingly digital healthcare land-

scape.

The research in this thesis offers a series of significant contributions to the field of EHR

security and privacy. These contributions, highlighted in the following, represent a blend

of theoretical insight and practical application, providing a solid foundation for future

advancements in the secure and responsible management of EHR.

Surveying EHRs and Privacy

A thorough in-depth analysis of EHRs, focusing on their privacy concerns, was conducted

in Chapter 2. Despite their acknowledged importance, a knowledge gap was identified in

the systematic understanding and management of EHRs. Existing research often inter-

changeably used terms such as Patient Care System (PCS), creating confusion regarding

the various meanings of health records. Our survey differentiated such healthcare data

related terms and addressed critical research questions. This foundational understanding

set the stage for a more systematic view of EHR management, addressing data sharing

methods, privacy roles, strengths and weaknesses of EHRs and technologies for privacy

preservation. The identified challenges also underscore the need for future research to

ensure a holistic approach to privacy, confidentiality, and security in EHRs.

Secure Data Sharing Framework EHR

A major contribution of this research was the development of a secure data sharing

framework specific to the EHR system. The framework facilitates communication among

healthcare stakeholders, allowing the exchange of personal and sensitive information.

Through an extensive literature review, research challenges were identified and an anal-

ysis of the motivating scenario and subsequent proposal of privacy and security policies
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was carried out. The chapter 3 also presented a detailed methodology, implementation

plan, and future research directions to enhance the proposed framework.

Universal Privacy Model for EHR Systems

The research proposed a novel privacy model that uses privacy ontologies and machine

learning techniques. Chapter 4 explored the potential of a universal privacy model for

EHR systems.This model aims to balance privacy, accessibility, user-friendliness, and

legitimate and illegitimate privacy policies, incorporating patient PIIs that address the

challenges in the realm of EHR systems. This chapter significantly contributed to the

ongoing discussions on context-sensitive privacy policies in EHRs.

GPT-Onto-CAABAC Framework for Advanced EHR Access Control

A significant advancement presented in this thesis (Chapter 5) is the proposed GPT-

Onto-CAABAC framework. This model integrates AI, specifically GPT, with ontology

and CAABAC, enhancing EHR access control and addressing the complexities of health-

care data security. Despite all the challenges, the model showcases promise for diverse

applications beyond healthcare, emphasizing the importance of responsible AI use.

Security Ontology Models for Health Information Systems

Chapter 2 emphasized the need for a comprehensive security ontology model for HIS.

The proposed model aims to overcome challenges like scalability, user acceptance, and

evolving security threats. The layered approach ensures security and scalability that

offers a practical solution for HIS. Future research should focus on enhancing scalability,

user-friendliness, and incorporating emerging technologies.

CEMPS Framework Implementation for EHR Privacy and Security

The chapter (Chapter 3) detailed the methodology and implementation plan for the

CEMPS framework. The framework systematically identify technologies, stakeholders,

health information levels, implementing and evaluating robust security and privacy mod-

els. CEMPS aims to provide a secure and privacy-preserving environment for EHR. The

chapter also highlights the various research directions for future scholars to enhance this

framework further.

6.2.1 Mapping Thesis Contributions to Research Questions

This thesis has made concerted efforts to address the research questions outlined in

Section 1.8, through rigorous exploration and systematic analysis. Below, we map the

key contributions of this research to the respective research questions:
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1. Q1: The integration of Access control, Blockchain, Cloud, and Cryptography tech-

nologies in enhancing EHR data sharing and access has been extensively analyzed.

Chapters 2, 3, 4, and 5 demonstrate how these technologies collectively contribute

to the modern healthcare landscape’s efficiency and security.

2. Q2: The significance of privacy considerations in EHR data sharing among diverse

stakeholders and its impact on the ethical and legal foundations of patient data

management is critically examined. This analysis is primarily focused on Chapters

2, 3, and 4, offering insights into the correlation with distributed or centralized

data management systems.

3. Q3: The correlation between the fundamental attributes of EHRs (Comprehensive-

ness, Accessibility, and Integration) and their measurable impacts in healthcare is

discussed in Chapters 1, 2, and 5. This elucidates the comprehensive understanding

of EHR’s role in enhancing healthcare delivery.

4. Q4: The distinct contributions of EHR privacy, confidentiality, and security to-

wards safeguarding patient information are quantitatively and qualitatively linked

in Chapters 2, 3, 4, and 5. This establishes a robust foundation for ethical and

secure healthcare data management.

5. Q5: The strategic integration of Access control, Blockchain, Cloud, and Cryptog-

raphy (ABC) technologies to ensure the privacy and security of EHRs effectively

addresses challenges related to data breaches and unauthorized access. This crit-

ical aspect is thoroughly investigated in Chapters 2, 3, 4, and 5, showcasing the

optimized protection mechanisms for EHR systems.

By directly linking the contributions of this thesis to the formulated research questions,

we underscore the depth and breadth of our investigation into EHR privacy and se-

curity. This mapping not only validates the comprehensive approach taken to address

these complex issues but also highlights the alignment of our contributions with the core

objectives of the research.

Evaluation of Thesis Contributions: The contributions of this thesis are evaluated

using a diverse set of metrics, including the effectiveness of technology integration, impact

on stakeholder privacy considerations, enhancement of EHR attributes, and the strength-

ening of data management practices. These evaluations are supported by empirical evi-

dence and theoretical analysis, as detailed in the respective chapters, demonstrating the

substantial advancements made in the field of EHR security and privacy.



232

6.2.2 Major Contributions to the Field

Clarification of EHR Management Concepts: This thesis significantly clarifies EHR man-

agement concepts, particularly in distinguishing between critical aspects such as privacy,

confidentiality, and security (PCS). By dissecting these concepts, the research provides a

subtle understanding of EHR management, highlighting the subtle, but important, dif-

ferences and interconnections between these elements. This contribution helps streamline

the management practices of EHR, ensuring that each aspect of PCS is adequately ad-

dressed.

Holistic Approach to EHR Security: The thesis introduces various models and frame-

works that encapsulate a holistic approach to EHR security. This approach transcends

traditional technical solutions, encompassing legal, ethical, and practical considerations,

providing a comprehensive perspective on the security of EHRs. This multifaceted ap-

proach ensures that EHR systems are not only technically secure but also conform to

legal standards and ethically sound.

Integration of Advanced Technologies: A significant stride in this research is the in-

tegration of cutting-edge technologies such as Artificial Intelligence (AI) and Machine

Learning (ML) into EHR security and privacy models. This integration offers more dy-

namic, adaptable, and intelligent solutions to the complex challenges of EHR security,

paving the way for more efficient and effective healthcare data management.

Focus on Real-world Application and Scalability: The research places a strong emphasis

on developing frameworks and models that are scalable and directly applicable in real-

world settings, such as the Australian MyHR system. This practical orientation ensures

that the academic research conducted has tangible benefits and applicability in actual

healthcare settings, enhancing the relevance and impact of the findings.

Basis for Future Research Directions: This thesis lays the foundational foundation for

future research, particularly in areas such as optimizing model training, refining the

integration of advanced technologies and adapting to continuously evolving regulations

and threats in healthcare. It opens avenues for further exploration and innovation in

EHR security and privacy, providing a robust platform on which to build on subsequent

studies.

6.2.3 Implications for Practice and Policy

Enhanced EHR Security in Healthcare: The models and frameworks developed in this re-

search provide comprehensive pathways for healthcare providers to significantly enhance
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the security and privacy of EHR. These proposed solutions are not only technically robust

but also align with regulatory mandates and address patient expectations for privacy and

confidentiality. The detailed examination of these models contributes to a higher stan-

dard of EHR management in healthcare settings, offering strategies that are proactive

and reactive to emerging security challenges.

Guidance for Implementing Advanced Security Measures: This research serves as a cru-

cial guide for healthcare systems that intend to implement advanced security measures,

particularly focusing on the integration of artificial intelligence (AI) and machine learn-

ing (ML) in the security management of the EHR. The insights provided go beyond

traditional security practices, advocating for a dynamic and intelligent approach to secu-

rity management that takes advantage of AI and ML capabilities. This guide is crucial

for healthcare systems that navigate the complexities of modern data security in an

increasingly digital healthcare landscape.

Policy Recommendations: The findings of this thesis extend to policy implications, sug-

gesting comprehensive recommendations to standardize EHR management practices.

These recommendations are particularly relevant in light of rapid technological advance-

ments and the evolving legal and ethical landscape surrounding the access and privacy of

EHRs. The thesis underscores the need for policies that are adaptable, forward-thinking,

and inclusive of diverse stakeholder perspectives. Encourage policymakers to consider

the complex balance between technological innovation, patient privacy, and ethical use

of EHRs in formulating future healthcare policy.

6.2.4 Study Limitations

In the search for a comprehensive review of the relevant literature, this research ac-

knowledges certain inherent limitations. A primary constraint identified was the general

scarcity of literature that clearly addresses the subtle aspects of privacy preservation in

EHRs, without conflating it with confidentiality and security aspects. This gap has made

it challenging to draw clear distinctions and comparisons between privacy, confidentiality,

and security within the context of EHR. Consequently, research encountered difficulties

in pinpointing specific techniques and technologies exclusively focused on EHR privacy.

Furthermore, the validation of the validity of certain studies solely on the basis of their

manuscripts presented challenges. A notable observation is the lack of empirical testing

with real samples or raw EHR data in existing studies, casting doubts on their external

validity. This limitation raises concerns about the applicability of the findings of these

studies to real-world healthcare scenarios, as the absence of practical tests can limit the

generalizability of the research conclusions.
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The research gaps identified during this analysis are multifaceted. While EHR Privacy

and Security are prevalent in numerous Health Systems, and emerging techniques such as

Cloud computing offer promising decision-making tools based on centralized data ware-

housing, the extent to which these can be effectively implemented remains uncertain.

The study [22] highlights that cloud analyses often encounter commonalities, making it

challenging to extract representative or non-representative data without predefined pri-

vacy and security conditions. These conditions must be rigorously evaluated to determine

the effectiveness of cloud computing in the management of EHR.

To improve cloud computing approaches, the recommendations and practical steps pro-

posed in this research should be explored in conjunction with Ontology capabilities and

the Semantic Web [5]. The challenges of overcoming latency in creating cross-cloud envi-

ronments and providing global access to mobile users are areas that deserve improvement.

The development of a general data model, with supporting policy and mapping models

that link multiple data sources, is another avenue for future exploration. Privacy issues

remain a significant hurdle in integrating data from various sources, with the primary goal

being the balance between utility and privacy. For example, a healthcare professional

might only share part of a client’s data, posing a challenge in maintaining comprehensive

records without privacy infringements.

An innovative approach to consider is the analysis of "similar patients" in a population,

focusing on distributional aspects to maintain privacy. Although this method currently

lacks precision, it has potential for future refinement and could prove useful in settings

such as GP offices. Another challenge lies in the sparse and missing EHR data, which

could be missing at random (MAR), missing completely at random (MCAR), or missing

not at random (MNAR). Current strategies, such as omitting missing records, can lead

to reduced sample sizes and potential biases, indicating the need for more sophisticated

methods to handle such data discrepancies in EHR research.

6.3 Future Research Directions

The rapid advancement and increasing complexity of healthcare technology, particularly

in the realm of electronic health records (EHR), require continuous research and de-

velopment to address emerging challenges in security, privacy, and data sharing within

healthcare data ecosystems. Building on the foundation established by this thesis, which

introduced the Centralized EHR Model for Preserving Privacy and Security (CEMPS)

and explored advanced technologies and ontology models, future research must pivot

towards novel solutions that further these efforts. This section outlines comprehensive
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directions for future research, with the aim of bridging existing gaps and fostering inno-

vation in the management of electronic health records.

6.3.1 Advancing CEMPS with Emerging Technologies

Future studies should explore the integration of next-generation technologies with the

CEMPS framework to enhance its security and privacy capabilities. This includes the

application of quantum-resistant cryptography to protect against future quantum com-

puting threats and the exploration of AI and machine learning algorithms for the de-

tection and response of predictive threats. Additionally, the feasibility of incorporating

federated learning into EHR systems for decentralized, privacy-preserving data analysis

warrants thorough investigation.

6.3.2 Ontology and Machine Learning Synergies

The potential of ontology models, combined with machine learning, has been demon-

strated to improve EHR security and privacy. Future research should focus on devel-

oping dynamic ontology models that can adapt to evolving healthcare terminology and

privacy regulations. Furthermore, investigating machine learning algorithms’ ability to

automate the enforcement of complex privacy policies in real time can offer significant

advancements in protecting patient data.

6.3.3 Blockchain for Decentralized Trust

Blockchain technology holds promise in creating a decentralized trust framework for EHR

systems. Future work should evaluate the integration of blockchain with CEMPS to

ensure tamperproof, transparent, and auditable access to health records. This includes

exploring scalable consensus mechanisms suitable for healthcare data exchanges and

smart contracts for automated privacy policy enforcement.

6.3.4 Ethical, Legal, and Social Implications (ELSI)

As technological solutions advance, so should our understanding of their ethical, legal,

and social implications. Future research should investigate the ELSI of using advanced

technologies in healthcare, focusing on patient consent mechanisms, data ownership is-

sues, and the digital divide. The development of frameworks to guide ethical use of AI in

healthcare care and the study of the legal implications of decentralized data management

systems are critical.
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6.3.5 Interoperability and Standardization

A significant challenge in EHR systems is ensuring interoperability among diverse health-

care IT systems while maintaining high security and privacy standards. Future studies

should aim at developing standardized data exchange protocols that can support the

seamless and secure sharing of health information between different platforms and ju-

risdictions. This includes the use of open standards for data interoperability and the

creation of universal APIs for EHR systems.

6.3.6 User-Centered Design and Usability

Enhancing the user experience and ensuring the widespread adoption of secure EHR

systems requires a focus on user-centered design. Future research directions include con-

ducting usability studies to identify and overcome barriers to user acceptance, designing

intuitive interfaces for both healthcare providers and patients, and developing training

programs to increase digital literacy in healthcare settings.

6.3.7 Comprehensive Evaluation and Real-World Implementation

Finally, there is a need for comprehensive evaluation frameworks are needed to assess the

effectiveness, security, and privacy of the proposed EHR solutions in real world settings.

Pilot studies and collaborations with healthcare institutions can provide valuable infor-

mation on the practical challenges and benefits of implementing advanced EHR systems.

In addition, longitudinal studies are essential to monitor the impact of these technologies

on healthcare delivery and patient outcomes.

In conclusion, the future research directions outlined above seek to build on the contri-

butions of this thesis toward creating more secure, efficient, and patient-centered EHR

systems. By addressing these multifaceted challenges through interdisciplinary research,

the field can make significant strides in improving the quality and accessibility of health-

care in the digital age.
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