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Abstract. In this paper we introduce the concept of pre-Schur convex
functions defined on general domains from plane. Then, by making use
of Green’s identity for double integrals, we establish some integral in-
equalities for this class of functions that naturally generalize the case of
Schur convex functions. Some exmples for rectangles and disks are also
provided.

1 Introduction

For any x = (x1, ..., xn) ∈ R
n, let x[1] ≥ ... ≥ x[n] denote the components

of x in decreasing order, and let x↓ =
(

x[1], ..., x[n]
)

denote the decreasing
rearrangement of x. For x, y ∈ R

n, x ≺ y if, by definition,
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∑k
i=1 x[i] ≤

∑k
i=1 y[i], k = 1, ..., n− 1;

∑n
i=1 x[i] =

∑n
i=1 y[i].

When x ≺ y, x is said to be majorized by y (y majorizes x). This notation
and terminology was introduced by Hardy, Littlewood and Pólya in 1934.
Functions that preserve the ordering of majorization are said to be Schur-

convex. Perhaps “Schur-increasing” would be more appropriate, but the term
“Schur-convex” is by now well entrenched in the literature, [4, p.80].
A real-valued function φ defined on a set A ⊂ R

n is said to be Schur-convex
on A if

x ≺ y on A ⇒ φ (x) ≤ φ (y) . (1)

If, in addition, φ (x) < φ (y) whenever x ≺ y but x is not a permutation of y,
then φ is said to be strictly Schur-convex on A. If A = R

n, then φ is simply
said to be Schur-convex or strictly Schur-convex.
For fundamental properties of Schur convexity see the monograph [4] and

the references therein. For some recent results, see [1]-[3] and [5]-[7].
The following result is known in the literature as Schur-Ostrowski theorem

[4, p. 84]:

Theorem 1 Let I ⊂ R be an open interval and let φ : In → R be continuously
differentiable. Necessary and sufficient conditions for φ to be Schur-convex on
In are

φ is symmetric on In, (2)

and for all i ̸= j, with i, j ∈ {1, ..., n} ,

(zi − zj)

[

∂φ(z)

∂xi
−

∂φ(z)

∂xj

]

≥ 0 for all z ∈ In, (3)

where ∂φ
∂xk

denotes the partial derivative of φ with respect to its k-th argument.

With the aid of (2), condition (3) can be replaced by the condition

(z1 − z2)

[

∂φ(z)

∂x1
−

∂φ(z)

∂x2

]

≥ 0 for all z ∈ In. (4)

This simplified condition is sometimes more convenient to verify.
The above condition is not sufficiently general for all applications because

the domain of φ may not be a Cartesian product.
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Let A ⊂ R
n be a set with the following properties:

(i) A is symmetric in the sense that x ∈ A ⇒ xΠ ∈ A for all permutations
Π;
(ii) A is convex and has a nonempty interior.
We have the following result, [4, p. 85].

Theorem 2 If φ is continuously differentiable on the interior of A and con-
tinuous on A, then necessary and sufficient conditions for φ to be Schur-convex
on A are

φ is symmetric on A (5)

and

(z1 − z2)

[

∂φ(z)

∂x1
−

∂φ(z)

∂x2

]

≥ 0 for all z ∈ A. (6)

It is well known that any symmetric convex function defined on a symmetric
convex set A is Schur convex, [4, p. 97]. If the function φ : A → R is symmetric
and quasi-convex, namely

φ (αu+ (1− α) v) ≤ max {φ (u) , φ (v)}

for all α ∈ [0, 1] and u, v ∈ A, a symmetric convex set, then φ is Schur convex
on A [4, p. 98].
In the recent paper [2] we obtained the following result for Schur convex

functions defined on symmetric convex domains of R2.

Theorem 3 Let D ⊂ R
2 be symmetric, convex and has a nonempty interior.

If φ is continuously differentiable on the interior of D, continuous and Schur
convex on D and ∂D is a simple, closed counterclockwise curve in the xy-plane
bounding D, then

∫ ∫

D

φ (x, y)dxdy ≤
1

2

∮

∂D

[(x− y)φ (x, y)dx+ (x− y)φ (x, y)dy] . (7)

If φ is Schur concave on D, then the sign of inequality reverses in (7).

In this paper we introduce the concept of pre-Schur convex functions de-
fined on general domains from plane. Then, by making use of Green’s identity
for double integrals, we establish some integral inequalities for this class of
functions that naturally generalize the case of Schur convex functions. Some
examples for rectangles and disks are also provided.
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2 Pre-Schur convexity

For a function f : D → C having continuous partial derivatives on the domain
D ⊂ R

2 we define Λ∂f,D : D → C as

Λ∂f,D (x, y) := (x− y)

(

∂f (x, y)

∂x
−

∂f (x, y)

∂y

)

.

We can introduce the following concept.

Definition 1 Let D be a measurable subset of R
2. A function f : D → R

having continuous partial derivatives on D ⊂ R
2 is called pre-Schur convex on

D if
Λ∂f,D (x, y) ≥ 0 for all (x, y) ∈ D. (8)

If the sign of inequality is reversed in (8) then we call it pre-Schur concave.
This is equivalent to the fact that −f is pre-Schur convex on D.

Obviously, Schur convex functions are pre-Schur convex as pointed out be-
low.

Lemma 1 Let D ⊂ R
2 be symmetric, convex and has a nonempty interior.

If φ is continuously differentiable on the interior of D, continuous on D and
Schur convex, then φ is pre-Schur convex on D.

The proof is obvious by Schur-Ostrowski theorem applied for D ⊂ R
2.

Let ∂D be a simple, closed counterclockwise curve in the xy-plane, bound-
ing a region D. Let L and M be scalar functions defined at least on an
open set containing D. Assume L and M have continuous first partial deriva-
tives. Then the following equality is well known as the Green theorem (see
https://en.wikipedia.org/wiki/ Green%27s theorem)

∫ ∫

D

(

∂M (x, y)

∂x
−

∂L (x, y)

∂y

)

dxdy =

∮

∂D

(L (x, y)dx+M (x, y)dy) . (G)

By applying this equality for real and imaginary parts, we can also state it for
complex valued functions P and Q.

Moreover, if the curve ∂D is described by the function r (t) = (x (t) , y (t)) ,

t ∈ [a, b] , with x, y differentiable on (a, b) then we can calculate the path
integral as
∮

∂D

(L (x, y)dx+M (x, y)dy)=

∫b

a

[

L (x (t) , y (t)) x′ (t) +M (x (t) , y (t))y′ (t)
]

dt.
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We need the following identity that was obtained in [2].

Lemma 2 Let ∂D be a simple, closed counterclockwise curve in the xy-plane,
bounding a region D. Assume that the function f : D → C has continuous
partial derivatives on the domain D. Then

1

2

∮

∂D

[(x− y) f (x, y)dx+ (x− y) f (x, y)dy] −

∫ ∫

D

f (x, y)dxdy

=
1

2

∫ ∫

D

Λ∂f,D (x, y)dxdy. (9)

Proof. Consider the functions

M (x, y) := (x− y) f (x, y) and L (x, y) := (x− y) f (x, y)

for (x, y) ∈ D.

We have

∂

∂x
[(x− y) f (x, y)] = f (x, y) + (x− y)

∂f (x, y)

∂x

and
∂

∂y
[(y− x) f (x, y)] = f (x, y) + (y− x)

∂f (x, y)

∂y

for (x, y) ∈ D.

If we add these two equalities, then we get

∂M (x, y)

∂x
−

∂L (x, y)

∂y
= 2f (x, y) +Λ∂f,D (x, y) (10)

for (x, y) ∈ D.

If we integrate this equality on D, then we obtain

∫ ∫

D

(

∂M (x, y)

∂x
−

∂L (x, y)

∂y

)

dxdy

= 2

∫ ∫

D

f (x, y)dxdy+

∫ ∫

D

Λ∂f,D (x, y)dxdy. (11)

From Green’s identity we also have

∫ ∫

D

(

∂M (x, y)

∂x
−

∂L (x, y)

∂y

)

dxdy =

∮

∂D

(L (x, y)dx+M (x, y)dy)
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=

∮

∂D

[(x− y) f (x, y)dx+ (x− y) f (x, y)dy] . (12)

By employing (11) and (12) we deduce the desired equality (9). □

Corollary 1 With the assumptions of Lemma 2 and if the curve ∂D is de-
scribed by the function r (t) = (x (t) , y (t)) , t ∈ [a, b] , with x, y differentiable
on (a, b) , then

1

2

∫b

a

(x (t) − y (t)) f (x (t) , y (t))
(

x′ (t) + y′ (t)
)

dt−

∫ ∫

D

f (x, y)dxdy

=
1

2

∫ ∫

D

Λ∂f,D (x, y)dxdy. (13)

The following generalization of Theorem 3 holds:

Theorem 4 Let ∂D be a simple, closed counterclockwise curve in the xy-
plane, bounding a region D. Assume that the function f : D → R is pre-Schur
convex on D, then

∫ ∫

D

f (x, y)dxdy ≤
1

2

∮

∂D

[(x− y) f (x, y)dx+ (x− y) f (x, y)dy] . (14)

It follows by the identity (9) and the definition of pre-Schur convex functions
(8).

Remark 1 With the assumptions of Theorem 4 and if the curve ∂D is de-
scribed by the function r (t) = (x (t) , y (t)) , t ∈ [a, b] , with x, y differentiable
on (a, b) , then

∫ ∫

D

f (x, y)dxdy ≤
1

2

∫b

a

(x (t) − y (t)) f (x (t) , y (t))
(

x′ (t) + y′ (t)
)

dt. (15)

Corollary 2 Let D ⊂ R
2 be symmetric, convex and has a nonempty interior.

If φ is continuously differentiable on the interior of D, continuous and Schur
convex on D, then the inequality (7) holds true. If φ is Schur concave on D,

then the sign of inequality reverses in (7).
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Let a < b and c < d. Put A = (a, c) , B = (b, c) , C = (b, d) , D =

(a, d) ∈ R
2 the vertices of the rectangle ABCD = [a, b]× [c, d] . Consider the

counterclockwise segments

AB :






x = (1− t)a+ tb

y = c

, t ∈ [0, 1]

BC :






x = b

y = (1− t) c+ td

, t ∈ [0, 1]

CD :






x = (1− t)b+ ta

y = d

, t ∈ [0, 1]

and

DA :






x = a

y = (1− t)d+ tc

, t ∈ [0, 1] .

Therefore ∂ (ABCD) = AB ∪ BC ∪ CD ∪DA.
We have

∮

AB

[(x− y) f (x, y)dx+ (x− y) f (x, y)dy]

= (b− a)

∫ 1

0

((1− t)a+ tb− c) f ((1− t)a+ tb, c)dt

= (b− a)

∫ 1

0

(t (b− a) + a− c) f ((1− t)a+ tb, c)dt,

∮

BC

[(x− y) f (x, y)dx+ (x− y) f (x, y)dy]

= (d− c)

∫ 1

0

(b− (1− t) c− td) f (b, (1− t) c+ td)dt

= (d− c)

∫ 1

0

(b− c− t (d− c)) f (b, (1− t) c+ td)dt,

∮

CD

[(x− y) f (x, y)dx+ (x− y) f (x, y)dy]
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= (a− b)

∫ 1

0

((1− t)b+ ta− d) f ((1− t)b+ ta, d)dt

= (a− b)

∫ 1

0

(t (a− b) + b− d) f ((1− t)b+ ta, d)dt

= (a− b)

∫ 1

0

((1− t) (a− b) + b− d) f ((1− t)a+ tb, d)dt

= (b− a)

∫ 1

0

(d− a− t (b− a)) f ((1− t)a+ tb, d)dt

and
∮

DA

[(x− y) f (x, y)dx+ (x− y) f (x, y)dy]

= (c− d)

∫ 1

0

(a− (1− t)d− tc) f (a, (1− t)d+ tc)dt

= (c− d)

∫ 1

0

(a− td− (1− t) c) f (a, (1− t) c+ td)dt

= (d− c)

∫ 1

0

(t (d− c) + c− a) f (a, (1− t) c+ td)dt.

Therefore
∮

∂(ABCD)

[(x− y) f (x, y)dx+ (x− y) f (x, y)dy]

= (b− a)

∫ 1

0

(t (b− a) + a− c) f ((1− t)a+ tb, c)dt

+ (b− a)

∫ 1

0

(d− a− t (b− a)) f ((1− t)a+ tb, d)dt

+ (d− c)

∫ 1

0

(b− c− t (d− c)) f (b, (1− t) c+ td)dt

+ (d− c)

∫ 1

0

(t (d− c) + c− a) f (a, (1− t) c+ td)dt

and from (14) we get

∫b

a

∫d

c

f (x, y)dxdy
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≤
1

2
(b− a)

∫ 1

0

(t (b− a) + a− c) f ((1− t)a+ tb, c)dt

+
1

2
(b− a)

∫ 1

0

(d− a− t (b− a)) f ((1− t)a+ tb, d)dt

+
1

2
(d− c)

∫ 1

0

(b− c− t (d− c)) f (b, (1− t) c+ td)dt

+
1

2
(d− c)

∫ 1

0

(t (d− c) + c− a) f (a, (1− t) c+ td)dt, (16)

provided that the function f : [a, b] × [c, d] → R is pre-Schur convex on D =

[a, b]× [c, d] .

If D = [a, b]× [a, b] = [a, b]2 , then from (16) we get

∫b

a

∫b

a

f (x, y)dxdy ≤
1

2
(b− a)2

∫ 1

0

tf ((1− t)a+ tb, a)dt

+
1

2
(b− a)2

∫ 1

0

(1− t) f ((1− t)a+ tb, b)dt

+
1

2
(b− a)2

∫ 1

0

(1− t) f (b, (1− t)a+ tb)dt

+
1

2
(b− a)2

∫ 1

0

tf (a, (1− t)a+ tb)dt, (17)

provided that the function f : [a, b]2 → R is pre-Schur convex on D = [a, b]2 .

If we make the change of variable (1− t)a+ tb = x, then dx = (b− a)dt,

t = x−a
b−a . Also for the change of variable (1− t) c + td = y, we have dy =

(d− c)dt and t = y−c
d−c . From (16) we get

∫b

a

∫d

c

f (x, y)dxdy ≤
1

2

∫b

a

[(x− c) f (x, c) + (d− x) f (x, d)]dx

+
1

2

∫d

c

[(b− y) f (b, y) + (y− a) f (a, y)]dy, (18)

provided that f : [a, b]× [c, d] → R is pre-Schur convex on D = [a, b]× [c, d] .

For c = a and d = b we get

∫b

a

∫b

a

f (x, y)dxdy ≤
1

2

∫b

a

[(x− a) f (x, a) + (b− x) f (x, b)]dx
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+
1

2

∫b

a

[(b− y) f (b, y) + (y− a) f (a, y)]dy, (19)

provided that the function f : [a, b]2 → R is pre-Schur convex on D = [a, b]2 .

Since the vast majority of examples of Schur convex functions are defined on
the Cartesian product of intervals, we can state the following result of interest:

Corollary 3 If φ is continuously differentiable on the interior of D = [a, b]2,
continuous on D and Schur convex, then

1

(b− a)2

∫b

a

∫b

a

φ (x, y)dxdy ≤

∫ 1

0

tφ ((1− t)a+ tb, a)dt

+

∫ 1

0

(1− t)φ ((1− t)a+ tb, b)dt (20)

or, equivalently,

∫b

a

∫b

a

φ (x, y)dxdy ≤

∫b

a

(x− a)φ (x, a)dx+

∫b

a

(b− x)φ (x, b)dx. (21)

Proof. From (17) we get

1

(b− a)2

∫b

a

∫b

a

φ (x, y)dxdy

≤

∫ 1

0

t

[

φ ((1− t)a+ tb, a) + φ (a, (1− t)a+ tb)

2

]

dt

+

∫ 1

0

(1− t)

[

φ ((1− t)a+ tb, b) + φ (b, (1− t)a+ tb)

2

]

dt. (22)

Since φ is symmetric on D = [a, b]2, hence

φ ((1− t)a+ tb, a) = φ (a, (1− t)a+ tb)

and

φ ((1− t)a+ tb, b) = φ (b, (1− t)a+ tb)

for all t ∈ [0, 1] and by (22) we get (20). □
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3 Lower and upper pre-Schur convexity

Start with the following extensions of pre-Schur convex functions:

Definition 2 Let D be a measurable subset of R2 and a function f : D → R

having continuous partial derivatives on D ⊂ R
2.

(i) For m ∈ R, f is called m-lower pre-Schur convex on D if

m (x− y)2 ≤ Λ∂f,D (x, y) for all (x, y) ∈ D. (23)

(ii) For M ∈ R, f is called M-upper pre-Schur convex on D if

Λ∂f,D (x, y) ≤ M (x− y)2 for all (x, y) ∈ D. (24)

(iii) For m, M ∈ R with m < M, f is called (m,M)-pre-Schur convex on D

if

m (x− y)2 ≤ Λ∂f,D (x, y) ≤ M (x− y)2 for all (x, y) ∈ D. (25)

We have the following simple result:

Proposition 1 Let D be a measurable subset of R2 and a function f : D → R

having continuous partial derivatives on D ⊂ R
2.

(i) For m ∈ R, f is m-lower pre-Schur convex on D iff fm : D → R,

fm (x, y) := f (x, y) − 1
2m
(

x2 + y2
)

is pre-Schur convex on D.

(ii) For M ∈ R, f is M-upper pre-Schur convex on D iff fM : D → R,

fM (x, y) := 1
2M

(

x2 + y2
)

− f (x, y) is pre-Schur convex on D.

(iii) For m, M ∈ R with m < M, f is (m,M)-pre-Schur convex on D iff fm
and fM are pre-Schur convex on D.

Proof. (i). Observe that

Λ∂fm,D (x, y) = (x− y)

(

∂fm (x, y)

∂x
−

∂fm (x, y)

∂y

)

= (x− y)

(

∂f (x, y)

∂x
−mx−

∂f (x, y)

∂y
+my

)

= (x− y)

(

∂f (x, y)

∂x
−

∂f (x, y)

∂y
−m (x− y)

)
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= Λ∂f,D (x, y) −m (x− y)2 ,

for all (x, y) ∈ D, which proves the statement.
The statements (ii) and (iii) follow in a similar way. □

We have:

Theorem 5 Let ∂D be a simple, closed counterclockwise curve in the xy-
plane, bounding a region D.

(i) Assume that the function f : D → R is m-lower pre-Schur convex, then

1

2
m

∫ ∫

D

(x− y)2 dxdy (26)

≤
1

2

∮

∂D

[(x− y) f (x, y)dx+ (x− y) f (x, y)dy] −

∫ ∫

D

f (x, y)dxdy.

(ii) Assume that the function f : D → R is M-upper pre-Schur convex, then

1

2

∮

∂D

[(x− y) f (x, y)dx+ (x− y) f (x, y)dy] −

∫ ∫

D

f (x, y)dxdy (27)

≤
1

2
M

∫ ∫

D

(x− y)2 dxdy.

(iii) Assume that the function f : D → R is (m,M)-pre-Schur convex, then

1

2
m

∫ ∫

D

(x− y)2 dxdy (28)

≤
1

2

∮

∂D

[(x− y) f (x, y)dx+ (x− y) f (x, y)dy] −

∫ ∫

D

f (x, y)dxdy

≤
1

2
M

∫ ∫

D

(x− y)2 dxdy.

Proof. (i) Since fm (x, y) := f (x, y)− 1
2m
(

x2 + y2
)

is pre-Schur convex on D,

then by (14) we get

∫ ∫

D

fm (x, y)dxdy ≤
1

2

∮

∂D

[(x− y) fm (x, y)dx+ (x− y) fm (x, y)dy] ,
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namely

∫ ∫

D

[

f (x, y) −
1

2
m
(

x2 + y2
)

]

dxdy (29)

≤
1

2

∮

∂D

{
(x− y)

[

f (x, y) −
1

2
m
(

x2 + y2
)

]

dx

+(x− y)

[

f (x, y) −
1

2
m
(

x2 + y2
)

]

dy

}
.

Since
∫ ∫

D

[

f (x, y) −
1

2
m
(

x2 + y2
)

]

dxdy =

∫ ∫

D

f (x, y)dxdy

−
1

2
m

∫ ∫

D

(

x2 + y2
)

dxdy

and

1

2

∮

∂D

{
(x− y)

[

f (x, y) −
1

2
m
(

x2 + y2
)

]

dx

+(x− y)

[

f (x, y) −
1

2
m
(

x2 + y2
)

]

dy

}

=
1

2

∮

∂D

[(x− y) f (x, y)dx+ (x− y) f (x, y)dy]

−
1

4
m

∮

∂D

[

(x− y)
(

x2 + y2
)

dx+ (x− y)
(

x2 + y2
)

dy
]

.

hence by (29) we then get

1

2
m





1

2

∮

∂D

[

(x− y)
(

x2 + y2
)

dx+ (x− y)
(

x2 + y2
)

dy
]

−

∫ ∫

D

(

x2 + y2
)

dxdy

}

≤
1

2

∮

∂D

[(x− y) f (x, y)dx+ (x− y) f (x, y)dy] −

∫ ∫

D

f (x, y)dxdy. (30)
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Further, if we use the identity (9) for the function g (x, y) = x2 + y2 we get

1

2

∮

∂D

[

(x− y)
(

x2 + y2
)

dx+ (x− y)
(

x2 + y2
)

dy
]

−

∫ ∫

D

(

x2 + y2
)

dxdy

=
1

2

∫ ∫

D

2 (x− y)2 dxdy =

∫ ∫

D

(x− y)2 dxdy,

which together with (30) gives the desired result (26).
The statements (ii) and (iii) follow in a similar way and we omit the de-

tails. □

Corollary 4 Assume that the function f : [a, b] × [c, d] → R is (m,M)-pre-
Schur convex, then

(b− c)4 − (a− c)4 − (d− b)4 + (d− a)4

24
m

≤
1

2

∫b

a

[(x− c) f (x, c) + (d− x) f (x, d)]dx

+
1

2

∫d

c

[(b− y) f (b, y) + (y− a) f (a, y)]dy

−

∫b

a

∫d

c

f (x, y)dxdy ≤
(b− c)4 − (a− c)4 − (d− b)4 + (d− a)4

24
M. (31)

In particular, if [c, d] = [a, b] , then

1

12
m (b− a)4

≤
1

2

∫b

a

[(x− a) f (x, a) + (b− x) f (x, b)]dx

+
1

2

∫b

a

[(b− y) f (b, y) + (y− a) f (a, y)]dy

−

∫b

a

∫b

a

f (x, y)dxdy ≤
1

12
M (b− a)4 . (32)

Proof. From (28) we have

1

2
m

∫b

a

∫d

c

(x− y)2 dxdy
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≤
1

2

∮

∂(ABCD)

[(x− y) f (x, y)dx+ (x− y) f (x, y)dy] −

∫b

a

∫d

c

f (x, y)dxdy

≤
1

2
M

∫b

a

∫d

c

(x− y)2 dxdy. (33)

Since
∫b

a

∫d

c

(x− y)2 dxdy =

∫b

a

[

(d− x)3 + (x− c)3

3

]

dx

=
(b− c)4 − (a− c)4 − (d− b)4 + (d− a)4

12
,

hence by (33) we get (31). □

4 Related results on symmetric domains

We have:

Lemma 3 If f : D → C is differentiable on the convex domain D, then for all
(x, y) , (u, v) ∈ D we have the equality

f (u, v) = f (x, y) + (u− x)
∂f

∂x
(x, y) + (v− y)

∂f

∂y
(x, y)

+ (u− x)

∫ 1

0

(

∂f

∂x
[t (u, v) + (1− t) (x, y)] −

∂f

∂x
(x, y)

)

dt

+ (v− y)

∫ 1

0

(

∂f

∂y
[t (u, v) + (1− t) (x, y)] −

∂f

∂y
(x, y)

)

dt. (34)

Proof. By Taylor’s multivariate theorem with integral remainder, we have

f (u, v) = f (x, y) + (u− x)

∫ 1

0

∂f

∂x
[t (u, v) + (1− t) (x, y)]dt

+ (v− y)

∫ 1

0

∂f

∂y
[t (u, v) + (1− t) (x, y)]dt (35)

for all (x, y) , (u, v) ∈ D.
Since

(u− x)

∫ 1

0

(

∂f

∂x
[t (u, v) + (1− t) (x, y)] −

∂f

∂x
(x, y)

)

dt
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= (u− x)

∫ 1

0

∂f

∂x
[t (u, v) + (1− t) (x, y)]dt− (u− x)

∂f

∂x
(x, y)

and

(v− y)

∫ 1

0

(

∂f

∂y
[t (u, v) + (1− t) (x, y)] −

∂f

∂y
(x, y)

)

dt

= (v− y)

∫ 1

0

∂f

∂y
[t (u, v) + (1− t) (x, y)]dt− (v− y)

∂f

∂y
(x, y) ,

hence by (35) we get the desired result (34). □

Corollary 5 With the assumptions of Lemma 3 and if D is symmetric, then
for all (x, y) ∈ D we have

f (y, x) = f (x, y) + (y− x)

(

∂f

∂x
(x, y) −

∂f

∂y
(x, y)

)

+ (y− x)

∫ 1

0

(

∂f

∂x
[t (y, x) + (1− t) (x, y)] −

∂f

∂x
(x, y)

)

dt

− (y− x)

∫ 1

0

(

∂f

∂y
[t (y, x) + (1− t) (x, y)] −

∂f

∂y
(x, y)

)

dt (36)

or, equivalently,

Λ∂f,D (x, y) = f (x, y) − f (y, x)

+ (y− x)

∫ 1

0

(

∂f

∂x
[t (y, x) + (1− t) (x, y)] −

∂f

∂x
(x, y)

)

dt

− (y− x)

∫ 1

0

(

∂f

∂y
[t (y, x) + (1− t) (x, y)] −

∂f

∂y
(x, y)

)

dt. (37)

We also have:

Corollary 6 With the assumptions of Lemma 3 and if D is symmetric, then

∫ ∫

D

Λ∂f,D (x, y)dxdy

=

∫ ∫

D

(y− x)

(∫ 1

0

(

∂f

∂x
(ty+ (1− t) x, tx+ (1− t)y) −

∂f

∂x
(x, y)

)

dt

)

dxdy

−

∫ ∫

D

(y− x)

(∫ 1

0

(

∂f

∂y
(ty+ (1− t) x, tx+ (1− t)y) −

∂f

∂y
(x, y)

)

dt

)

dxdy.

(38)
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The identity (38) follows by integrating (37) on D and observing that
∫ ∫

D

f (x, y)dxdy =

∫ ∫

D

f (y, x)dxdy

since D is symmetric.
We assume that the partial derivatives ∂f

∂x ,
∂f
∂y satisfy the Lipschitz type

conditions
∣

∣

∣

∣

∂f

∂x
(x, y) −

∂f

∂x
(u, v)

∣

∣

∣

∣

≤ L1 |x− u|+ K1 |y− v| (39)

and
∣

∣

∣

∣

∂f

∂y
(x, y) −

∂f

∂y
(u, v)

∣

∣

∣

∣

≤ L2 |x− u|+ K2 |y− v| (40)

for any (x, y) , (u, v) ∈ D, where L1, K1, L2 and K2 are given positive constants.

Theorem 6 If f : D → C is differentiable on the convex symmetric domain
D and the partial derivatives ∂f

∂x ,
∂f
∂y satisfy the Lipschitz type conditions (39)

and (40), then
∣

∣

∣

∣

∫ ∫

D

Λ∂f,D (x, y)dxdy

∣

∣

∣

∣

≤
1

2
(L1 + K1 + L2 + K2)

∫ ∫

D

(y− x)2 dxdy. (41)

Proof. From the representation (38) we get

∣

∣

∣

∣

∫ ∫

D

Λ∂f,D (x, y)dxdy

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ ∫

D

(y− x)

(∫ 1

0

(

∂f

∂x
(ty+ (1− t) x, tx+ (1− t)y) −

∂f

∂x
(x, y)

)

dt

)

dxdy

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∫

D

(y− x)

(∫ 1

0

(

∂f

∂y
(ty+ (1− t) x, tx+ (1− t)y) −

∂f

∂y
(x, y)

)

dt

)

dxdy

∣

∣

∣

∣

≤

∫ ∫

D

∣

∣

∣

∣

(y− x)

(∫ 1

0

(

∂f

∂x
(ty+ (1− t) x, tx+ (1− t)y) −

∂f

∂x
(x, y)

)

dt

)
∣

∣

∣

∣

dxdy

+

∫ ∫

D

∣

∣

∣

∣

(y− x)

(∫ 1

0

(

∂f

∂y
(ty+ (1− t) x, tx+ (1− t)y) −

∂f

∂y
(x, y)

)

dt

)
∣

∣

∣

∣

dxdy

≤

∫ ∫

D

|y− x|

(∫ 1

0

∣

∣

∣

∣

∂f

∂x
(ty+ (1− t) x, tx+ (1− t)y) −

∂f

∂x
(x, y)

∣

∣

∣

∣

dt

)

dxdy

+

∫ ∫

D

|y− x|

(∫ 1

0

∣

∣

∣

∣

∂f

∂y
(ty+ (1− t) x, tx+ (1− t)y) −

∂f

∂y
(x, y)

∣

∣

∣

∣

dt

)

dxdy =: M.

(42)
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Since the partial derivatives ∂f
∂x ,

∂f
∂y satisfy the Lipschitz type conditions (39)

and (40), hence

∫ 1

0

∣

∣

∣

∣

∂f

∂x
(ty+ (1− t) x, tx+ (1− t)y) −

∂f

∂x
(x, y)

∣

∣

∣

∣

dt

≤

∫ 1

0

(L1 |ty+ (1− t) x− x|+ K1 |tx+ (1− t)y− y|)dt

= L1 |y− x|

∫ 1

0

tdt+ K1 |y− x|

∫ 1

0

tdt =
1

2
(L1 + K1) |y− x|

and, similarly,

∫ 1

0

∣

∣

∣

∣

∂f

∂y
(ty+ (1− t) x, tx+ (1− t)y) −

∂f

∂y
(x, y)

∣

∣

∣

∣

dt

≤
1

2
(L2 + K2) |y− x| .

Therefore

M ≤
1

2
(L1 + K1)

∫ ∫

D

(y− x)2 dxdy+
1

2
(L2 + K2)

∫ ∫

D

(y− x)2 dxdy

=
1

2
(L1 + K1 + L2 + K2)

∫ ∫

D

(y− x)2 dxdy

and by (42) we get the desired result (41). □

Corollary 7 Assume that f : D → R is twice differentiable on the convex
symmetric domain D and the second partial derivatives ∂2f

∂x2
, ∂2f

∂y2 and ∂2f
∂x∂y are

bounded on D. Put
∥

∥

∥

∥

∂2f

∂x2

∥

∥

∥

∥

D,∞

:= sup
(x,y)∈D

∣

∣

∣

∣

∂2f

∂x2
(x, y)

∣

∣

∣

∣

,

∥

∥

∥

∥

∂2f

∂y2

∥

∥

∥

∥

D,∞

:= sup
(x,y)∈D

∣

∣

∣

∣

∂2f

∂y2
(x, y)

∣

∣

∣

∣

and
∥

∥

∥

∥

∂2f

∂x∂y

∥

∥

∥

∥

D,∞

:= sup
(x,y)∈D

∣

∣

∣

∣

∂2f

∂x∂y
(x, y)

∣

∣

∣

∣

,

then
∣

∣

∣

∣

∫ ∫

D

Λ∂f,D (x, y)dxdy

∣

∣

∣

∣

(43)

≤
1

2

(∥

∥

∥

∥

∂2f

∂x2

∥

∥

∥

∥

D,∞

+ 2

∥

∥

∥

∥

∂2f

∂x∂y

∥

∥

∥

∥

D,∞

+

∥

∥

∥

∥

∂2f

∂y2

∥

∥

∥

∥

D,∞

) ∫ ∫

D

(y− x)2 dxdy.
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We have the following reverse inequality for pre-Schur convex functions:

Corollary 8 Assume that f : D → R is twice differentiable on the convex
symmetric domain D and the second partial derivatives ∂2f

∂x2
, ∂2f

∂y2 and ∂2f
∂x∂y are

bounded on D. If f is also pre-Schur convex on D then

0 ≤
1

2

∮

∂D

[(x− y) f (x, y)dx+ (x− y) f (x, y)dy] −

∫ ∫

D

f (x, y)dxdy (44)

≤
1

4

(∥

∥

∥

∥

∂2f

∂x2

∥

∥

∥

∥

D,∞

+ 2

∥

∥

∥

∥

∂2f

∂x∂y

∥

∥

∥

∥

D,∞

+

∥

∥

∥

∥

∂2f

∂y2

∥

∥

∥

∥

D,∞

) ∫ ∫

D

(y− x)2 dxdy.

The proof follows by the identity (9) and the inequality (43) applied for the
pre-Schur convex function f.

Remark 2 Assume that f : [a, b]2 → R is twice differentiable and the second

partial derivatives ∂2f
∂x2

, ∂2f
∂y2 and ∂2f

∂x∂y are bounded on [a, b]2 . If f is also pre-

Schur convex on [a, b]2 then

0 ≤
1

2

∫b

a

[(x− a) f (x, a) + (b− x) f (x, b)]dx

+
1

2

∫b

a

[(b− y) f (b, y) + (y− a) f (a, y)]dy−

∫b

a

∫b

a

f (x, y)dxdy

≤
1

24

(

∥

∥

∥

∥

∂2f

∂x2

∥

∥

∥

∥

[a,b]2,∞

+ 2

∥

∥

∥

∥

∂2f

∂x∂y

∥

∥

∥

∥

[a,b]2,∞

+

∥

∥

∥

∥

∂2f

∂y2

∥

∥

∥

∥

[a,b]2,∞

)

(b− a)4 . (45)

5 Examples for disks

We consider the closed disk D (O,R) centered in O (0, 0) and of radius R > 0.

This is parametrized by





x = r cos θ

y = r sin θ
, r ∈ [0, R] , θ ∈ [0, 2π]

and the circle C (O,R) is parametrized by






x = R cos θ

y = R sin θ
, θ ∈ [0, 2π] .
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Observe that, if φ : D (O,R) → R, then
∮

C(O,R)

[(x− y)φ (x, y)dx+ (x− y)φ (x, y)dy]

= −

∫ 2π

0

R (R cos θ− R sin θ) sin θφ (R cos θ, R sin θ)dθ

+

∫ 2π

0

R (R cos θ− R sin θ) cos θφ (R cos θ, R sin θ)dθ

= R2

∫ 2π

0

φ (R cos θ, R sin θ) (cos θ− sin θ)2 dθ.

Also, we have

∫ ∫

D(O,R)

φ (x, y)dxdy =

∫R

0

∫ 2π

0

φ (r cos θ, r sin θ) rdrdθ

and
∫ ∫

D(O,R)

(x− y)2 dxdy =

∫R

0

∫ 2π

0

(R cos θ− R sin θ)2 rdrdθ

=
1

2
R4

∫ 2π

0

(cos θ− sin θ)2 dθ

=
1

2
R4

∫ 2π

0

(1− 2 sin θ cos θ)dθ = πR4.

Using Theorem 8 we can state the following result:

Proposition 2 Assume that f : D (O,R) → R is twice differentiable on the

convex symmetric domain D (O,R) and the second partial derivatives ∂2f
∂x2

, ∂2f
∂y2

and ∂2f
∂x∂y are bounded on D (O,R) . If f is also pre-Schur convex on D (O,R) ,

then

0 ≤
1

2
R2

∫ 2π

0

φ (R cos θ, R sin θ) (cos θ− sin θ)2 dθ

−

∫R

0

∫ 2π

0

φ (r cos θ, r sin θ) rdrdθ

≤
1

4
πR4

(

∥

∥

∥

∥

∂2f

∂x2

∥

∥

∥

∥

D(O,R),∞

+ 2

∥

∥

∥

∥

∂2f

∂x∂y

∥

∥

∥

∥

D(O,R),∞

+

∥

∥

∥

∥

∂2f

∂y2

∥

∥

∥

∥

D(O,R),∞

)

. (46)
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