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A B S T R A C T

Recommender systems have become ubiquitous in many application domains such as e-commerce and
entertainment to recommend items that are interesting to the users. Collaborative Filtering is one of the
most widely known techniques for implementing a recommender system, it models user–item interactions
using data such as ratings to predict user preferences, which could potentially violate user privacy and expose
sensitive data. Although there exist solutions for protecting user data in recommender systems, such as utilising
cryptography, they are less practical due to computational overhead. In this paper, we propose RSUC, a privacy-
preserving Recommender System based on User Classification. RSUC incorporates homomorphic encryption
for better data confidentiality. To mitigate performance issues, RSUC classifies similar users in groups and
computes the recommendation in a group while retaining privacy and accuracy. Furthermore, an optimised
approach is applied to RSUC to further reduce communication and computational costs using data packing.
Security analysis indicates that RSUC is secure under the semi-honest adversary model. Experimental results
show that RSUC achieves 4× performance improvement over the standard approach and offers 54× better
overall performance over the existing solution.
. Introduction

Recommender systems are an important part of modern online
ervices, the primary objective of recommender systems is to provide
ersonalised content to the end users. For instance, online shopping
ebsites employ the system to recommend relevant items to users
ased on their shopping preferences. Collaborative Filtering [1–3] (CF)
s a widely used technique for building recommender systems, it models
ser–item relations using data such as feedback and ratings to predict
ser preferences and generate tailored content. Recommender systems
re not only used by online service providers to selectively deliver per-
onalised content, but they also help manage information overload and
mprove service quality. However, as more and more service providers
dopt recommender systems, concerns about data privacy have also
rown [4,5]. As recommender systems collect user data, such as ratings
nd browsing history, to predict user preferences, the system will have
ccess to sensitive information about users. Data breaches and other
yber incidents could put user privacy at risk. In response to these
oncerns, countries have proposed legislation such as the GDPR [6] to
rotect user data. Consequently, service providers need to implement
ecurity measures to protect user privacy.

Privacy-preserving recommender systems aim to deliver the feature
f personalised content without compromising user privacy. There
xist many works that focus on building such a system using cryp-
ography [7–12] and other privacy-preserving mechanisms [13–15]

∗ Corresponding author.
E-mail address: c.junwei.luo@gmail.com (J. Luo).

for privacy protection. For instance, Canny [7] proposed the first
privacy-preserving recommender system using Homomorphic Encryp-
tion, which is a type of public-key cryptography that allows computa-
tions to be done in ciphertext space. Erkin et al. [8] applied FHE to
resolve several computational limitations imposed by the HE. Perifa-
nis et al. [16] proposed a recommender system based on Federated
Learning and FHE. However, crypto-based approaches are known to
be slow. Due to the limitation in performance, different optimisation
approaches have been proposed to mitigate the heavy computational
overhead implied by cryptography. Badsha et al. [10] proposed a
location-based recommender system, that used the location information
submitted by the user to filter the data before generating recommen-
dations. Luo et al. [17] proposed a clustering-based recommender
system that partitions user data before generating recommendations to
reduce overheads. While there exist other techniques such as utilising
K-Anonymity [15], which protects individual privacy by ensuring that
each data record is indistinguishable among at least k-1 others, and
Differential Privacy (DP) [14], which adds noise to data queries to
protect individual privacy while preserving overall statistical accuracy.
As can be seen, these solutions typically lower the accuracy of recom-
mendations. For instance, the work [18] incorporated DP for privacy
protection and several optimisations have been applied to the system
while resulting in around 20% reduction of accuracy, not to mention
the lack of data confidentiality as user data are not encrypted.
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In this paper, we propose RSUC, a crypto-based Recommender
System based on User Classification. RSUC employs cryptographic tech-
niques for better data confidentiality. However, as mentioned that
crypto-based approaches suffer from high computational costs, RSUC
strives to reduce the computation by user classification, which groups
users based on their similarities and computes the recommendation
within the group. In practice, online services usually collect more data
apart from the rating needed by recommendations. As such, these extra
data can be leveraged to reduce computations. Unlike the clustering
approach [17] that groups users based on rating data, RSUC incurs
a small overhead relative to the clustering-based solution [17] as
user attributes are dense and small. In addition to that, a simple yet
effective data-packing scheme is incorporated into RSUC that reduces
both computational and communication costs while maintaining the
same level of security. This paper makes the following contributions:

• We propose RSUC, a privacy-preserving recommender system
based on user classification. The system incorporates User-based
Collaborative Filtering (UCF) for recommendations. RSUC lever-
ages attributes from user profiles to perform classification and re-
duce the amount of computation without significantly impacting
the predicted results.

• We optimise the scheme with a simple and efficient data packing
scheme to reduce both communication and computation costs.
Compared to the basic approach with pure HE, the optimised
approach reduces the amount of computation by up to 4x.

• We provide formal security proof to demonstrate that RSUC is se-
cure. Additionally, we assess the privacy aspects of RSUC, demon-
strating that both the basic and optimised approaches effectively
safeguard user privacy.

• We conduct a series of experiments and comparisons to demon-
strate the performance of RSUC. The results show that RUSC
is 54x more efficient relative to the clustering-based approach
whilst maintaining accuracy.

he rest of this paper is organised as follows: Section 2 discusses
he related works, followed by the preliminaries in Section 3. Sec-
ion 4 introduces the model and notations used in the paper. Section 5
resents the privacy-preserving recommendation scheme and Section 6
emonstrates the optimisations applied to the vanilla scheme. Section 7
resents the security analysis and Section 8 evaluates the scheme re-
arding its computation and communication costs and accuracy. Lastly,
ection 9 concludes the paper.

. Related works

Existing works in privacy-preserving recommender systems can be
ategorised into two crypto-based and perturbation-based approaches.

.1. Crypto-based recommender systems

Cryptography such as homomorphic encryptions enables secure
omputations over the ciphertext space without disclosing any private
nformation. Crypto-based recommender systems take advantage of
he homomorphic property to compute similarity and recommendation
ver encrypted values, which guarantees data confidentiality while
etaining the utility. Canny [7] proposed the first privacy-preserving
ecommender system using the ElGamal [19] encryption. The system
s built using the singular value decomposition method to generate
ecommendations in the ciphertext space by exploiting the homomor-
hic properties of homomorphic encryption. Erkin et al. [8] proposed a
rivacy-preserving recommender system based on the User-based Col-
aborative Filtering (UCF) technique, which measures user similarities
ased on their ratings on items, analyses user preferences and identifies
ndividuals with similar ratings, then recommends items liked by those
imilar users. It adopted two homomorphic encryptions: Paillier [20]
2

and DGK [21], where the former is more efficient than ElGamal in
decryption and DGK is faster than Paillier during the decryption.

Basu et al. [22] proposed a privacy-preserving recommender system
using Item-based Collaborative Filtering (ICF) [3] with Paillier encryp-
tion. Unlike the UCF, which measures user similarities, ICF suggests
items to users based on similarities between items. It identifies items
frequently liked by similar users and recommends those to a target
user. Badsha et al. [11] proposed a privacy-preserving recommender
system based on UCF for recommendations and BGN encryption [23]
for privacy protection.

Li et al. [9] proposed an SMC-based recommender system in online
social networks. The Secure Multiparty Computation (SMC) enables
joint computation with multiple parties using their inputs on a func-
tion while keeping each input private. The work clustered real users
into different groups based on their interests and generated pseudo-
users that are representative of a user group. Then the pseudo-users
requested recommendations on behalf of the real users. Nikolaenko
et al. [24] proposed a privacy-preserving recommender system utilising
matrix factorisation, they employed Additive HE [19,20] and Garbled
Circuit [25], a cryptographic technique that securely processes private
data, enabling multiple parties to compute a function without seeing
sensitive information.

Kim et al. [26] employed Fully Homomorphic Encryption (FHE)
[27] to improve performance compared to prior approaches. They
exploited the SIMD (Single Instruction Multiple Data) properties of
the FHE models to perform batch computations within the cipher-
text domain, resulting in significant performance enhancements. Chai
et al. [28] proposed a privacy-preserving distributed recommender sys-
tem with HE for data aggregation. Similarly, Du et al. [29] also stated
the potential privacy leak when using distributed training, the author
further enhanced the privacy by incorporating HE and randomisation
together.

Huang et al. [30] applied a recommender system for sharing patient
records in a privacy-preserving way. The work incorporated Locality
Sensitive Hashing (LSH) which groups doctors with similar speciali-
ties into a group that facilitates searching. In addition to that, the
authors proposed an access-based control scheme that allows patients
to selectively share their health records securely. Badsha et al. [10]
explored the privacy issue in Location-based recommendation systems
and proposed a solution for web content recommendations. The main
idea is to filter users based on their geographical locations to reduce
the amount of data needed for computing the recommendation. It used
both Paillier and BGN for privacy protection.

Similarly, Perifanis et al. [16] proposed FedPOIRec, a privacy-
preserving federated learning approach for point-of-interest (POI) rec-
ommendation in Location-Based Social Networks. It uses Federating
Learning which ensures local data stays on the user’s device while a
parameter server aggregates updates. To protect the aggregation, FHE is
used as it enables arbitrary computations over the ciphertext space. The
approach, evaluated on real-world datasets, achieves comparable rec-
ommendation quality to centralised approaches with low computation
and communication overhead.

Kaur et al. [31] proposed a multiparty recommender system for rec-
ommending physicians and hospitals to the patient based on symptoms.
The idea is to incorporate multiple hospitals to aggregate datasets in
a secure way using Paillier encryption such that data owners do not
leak any private data to other parties while obtaining a more accurate
model. Luo et al. [17] proposed a clustering-based recommender system
using ElGamal and k-means [32], which is a clustering algorithm that
partitions data based on similarity. The work employed a secure k-mean
clustering which allows the recommender server to securely partition
the dataset into clusters. A recommendation is generated based on the
similarity of a requested user with each cluster, and the closest cluster

is used for computing the recommendation.
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2.2. Perturbation-based recommender systems

In addition to crypto-based approaches, research has been focusing
on building the recommender system using techniques such as Dif-
ferential Privacy (DP), K-Anonymity, data perturbation and Federated
Learning (FL). Polat and Du [33] proposed a random data perturbation
technique for preserving data privacy in recommender systems. Data
perturbation is a privacy-preserving technique that involves altering
values in a dataset to protect individual information while maintaining
data utility. Li et al. [34] introduce a simple data splitting protocol
for item-based PPCF to preserve privacy, the protocol is similar to
secret sharing [35], where each party obtains a share and the original
data can be recovered if all shares have been joined together. Casino
et al. [36] proposed a privacy-preserving recommender system using
K-Anonymity. The main idea is to protect the anonymity of individ-
ual users in a dataset, it does so by adjusting the dataset such that
each record will have 𝑘 records that are similar to each other. Wei
t al. [15] improved the privacy by adopting L-diversity [37] and T-
loseness [38], both methods are used to reduce the granularity of the
ata for privacy preservation.

Yin et al. [14] proposed a DP-based recommender system for user
rivacy protection. DP achieves privacy protection by adding random
oise to the dataset in a controlled way such that adding or removing
ny particular individual from the dataset will not significantly affect
he predicted result. Shin et al. [18] proposed a privacy-preserving
ecommender system using matrix factorisation (MF). The MF is a
achine learning model that extracts latent factors of the user and

tem to build a model for generating recommendations. To secure
ser rating data, Local Differential Privacy (LDP) is used, which adds
oise to the data without disturbing the overall distribution of the
odel. To address challenges such as high dimensionality and iterative

stimation, the author employed dimensionality reduction to reduce
omputations and improve accuracy. Experimental results show im-
roved recommendation accuracy compared to existing DP-based MF
olutions.

Khaliq et al. [12] proposed a privacy-preserving recommender sys-
em that utilises local differential privacy (LDP) and elliptic curve
ryptography (ECC) for parking recommendation. The system ensures
ser anonymity and integrity by incorporating a Hash-based message
uthentication code (HMAC) and data privacy by sampling noises using
DP to mask user data. Experimental results show that the proposed
odel achieves privacy preservation and security with low storage,

omputation, and communication costs while providing private park-
ng recommendations to users. Ammad-Ud-Din et al. [13] employed
ederated learning (FL) for the recommender system. FL is a machine
earning technique that has gained popularity in recent years, it enables
ata owners to participate in the learning process without requiring
he dataset to be submitted to a centralised server. This is achieved
y training the model locally and aggregating the trained result into a
hared model.

. Preliminaries

In this section, the preliminaries used in the paper are reviewed.
he section begins with the introduction of the Collaborative Filtering
lgorithm, a building block of recommender systems, and the Paillier,
public key cryptography used in RSUC.

.1. Collaborative filtering

Collaborative Filtering (CF) is a common technique used to build
ecommender systems. CF examines user behaviour and predicts items
or a specific user based on the similarity and ratings of other users.
iven a list of all users 𝑈 = (𝑈𝑎, 𝑈𝑏,…), where 𝑈𝑎 represents the 𝑎th
3

user in 𝑈 , and a user 𝑈𝑎 has a vector 𝑅𝑎 = (𝑟𝑎,1, 𝑟𝑎,2,… , 𝑟𝑎,𝑀 ) where 𝑟𝑎,𝑖
is the rating of user 𝑈𝑎 for item 𝑖, recommendation for user 𝑈𝑎 for item
𝑖 can be computed using Eq. (1).

𝑃𝑎,𝑖 =

∑

𝑈𝑏∈𝑈 (𝑠𝑖𝑚(𝑈𝑎, 𝑈𝑏) ⋅ 𝑟𝑏,𝑖)
∑

𝑈𝑏∈𝑈 ‖𝑠𝑖𝑚(𝑈𝑎, 𝑈𝑏)‖
(1)

where 𝑃𝑎,𝑖 is the predicted rating of item 𝑖 by user 𝑈𝑎, and 𝑠𝑖𝑚 is the
osine similarity between the ratings of the query user 𝑈𝑎 and other
sers 𝑈𝑏 ∈ 𝑈, 𝑏 ≠ 𝑎. Eq. (2) presents the cosine similarity.

𝑖𝑚(𝑈𝑎, 𝑈𝑏) =
∑𝑀

𝑖=1(𝑟𝑎,𝑖 ⋅ 𝑟𝑏,𝑖)
√

∑𝑀
𝑖=1 𝑟

2
𝑎,𝑖 ⋅

√

∑𝑀
𝑖=1 𝑟

2
𝑏,𝑖

=
𝑀
∑

𝑖=1

𝑟𝑎,𝑖
√

∑𝑀
𝑗=1 𝑟

2
𝑎,𝑗

⋅
𝑟𝑏,𝑖

√

∑𝑀
𝑗=1 𝑟

2
𝑏,𝑗

=
𝑀
∑

𝑖=1
�̂�𝑎,𝑖 ⋅ �̂�𝑏,𝑖

(2)

where �̂�𝑎,𝑖 is the normalised similarity of user 𝑈𝑎 for item 𝑖, and �̂�𝑎,𝑖 =𝑟𝑎,𝑖
√

∑𝑀
𝑗=1 𝑟

2
𝑎,𝑗

.

.2. Homomorphic encryption

Homomorphic encryption is a type of public-key cryptography that
llows computations to be done without decryption. An additively
omomorphic encryption allows addition and multiplication over the
iphertext space. Let 𝑚1 and 𝑚2 be two values and 𝐸() denotes the
omomorphic encryption function using the public key 𝑝𝑘. Addition
ver the ciphertext space can be computed as follows:

(𝐸(𝑚1) ⋅ 𝐸(𝑚2)) = 𝑚1 + 𝑚2 (3)

here 𝐷() denote the decryption using the private key 𝑠𝑘. In addition,
iven a ciphertext 𝐸(𝑚1), multiplication can be computed as follows:

(𝐸(𝑚1)𝑚2) = 𝑚1 ⋅ 𝑚2 (4)

here 𝑚2 is plaintext, the computation 𝐸(𝑚1)𝑚2 results in a ciphertext
f 𝑚1 ⋅ 𝑚2.

In this work, Paillier cryptosystem [20] is incorporated, the cryp-
osystem consists of key generation, encryption and decryption.

ey generation:

• Select two large primes 𝑝 and 𝑞 such that 𝑔𝑐𝑑(𝑝𝑞, (𝑝−1)(𝑞−1)) = 1;
• Compute 𝑛 = 𝑝𝑞 and 𝜆 = 𝑙𝑐𝑚(𝑝 − 1, 𝑞 − 1);
• Choose a value 𝑔 from Z∗

𝑛2
such that 𝜇 = 𝐿(𝑔𝜆 𝑚𝑜𝑑 𝑛2)−1 𝑚𝑜𝑑 𝑛

exists, the function 𝐿(𝑥) = 𝑥−1
𝑛

• The public key 𝑝𝑘 is (𝑛, 𝑔) and the private key 𝑠𝑘 is (𝜆, 𝜇)

Encryption: Let 𝑚 ∈ 𝑛 be a message to be encrypted, select a random
number 𝑟 where 0 ≤ 𝑟 ≤ 𝑛 and compute the following:

𝑐 = 𝐸(𝑚, 𝑟) = 𝑔𝑚 ⋅ 𝑟𝑛 𝑚𝑜𝑑 𝑛2 (5)

Decryption: Let 𝑐 = 𝐸(𝑚, 𝑟) be an encrypted message under 𝑝𝑘, the
plaintext 𝑚 can be recovered using the secret key 𝑠𝑘 by computing the
following:

𝑚 = 𝐷(𝑐) =
𝐿(𝑐𝜆 𝑚𝑜𝑑 𝑛2)
𝐿(𝑔𝜆 𝑚𝑜𝑑 𝑛2)

𝑚𝑜𝑑 𝑛 (6)

Homomorphic Addition: Let 𝑐1 = 𝐸(𝑚1, 𝑟1) and 𝑐2 = 𝐸(𝑚2, 𝑟2)
e two encrypted message under the same public key 𝑝𝑘 using Paillier,
ultiplying 𝑐1 and 𝑐2 together yields 𝑚1 + 𝑚2.

(𝑚1 + 𝑚2) = 𝐸(𝑚1, 𝑟1) ⋅ 𝐸(𝑚2, 𝑟2)

= (𝑔𝑚1 ⋅ 𝑟1𝑛) ⋅ (𝑔𝑚2 ⋅ 𝑟2𝑛) 𝑚𝑜𝑑 𝑛2

𝑚1+𝑚2 𝑛 2

(7)

= 𝑔 ⋅ (𝑟1 ⋅ 𝑟2) 𝑚𝑜𝑑 𝑛
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Fig. 1. System architecture of RSUC.
4. System overview

In this section, the system architecture of RSUC is presented, fol-
lowed by the data structures used in RSUC and the notations used
throughout the paper. Lastly, the adversary model of RSUC is discussed
(see Fig. 1).

4.1. System architecture

RSUC consists of three entities, a Recommender Server (RS), a
Security Server (SS) and the User.

Recommender Server (RS): The RS is responsible for providing
computational and storage resources for realising recommendations.
Users submit their encrypted profiles to the RS.

Security Server (SS): The SS is the security entity that provides
security features and is responsible for initialising cryptographic pa-
rameters such as public/private keys. The SS does not possess storage
capability and is responsible for assisting computations with the RS and
decryption.

User: Each user 𝑈 = {𝑈1, 𝑈2,… , 𝑈𝑁} is the data owner that
provides attributes and ratings to the RS for recommendations.

There are a total of four stages involved in RSUC, they are System
Initialisation, Preprocessing, Recommendation and Finalisation.

• System Initialisation: The SS generates a keypair for Paillier
encryption and releases the public key 𝑝𝑘 to users. Users sign
up to the platform by filling up the profile containing attributes
𝐴, ratings 𝑅 and a threshold 𝑇 indicating the matching criteria.
Profiles are encrypted by respective users locally using the public
key from the SS before submitting the encrypted profile to the RS
for storage.

• Preprocessing: When the platform has a large user base, the RS
processes the encrypted data by measuring the similarity of users.
After that, the threshold is applied to the similarity value and
the result is submitted to the SS to determine if the other user
is similar, based on the outcome. Similar users will be added to
computing user similarity for generating recommendations.

• Recommendation: When a query user 𝑈𝑞 wishes to get recom-
mendations from the system, 𝑈𝑞 submits a query to the RS. Upon
receiving the query, both the RS and SS compute the recom-
mendation securely, and the encrypted partial ratings are then
returned to the querying user for decryption. In the optimised
approach, the user can define a range of items that need to be
predicted.

• Finalisation: According to the encrypted results, the querying
user communicates with the SS for decryption. The vanilla ap-
proach requires user interaction to mask the data locally before
submitting it to the SS. In the optimised approach, such masking
is no longer required and both RS and SS compute the list of items
without knowing the predicted scores.
4

Table 1
Notations.
𝑅𝑆: Recommender Server.
𝑆𝑆: Security Server.
𝑈1: User 1
𝑝𝑘: Public key of 𝑆𝑆
𝑠𝑘: Private key of 𝑆𝑆
𝐸() Encryption under the public key 𝑝𝑘
𝐷() Decryption under the private key 𝑠𝑘
⊕: Homomorphic Addition
𝑎1,𝑖: 𝑖th attribute of user 𝑈1
𝑟1,𝑚: 𝑚th rating of user 𝑈1
𝐴1: An attribute list of user 𝑈1, 𝐴1 ← 𝑎1,𝑖 for 1 ≤ 𝑖 ≤ 𝐼
𝑅1: A rating list of user 𝑈1, 𝑅1 ← 𝑟1,𝑚 for 1 ≤ 𝑚 ≤ 𝑀
𝑃1: A profile of user 𝑈1 that contains 𝐴1 and 𝑅1
𝑇1: A threshold value for filtering profiles
𝑁 : Total number of users
𝑠′1,2: Similarity between User 𝑈1 and 𝑈2

𝑆′
1: A list of user similarity for the user 𝑈1

1,𝑚: Predicted rating for 𝑈1 over the 𝑚th item
′: Encrypted representation of an value

4.2. Data structures and notations

A user 𝑈 consists of a profile that contains information about the
user as well as ratings for items in the system. Let 𝑎 denote an attribute
in a profile that describes the user such as age, gender, occupation
and so on. In addition, each user defines a threshold 𝑇 used in the
preprocessing stage for filtering users. Let 𝐴1 ← 𝑎1,𝑖 for 1 ≤ 𝑖 ≤ 𝐼 be the
list of attributes for user 𝑈1.

𝐴1 ← {𝑎1,1, 𝑎1,2,… , 𝑎1,𝐼}

It should be noted that homomorphic operations cannot be applied
to literal attributes, a word embedding technique [39] has been em-
ployed that enables the transformation of strings into vectors, which
enables computing similarities between the embedded words using
measurements such as the Euclidean Distance or Cosine Similarity.
Furthermore, each user contains one or more ratings 𝑟 which are
numerical scores given by a user about items in the system. Let 𝑅1 ←
𝑟1,𝑚 for 1 ≤ 𝑚 ≤ 𝑀 be the list of ratings for 𝑈1.

𝑅1 ← {𝑟1,1, 𝑟1,2,… , 𝑟1,𝑀}

Therefore, a profile of user 𝑈1 is represented as 𝑃1 ← {𝐴1, 𝑅1, 𝑇1}.
Before 𝑈1 submits her profile to the RS, the profile is encrypted for
privacy reasons. Let 𝐸() be the encryption function under the public
key 𝑝𝑘 obtained from the SS and 𝑃 ′

1 be the encrypted profile of 𝑈1.

𝑈 ′
1 ← {𝐴′

1, 𝑅
′
1, 𝑇

′
1}

where attributes and ratings are encrypted individually as follows:

𝐴′
1 ← {𝐸(𝑎1,1), 𝐸(𝑎1,2),… , 𝐸(𝑎1,𝐼 )}
′
𝑅1 ← {𝐸(𝑟1,1), 𝐸(𝑟1,2),… , 𝐸(𝑟1,𝑀 )}
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For simplicity, let prime (′) describe the notation for encrypted
attributes under the public key from SS, such as 𝐴′ = 𝐸(𝐴). Let 𝑃 ′

e the total number of users in the system.
′ ← {𝑈 ′

1, 𝑈
′
2,… , 𝑈 ′

𝑁}

here 𝑁 denotes the number of users. Table 1 summarises the nota-
ions used in this paper.

.3. Adversary model

In this work, RSUC adapts a semi-honest security model, where
ll parties follow the protocols and do not deviate or collude, but
re interested in the user data such as user profiles, computation and
ommunication. In addition to the standard definitions, the following
ssumptions hold in this paper.

• Both the RS and SS are honest but curious, they can observe
communication and computation and try to learn sensitive infor-
mation from observation.

• Users and servers are always communicating using secure com-
munication channels for privacy reasons.

• The cryptographic primitive used in the paper (Paillier) is secure.
• Leakages through side-channel are beyond the scope of this paper.
• Inference attacks are out of the scope of this paper.
• Users will not deliberately leak their private data to any third

party.

he proposed system is said to be privacy-preserving if neither party
ould learn anything sensitive information that could lead to user
rivacy disclosure.

. The proposed privacy-preserving recommender system

In this section, the design of RSUC is presented in detail, which
onsists of the following stages: Initialisation, Preprocessing, Recom-
endation and Finalisation.

.1. System initialisation

At this stage, the SS generates security parameters as noted in
ection 3.2 to obtain (𝑛, 𝑔, 𝜆, 𝜇), where 𝑝𝑘 = (𝑛, 𝑔) and 𝑠𝑘 = (𝜆, 𝜇). The

SS publishes 𝑝𝑘 to all parties and keeps 𝑠𝑘 securely.
User registration involves obtaining the 𝑝𝑘 from the SS and com-

leting the process by filling in the profile which contains user at-
ributes and ratings. Specifically, user 𝑈𝑛 ∈ 𝑈 sets up the pro-

file 𝑃𝑛 ← {𝐴𝑛, 𝑅𝑛, 𝑇𝑛}, where 𝐴𝑛 ← {𝑎𝑛,1, 𝑎𝑛,2,… , 𝑎𝑛,𝐼} and 𝑅𝑛 ←
{𝑟𝑛,1, 𝑟𝑛,2,… , 𝑟𝑛,𝑀}. It should be noted that ratings are normalised as
denoted in Eq. (2). The profile is element-wise encrypted locally by the
user 𝑈𝑛 and the encrypted profile 𝑃 ′

𝑛 is submitted to the RS.

5.2. Preprocessing

For simplicity, following protocols are described using two users
𝑈𝑞 and 𝑈𝑡. The Algorithm 1 describes the distance computation be-
tween 𝑈𝑞 and 𝑈𝑡. From lines 2 to 6, the RS computes the Private
Squared Euclidean Distance (PSED). Specifically, each attribute from
𝑃 ′
𝑡 is computed as (𝑎′𝑡,𝑖)

−1 for 1 ≤ 𝑖 ≤ 𝐼 .

−𝑎′𝑡,𝑖 = 𝐸(𝑎𝑡,𝑖)−1 = 𝑚𝑜𝑑𝐼𝑛𝑣(𝐸(𝑎𝑡,𝑖), 𝑛2) = 𝑔−𝑎𝑡,𝑖 ⋅ (𝑟−1𝑡,𝑖 )
𝑛 𝑚𝑜𝑑 𝑛2 (8)

where the computation results in a negated ciphertext of 𝑎′𝑡,𝑖, allowing
the subtraction of two ciphertexts to be computed as follows:

𝑎𝑟′𝑖 = 𝐸(𝑎′𝑞,𝑖 − 𝑎′𝑡,𝑖) = 𝑔𝑎𝑞,𝑖−𝑎𝑡,𝑖 ⋅ (
𝑟𝑞,𝑖
𝑟𝑡,𝑖

)𝑛 𝑚𝑜𝑑 𝑛2 (9)

Note that multiplication is not supported in Partially Homomorphic
Encryption, a Secure Multiplication Protocol (SMP) [40] is adopted to
5

enable multiplication. In line 5 of Algorithm 1, the RS computes the
squared Euclidean Distance by multiplying 𝑎𝑟′𝑖 with the SS.

𝐸((𝑎𝑟𝑖)2) ≡ 𝑆𝑀𝑃 (𝑎𝑟′𝑖 , 𝑎𝑟
′
𝑖) (10)

After that, the partial distance is summed together as follows:

𝑑𝑠′𝑞,𝑡 =
𝐼
∏

𝑖=1
𝐸((𝑎𝑟𝑖)2) (11)

hen the distance 𝑑𝑠′𝑞,𝑡 is computed, the RS masks the encrypted dis-
ance with a sufficiently large secure random number 𝑟𝑑, and computes
he final distance 𝑑′𝑞,𝑡 with the threshold 𝑇 as follows:

′
𝑞,𝑡 = 𝐸((−𝑑𝑠′𝑞,𝑡 + 𝑇 ) ⋅ 𝑟𝑑) (12)

here 𝑑′𝑞,𝑡 is the distance between profile 𝑃𝑞 and 𝑃𝑡 after applying the
hreshold 𝑇 ′

𝑞 . The 𝑑′𝑞,𝑡 is sent to the SS, which will run the Algorithm 2
o filter the user.

When the SS receives the 𝑑′𝑞,𝑡, the distance is decrypted which
eveals the distance value 𝑑𝑞,𝑡. By evaluating whether the decrypted
esult belongs to a certain range, the SS can determine whether 𝑈𝑡
hould be chosen for recommendations. Recall that the threshold 𝑇 ′

𝑞
s added into the distance 𝑑𝑠′𝑞,𝑡 and masked using 𝑟𝑑. If the threshold
′
𝑞 is greater than the distance 𝑑𝑠′𝑞,𝑡, it is considered that the two users
re similar. As a result, the computation from line 9 of Algorithm 1 will
esult in a masked positive value. In the case of Paillier, 𝑑𝑞,𝑡 < 𝑛∕2 holds
or the decrypted distance indicating that users 𝑈𝑞 and 𝑈𝑡 are similar,
ithout learning how statistically close they are.

Assuming that the user 𝑈𝑡 is similar to the 𝑈𝑞 after the Algorithms
and 2. The RS computes the actual similarity of two users, denoted

s 𝑠′𝑞,𝑡. Specifically, the RS computes the following:

′
𝑞,𝑡 =

𝑀
∏

𝑚=1
𝑟′𝑞,𝑚 ⋅ 𝑟′𝑡,𝑚 (13)

here 𝑟′𝑞,𝑚 and 𝑟′𝑡,𝑚 denote the rating given by user 𝑈𝑞 and 𝑈𝑡 for the
th item respectively. The RS executes the Algorithm 3 to compute

he 𝑠′𝑞,𝑡. Similarly, the protocol takes advantage of the mentioned
MP for homomorphic multiplication. As preferences and ratings are
ormalised and precomputed locally by the user before encrypting and
ubmitting to the RS, computing the user similarity can be done using
ne multiplication for each item.

.3. Computing the recommendation

From here, the RS holds a list of similarity values between 𝑈𝑞 and
ther users, denoted as 𝑆′

𝑞 . The final stage involves computing the
ecommendations for items 𝑚 ∈ 𝑀 in the system. Specifically, the RS
omputes the following:

𝑞,𝑚 =
𝑁 ′

𝑞,𝑚

𝐷′
𝑞,𝑚

=

∏

𝑈𝑡∈𝑈 (𝑠𝑖𝑚(𝑈𝑞 , 𝑈𝑡) ⋅ 𝑟′𝑡,𝑚)
∏

𝑈𝑡∈𝑈 ‖𝑠𝑖𝑚(𝑈𝑞 , 𝑈𝑡)‖
(14)

Algorithm 1: Private Squared Euclidean Distance
Input : 𝑃 ′

𝑞 , 𝑃
′
𝑡 , 𝑇

′
𝑞

Output: 𝑑′𝑞,𝑡
1 Recommender Server:
2 for 𝑖 ← 1 to 𝐼 do
3 −𝑎′𝑡,𝑖 ← (𝑎′𝑡,𝑖)

−1

4 𝑎𝑟′𝑖 ← (𝑎′𝑞,𝑖 ⊕ −𝑎′𝑡,𝑖)
5 𝑑𝑠′𝑞,𝑡 ← 𝑑𝑠′𝑞,𝑡 ⊕𝑆𝑀𝑃 (𝑎𝑟′𝑖 , 𝑎𝑟

′
𝑖)

6 end
7 𝑟𝑑 ← 𝑟𝑎𝑛𝑑()
8 𝑑′𝑞,𝑡 ← ((𝑑𝑠′𝑞,𝑡)

−1 ⊕ 𝑇 ′
𝑞 )

𝑟𝑑

9 return 𝑑′𝑞,𝑡
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Algorithm 2: Threshold Evaluation
Input : 𝑑′𝑞,𝑡
Output: 𝑃 ′

𝑡 if the input meets the threshold 𝑇
1 Security Server:
2 𝑑𝑞,𝑡 ← 𝐷(𝑑′𝑞,𝑡)
3 𝑒𝑣𝑎𝑙 ← 0
4 Test if 𝑑𝑞,𝑡 is 0 or above, 𝑒𝑣𝑎𝑙 ← 1 if so.
5 return 𝑒𝑣𝑎𝑙
6 Recommender Server:
7 if 𝑒𝑣𝑎𝑙 ≡ 1 then
8 return 𝑃 ′

𝑡
9 end

Algorithm 3: Private Cosine Similarity Computation
Input : 𝑃 ′

𝑞 , 𝑃
′
𝑡

Output: 𝑠′𝑞,𝑡
1 Recommender Server:
2 for 𝑚 ← 1 to 𝑀 do
3 𝑠′𝑞,𝑡 ← 𝑠′𝑞,𝑡 ⊕𝑆𝑀𝑃 (𝑟′𝑞,𝑚, 𝑟

′
𝑡,𝑚)

4 end
5 return 𝑠′𝑞,𝑡

where 𝑞,𝑚 denotes the predicted recommendation for user 𝑈𝑞 over an
item 𝑚. As discussed previously only certain users within the threshold
are considered, and the 𝑠𝑖𝑚() will be replaced with the similarity stored
in the 𝑆′

𝑞 . The RS executes Algorithm 4 to compute recommendations.

Algorithm 4: Secure Rating Prediction
Input : 𝑆′

𝑞
Output: 𝑁 ′

𝑞 , 𝐷
′
𝑞

1 Recommender Server:
2 𝑁 ′

𝑞 ← {}, 𝐷′
𝑞 ← {}

3 foreach 𝑠′ ∈ 𝑆′
𝑞 do

4 𝑈 ′
𝑡 ← 𝑔𝑒𝑡𝑈𝑠𝑒𝑟(𝑠′)

5 for 𝑚 ← 1 to 𝑀 do
6 𝑁 ′

𝑞,𝑚 ← 𝑁 ′
𝑞,𝑚 ⊕𝑆𝑀𝑃 (𝑠′, 𝑟′𝑡,𝑚)

7 𝐷′
𝑞,𝑚 ← 𝐷′

𝑞,𝑚 ⊕ 𝑠′

8 end
9 end
10 return 𝑁 ′

𝑞 , 𝐷
′
𝑞

To learn the predicted values, a division will be required to reveal
he rating. As divisions can be realised effectively after the ciphertexts
re decrypted and only the SS obtains the decryption key. The RS
eturns a list of partial ratings stored in 𝑁 ′

𝑞 and 𝐷′
𝑞 to the user 𝑈𝑞 . The

ser runs Algorithm 5 with the SS to get the final predicted values.
oncretely speaking, 𝑈𝑞 generates a list of random numbers 𝑟𝑑𝑚, 𝑟𝑛𝑚 ←
𝑟𝑎𝑛𝑑() for 1 ≤ 𝑚 ≤ 𝑀 for each item in the list and mask the ciphertext
y computing the following:
′
𝑞,𝑚 = (𝑁 ′

𝑞,𝑚)
𝑟𝑛𝑚 = 𝐸(𝑁 ′

𝑞,𝑚 ⋅ 𝑟𝑛𝑚),

′
𝑞,𝑚 = (𝐷′

𝑞,𝑚)
𝑟𝑑𝑚 = 𝐸(𝐷′

𝑞,𝑚 ⋅ 𝑟𝑑𝑚) 𝑓𝑜𝑟 1 ≤ 𝑚 ≤ 𝑀
(15)

he user 𝑈𝑞 then submits her masked ciphertexts, denoted as  ′ and
′ to the SS for decryption. Upon receiving the request, the SS decrypts

he ciphertext and returns the decrypted values, denoted as 𝑎 and 𝑎
o the user 𝑈𝑞 . Lastly, the 𝑈𝑞 unmasks the result and gets the correct
rediction.

. The optimised RSUC

While the proposed protocols described above satisfy the require-
6

ent of privacy-preserving recommendations, they rely on the SMP i
Algorithm 5: Private Decryption of Predicted Ratings
Input : 𝑁 ′

𝑞 , 𝐷
′
𝑞

Output: 𝑞
1 User 𝑈𝑞:
2 𝑟𝑑, 𝑟𝑛 ← {}
3 for 𝑚 ← 1 to 𝑀 do
4 𝑟𝑑𝑚, 𝑟𝑛𝑚 ← 𝑠𝑟𝑎𝑛𝑑()
5  ′

𝑞,𝑚 ← (𝑁 ′
𝑞,𝑚)

𝑟𝑛𝑚

6 ′
𝑞,𝑚 ← (𝐷′

𝑞,𝑚)
𝑟𝑑𝑚

7 end
8 𝑈𝑎 sends  ′

𝑞 and ′
𝑞 to SS.

9 Security Server:
10 return 𝑞 ← 𝐷( ′

𝑞,𝑚) and 𝑞 ← 𝐷(′
𝑞,𝑚) for 1 ≤ 𝑚 ≤ 𝑀

11 User 𝑈𝑞 :
12 for 𝑚 ← 1 to 𝑀 do
13 𝑞,𝑚 ←

𝑞,𝑚⋅(𝑟𝑛𝑚)−1

𝑞,𝑚⋅(𝑟𝑑𝑚)−1

14 end

protocol, where the RS and SS incorporate together to privately mul-
tiply two ciphertexts, which incurs excessive computational and com-
munication overhead. In this section, the basic protocols of RSUC
have been optimised to boost performance, mainly by replacing the
SMP protocol for better efficiency while maintaining the same utilities.
Moreover, the aforementioned protocols require user interactions dur-
ing the final stage to get the predicted results, a new privacy-preserving
sorting algorithm has been proposed that lifts the computational burden
from the user.

[41] proposed a technique that aims to combine encrypted values
into one single ciphertext called data packing. The idea behind packing
is to perform bit-shifting and addition to append values of fixed length
in the binary form. Let {𝑥0, 𝑥1,… , 𝑥𝑛} be the list of values that need
packing, where 𝑛𝑏𝑥 denotes as the bit length of the value 𝑥. To pack
the list into a singular value 𝑃 , one computes the following:

𝑃𝑎𝑐𝑘(𝑥𝑖, 𝑖) =

{

𝑥𝑖 ∗ (2𝑛𝑏𝑥 )𝑖, if 𝑖 > 0
𝑥𝑖, otherwise

Specifically, let 𝑥0 = 4 and 𝑥1 = 5, which are equivalent to 𝑥0 = 0100𝑏
and 𝑥1 = 0101𝑏 respectively. For simplicity, 𝑛𝑏𝑥 is set to 4 which
indicates that each 𝑥 is 4-bit in length. To pack 𝑥0 and 𝑥1 into 𝑃 ,
resulting in 𝑃 = 84 which is equivalent to 𝑃 = 0101|0100𝑏, where
the most significant 4-bit represents 𝑥1 and the least significant 4-bit
represents 𝑥0.

𝑃 = 𝑥1 ∗ 2𝑛𝑏𝑥 + 𝑥0
= 5 ∗ 24 + 4

= 84 or 0101|0100𝑏
orrespondingly, the unpack operation is shown as follows:

𝑛𝑝𝑎𝑐𝑘(𝑃 , 𝑖) =

{

𝑃 ≫ 𝑖 ∗ 𝑛𝑏𝑥 𝑚𝑜𝑑 2𝑛𝑏𝑥 , if 𝑖 > 0
𝑃 𝑚𝑜𝑑 2𝑛𝑏𝑥 , otherwise

here ≫ denotes the right shift operation. Specifically, to extract 𝑥0
nd 𝑥1 from 𝑃 , one might compute the following:

1 = (84 ≫ 4) 𝑚𝑜𝑑 24

= (01010100𝑏 ≫ 4) 𝑚𝑜𝑑 16

= 5 or 0101𝑏
Note that the number of 𝑥 that can be packed is determined by

he bit-length of the ciphertext space. Assume that the homomorphic
ncryption is 1024 bits and each 𝑥 is 4-bit, this allows up to 32 values to
e packed into one ciphertext. Inspired by the technique, the optimised
rotocols incorporate the data packing to replace the SMP protocol to

mprove efficiency.
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6

6.1. Distance computation using packing

Algorithm 6: Optimised Private Squared Euclidean Distance
Input : 𝑃 ′

𝑞 , 𝑃
′
𝑡 , 𝑇

′
𝑞

Output: 𝑑′𝑎,𝑏
1 Recommender Server:
2 𝑟𝑑 ← {}
3 for 𝑖 ← 1 to 𝐼 do
4 𝑟𝑑𝑖 ← 𝑟𝑎𝑛𝑑()
5 𝑎𝑟′𝑖 ← (𝑎′𝑞,𝑖 ⊕ −𝑎′𝑡,𝑖 ⊕𝐸(𝑟𝑑𝑖))
6 𝑑𝑠′𝑞,𝑡 ← 𝑑𝑠′𝑞,𝑡 ⊕ 𝑃𝑎𝑐𝑘(𝑎𝑟′𝑖 , 𝑖)
7 Sends 𝑑𝑠′𝑞,𝑡 to SS.
8 Security Server:
9 𝑑𝑠𝑞,𝑡 ← 𝐷(𝑑𝑠′𝑞,𝑡)
10 for 𝑖 ← 1 to 𝐼 do
11 𝑎𝑟𝑖 ← 𝑈𝑛𝑝𝑎𝑐𝑘(𝑑𝑠𝑞,𝑡, 𝑖)
12 Sends 𝐸((𝑎𝑟𝑖)2) to RS
13 Recommender Server:
14 for 𝑖 ← 1 to 𝐼 do
15 𝑑′𝑞,𝑡 ← 𝑑′𝑞,𝑡 ⊕𝐸((𝑎𝑟𝑖)2)⊕ (𝑎′𝑞,𝑖 ⊕ (𝑎′𝑡,𝑖)

−1)−2𝑟𝑑𝑖 ⊕𝐸((𝑟𝑑𝑖)2)−1

16 𝑟𝑛 ← 𝑟𝑎𝑛𝑑()
17 𝑑′𝑞,𝑡 ← ((𝑑′𝑞,𝑡)

−1 ⊕ 𝑇 ′
𝑞 )

𝑟𝑛

18 return 𝑑′𝑞,𝑡

Similar to the original protocol denoted in the Algorithm 1, the RS
omputes the distance between 𝑈𝑞 and 𝑈𝑡. The algorithm 6 shows the

optimal approach for computing the distance. The RS sources 𝐼 random
values 𝑟𝑑𝑖, 1 ≤ 𝑖 ≤ 𝐼 from a trusted source, compute the partial distance
etween two attributes and mask the result using the newly generated
alue.

𝑟′𝑖 = (𝑎′𝑞,𝑖 ⊕ −𝑎′𝑡,𝑖 ⊕𝐸(𝑟𝑑𝑖)) (16)

here 𝑎′𝑞,𝑖 and 𝑎′𝑡,𝑖 denote the 𝑖th attribute from 𝑈𝑞 and 𝑈𝑡 and 𝑟𝑑𝑖
enotes the random value for masking. After that, the masked distance
s packed as follows:

𝑠′𝑞,𝑡 = 𝑑𝑠′𝑞,𝑡 ⊕ 𝑃𝑎𝑐𝑘(𝑎𝑟′𝑖 , 𝑖) for 1 ≤ 𝑖 ≤ 𝐼 (17)

here 𝑑𝑠′𝑞,𝑡 denotes the packed distance, 𝑃𝑎𝑐𝑘(𝑎𝑟′𝑖 , 𝑖) performs packing
perations and returns the result that can be aggregated into 𝑑𝑠′𝑞,𝑡. It
hould be noted that selecting a proper bit length is crucial for packing.
n this case, the 𝑛𝑏 is set to be 𝑛𝑏𝑎𝑟 + 𝑛𝑏𝑟𝑑 . The RS computes and masks
he distance for every attribute in those profiles, packs the distance
nto 𝑑𝑠′𝑞,𝑡 and submits it to the SS. On top of that, the number of
acked values is dependent on the security bit length of the primitive,
aving a large key allows more data to be packed at the expense of
omputational overhead.

The SS decrypts the 𝑑𝑠′𝑞,𝑡 which results in a packed value 𝑑𝑠𝑞,𝑡 with
artially masked distances. To unpack each distance, the SS executes
he following:

𝑟𝑖 = 𝑈𝑛𝑝𝑎𝑐𝑘(𝑑𝑠𝑞,𝑡, 𝑖) for 1 ≤ 𝑖 ≤ 𝐼 (18)

o recover each individually packed distance 𝑎𝑟𝑖. After that, the SS com-
utes the squared over the unpacked distance individually and encrypts
he result. Finally, the encrypted squared distance is individually sent
ack to the RS.

Before the squared distances can be summed together to recover
he actual distance, the masking 𝑟𝑑𝑖 introduced to the partial distance
′

7

𝑟𝑖 for privacy protection needs to be removed. Specifically, the RS
omputes the following:

′
𝑞,𝑡 =

𝐼
∏

𝑖=1
𝐸((𝑎𝑟𝑖)2)⊕ (𝑎′𝑞,𝑖 ⊕ (𝑎′𝑡,𝑖)

−1)−2𝑟𝑑𝑖 ⊕𝐸((𝑟𝑑𝑖)2)−1

=
𝐼
∏

𝑖=1
𝐸((𝑎𝑞,𝑖 − 𝑎𝑡,𝑖 + 𝑟𝑑𝑖)2 + ((𝑎𝑞,𝑖 − 𝑎𝑡,𝑖) ⋅ −2𝑟𝑑𝑖 − 𝑟𝑑𝑖

2))

=
𝐼
∏

𝑖=1
𝐸((𝑎𝑞,𝑖 − 𝑎𝑡,𝑖)2)

(19)

here the 𝑟𝑑𝑖 is removed from the 𝑎𝑟′𝑖 and the result is homomor-
hically summed into 𝑑′𝑞,𝑡 which denotes the actual distance between
𝑞 and 𝑈𝑡. When the distance is finalised, the RS filters the distance
y applying the threshold 𝑇 ′

𝑞 as usual and submits it to the SS for
valuation as instructed in the Algorithm 2.

.2. Cosine similarity with packing

Algorithm 7: Optimised Cosine Similarity Computation
Input : 𝑃 ′

𝑞 , 𝑃
′
𝑡

Output: 𝑠′𝑞,𝑡
1 Recommender Server:
2 𝑟𝑑𝑞 ← {}, 𝑟𝑑𝑡 ← {}
3 for 𝑚 ← 1 to 𝑀 do
4 𝑟𝑑𝑞,𝑚 ← 𝑟𝑎𝑛𝑑(), 𝑟𝑑𝑡,𝑚 ← 𝑟𝑎𝑛𝑑()
5 𝑝′𝑞 ← 𝑝′𝑞 ⊕ 𝑃𝑎𝑐𝑘((𝑟′𝑞,𝑚 ⊕𝐸(−𝑟𝑑𝑞,𝑚)), 𝑚)
6 𝑝′𝑡 ← 𝑝′𝑡 ⊕ 𝑃𝑎𝑐𝑘((𝑟′𝑡,𝑚 ⊕𝐸(−𝑟𝑑𝑡,𝑚)), 𝑚)
7 Sends 𝑝′𝑞 and 𝑝′𝑡 to the SS.
8 Security Server:
9 𝑃𝑞 ← 𝐷(𝑃 ′

𝑞 ), 𝑃𝑡 ← 𝐷(𝑃 ′
𝑡 )

10 for 𝑚 ← 1 to 𝑀 do
11 (𝑟𝑞,𝑚 − 𝑟𝑑𝑞,𝑚) ← 𝑈𝑛𝑝𝑎𝑐𝑘(𝑃𝑞 , 𝑚)
12 (𝑟𝑡,𝑚 − 𝑟𝑑𝑡,𝑚) ← 𝑈𝑛𝑝𝑎𝑐𝑘(𝑃𝑡, 𝑚)
13 Sends 𝑝′𝑞𝑡,𝑚 ← 𝐸((𝑟𝑞,𝑚 − 𝑟𝑑𝑞,𝑚) ⋅ (𝑟𝑡,𝑚 − 𝑟𝑑𝑡,𝑚)) to RS
14 Recommender Server:
15 for 𝑚 ← 1 to 𝑀 do
16 𝑠′𝑞,𝑡 ← 𝑠′𝑞,𝑡 ⊕ 𝑝′𝑞𝑡,𝑚 ⊕𝐸(−𝑟𝑑𝑞,𝑚 ∗ 𝑟𝑑𝑡,𝑚)⊕ (𝑟′𝑞,𝑚)

𝑟𝑑𝑡,𝑚 ⊕ (𝑟′𝑡,𝑚)
𝑟𝑑𝑞,𝑚

17 return 𝑠′𝑞,𝑡

Similar to distance computation, cosine similarity relies heavily
on the same SMP protocol for multiplication. As a result, packing is
introduced to the cosine similarity for improving efficiency. To begin,
the RS generates 𝑀 random values 𝑟𝑑𝑞,𝑚, 𝑟𝑑𝑡,𝑚1 ≤ 𝑚 ≤ 𝑀 for both user
ratings 𝑅′

𝑞 and 𝑅′
𝑡 respectively. The RS then masks each rating value

individually as shown in lines 5 and 6 of the Algorithm 7:

𝑝′𝑞 = 𝑝′𝑞 ⊕ 𝑃𝑎𝑐𝑘(𝐸(𝑟𝑞,𝑚 − 𝑟𝑑𝑞,𝑚), 𝑚),

𝑝′𝑡 = 𝑝′𝑡 ⊕ 𝑃𝑎𝑐𝑘(𝐸(𝑟𝑡,𝑚 − 𝑟𝑑𝑡,𝑚), 𝑚) for 1 ≤ 𝑚 ≤ 𝑀
(20)

where the packed ratings 𝑝′𝑞 and 𝑝′𝑡 are submitted to the SS for de-
cryption. The SS decrypts and unpacks the ratings and multiplies two
masked ratings individually:

𝑝′𝑞𝑡,𝑚 = 𝐸((𝑟𝑞,𝑚 − 𝑟𝑑𝑞,𝑚) ⋅ (𝑟𝑡,𝑚 − 𝑟𝑑𝑡,𝑚)) for 1 ≤ 𝑚 ≤ 𝑀 (21)

the product 𝑝′𝑞𝑡,𝑚 is encrypted and sent back to the RS. Upon receiving
the encrypted products from the SS, the RS begins to finalise the
similarity of two users 𝑈𝑞 and 𝑈𝑡 based on their ratings 𝑅′

𝑞 and 𝑅′
𝑡

respectively. Note that for privacy reasons, all ratings are masked
before submitting to the SS for decryption and multiplication. The RS
computes the following to unmask each product individually:

= 𝑝′𝑞𝑡,𝑚 ⊕𝐸(−𝑟𝑑𝑞,𝑚 ⋅ 𝑟𝑑𝑡,𝑚)⊕ (𝑟′𝑞,𝑚)
𝑟𝑑𝑡,𝑚 ⊕ (𝑟′𝑡,𝑚)

𝑟𝑑𝑞,𝑚

= 𝑝′𝑞𝑡,𝑚 ⊕𝐸(−𝑟𝑑𝑞,𝑚 ⋅ 𝑟𝑑𝑡,𝑚)⊕𝐸(𝑟𝑞,𝑚 ⋅ 𝑟𝑑𝑡,𝑚)⊕𝐸(𝑟𝑡,𝑚 ⋅ 𝑟𝑑𝑞,𝑚)

= 𝑝′𝑞𝑡,𝑚 ⊕𝐸((−𝑟𝑑𝑞,𝑚 ⋅ 𝑟𝑑𝑡,𝑚) + (𝑟𝑞,𝑚 ⋅ 𝑟𝑑𝑡,𝑚) + (𝑟′𝑡,𝑚 ⋅ 𝑟𝑑𝑞,𝑚))
(22)
= 𝐸(𝑟𝑞,𝑚 ⋅ 𝑟𝑡,𝑚)
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where 𝑟𝑑𝑞,𝑚 and 𝑟𝑑𝑡,𝑚 are removed from the encrypted product 𝑝′𝑞𝑡,𝑚 for
≤ 𝑚 ≤ 𝑀 . The unmasked product is summed into the 𝑠′𝑞,𝑡, which

ecomes the final similarity score for both 𝑈𝑞 and 𝑈𝑡.
Given the similarity score 𝑠′𝑞,𝑡 between 𝑈𝑞 and 𝑈𝑡, predication can be

computed as denoted in Eq. (1). Note that the Algorithm 4 demonstrates
such computation using the SMP protocol, the same packing techniques
used in the optimised approach can be adopted to replace the SMP
while retaining the same functionality. In the end, the RS obtains the
partial predicted scores 𝑁 ′

𝑞 and 𝐷′
𝑞 for 𝑀 items in the system. In the

next section, a simple secure sorting algorithm that enables both parties
to collaboratively sort the predicted scores without learning the actual
values is introduced.

6.3. Ranking the predicted ratings

Algorithm 8: Secure Ranking of Predicted Ratings
Input :  ′

𝑞 ,
′
𝑞 , 𝐿𝑞

Output: A sorted 𝐿𝑞
1 for 𝑖 ← 1in 𝐿.𝐿𝑒𝑛𝑔𝑡ℎ − 1 do
2 for 𝑗 ← 𝑖 + 1 in 𝐿.𝐿𝑒𝑛𝑔𝑡ℎ do
3 Recommender Server:
4 𝐶𝑖,𝑗 ← 𝑆𝑀𝑃 ( ′

𝑞,𝑖,
′
𝑞,𝑗 )⊕𝑆𝑀𝑃 ( ′

𝑞,𝑗 ,
′
𝑞,𝑖)

−1

5 Send 𝐶𝑖,𝑗 to the SS.
6 Security Server:
7 if 𝐷(𝐶𝑖,𝑗 ) < 0 then
8 𝑠𝑤𝑎𝑝(𝐿𝑞,𝑖, 𝐿𝑞,𝑗 )
9 end
10 end
11 end
12 Security Server:
13 return 𝐿𝑞 to 𝑈𝑎

The basic approach described in the Algorithm 5 requires user-
ide interaction to generate random values and mask the ratings. In
ome cases, such interactions incur a great amount of computational
verhead on user devices and it could be problematic for resource-
onstrained devices like IoT and smart gadgets. To overcome the short-
omings, RSUC offers a secure ranking algorithm that lifts the computa-
ional burden from the end users while protecting the actual ratings of
sers from being learnt by either party. Algorithm 8 denotes the secure
anking. Note that 𝑁 ′

𝑞,𝑚 and 𝐷′
𝑞,𝑚 indicate the predicted rating for the

querying user 𝑈𝑞 over the 𝑚th item. The optimised approach ranks the
tems indicated in the query, denoted as 𝐿𝑞 , as supposed to compute

all items altogether. Recall that a rating is computed as follows:

𝑞,𝑚 =
𝑁𝑞,𝑚

𝐷𝑞,𝑚
for 1 ≤ 𝑚 ≤ 𝑀 (23)

here the 𝑞,𝑚 denotes the predicted rating for 𝑈𝑞 over the 𝑚th item.
pecifically,  ′

𝑞 and ′
𝑞 be the partial ratings that correspond to the

ist of items 𝐿𝑞 . The SS computes the following as shown in line 4 of
he Algorithm 8:

𝑎𝑥(𝑃𝑞,𝑚, 𝑃𝑞,𝑚+1) =
𝑁𝑞,𝑚

𝐷𝑞,𝑚
−

𝑁𝑞,𝑚+1

𝐷𝑞,𝑚+1

=
𝑁𝑞,𝑚 ⋅𝐷𝑞,𝑚+1

𝐷𝑞,𝑚 ⋅𝐷𝑞,𝑚+1
−

𝑁𝑞,𝑚+1 ⋅𝐷𝑞,𝑚

𝐷𝑞,𝑚 ⋅𝐷𝑞,𝑚+1

= 𝑁𝑞,𝑚 ∗ 𝐷𝑞,𝑚+1 −𝑁𝑞,𝑚+1 ∗ 𝐷𝑞,𝑚

(24)

here the 𝑚𝑎𝑥(𝑎, 𝑏) function determines the largest number among two
atings by subtracting 𝑏 from 𝑎. The result 𝐶 indicates whether 𝑎 is
reater, equal or smaller by validating if it results in a positive or
egative value after the computation. However, as the computation
s done in the ciphertext space, the RS sends the result to the SS for
valuation. Similarly, the SS decrypts and validates whether 𝑏 is greater
han 𝑎 by validating the above conditions and setting the return value
𝑣𝑎𝑙 to 1 and returns it to the RS. Lastly, the RS performs a swap over
wo items based on the condition.
8

. Security analysis

In this section, the security and privacy of RSUC are analysed and
iscussed. A formal security proof using game theory is given to demon-
trate how RSUC is secure as long as the underlying cryptography
emains secure. Subsequently, privacy discussion regarding the RSUC
s also presented.

.1. Formal security proof

RSUC properly protects user input (ratings), the CF model, and
ntermediate values generated during processing by encrypting the
ata and whilst enabling secure computation over the ciphertext space
ith homomorphic computation. Under the semi-honest model, RSUC
nsures that both RS and SS can learn nothing that could assist the
e-identification of a user from the system. Formally, RSUC employs a
imulation to show that all stages are designed with data confidentiality
n mind.

heorem 1. The proposed protocols are computationally indistinguishable
from any adaptive adversary if the Paillier encryption is IND-CPA secure.

Proof. The confidentiality of the user data relies on the underlying
cryptosystem used. The Paillier is IND-CPA secure under the Decisional
Composite Residuosity Assumption (DCRA) as shown in [20]. This
implies that if the DCRA problem is hard, the proposed protocols are
computationally indistinguishable under the chosen plaintext attacks.
A security proof is given that describes as a simulation game between
the adversary  and challenger .

•  initialises security parameters (𝑛, 𝑔, 𝜆, 𝜇), where 𝑝𝑘 = (𝑛, 𝑔) and
𝑠𝑘 = (𝜆, 𝜇).

•  selects two messages 𝑚0 and 𝑚1 and send them to the . The
 uniformly picks a bit 𝑏 ∈ {0, 1}, computes 𝑚′

𝑏 = 𝐸𝑝𝑘(𝑚𝑏), and
sends the 𝑚′

𝑏 to 
•  outputs a bit 𝑏′ ∈ {0, 1} and wins the simulation if 𝑏′ = 𝑏.

et 𝑃𝑟 be the probability that  wins the simulation. It is proven that
or any polynomial-time adversary, the advantage of  winning the
ame 𝐴𝑑𝑣 = 𝑃𝑟 − 1

2 is negligible. □

7.2. Discussion on privacy and security

The following subsection aims to provide concise proof of each
algorithm in RSUC to demonstrate the satisfaction of privacy goals.

Theorem 2. When submitting user profiles to the RS, user privacy will not
be compromised.

Proof. User profiles are encrypted locally on user devices before
submission. As the RS and SS do not collude, and the homomorphic
encryption is secure, the RS is unable to efficiently compute the secret
key for decryption. Further, the Paillier is not susceptible to IND-CPA,
the RS is unable to infer private user data using the public key. □

Theorem 3. The distance computation is secure and does not leak user
privacy.

Proof. At this stage, the Euclidean Distance between two users 𝑃 ′
𝑞

and 𝑃 ′
𝑡 are computed on the ciphertext. Specifically, for each attribute

1 ≤ 𝑖 ≤ 𝐼 , the RS computes 𝑎′𝑡,𝑖
−1 which negates the attribute, allowing

the homomorphic subtraction 𝑎𝑟′𝑖 = 𝑎′𝑞,𝑖 −𝑎
′
𝑡,𝑖 to be computed. After that,

the RS computes the square 𝑑𝑠′𝑞,𝑡 = 𝑑𝑠′𝑞,𝑡 +𝑆𝑀𝑃 (𝑎𝑟′𝑖 , 𝑎𝑟
′
𝑖) using the SMP

protocol which has proven to be secure by the respective authors [40].
In the end, the RS adds 𝑇 ′

𝑞 to the final distance and masks the ciphertext
with a sufficiently large random number before submitting it to the SS.
Attackers are unable to learn anything as the computation is done on
the ciphertext. □
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Theorem 4. Evaluating the threshold does not expose users’ private data.

Proof. In the Algorithm 2, the SS decrypts the final distance 𝑑′𝑞,𝑡
etween users 𝑈𝑞 and 𝑈𝑡 to determine whether 𝑈𝑡 should be chosen

for computing the similarity. As the final distance is masked with a
sufficiently large random number, the SS is unable to learn the exact
closeness between two users. Further, the SS is unable to identify the
identity of those users. While the RS can learn whether the target user
should be chosen, the RS is unable to learn anything about the target
user as the profile is encrypted. □

heorem 5. Both similarity and recommendation are privacy-preserving
nd do not violate user privacy.

roof. Similar to the Algorithm 1, the RS computes the user simi-
arity between 𝑈𝑞 and 𝑈𝑡 using the SMP protocol [40] for ciphertext
ultiplication. □

heorem 6. Decrypting the final predicted rating does not disclose any
rivate user data.

roof. In the Algorithm 5, the querying user obtains the partial ratings
′
𝑞 and 𝐷′

𝑞 from the RS. The user obfuscates them by computing
𝑁 ′

𝑞,𝑚)
𝑟𝑛𝑚 and (𝐷′

𝑞,𝑚)
𝑟𝑑𝑚 , where 𝑟𝑛𝑚 and 𝑟𝑑𝑚 are large and secure random

umbers for 1 ≤ 𝑚 ≤ 𝑀 before submitting to the SS for decryption.
hen the SS decrypts the partial ratings, the SS can learn the obfus-

ated ratings as the SS cannot get the masked values generated by the
uerying user. Therefore, the querying user can reveal the ratings while
he RS and SS are unable to learn anything. □

heorem 7. Packing/unpacking multiple ciphertexts together does not
ompromise user privacy.

roof. The packing technique combines multiple ciphertexts into
ne on the ciphertext space using homomorphic multiplication and
ddition. The RS computes 𝐸(𝑥𝑖)(2

𝑛𝑏𝑥 )𝑖 , where 𝑛𝑏𝑥 is the bit length of
he ciphertext and 𝑖 is the index, which is essentially performing a bit-
hift operation on the ciphertext. To unpack, the SS decrypts the packed
alue and computes 𝑃 ≫ 𝑖 ∗ 𝑛𝑏𝑥 𝑚𝑜𝑑 2𝑛𝑏𝑥 to recover the packed value.
ote that each value is obfuscated by the RS before packing, the SS can

earn the obfuscated value after unpacking. □

heorem 8. The optimised Euclidean Distance using packing does not
isclose user data.

roof. In the Algorithm 6, the RS generates random number 𝑟𝑑𝑖,
omputes and masks the distance 𝑎𝑟′𝑖 = 𝑎′𝑞,𝑖 − 𝑞′𝑡,𝑖 + 𝑟𝑑′𝑖 , then packs the
ntermediate distance 𝑑𝑠′𝑞,𝑡 = 𝑑𝑠′𝑞,𝑡 + 𝑃𝑎𝑐𝑘(𝑎𝑟′𝑖 , 𝑖) for 1 ≤ 𝑖 ≤ 𝐼 . The
inal distance is sent to the SS for decryption. Upon decrypting the
istance, the SS unpacks the distance 𝑎𝑟𝑖 = 𝑈𝑛𝑝𝑎𝑐𝑘(𝑑𝑠𝑞,𝑡, 𝑖), computes
he squared distance and encrypts 𝐸((𝑎𝑟𝑖)2) for 1 ≤ 𝑖 ≤ 𝐼 . Each
ncrypted squared distance is sent back to the RS which will compute
′
𝑞,𝑡 = 𝑑′𝑞,𝑡 + 𝐸((𝑎𝑟𝑖)2) + (𝑎′𝑞,𝑖 + (𝑎′𝑡,𝑖)

−1)−2𝑟𝑑𝑖 + 𝐸((𝑟𝑑𝑖)2)−1 to remove the
𝑟𝑑 from each squared distance. To learn the user’s secret, either the SS
learns the random number 𝑟𝑑 or the RS learns the secret key. Therefore,
oth RS and SS compute the Euclidean Distance without compromising
ser privacy. □

heorem 9. The optimised similarity computation does not disclose any
ctual user ratings.

roof. Similar to the optimised Euclidean Distance, the optimised simi-
arity computation applies packing to reduce computation/
ommunication overheads. The RS generates 𝑟𝑑𝑞,𝑚 and 𝑟𝑑𝑡,𝑚 and com-
utes 𝑝′𝑞 = 𝑝′𝑞 +𝑃𝑎𝑐𝑘((𝑟′𝑞,𝑚 − 𝑟𝑑′𝑞,𝑚), 𝑚) and 𝑝′𝑡 = 𝑝′𝑡 +𝑃𝑎𝑐𝑘((𝑟′𝑡,𝑚 − 𝑟𝑑′𝑡,𝑚), 𝑚)

to pack the obfuscated ratings, for 1 ≤ 𝑚 ≤ 𝑀 . Both 𝑃 ′ and 𝑃 ′ are
9

𝑞 𝑡 u
ubmitted to the SS for decryption. As the computation is done on
iphertext, the RS is unable to learn anything from it. The SS unpacks
ach obfuscated rating (𝑟𝑞,𝑚 − 𝑟𝑑𝑞,𝑚) = 𝑈𝑛𝑝𝑎𝑐𝑘(𝑃𝑞 , 𝑚) and (𝑟𝑡,𝑚 − 𝑟𝑑𝑡,𝑚) =
𝑈𝑛𝑝𝑎𝑐𝑘(𝑃𝑡, 𝑚) for user 𝑈𝑞 and 𝑈𝑡 respectively. The SS multiplies two
obfuscated ratings, encrypts it as 𝑃 ′

𝑞𝑡,𝑚 = 𝐸((𝑟𝑞,𝑚 − 𝑟𝑑𝑞,𝑚) ⋅ (𝑟𝑡,𝑚 − 𝑟𝑑𝑡,𝑚)).
While 𝑃 ′

𝑞 and 𝑃 ′
𝑡 need to be decrypted, they are obfuscated by the RS.

herefore the SS cannot infer any information from it. Lastly, the RS
emoves the random value for each 𝑃 ′

𝑞𝑡,𝑚 by computing 𝑠′𝑞,𝑡 = 𝑠′𝑞,𝑡+𝑝
′
𝑞𝑡,𝑚+

(−𝑟𝑑𝑞,𝑚 ⋅𝑟𝑑𝑡,𝑚)+(𝑟′𝑞,𝑚)
𝑟𝑑𝑡,𝑚 +(𝑟′𝑡,𝑚)

𝑟𝑑𝑞,𝑚 . Similar to the Euclidean Distance,
ither the SS obtains 𝑟𝑑𝑞 and 𝑟𝑑𝑡 or the RS obtains the secret key to learn
ser ratings. Therefore, the optimised similarity computation is secure
nd privacy-preserving. □

heorem 10. The optimised item ranking algorithm does not leak infor-
ation about the user profile and rating.

roof. In the Algorithm 8, the RS computes the difference between two
atings on ciphertexts and submits the result to the SS. The SS decrypts
nd evaluates if the difference is smaller than 0, and swaps the two
tems in the 𝐿𝑞 if so. In the end, the SS returns the sorted item list to
he querying user. The RS is unable to learn anything as the difference
s computed on the ciphertext, while the SS learns the user preferences
ased on the sorted result, and the SS is unable to retrieve the query
ser profile. □

. Evaluation

In this section, the RSUC will be evaluated regarding its computa-
ional, communication overheads and precision by comparing it with
xisting solutions.

.1. Experimental setup

A prototype of RSUC is implemented in Java, the cryptographic
rimitive Paillier is implemented using the built-in BigInteger Class.
ll experiments are conducted on a DELL Precision 5530 workstation
quipped with an Intel Core i7-8850H with 32 GB of DDR4 2400 MHz
emory. For the Java Runtime Environment, the experiments are run

n OpenJDK 11 LTS. Each experiment, unless explicitly described, is
ingle-threaded. As for the dataset, MovieLens-100k [42] is used for
he evaluation, it includes 943 users and 1682 movies, where each
ser rated at least 20 movies, along with basic information about
he user such as age, gender and occupation. The key size of Paillier
s set to 1024 bits, which is commonly used for encrypting profiles
nd ratings as shown in [8,17]. The experiments first evaluate the
erformance overhead of each proposed algorithm and compare the
ifference between the basic and optimised schemes. In addition, RSUC
ill be compared with two existing works that utilise cryptographic ap-
roaches for private recommendations. The precision analysis compares
SUC against the standard UCF-based recommender system without
pplying user classification to evaluate if the proposed system can
enerate accurate recommendations. Additionally, two more datasets
ovieLens-1m [42] and Personality [43] are added to better evaluate
SUC with regards to recommending accuracy.

.2. Performance overheads of squared Euclidean distance

The initial evaluation involves measuring the runtime overheads
ssociated with computing the distance between users in the dataset.
asic information about users can be used directly for distance mea-
urement, while an existing word embedding technique [39] is used
o vectorise occupation strings for the same purpose. Consequently,
ach profile includes 27 attributes. Fig. 2(a) presents the overall com-
utational time required to measure the distance between a query

ser and other users in the system. Specifically, three scenarios are



Journal of Information Security and Applications 79 (2023) 103630J. Luo et al.

n

c
a
n
3
t
c
t
r
T
o
c
w
p
t
p

p
t
t
a
v
e
s
t
w

8

o

Fig. 2. Computational time and communication cost of privacy-preserving distance measurement between the query user and other users.
Fig. 3. Comparative evaluation between the basic and optimised approach of RSUC with regards to computational cost of similarity computation (a) and recommendation (b). 𝑀 :
umber of items (ratings).
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onsidered, where 300, 600, and 900 users, and compare the basic
nd optimised approaches. Both approaches scale linearly with the
umber of users. The basic approach takes 138, 267, and 361 s for
00, 600, and 900 users, respectively. In the optimised approach,
he SMP protocol was simplified by using packing to reduce both
omputational and communication costs. As a result, the computational
ime is significantly reduced to 69, 136, and 185 s, respectively, which
educes the computational time by up to 2x over the basic approach.
he threshold evaluation denoted in the Algorithm 2 incurs a negligible
verhead relative to the rest of the computation, taking around 2 s to
omplete the evaluation. It is important to note that these experiments
ere run single-threaded. Given that distance measurement is highly
arallelisable, further improvements can be achieved by utilising multi-
hreading techniques to speed up computation, as well as through
re-computation to reduce redundancy.

The communication cost between the basic and optimised ap-
roaches shows promising results as indicated in Fig. 2(b). Specifically,
he amount of traffic generated when computing distances between a
arget user and the dataset has reduced by around 4x, from 7.9, 15.8
nd 21.6 MB by the basic approach to 2.1, 4.24 and 5.79 MB with
arious numbers of users 300, 600 and 900 respectively. Threshold
valuation incurs transmission of one encrypted value for each mea-
urement, thus the computational cost increases linearly according to
he number of users, consuming 74.9, 149.8 and 204.9 kB of bandwidth
hen the 𝑁 increases from 300 to 900 respectively.

.3. Performance overheads for generating recommendations

In contrast to most existing solutions that calculate the similarity
10

f a user against the entire dataset, RSUC uses Euclidean Distance to c
electively classify users before the recommendation, thereby improv-
ng efficiency. Specifically, the number of users involved in similarity
omputation is determined by two factors: the actual distance 𝑑𝑞,𝑡 and

the threshold 𝑇 . Experiments are conducted using the ML-100k dataset,
ith user 5 selected as 𝑈𝑡 and 𝑇 set to 10, to investigate how different

settings for the number of users and items affect overall computational
time.

Fig. 3(a) shows the overall computational time required for simi-
larity computation using the aforementioned settings. In general, the
computational costs increase as the number of items 𝑀 and users 𝑁
increase. Specifically, under the basic approach, similarity computation
takes 7 s to complete when 𝑁 = 300 and 𝑀 = 30. Doubling the number
of items to 𝑀 = 60 increases the computation time to 13 s, indicating

linear scaling of the protocol. Moreover, when the number of users
is increased to 600 and 900, similar results are also observed and

easured, with computation time doubling for each increment in items
.
Likewise, the optimised approach replaces the SMP protocol with

acking to reduce overheads while maintaining the same functionality.
nder identical settings to the basic approach, the optimised approach

hows an overall reduction of computational time by approximately
5%. Notably, the optimised approach takes roughly the same amount
f time to complete computations when the number of users 𝑁 is 900,
hile the basic approach is set to 𝑁 = 600. The overall performance

mprovement is because packing enables multiple ciphertexts to be
mbedded together, resulting in fewer homomorphic operations. More-
ver, as most computations are parallelisable, further improvements

an be made with minimum effort.
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Table 2
Communication costs of similarity computation (Top) and recommendation (Bottom) between the basic and optimised approaches under various 𝑁 and 𝑀 .

M Private cosine similarity computation Optimised cosine similarity computation Average reduction

30 60 90 120 150 30 60 90 120 150

N = 300 419.585 839.647 1258.743 1678.343 2097.904 111.822 223.575 335.564 447.683 559.140 3.818x
N = 600 689.228 1378.586 2097.694 2757.205 3445.858 183.698 367.236 551.169 735.084 919.413 3.761x
N = 900 1048.84 2097.918 3146.787 4195.756 5244.943 279.593 559.150 838.713 1118.519 1398.436 3.75x

M Secure rating prediction Optimised secure rating prediction avg reduction

30 60 90 120 150 30 60 90 120 150

N = 300 329.681 659.335 989.031 1318.725 1648.364 134.786 269.485 404.495 539.618 673.984 2.43x
N = 600 531.591 1063.944 1595.916 2127.897 2659.848 202.175 404.159 606.584 809.042 1011.871 2.63x
N = 900 801.708 1603.44 2405.112 3206.848 4008.513 304.277 608.486 882.718 1377.382 1672.293 2.49x
8

l
E
s
a
o
f
i
s
P
(
i
F
i
i
p
p
c
I
b
A
a

i
v
d
i
c
T
c
t
a
d
c
t
a
t

c
n
c
t
e
𝑀
a
l
b
o
w

Similarly, under the same setting aforementioned, the performance
easurement for recommendation exhibits similar patterns as the co-

ine similarity, not surprising as they are computationally similar to
ach other. Fig. 3(b) shows that the basic approach, which relies on the
MP protocol, yields results comparable to the similarity computation,
s the prediction stage entails the same number of SMP calls and an
dditional homomorphic addition. Similarly, the optimised approach
ith packing reduces the overhead, as observed in the cosine similarity

omputation. As a result, the basic approach takes 7, 14 and 20 s
o compute recommendations for the target user, and the time is
educed to 4, 9 and 13 s under the optimised approach, indicating 50%
eduction in computational costs. Both results indicate a linear scaling
hen the 𝑀 is increased.

Table 2 shows the communication costs between the basic and opti-
ised approaches for the recommendation stage under various settings
and 𝑀 . The measurement is taken with the settings aforementioned

uring the performance evaluation, where the same dataset MovieLens-
00k is used with user 5 being the target user 𝑈𝑡 and the threshold 𝑇 is

set to 10. During the cosine similarity computation, the basic approach
consumes 419 kB of bandwidth for computing the cosine similarity
between 𝑈𝑡 and other selected users during the preprocessing stage.
Increasing the 𝑀 doubles the amount of bandwidth at 839, 1258, 1679
and 2097 kB with 𝑀 set to 60, 90, 120 and 150 respectively, indicating
a linear scaling with respect to 𝑀 . Similar to the preprocessing stage,
the optimised cosine similarity shows promising results. On average
the optimised approach reduces the amount of bandwidth by around
3.8x times, consuming 111, 223, 335 447 and 559 kB of data when
𝑁 = 300 and increasing 𝑀 from 30 to 150. As packing allows up to
32 ciphertexts to be packed together, thereby reducing the number of
communication between RS and SS to 𝑀∕32 times, whilst the basic
pproach submits each encrypted value individually. Increasing the
umber of users 𝑀 in the dataset produces more traffic between RS
nd SS, but the extra bandwidth is determined by the threshold 𝑇 as
t is used to filter users during the preprocessing stage. On average,
oubling the 𝑁 results in around 40% more bandwidth on both the
asic and optimised approaches, as the number of candidates is the
ame regardless of which approach is determined in the preprocessing
tage.

The communication costs of rating prediction also increase linearly
ccording to the number of users 𝑀 , measuring bandwidth consump-
ion from 329 kB when 𝑀 = 30, to 659 kB when doubling 𝑀 to
0. Under the same setting, the optimised rating prediction reduces
he bandwidth consumption by about 2.5x at 134 kB when 𝑀 = 30,
oubling the number at 269 when 𝑀 is set to 60. Similar to the cosine
imilarity computation, increasing 𝑁 does not scale linearly as the
umber of candidates is determined by the threshold. On average a
0% increase in communication cost is measured when increasing the

from 300 to 600 and beyond. The same result is also shown in the
ptimised rating prediction as the number of candidates is independent
f the optimisation. Overall, the adoption of packing reduces the com-
utational time has also been reduced by up to 2x, and the overall
andwidth consumption by up to 4x. It is worth stating that further
mprovement in computational time can be made by incorporating
arallel computing or multi-threading as many computations can be
11

arallel.
.4. Comparison with existing works

In this section, RSUC is compared with two other existing so-
utions with regards to performance, the first solution proposed by
rkin et al. [8] uses a similar technique to optimise bandwidth, the
econd solution, PPCF-KM [17], incorporates secure clustering K-Means
s a preprocessing technique to reduce the amount of computational
verhead. To ensure consistency, the same MovieLens-100k is used
or all implementations and the threshold for distance measurement
n RSUC is set as 𝑇 = 10. The evaluation is broken down into four
tages to better represent the computation times of different phases:
reprocessing (Prep), Similarity (Sim), Prediction (Pred), and Sorting
Sort). The distance measurement stage is defined as the preprocess-
ng stage, which is equivalent to the clustering stage in PPCF-KM.
or clustering, the number of clusters is defined as 𝑘 = 6, and the
teration count is set to be 10 𝑖𝑡𝑒𝑟 = 10. The preprocessing stage
s omitted from the other existing solution [8] due to the lack of a
reprocessing mechanism. For the prediction stage, RSUC compares the
erformance of PPCF-KM, which computed recommendations for one
luster, to that of [8], which computed recommendations for all users.
n this experiment, the optimised approach in RSUC is used as it offers
etter performance without sacrificing functionality. Additionally, the
lgorithm 8 is defined as the Sorting stage in the experiment, which is
n optional feature as other works do not employ similar mechanisms.

Fig. 4 depicts the outcomes of comparative analysis. The assessment
s conducted under the same conditions as before, where 𝑁 = 900 and
arying 𝑀 values are employed to evaluate the cost-effectiveness of
ifferent settings. In the preprocessing stage, the PPCF-KM approach
ncurs significant overhead, taking roughly 8837 s to accomplish the
lustering process when 𝑀 = 30, whereas RSUC only requires 185 s.
his indicates that RSUC performs roughly 50 times better than the
lustering technique. Additionally, when 𝑀 is set to a higher value,
he computational time of the PPCF-KM approach increases proportion-
lly, as this solution partitions users based on their ratings 𝑀 , which
emands more execution time as the number of ratings increases. In
ontrast, RSUC employs a distance measurement technique for user at-
ributes with a fixed value and fewer entries than the items. Therefore,
dding more items to the system does not result in longer processing
imes during the preprocessing stage.

During the similarity computation, PPCF-KM shows fluctuations in
omputational time due to the uncertainty of clustering, where the
umber of users assigned to each cluster varies from each run. In some
ases, PPCF-KM performs slightly better, taking around 9 s to compute
he similarity, while RSUC takes 12 s when 𝑀 = 30. However, there
xist cases where the optimised approach outperforms PPCF-KM when

is large, measuring 39, 50, and 65 s for PPCF-KM and 36, 48,
nd 61 s for the optimised approach, respectively. Furthermore, as [8]
acks a preprocessing stage, the performance is significantly hindered
y the sheer amount of data in the similarity computation. It takes
ver 600 s to compute the similarity when 𝑀 = 30 and over 2800 s
hen 𝑀 is increased to 150. This highlights the importance of the
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Table 3
Overall computational time between RSUC and other existing works using MovieLens-
100k with 𝑁 = 900 and 𝑀 = 150. 𝑘 = 6 and 𝑖𝑡𝑒𝑟 = 10 for [17] during the preprocessing
tage. Computational time is measured in seconds.

Preprocessing Similarity Recommendation Total

[17] 25 295.59 65.806 69.582 25 430.978
[8] – 2844.642 4020.064 6864.706
RSUC 185.318 61.118 65.801 312.237

preprocessing stage, which enables us to reduce the computational cost
for the similarity computation, thus achieving better performance.

Similarly, the PPCF-KM fluctuates in the prediction stage due to
the uncertainty of clustering. As both similarity and prediction share
similar computations where homomorphic multiplication is involved,
results are similar across both stages. Specifically, it takes 10, 19, 42, 55
and 69 s for PPCF-KM and 13, 26, 39, 52 and 65 s for RSUC to compute
the prediction for various 𝑀 . It shows that RSUC can reduce the time
needed for the preprocessing stage while retaining similar results for
subsequent computations as the PPCF-KM. On the other hand, the [8]
is around 40 times slower than RSUC. It is important to note that
the computational time is primarily determined by the threshold 𝑇
set during the preprocessing stage. Similarly, for the PPCF-KM, the
performance can be optimised by selecting an appropriate value for
the clustering parameter 𝑘 and the number of iterations 𝑖𝑡𝑒𝑟. However,
hese parameters significantly impact the efficiency and accuracy of the
ystem, whereas RSUC only necessitates a user-defined threshold 𝑇 to
dentify similar users.

Lastly, the performance of the sorting algorithm is measured by the
ort metric in the performance charts. Evaluating ciphertexts incurs a
ignificant performance overhead, taking more than 30 s to sort the
redicted items when the value of 𝑀 is set to 30. Doubling the number
f 𝑀 , however, results in a significant increase in computational time,
hich jumps to 126 s. This inefficiency is believed to be due to the

orting mechanism’s complexity, which has a complexity of 𝑂(𝑛2).
onetheless, since none of the existing solutions incorporate a privacy-
reserving ranking algorithm, the mechanism is typically considered
ptional, and its absence does not impact the system. Furthermore,
he performance can be enhanced by adopting a more efficient sort-
ng mechanism. In summary, RSUC is approximately 50 times faster
han [8] in all stages, including the PPCF-KM during the preprocessing
tage, while maintaining similar performance in the similarity and
12

rediction stages (see Table 3).
.5. Precision

This section demonstrates how RSUC compares to existing solu-
ions in terms of precision. To determine whether the preprocessing
tep improves predictive accuracy, RSUC is compared with the [8],
hich implements a standard UCF algorithm without preprocessing
nd PPCF-KM, which uses clustering for performance. As previously
entioned, RSUC introduces a threshold value 𝑇 to select users for

recommendation generation, and understanding how this threshold af-
fects the predicted scores is crucial for satisfying both performance and
accuracy requirements. As PPCF-KM utilises clustering, the precision
is also evaluated using different cluster sizes 𝑘 and comparing the
esults with RSUC and the baseline. In addition to that, two extra
atasets MovieLens-1m [42] and Personality [43] have been added
o the evaluation. Both datasets have captured attributes from user
rofiles, which RSUC takes advantage of to improve performance.

Fig. 5 illustrates the overall comparative results with PPCF-KM
nd the work of [8] under various settings of 𝑀 , 𝑇 , and 𝑘. During

the evaluation with MovieLens-100k, as shown in Fig. 5(a), RSUC
performs similarly to the baseline when 𝑇 is small (𝑇 = 10), but the
results deteriorate as the threshold increases. These findings indicate
that incorporating attributes from user profiles can lead to accurate
recommendations compared to the baseline. However, both [8] and
RSUC produce lower predicted scores than PPCF-KM. This is because
PPCF-KM clusters similar ratings into the same group and generates
recommendations based on the group closest to the querying user.
Furthermore, RSUC employs a pre-trained model for word embedding
in profiles containing non-numerical values. It can be argued that incor-
porating a superior model than the one [39] used in the experiments,
could further improve accuracy.

While PPCF-KM generates higher predicted scores, the results are
less consistent than those of the work of [8] and RSUC due to many
factors affecting the clustering process, such as selecting a suitable
𝑘, 𝑖𝑡𝑒𝑟, and initial centroids 𝜇. This is also shown in other tests with
different datasets. Fig. 5(b) presents the results using MovieLens-1m.
Similarly, RSUC and [8] result in a similar score across different 𝑀 at
lower 𝑇 . In particular, RSUC matches the result of [8] when a threshold
is set to 10, and produces a higher predicted score when 𝑇 = 20,
then steadily lowering the score as the 𝑇 increases. The PPCF-KM on
the other hand, fluctuates as it did during the previous experiment,
producing a score as low as around 1.7 under the setting 𝐾 = 20
and 𝑀 = 100, indicating that the clustering might be over-fitting or
the dataset is unable to be partitioned to 20 clusters with lower rating

counts.
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Fig. 5. Comparative evaluation of recommending accuracy between RSUC and other existing solutions under three datasets: MovieLens-100k (a) MovieLens-1m (b) and Personality
c) with various 𝑇 for RSUC and 𝐾 for PPCF-KM.
Lastly, Fig. 5(c) shows the recommending accuracy using the Per-
onality dataset [43]. Similarly, RSUC generates predicted scores com-
arable to the stock recommender system [8] at lower 𝑀 . In particular,

RSUC results in a more stable decline in recommending scores at higher
𝑀 when 𝑇 = 10. The personality is a more densely populated dataset
when compared to the MovieLens, which has a sparsity of over 90%.
PPCF-KM on the other hand fluctuates a lot when changing the number
of clusters, indicating that parameters need to be chosen carefully as
not only will they affect performance but also the accuracy of the
model. Overall, the experimental results show that RSUC matches the
accuracy of a stock recommender system while the threshold is set
to 20 or below, giving a balance between performance and accuracy
under different datasets. While the PPCF-KM offers higher accuracy,
the numbers fluctuate violently and are not consistent when compared
to other works. In addition to that, PPCF-KM incurs a substantial
overhead during the preprocessing stage as the number of 𝑀 , 𝑁 and 𝐾
increase, choosing a bad set of parameters could incur a re-clustering
which takes a huge amount of time to do so. The stock recommender
system [8] is more stable with regard to accuracy, but the lack of
preprocessing makes it unsuitable to be used with large datasets. RSUC
bridges the gap between performance and accuracy by employing the
user classification for reducing computation, while carefully balancing
the accuracy and performance.

9. Conclusion

In this paper, we propose RSUC, an efficient privacy-preserving
13

recommender system based on user classification, RSUC uses Paillier
encryption to enable secure computation for protecting user privacy.
RSUC takes advantage of extra attributes collected by service providers
such as user attributes to classify users before computing user simi-
larity and recommendation, reducing the amount of data needed for
computation. Further, RSUC incorporates a simple and efficient data
packing scheme that enables multiple ciphertexts to be packed together
for efficiency. By adopting the packing scheme, the computational
overhead is reduced by up to 4x. In addition, a ranking algorithm that
sorts the encrypted ratings without any party learning the plaintext
results has been proposed. A prototype of RSUC was built and a
series of experiments were conducted with regards to the performance
and accuracy of RSUC. The experimental results show that RSUC is
secure, and efficient relative to existing crypto-based solutions whilst
providing accurate recommendations. However, most datasets have
a higher degree of sparsity, which means that computations can be
wasteful on evaluating data that are empty or do not contribute to the
recommendation. In the future, we consider incorporating a machine-
learning based algorithm called SVD to tackle the problem of data
sparsity and further enhance recommending accuracy. To mitigate
potential issues with regards to performance, we will adapt parallel
computing to further enhance performance.
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